

Published by AGH University of Science and Technology Press

Editor-in-Chief:
Jan Sas

Editorial Committee:
Zbigniew Kąkol (Chairman)
Marek Cała
Borys Mikułowski
Tadeusz Sawik
Mariusz Ziółko

Reviewers: prof. dr hab. inż. Jacek Kitowski
prof. dr hab. inż. Roman Wyrzykowski

Author of the monograph is an employee of
AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications
Department of Electronics
al. Mickiewicza 30
30-059 Krakow, Poland

Desktop publishing: Author
The printing was carried out from the materials prepared by Author

© Wydawnictwa AGH, Krakow 2015
ISSN 0867-6631
ISBN 978-83-7464-800-4

Publisher’s office

Wydawnictwa AGH
al. Mickiewicza 30, 30-059 Krakow
tel. 12 617 32 28, tel./fax 12 636 40 38
e-mail: redakcja@wydawnictwoagh.pl
http://www.wydawnictwa.agh.edu.pl

Contents

Summary... 9
Streszczenie... 10
List of symbols and abbreviations .. 11
Introduction.. 15
1. Computing and FPGAs ... 19

1.1. Basics of FPGA devices ... 19
1.2. The challenges of efficient data processing .. 22
1.3. Massively parallel computing ... 24
1.4. Heterogeneous computing platforms .. 25

1.4.1. Graphics cards.. 27
1.4.2. FPGA accelerators ... 28

1.5. Data-intensive computing ... 30
1.5.1. The big O notation ... 31
1.5.2. Computational patterns .. 32
1.5.3. Distributed databases ... 33

1.6. FPGAs in data-intensive applications... 34
1.7. Architectures for energy-efficient computing... 38
1.8. Energy efficiency of FPGAs ... 41
1.9. Types of FPGA-enabled architectures .. 45

2. Custom processor design in FPGAs ... 51
2.1. The general architecture of a custom processor...................................... 51

2.1.1. Algorithm selection.. 51
2.1.2. An example of the SQL custom processor................................. 52
2.1.3. The Finite-State Machine with Data .. 55
2.1.4. The controller and data path... 57

5

2.2. Algorithm scheduling ... 60
2.3. Loop pipelining... 62
2.4. Control statements pipelining ... 67

2.4.1. Conditional statement pipelining ... 67
2.4.2. Loop statement pipelining.. 69
2.4.3. Pipelining of the CFG .. 70

2.5. Memory handling.. 73
2.5.1. Local arrays of data.. 74
2.5.2. Explicit data caching.. 75
2.5.3. Sequential-Access Buffering.. 78

2.6. The FPGA-oriented algorithms .. 79
3. Data-intensive algorithms for FPGAs .. 82

3.1. Sorting and searching.. 82
3.2. The sorting nets... 83
3.3. The merge sort tree ... 87

3.3.1. The FPGA-accelerated sorting system....................................... 89
3.4. The Bloom filter.. 91

3.4.1. The parallel Bloom filter .. 92
3.4.2. Enhancement of the Bloom filter ... 94
3.4.3. Modified Cuckoo hashing .. 96

3.5. A shifting substring search ... 98
3.6. The binary tree .. 100

3.6.1. The binary-tree processor... 101
3.6.2. Mapping of patterns to memories .. 103

3.7. The prefix tree... 104
3.8. The Aho-Corasick algorithm .. 106

4. The Hash Binary Tree.. 109
4.1. Hashing of the binary tree patterns ... 109
4.2. Two-fold pipelined HBT architecture... 110
4.3. Memory requirements of the HBT.. 111
4.4. The example application... 112
4.5. Conclusions... 114

5. Acceleration of genome matching... 116
5.1. Short-read alignment... 116

6

5.2. Subsequences .. 117
5.3. The trie.. 118
5.4. The sequential co-processor.. 119
5.5. The pipelined co-processor... 121
5.6. Inexact matching... 123
5.7. The control block .. 127
5.8. Resource requirements.. 128
5.9. Reducing software memory requirements .. 130
5.10. Implementation results.. 130
5.11. Conclusions... 132

6. Final remarks ... 133
Bibliography ... 143

7

PAWEŁ RUSSEK
Data-intensive processing on FPGAs

Summary

In this paper, the author presents his experiences in the area of the use of FPGA
devices for data-intensive computing. Processing of the large volumes of data plays
a significant role in today’s Internet and computing services. Also, big data processing
has become a new pillar of science as a tool for knowledge discovery. Traditionally,
high-performance computers help scientist to perform simulations and modelling that
employ extensive calculations. Input data sets are relatively small, and processing
dominates in these applications. Data-intensive problems set new requirements of
computers’ users, as they require high data throughput rather than high computing
power of the computing system. Now, users expect that, besides processing power,
their computers provide the highly efficient data movement as well. Notably, these
demands are often accompanied by concerns for energy-efficiency.

The solution that is commonly implemented to fulfill all those claims simul-
taneously is an introduction of heterogeneous computing architectures. Accord-
ingly, commodity computers are enhanced by the task-oriented accelerators such as
GPGPUS, DSPs, FPGAs, and other specialised devices. This technique leads to the
improvement of computing capability of a computer system. The role of FPGA ac-
celerators is discussed exclusively in this work. An important part of the text covers
downsized computing platforms that combine energy-efficient processors with recon-
figurable logic and particularly suit for data-intensive calculations.

It is always critical to characterise a class of algorithms that benefits from a use
of a particular type of an accelerator device. The author identifies processing tasks
that gain when they are ported to an FPGA-accelerated computers. Mainly, sorting
and searching algorithms are elaborated in this paper. The author presents hardware
structures for well-known, software-based algorithms but also gives new original so-
lutions that particularly satisfy the FPGA-enabled systems.

The practical examples are reported as results of processing performance and
energy consumption in the paper. They show that on average over two-fold processing
speedup and order of magnitude reduction of electric power is possible in FPGA-
enhanced architectures if compared to traditional CPU-only solutions.

9

PAWEŁ RUSSEK
Przetwarzanie dużych zbiorów danych w układach FPGA

Streszczenie

W monografii autor opisuje swoje doświadczenia dotyczące przetwarzania
dużych zbiorów danych przy wykorzystaniu układów FPGA. Analiza danych
odgrywa dziś wiodącą rolę w realizacji usług internetowych i przetwarzaniu
informacji. Metody określane terminem Big Data Discovery uzyskały status jednego
z głównych narzędzi nauki służącego do poznania i rozmienia procesów zachodzą-
cych w świecie. W przeszłości naukowcy wymagali, aby komputery dostarczały
dużej mocy obliczeniowej, która umożliwiała symulację i modelowanie procesów
fizycznych. Dzisiaj użytkownicy przetwarzający duże zbiory danych wymagają do-
datkowo dużej przepustowości operacji wejścia-wyjścia. Ponadto powyższe oczeki-
wanie często idą w parze z koniecznością ograniczenia energii zasilania komputerów.

Spełnienie powyższych oczekiwań można osiągnąć, wdrażając architektury
heterogeniczne. W tym rozwiązaniu komputery są dodatkowo wyposażane w karty
akcelerujące zawierające urządzenia GPGPU, DSP, FPGA czy inne układy spec-
jalizowane. Prowadzi to do poprawy wydajności wspieranych przez akcelerator
zadań. Niniejsza praca ogranicza się do zagadnień związanych z układami FPGA.
Ważna jej część dotyczy platform obliczeniowych o zredukowanej wydajności, które
łącząc energooszczędne procesory i układy rekonfigurowalne, nadają się do zadań
związanych z przetwarzaniem dużych zbiorów danych.

W przypadku wykorzystania akceleratorów istotne jest, aby scharakteryzować
grupę algorytmów, które mogą zyskać na ich zastosowaniu. Autor przedstawia zada-
nia obliczeniowe, których realizacja w układach FPGA może przynieść korzyści.
Treść pracy dotyczy głównie zagadnień sortowania i wyszukiwania. Autor proponuje
architektury sprzętowe odpowiadające znanym algorytmom software’owym, oraz
wprowadza nowe oryginalne rozwiązania bazujące na zastosowaniu rekonfigurowal-
nych układów FPGA.

Przedstawione aplikacje dostarczają parametrów wydajnościowych i energety-
cznych. Pokazują one, że dzięki technologii FPGA, w porównaniu z rozwiązaniami
bazującymi wyłącznie na CPU, jest możliwe uzyskanie średnio ponaddwukrotnego
przyspieszenie i zredukowanie zużycia energii elektrycznej o rząd wielkości.

10

List of symbols and abbreviations

ASIC – Application-Specific Integrated Circuit
ASM – Algorithmic State Machine

BRAM – Block RAM
BWT – Burrows-Wheeler Transform
CFG – Control Flow Graph

CDFG – Control and Data Flow Graph
CPU – Central Processing Unit
DDG – Data Dependency Graph
DFA – Deterministic Finite-state Automata
DFG – Data Flow Graph
DLP – Data-Level Parallelism

DP – Double Precision (floating-point arithmetic)
EDA – Electronic Design Automation
FIFO – First In, First Out

FPGA – Field-Programmable Gate Array
FSB – Front Side Bus
FSM – Finite State Machine

FSMD – Finite State Machine with Data
GPGPU – General-Purpose Computation on Graphics Processing Unit

GPP – General Purpose Processor
GPU – Graphics Processing Unit
DSP – Digital Signal Processor/Processing

h – bit-width of the hash function value
HBT – Hash Binary Tree
HDL – Hardware Description Language
HLL – High-Level Language
HLS – High-Level Synthesis
HPC – High-Performance Computing

HT – Hyper Transport (bus)

11

ILP – Instruction-Level Parallelism
k – number of hash functions in the Bloom filtering

kopt – optimal number of hash functions to minimise a probability
of the false-positive in the Bloom filter algorithm

l – index of a level in the tree/trie structure
L – number of levels in the binary tree; maximum length of

subsequences in short-read alignment
Lmax – upper bound value of an HBT height to reduce memory

requirements of the Bloom filter
lsat – theoretical value of l at which the trie stops expanding its width

in short-read alignment
LUT – Look-Up Table

m – bit size of memory in the Bloom filter
MEMsize – memory requirement for a trie level in short-read alignment

MSl – size of memory for level l in the trie custom processor
n – number of reference patterns in the patterns dictionary

NDFA – Non-Deterministic Finite Automaton
NIC – Network Interconnect Controller

NIDS – Network Intrusion Detection System
NNl – maximum number of trie nodes at level l in short-read alignment
NS – number of subsequences in short-read alignment

NUMA – Non-Uniform Memory Architecture
perr – probability of the false-positive in the Bloom filter

PCIe – PCI Express (bus)
PL – Programmable Logic (Zynq-7000)
PS – Processing System (Zynq-7000)

RTL – Register Transfer Level
SAB – Sequential-Access Buffers
SoC – System-On-Chip

SP – Single Precision (floating-point arithmetic)
SPMD – Single Program Multiple Data

SSL – Short Subsequences List (short-read alignment)
SPT – Subsequences’ Positions Table (short-read alignment)

TL – length of the template genome in short-read alignment
TDP – Thermal Design Power
TLP – Thread-Level Parallelism

UMA – Unified Memory Architecture
WSl – the size of the memory word at trie level l in the trie custom

processor

12

‘Home is where one starts from’
T.S. Eliot

Dedicated to my parents

Introduction

The role of Field-Programmable Gate Arrays (FPGA) in data-intensive process-
ing is being discussed in this work. At present, data-intensive processing has a grow-
ing significance in Internet and Computer Technology (ICT) because manipulation
and exploration of the massive data sets have become a pillar of modern e-Society.
Data-intensive processing plays an important role in e-Business, e-Commerce,
e-Learning, e-Government, e-Democracy, e-Health, etc. The FPGA devices have
been around the electronics industry for a while. Tha applicability of FPGAs in var-
ious ICT applications has been deeply exploited since the 90s when the technology
was first introduced to the market. In this paper, the FPGA devices are discussed as
an implementation platform for the technology of the custom computing processors,
or to be more precise, for architectures of the accelerating co-processors. This work
is particularly focused on the computing architectures for data-intensive processing.

The custom processors allow a designer of processing systems to meet the most
severe project constraints. Constraints are usually delivered in terms of processing
speed, energy efficiency, and power consumption. The custom processors offer ded-
icated architectures that allow the designer to reduce the number of functional re-
sources, optimize data movement and introduce parallel processing also. The custom
processing architectures for data-centered computing are surveyed in this text. The
special advantage of pipelined architectures is underlined because of their strength to
overcome the severe problem of data throughput that limits the processing capability
of each computing architecture.

The function of the proposed customized processing architectures is to enhance
the operation of the CPU-central systems. A model of FPGA-accelerated computing
that will be considered in this paper allows the CPU to offload the most exhaustive
computing operations to the specialized co-processor. In that way, the processing is
done faster and is more energy-efficient. The sorting, searching and browsing algo-
rithms will be identified as basic core operations for the data-intensive calculations,
and consequently, this study will discuss the appropriate hardware structures that are
capable of enhancing these tasks.

15

In Chapter 1, the background topics are presented in a very concise way. First,
FPGAs are introduced in a context of other processing technologies. Next, the present
challenges and limitations for the CPU-based computing are brought out. We will re-
call the three walls of CPU technology that limit further general-purpose processor
development. Then, the benefits of parallel processing in the computer clusters are
characterized. Massive parallel processing is introduced as the current trend in high-
performance system development. The architecture of the heterogeneous node for the
clusters is given later, and it is explained how it fits the concept of FPGA-accelerated
computing. The scheme of the in-node acceleration is underlined. Afterward, data-
intensive processing is put in the wider context of today’s commonly met computing
patterns. Consequently, the FPGA devices are revisited to elaborate how they suit
the processing of data-intensive problems. Later, the contemporary claims and ap-
proaches for the energy efficient computing platforms in the context of the needs for
the data-intensive applications are given. Finally in Chapter 1, the architectures of
FPGA accelerator cards that are available today are presented.

The processing models for custom computing processors are elaborated in Chap-
ter 2. The discussion starts with the well-recognized model of the sequential custom
processor. Its architecture is discussed at the registers transfer level. An example of
a simple custom processor for the SQL operations is delivered to illustrate the con-
cept better. The construction and operation of the processor’s controller and data path
are explained. Later, the problem of scheduling of the algorithm operations is high-
lighted. Scheduling is an important topic because it allows a processor designer to
introduce concurrent processing. A tool of the Data Dependency Graph is briefly re-
ferred to for that purpose. A technique of pipelining, which is crucial for discussion
in this work, is regarded afterward. Particularly a procedure of loop pipelining is
examined in that context. Next, the problem of loop dependencies and control state-
ment pipelining is viewed specifically. To summarize the subject, pipelining of the
SQL processor is presented as an example. Afterward, the problem of the use of the
FPGA’s memory blocks is taken up in the chapter. First, the methods of explicit data
caching are presented, and a technique of the Sequential-Access Buffering is pro-
posed. At the end of Chapter 2, the practical characteristics of algorithms that match
FPGA-based processing well are summarized.

In Chapter 3, the algorithms and architectures for sorting and searching in
FPGAs are discussed. The chapter starts with a method of the sorting nets. Then,
the merge sort tree structure is shown in relation to custom architectures. A practical
sorting system that use the merge sort tree implemented in FPGA is characterised.
The searching algorithms are regarded next. First, the sequential and parallel version
of the Bloom filter is considered. Afterward, the problem of ‘false-positives’ in the
Bloom filter architecture is recalled, and methods for its mitigation proposed. In that

16

context, Cuckoo hashing, and its modified version are discussed later. The problem
of a shifting substring search scenario that is common in real-time search systems is
highlighted afterward. Next, the algorithm and the architecture of a custom processor
that implements the binary tree is given in the chapter. Later, as an alternative to the
binary tree, the prefix tree is proposed. The pipelined architecture of the prefix tree
processor is presented. Chapter 3 is ended by the section that regards the well-known
Aho-Corasik algorithm. The problem of the shifting window search is revisited, and
examples of the respective custom processor architectures of the Aho-Corasick algo-
rithm are referred to.

Both Chapter 4 and Chapter 5 are a part of the paper that presents author’s prac-
tical solutions for data-intensive processing in FPGAs. In Chapter 4, the problem of
mapping of the text terms to term IDs is regarded. The algorithm of the Hash Binary
Tree (HBT) is proposed. The HBT and the modified Cuckoo hashing are discussed
together. Also, the memory requirement of the Hash Binary Tree scheme is com-
pared to the corresponding Bloom Filter memory size. The advantages of the pro-
posed approach are highlighted in the chapter, and the results of its implementation
in a reconfigurable System-On-a-Chip are given.

Chapter 5 discusses the application of DNA short-read alignment, where DNA
short reads are matched with a sequence of the reference genome. The modified ar-
chitecture of the prefix tree is proposed to enhance the search for inexact matches.
Both sequential and pipelined architectures are discussed. The appropriate data rep-
resentation for the set of DNA short reads is proposed, and the modified architecture
of the prefix tree processor is implemented in FPGA. Also, the implementation re-
sults are given. Finally, as the size of the prefix tree that can be accommodated by the
capacity of the available reconfigurable logic is too small, the method of CPU-FPGA
co-processing is proposed to handle the real-life DNA matching workloads.

Acknowledgements

The author wants to thank all the people of the Reconfigurable Computing Group
at AGH University of Science and Technology with whom he has been working.
There would be no personal achievements without the whole team’s long collabora-
tion. Special thanks go to Prof. Kazimierz Wiatr whose leadership allows the group
and author to advance. Notably, this paper would never have been written without
the Professor’s support and encouragement. A lot of people have cooperated with
me, but some have to be mentioned by their names: Dr. Ernest Jamro, Dr. Agnieszka
Dąbrowska-Boruch, Dr. Maciej Wielgosz, and Dr. Marcin Pietroń. Thank You!

17

1. Computing and FPGAs

1.1. Basics of FPGA devices

Field Programmable Gate Arrays (FPGAs) are a kind of semiconductor devices
that are arrays of unwired digital electronic elements. Early FPGAs provided sim-
ple elements that were combinatorial logic and flip-flop components only. Today, as
FPGA have evolved, they offer an abundance of various electronic blocks. Nonethe-
less, the most distinctive feature of the FPGA devices are the configurable routing
resources that allow an FPGA designer to configure the hardware array into a cus-
tom hardware architecture. Just like a processor that requires a software binaries, an
FPGA needs a configuration bitstream to gain useful functionality. Consequently, the
programming of FPGAs means planning its interconnection routing and designing
the internal configurations of its digital components. The configuration and routing
are downloaded to the FPGA’s configuration memory as a configuration bitstream.
Once configured, an FPGA can act as any digital electronic circuit. Their only limits
are the number of available logic resources and the clock frequency. The FPGA bit-
stream and processor software binaries bring those devices to run, but they are very
different in their service.

In digital electronics, devices that are not software running processors or mem-
ory chips are called Application-Specific Integrated Circuits (ASICs). In difference
to a processor’s Central Processing Unit (CPU), ASICs perform operations that are
wired in their architecture. ASICs are just like FPGAs with that feature. However,
unlike FPGAs, ASICs have a locked functionality. Thanks to the fixed service and
hooked structure, ASICs are typically more efficient in the sense of speed and energy
consumption if compared to processors. For example, ASICs optimize data move-
ment and data representation when performing built-in operations. The FPGA solu-
tions derive from the ASIC’s processing methods. The most significant difference is
that the FPGA is configured by an end user, and the ASIC’s architecture is settled
by its manufacturer. On the commercial market, the most important family of the
FPGAs is a family that is manufactured in the well-developed SRAM semiconduc-

19

tor technology. A distinctive feature that comes with the SRAM-based technology is
that, like SRAM memories, FPGAs can be reconfigured many times. These SRAM
devices require a download of a configuration bitstream every power-up cycle; there-
fore, they can change their functionality relatively quickly. One can see this feature
as a downside, but it can be exploited in a positive way also. For instance, the same
logic resources can provide the different functions during the separate phases of the
device’s run-time. It is feasible that several algorithms or its parts share the same
logic in a time domain. The name of this ability is run-time reconfiguration. Another
interesting option is partial reconfiguration that allows it to modify only a selected
part of the FPGA while conserving the remaining part of the device. To highlight
these essential features, we also call FPGAs the reconfigurable logic devices.

The ability to reconfigure is the fundamental advantage of the FPGA technology
over the ASIC technology. It shortens development time of new projects, reduces
Non-Recurring Engineering (NRE) costs, and improves the project’s maintainability
and its flexibility for updates. Unfortunately, reconfiguration feature does come at
a price. The estimation leads to the conclusion that routing resources occupy 80%
of a silicon area of the FPGA chip [1]. Additionally, the switches that provide re-
configuration ability introduce an extra delay to signal propagation. Consequently,
the FPGA’s clock frequency is ten times lower than that of the corresponding ASIC.
Thus, as the FPGAs offer five times less the amount of usable logic and work ten
times slower than ASICs, they perform 50 times fewer operations at the same time.
To mitigate this problem, the FPGAs that are provided to their users are manufactured
in state-of-the-art semiconductor technology. It has economic foundations because,
unlike the ASICs, the FPGAs are off-the-shelf devices. Only high volume manufac-
turing can make up for the NRE costs that the introduction of each new technology
brings on. Today, FPGAs are commodity devices, as their sales volume is estimated
to be 250 million in 2015. This quantity can be compared to 230 million of discrete
Graphics Processing Units (GPUs) that are expected to be sold at the same time. The
main highlight of the FPGAs’ properties, when compared to the ASICs, is the fact
that they often serve as an initial prototyping platform for the latter.

The SRAM-based FPGAs take advantage of static memory semiconductor tech-
nology; therefore, they implement combinatorial logic as memory elements that are
called Look-up Tables (LUTs). One LUT and one flip-flop constitute the basic FPGA
cell that is referred to as Logic Cell (LC) or Logic Element (LE) (the actual name
is vendor specific). These cells are sufficient to build any sequential synchronous
digital device. However, resource and processing overhead that is introduced by rout-
ing resources influences the evolution of the FPGA internal architecture also. Thus,
FPGA architectures offer more complex elements than logic cells today. Manufactur-
ers have been including components that offer more specific and advanced function-

20

ality as FPGA architecture evolves. These are fast carry logic for arithmetic, memory
blocks, multipliers, serial communication transceivers, and CPUs for example. The
goal is to deliver to a user the most typical and commonly used components because
specialized hard-wired blocks perform faster and require fewer transistors.

Broadcast, networking, wireless, and telecom equipment has been relying on
FPGA technology for years. As a result, those markets have been shaping FPGA ar-
chitecture. At present, FPGAs contain such embedded components as synchronous
dual-port RAMs (Block RAMs), Digital Signal Processing blocks (multiply and ac-
cumulate), multi-core CPUs, Gigabit transceivers, Ethernet MACs, and PCI Express
interfaces. Today’s FPGAs are platforms that target several application domains.
They exist in variants. For example, FPGAs that offer a lot of DSP blocks, and
transceiver blocks are optimized for communication-based, DSP-centric applications
found in wire line, military, broadcast, and High-Performance Computing markets.
Similarly, devices that provide the highest logic density are designed for ASIC and
system emulation, diagnostic imaging, and instrumentation. The FPGAs that con-
tain CPUs and memory blocks are suited for the customer, automotive, and industrial
markets. There is also a variety of FPGA sizes for each type available.

References

Older books offer a valuable insight into the origins of FPGA technology; for
example [2], [3], and [4]. John Villasenor proposed the very first idea of so-called
reconfigurable computing in 1997 [5]. Since then, as the technology of FPGA re-
configuration evolves, designers have been constantly developing the idea of FPGA
resources reuse by the non-overlapping system functions.

A huge bibliography in the FPGA subject exists. Here, we will refer to only a few
works that are related to our topic of data-intensive processing. For example, Horta
et al. [6] implemented high-speed Internet packet processing circuits that were Dy-
namic Hardware Plugin (DHP) modules. Oliver et al. [7] use customization opportu-
nities available at run-time to dynamically scan bio-sequence database. Dynamically
reconfigurable Content Addressable Memory (CAM) for classifying IP packets into
categories is proposed by Ditmar et al. [8]. Divyasree et al. [9] present dynamically
reconfigurable generic block that implements the regular expression matching. Ruta
et al. [10] proposed integrated development platform that features a programmable
FPGA board, where computations of different nature and purpose are logically dis-
tributed among a sequential soft-core processor program, a massively parallel accel-
erator, and an independent communication module.

The methodology of FPGA-based prototyping and a comparison of FPGAs and
ASICs is given by Amos et al. [11]. Kuon et al. [12] deliver experimental measure-
ments of the differences between a 90-nm FPGA and CMOS ASICs in terms of

21

logic density, circuit speed, and power consumption. Behrooz Zahiri [13] assesses
structured ASICs that are the bridge between the two competing semiconductor tech-
nologies. A good review of FPGA technology, tools, designs, and applications is also
given by Rodriguez-Andina et al. [14].

1.2. The challenges of efficient data processing

Descending from von Neuman’s architecture, computer naturally performs tasks
in a sequential way. The system runs one program after another. The processor ex-
ecutes instructions in a one-by-one manner. And finally, the CPU processes instruc-
tions in the sequence: ‘fetch’, ‘analyse’, ‘load data’, ‘execute’ and ‘store results’.
For faster processing, today’s computers feature the parallelism at the different levels
of code execution. Respectively, Thread-Level Parallelism (TLP), Instruction-Level
Parallelism (ILP), Data-Level Parallelism (DLP), and Instruction Pipelining are pos-
sible.

Thanks to TLP, a user can run many processes (or threads) at the same time.
Multitasking is a feature of the Operating System (OS), and it enables TLP to dis-
tribute tasks to many processors and thus speed-up the overall execution time. It is
an important feature that threads can communicate and synchronize their work dur-
ing a run-time. Desktop PCs usually run different codes for each process because
processes are separate programs, but computers can also execute single code in in-
dependent thread instances. Sharing a program by threads is referred to as Single
Program Multiple Data (SPMD) model [15].

A processor’s CPU executes more than one instruction at a time in ILP while
DLP allows it to perform the same instruction for different data simultaneously. Ad-
ditionally, the CPU executes each instruction in the pipeline to increase program
throughput. However, the correct scheduling of instruction has to be done to en-
able ILP, and adequate data partitioning is necessary for DLP respectively. In prac-
tice, those tasks are performed either by a software engineer, who schedules in-
structions and organizes data during program development, or automatically by a
CPU at the time of program execution. The first approach requires enhancement of
software binaries for new processor architectures while the second one allows the
CPU to execute sequential legacy programs more efficiently without additional pro-
gramming effort. This automation is possible thanks to architecture advancements
of the new processors. Efficient ILP that is driven by a hardware requires advanced
mechanisms. Techniques that are in common use include multiple instructions issue,
deep pipelines, out- of-order execution, speculative execution, and data pre-fetching.
Needless to say that sophisticated ILP automation requires additional hardware re-
sources, but advances in semiconductor technology get over this barrier. Unfortu-

22

nately, the current commodity processors have reached the point where further ad-
vancement in processor’s architecture produces no significant performance improve-
ment of ILP. This obstacle is called the ILP wall.

As the enhancements of the CPU’s architecture had become barren, multi-core
processors came to the market. Putting more CPUs into a single processor did become
a method to take advantage of excessive semiconductor resources. Consequently,
manufacturers made a decisive shift towards TLP while still maintaining ILP to work
for a favor of each CPU. Multi-tasking OS could instantly exploit TLP for the ben-
efit of a computers’ users who run many applications on their laptops or desktops
simultaneously. The same time, the users of High-Performance Computing (HPC)
systems took advantage as well because multi-core processors provided more CPUs
to a single socket of a computer motherboard.

Present processors integrate a majority of computer subsystems on a single chip,
but the main system memory remains off-chip. There is a technological and eco-
nomical reason for this separation. A cheap high-capacity semiconductor memory is
fabricated in the dynamic RAM technology, but processor chips need the fast CMOS
technology. The two technologies are different, and they cannot be integrated into
a single chip. That is the reason that processor’s chips contain only static RAM cache
memory. The size of the cache memory is three orders of magnitude smaller than
the capacity of the main memory because static RAM technology is expensive. The
processor needs an on-chip memory interface to access the external memory, and the
cores share this interface in a multi-core architecture. Apparently, this sharing leads to
a communication bottleneck and CPU waiting states. This phenomenon constitutes
the so-called memory wall problem. The processor can not use its full processing
power because the data delivery from the memory is too slow. The memory wall
problem exists for both the one-core and multi-core processors. Due to high latency
and limited throughput of read/write operations even an exclusive CPU access to the
memory is not sufficient to avoid data starvation of the processor. Modern processors
use data caching to lessen the problem, but caching techniques assume data reuse i.e.
data that has been read, will be read again soon. Data reuse is not always the case,
and we will discuss this serious topic later.

Speculative execution techniques can provide a significant performance advan-
tage but at the cost of increased power consumption. Transistor down-sizing contin-
ually allows to enlarge resources of the single chip. That scaling process leads to an
increase in the clock frequency and, inevitably, to the higher power density of the
chip also. However, dissipated power cannot rise beyond the capabilities of the avail-
able cooling techniques. Processors’ designers had been compensated the increasing
transistor density and clock speed by lowering the supply voltage. Unfortunately,
the decreasing of the supply voltage is no longer easily possible due to the physical
properties of silicon. This limitation is known as the power wall.

23

Despite that technology improvements mitigate the three walls of today’s com-
puting, the conventional wisdom tells how to avoid computational limits. First, lower-
ing the clock frequency prevents processors from hitting the power wall and improves
the balance of the CPU and memory performance. The better performance balance
of system components mitigates the memory wall problem also. Next, processors of
simpler architectures outperform more complicated ones when it comes to electric
power consumption. That is the reason the simple RISC processors work more effi-
ciently than highly sophisticated superscalar CISCs. Similarly, many-core accelera-
tors, like the GPGPUs, outperform the commodity processors in terms of computing
power per watt. The GPGPUs feature many simple processing cores, and this gives
them an advantage over the commodity processors. Designers of HPC clusters, who
follow the rules of CPU simplification and clock frequency reduction, achieve the
best energy efficiency of their systems [16].

References

The full coverage of the topic discussed in this chapter can be found in the classic
book of Hennessay and Patterson [17]. One can find a practical overview of TLP, ILP,
and DLP in works of Akhter and Jason [18] and Herlihy and Shavit [19]. The group
from Berkeley had formulated a serial processing performance problem: ’the power
wall + the memory wall + the ILP wall = a brick wall’ [20]. The evolutionary change
in conventional computing that is introduced by multi-core processors is presented by
Gepner and Kowalik [21]. Mahapatra et al. [22] examine the problem of the memory
bottleneck. The issue of CMOS technology for microprocessors scaling that leads to
performance improvement, transistor density increase, and power reduction is well
approached by Borkar [23].

1.3. Massively parallel computing

Amdahl’s argument that parallel processing has limited use for the practical com-
putations is known as Amdahl’s Law [24]. Any computing system that is designed
for parallel computing is useless in a consequence of that law. Inappropriately, HPC
parallel systems thrive in science and technology because they are necessary to solve
many real-life modelling, simulations, and analysis. In silico research and develop-
ment would not exist without high-performance parallel supercomputers. Supercom-
puters successfully use many processors to solve significant computational problems
because Amdahl’s reasoning neglected the practical experience of HPC computa-
tions, which states that parallel systems are essential to solving exceptionally big
problems. The term ‘big’ corresponds to the fact that they are characterized by large
sets of input parameters which model real-life objects.

24

Computer scientists use a simple model of the computing algorithm to demon-
strate the imperfection of Amdahl’s law. This model is provided in Listing 1.1.

Listing 1.1. A model of inner and outer loop

f o r (e l e m e n t i n i n p u t S e t) do
i n i t O p s (e l e m e n t) / * Do some e n t r y o u t e r loop o p e r a t i o n s * /
f o r (p a r t i n e l e m e n t) do

innerLoopBody (p a r t) / * Do heavy i n n e r loop o p e r a t i o n s * /
end f o r
cleanUpOps (e l e m e n t) / * Do o t h e r o u t e r loop o p e r a t i o n s * /

end f o r

According to that model, the real algorithms exhibited an inner and outer loop.
One can notice that the outer loop is easy to parallelize on many working processors.
Amdahl’s law considered the existence of the inner loop only and forgot that as the
input set grows the number of computations that could be done concurrently also
grows. Obviously, the greater size of the input set, the better quality and accuracy of
obtained results in practice. For example, a finer mesh for modelling of real objects is
possible, or a more complex system can be simulated as a single entity. Consequently,
Gustafson’s law was formulated to supplement Amdahl’s law [25]. It takes a more
practical experience and states that as the input set grows, it is possible to distribute
and process elements in parallel to reduce computation time.

Today, most supercomputers are computer clusters [26]. A cluster is an assem-
bly of connected computing nodes that compute in the group. Cluster’s nodes usually
have an architecture of the commodity computer servers, and they are built using
commodity computer parts. While calculating, they exchange data and communicate
to synchronize their work. Fast and efficient communication is possible thanks to
the dedicated interconnect network. The aggregate power of all processors and the
combined memory capacity of all the nodes allows the clusters to solve severe com-
puting problems. The computer clusters enable the performance of Massive Parallel
Computing.

One can find more information regarding HPC in Morse’s [27] and Loshin’s
[28] books. The modern heterogeneous computational infrastructure that is used by
today’s scientific community is presented by Kitowski et al. [29].

1.4. Heterogeneous computing platforms

Symmetry and homogeneity of is an advantage of a big computing system ar-
chitecture. It is also convenient that nodes of the computer cluster are identical.
A homogeneous cluster structure simplifies system programming and management.

25

Therefore, all cluster nodes use the same hardware in most circumstances. Thanks
to the uniform structure of the cluster, it is possible to develop and use a concise
programming model. Though, today’s clusters are uniform, as one node is similar to
another, they are unfortunately heterogeneous when one analyzes the node’s internal
architecture.

First of all, there is no single memory model in the cluster. The CPU cores work
using the Unified-Memory Architecture (UMA) at the processor level. However,
the processors of a multi-socket system use the Non-Unified-Memory Architecture
(NUMA) at the server motherboard level. Despite that, the system memory model is
distributed at the cluster level. The rationale for such a troublesome structure is prac-
tical from a hardware engineer’s point of view. The supercomputer industry shares as
many components as possible with the commodity servers’ business. Cluster nodes
that are built using commodity server’s chipset inherit a shared memory architec-
ture. Servers that feature more than one processor socket fall into the NUMA model
as the present multi-core processors integrate a memory controller on the chip. The
memory model is very different at the cluster node level, where the memory model is
a distributed because the clusters use a computer network to communicate.

Accelerators are another element that breaks the homogeneity of a cluster node
structure and in result a uniformity of its programming model. The commodity mar-
ket drives a use of accelerators in supercomputing clusters. The urge for computing
power in HPC is high, and the supercomputer industry tries to absorb every solu-
tion that allows it to raise computing capabilities at a competitive price. Lower costs
usually come with the huge production volume and only the mass customer market
accessories meet this condition. Thus, accelerators are usually the devices that have
been adopted for supercomputing from other ICT segments. Just like GPGPUs that
are derivatives from the market of computer games for example.

The accelerators are incorporated into the computing nodes to enhance the com-
puting capabilities, but they usually reinforce processing for a selected class of algo-
rithms only i.e. some types of calculations gain a speedup or energy efficiency. The
architecture of an accelerator is customized to suit particular computing problems.
Thanks to this, they can perform calculations faster and are more energy efficient than
General Purpose Processors (GPP). Accelerators benefit from a precise adjustment of
their hardware architecture to such algorithm’s elements as data representation, the
type of performed operations, and the data flow. Specialized functionality and tuning
for needs of individual algorithms often decreases the logic resources that are neces-
sary to implement the processing element. Consequently, the size reduction of pro-
cessing elements allows it to replicate them within the same area of the chip silicon
and in the same transistor budget. The multiplication of computing cores naturally
leads to Thread-Level Parallelism and provides the gain in processors performance.

26

Data movement is a source of significant energy consumption in a processor archi-
tecture. The optimization of the data flow and communication paths provides lower
energy consumption, as register-to-register data movement is naturally reduced.

The idea to use the accelerator to speed up the execution of the inner program
loop seems to be natural. In practice, acceleration yields when it concerns the code
that is repeatedly executed. The practical observation, known as the 90/10 law, states
that the processor spends most of the program execution time (90%) in a small por-
tion of the code (10%). The law is just a trend that has been derived by computer
scientists from the Pareto 80/20 rule [30], but it implies that 10% of the code con-
stitutes the so-called computational kernel. These kernels are the primary targets for
various efforts of the software optimization. The migration of the kernel’s code to the
accelerator is an optimization that requires a substantial engineering effort because
accelerator programming is always harder than CPU programming. It is tedious and
time consuming because it often uses a low-level, hardware-aware and parallel pro-
gramming model. Apparently, such extensive programming labor should be reserved
for a part of the program code, which is as small as possible and simultaneously pro-
duces substantial program execution time. This observation leads to the concept that
acceleration should be exclusively applied to speed up the program code of the inner
loop body or its selected part.

Programming of a computing node that is composed of different computing parts
is a challenging task. The reason is that accelerators typically accompany the main
processor as IO extension cards. Accelerators are semi-detached, and they belong to
a different program execution level than the host’s CPU. They usually require sepa-
rate programming i.e. a software engineer must distinguish a program that is intended
for the accelerator from a code that belongs to the CPU. Additionally, accelerators
feature a private memory that is used to store data during processing. That data has
to be explicitly transferred from/to the host computer.

1.4.1. Graphics cards

The computer accelerators can be either off-the-shelf or fully customized de-
vices. General-Purpose Computation on Graphics Processing Unit (GPGPU) cards
are an example of the off-the-shelf accelerators. The first graphics processors were
non-programmable ASICs that were capable of performing graphics operations only.
Later, as graphics cards evolved, GPGPU’s manufacturers allowed for more flexi-
bility and introduced some programming capability. Today, GPGPUs are fully pro-
grammable, many-core software processors that fall into the SPMD programming
model. Graphics processors drew widespread interest throughout the computing com-
munity when they became fully programmable and began to support double-precision
floating point calculations.

27

One can find conventional features of an accelerator in GPGPU architecture.
These characteristics are:

• it provides a significant number of simplified computing elements,

• it exists as an IO extension of the host computer,

• it uses local memory that is separated from the host’s main memory.
The architecture of the GPGPUs suits best the image processing algorithms, but it is
also appropriate for other computing tasks that exhibit locality of data access. They
provide the programming model that allows it to distribute input data to the array
of massively parallel processors. As GPGPUs are derivatives of graphics cards, they
contribute mostly to single-precision (SP) floating point calculations. Narrowed pre-
cision, which is acceptable in graphics processing, allows GPGPU’s designers to in-
crease the number of processing elements and computing power. Present GPGPUs
have matured to double-precision (DP) operations but the SP-based computations are
still the most profitable. Another example of off-the-shelf accelerators are the Digital
Signal Processing (DSP) processors but they are not as popular for general purpose
computations as the GPGPU cards.

1.4.2. FPGA accelerators

As it was stated, construction of computer clusters relies on commodity com-
puter elements mainly. However, some customization of cluster’s components exists
and applies primarily to the Network Interconnect Controller (NIC) chipset. Efficient
interconnect is crucial in supercomputing architectures; therefore, clusters often use
a proprietary network interface that is implemented as an ASIC device. The cost of
a fully-customized ASIC is prohibitive, and it is appropriate for high quantity prod-
ucts only. That holds for NICs, but not for custom processors that are designed for
a distinct user’s algorithm exclusively. Additionally, permanent wiring of the custom
processor for a selected algorithms is problematic because real programs often need
regular improvements and alternations.

The above remark might suggest that custom-built accelerators are not used for
general purpose computing. However, thanks to FPGA devices, that is not the truth.
The IO extension cards that integrate FPGAs allow the computers’ users to run per-
sonalized accelerators. The custom computing processors are delivered to the FPGA
chip as an Intellectual Property Cores (IPCores), and they are run as custom FPGA
configurations. The IPCores are ready to use, hardware designs that can be seen as
reusable components from the library. IPCores take their name after proprietary rights
they carry, as they are usually purchased from the hardware vendor. In theory, the
IPCores can be technology independent and might be adapted to any FPGA or ASIC
technology, but such consolidation requires professional knowledge. Modifications

28

of soft IPCores are relatively easy, and so the evolution of the custom algorithm is
also possible. One can download the IPCore’s configuration directly to the device
in the case of FPGA technology. The ability to handle the FPGA configurations in
a way the software programs are managed reduce the costs of custom computing
acceleration substantially.

Heterogeneous computers that are enhanced by accelerator cards contribute to
the HPC landscape today. In-node accelerators deliver cheaper computing power to
the supercomputing centers, and this results in higher processing power that is avail-
able for the HPC users. The obvious advantage is the shorter execution time of ap-
plications; thus, the users can perform more simulations at the same time. Another
point of interest at the computing centers is the power saving that is delivered by ac-
celerators. Thanks to the reduction of resources and optimization of data movement,
custom processing elements tend to be more energy efficient than CPUs. Even if the
accelerators’ and CPUs’ performance is similar, it is better to use a customized de-
vice as it is usually less power hungry. Especially, FPGA cards are energy efficient.
The energy consumption of FPGAs is an order of magnitude lower than the energy
consumption of server processors and substantially lower than the power dissipation
of mobile, low-power processors.

References

The research and practical use of GPGPUs and FPGAs for computing applica-
tions have returned a flood of publications. Here, we will review only a few papers
that have been selected because of the author’s contribution.

Kuna et al. [31] describe and briefly compare dedicated hardware accelerators,
such as GPGPUs, IBM Cell processor, and ClearSpeed processor, to contemporary
GPP architectures. It concludes that CPUs are not sufficient for large matrix or vector
computations, where they are outperformed by massively fine-grained data-parallel
devices. Paćko et al. demonstrate how graphical processing units can be used effi-
ciently for large models of elastic wave propagation in complex media. The obtained
results indicate significant speedup factors compared to calculations using central
processing units or different modelling approaches.

Pietroń et al. [32] parallelized SQL operations. The results showed that SELECT
WHERE and SELECT JOIN operations on the GPGPU were faster than the sequen-
tial ones that were run on the CPU. The primary intention of Dąbrowska et al. [33]
was to present the results of several cases, where the FPGA technology had been
used in high-performance applications. The article gave selected metrics, results and
conclusions that were derived from the implementation of several functions. In con-
clusion, the authors stated that adequate computing technology had to be selected
according to the characteristics of the computing problem.

29

Cryptography, data mining and life science applications were recognized as ar-
eas for the most successful use of FPGA accelerators. Jamro et al. [34] present imple-
mentation results of algorithms that are computational kernels in cryptography and
data analysis. Gielata et al. [35] investigate hardware implementation of AES-128 ci-
pher standard on FPGA technology. They proposed the pipeline architecture of AES
modules. The paper reports throughput of 21.2 Gbit/s and 16.6 Gbit/s for coder and
decoder respectively. It was compared to 77 Mbit/s and 74 Mbit/s accordingly on
Pentium II 450 MHz.

Russek and Wiatr [36] focus on the analysis of technical challenges of reconfig-
urable computing in multi-user, multi-threaded systems. More specifically, Russek
and Wiatr [37] present their approach to the custom matrix multiplication implemen-
tation. The presented architecture is dedicated to the SGI Altix 4700 supercomputer
system. The paper claims that the 200 MHz clock system gained computing power
of 9.6 GFLOPS.

FPGA implementation of the double precision exponential function module is
presented by Wielgosz et al. [38]. The function is accelerated on an SGI RASC
board with two Virtex-4 LX200 FPGAs. The authors predict the final algorithm ex-
ecution speedup to be 4× as compared to a sequential implementation on a 2 GHz
Intel Itanium2 microprocessor. Wielgosz et al. [39] present FPGA acceleration and
implementation results of a hardware module for generating an orbital function that
is used in quantum chemistry calculations. The computational procedure presented
in the paper is part of an algorithm for generating exchange-correlation potential,
and it is also recognized as one of the most computationally intensive routines in
quantum chemistry calculations. The paper of Wielgosz et al. [40] presents an FPGA
implementation of a calculation module for the exponential part of Gaussian Type
Orbital (GTO). The hardware implementation revealed significant speed-up for the
calculation of the finite sum of the exponential products, ranging from 2.5× to 20× in
comparison to a general-purpose CPU version.

1.5. Data-intensive computing

The term data-intensive computing is used to describe applications that are IO
bound. They can be identified by evaluating the number of bytes of data processed
per one floating-point operation. Today, data-intensive applications require the ma-
nipulation of huge volumes of data. Therefore, data-intensive computing denotes also
the use of a computer to process a large amount of input data. The large volume of
data means terabytes (TB) or even petabytes (PB) of data in the era of the Internet
that is rich with information. However, data-intensive computing is not an equivalent
of Big Data computing. Big Data directly refers to large data sets with sizes beyond

30

the ability of commonly used software tools to load, store, manage, and process data
within tolerable elapsed time. Methods and algorithms, which are being developed, to
handle Big Data are often data-intensive to minimise processing time. However, we
want to put the term data-intensive in a data-size-independent context here in the pa-
per. We will judge the domination of data with the relation to a quantity of operation
within a framework of an analyzed algorithm.

Let’s explore terms of data-intensive and compute-intensive calculations in this
section. It is necessary to confront the size of the input dataset with the number of
performed processor operations to do that. Consequently, we will be able to distin-
guish data-intensive and compute-intensive algorithms despite the actual size of the
input dataset.

1.5.1. The big O notation

The assessment of the calculation effort with respect to the size of the input data
is provided by a theory of computational complexity. It assigns an appropriate diffi-
culty to the analysed algorithm by the use of the big O notation. This notation defines
a complexity to the algorithm by a measure how it responds to the change in the size
of the input. In other words, the big O notation describes a growth rate of a function
that characterize data size and a calculation complexity relationship. More precisely,
big O provides an expansion rate of a function that express a number of operations
for a given input size. The complexity of a scalar vector product and matrix multipli-
cation, where N is the vector/matrix dimension, can be given as O(N) and O(N3)
respectively. The complexity measure allows it to compare different algorithms com-
putational difficulty. The more complex the algorithm is, the more computationally
intensive it is.

Despite the observation that data-intensive processing invokes low-difficulty al-
gorithms, it is vital for our discussion that the volume of data still matters in data-
intensive computing in practice. Computers could not tackle big-size problems using
high-complexity algorithms in a reasonable short time. Therefore, computationally
cheap algorithms are used in practical applications if processing of big input vol-
umes is necessary. The algorithm that is successful for processing of input data of
modest size has to be simplified if the size of entry grows. It is even a case when
it produces the lower accuracy of the results. Consequently, computer science rec-
ognizes data-intensive problems as tasks that create modest computing intensity for
a big amount of input data.

Different to compute-bound operations, data-intensive operations are IO bound.
Whereas compute-bound operations can be done faster if a CPU runs faster, the per-
formance of IO-bound program relays on IO speed. A term of IO can be extended to
the main memory in many cases because, as it has been already mentioned, modern

31

CPUs suffer the memory wall. IO throughput is not a limitation for the compute-
bound algorithms, as they can exploit the CPU’s performance thanks to the cache
memory. Once a processor reads data, it is stored in the cache that performs an order
of magnitude faster than the main memory.

1.5.2. Computational patterns

Patterson’s group from Berkeley University identified application areas for com-
puting platforms [41]. They pointed out areas like embedded systems, general-
purpose computing, databases and browsing, games, artificial intelligence and ma-
chine learning, computer-aided design, and high-performance computing. Also, the
group determined twelve computational patterns for these applications. One can find
dense linear algebra, sparse linear algebra, spectral methods (e.g. FFT), N-Body
methods, combinatorial logic, and Finite-State Machines among them. A use of
FPGAs for data-intensive processing have a significant support of this work because
the group qualified combinatorial logic and FSM as the patterns suitable for the appli-
cation area of Database and Browsing (D&B). The relevance of D&B applications to
conventional digital circuits operations induces a value of FPGAs for data-intensive
computing!

The most fundamental ability of big data systems is storing and searching. Ap-
parently, these functionalities cannot satisfy all existing needs of data processing but
they are basic. Today, internet browsing and searching is most prevalent and dominant
operation. Web browsers retrieve search results from servers of service providers,
where the information is stored. Extremely big data repositories must be kept in data
warehouses.

The primary purposes are data-mining and information retrieval applications
when someone considers data-intensive services. Those applications employ sophis-
ticated, computationally intensive algorithms of artificial intelligence, machine learn-
ing, and statistics. However, a simple database search goes ahead of any data-mining
analysis to limit the volume of input data that has to be handle.

A clever organization and structure of data significantly helps in efficient pro-
cessing. The structure of a binary tree reduces the computational complexity of a bi-
nary search algorithm to O(logN) for example. Just like R. Pike [42] stated: “Data
dominates. If you’ve chosen the right data structures and organized things well, the
algorithms will almost always be self-evident. Data structures, not algorithms, are
central to programming”. Therefore, the sorting operation is essential to put data
in well-organized structures. Consequently, the sorting is also an important process
in databases. The average difficulty of the fastest sort algorithms such as heapsort,
quicksort, and mergesort is O(logN) only. It is even smaller in some particular cases
when one can implement bucket-sort or radix sort.

32

Systems usually inspect information that is stored locally but sometimes it is
on-line data, delivered in real-time, that is analysed. Such data is raw, unstructured,
and must be analysed ad-hoc. The searching of unstructured data exhibit a linear
complexity O(N).

1.5.3. Distributed databases

The growing importance of browsing weakened the role of relational databases
in today’s computing environment. Relational databases have been used for storing
data for years. Such databases give an advantage of saving of storage space because
they store each data element only once. It is possible also to create any complex table
dynamically when it is necessary. Nonetheless, distributed databases gain popularity
in the era of data warehouses and petabytes storages. In such a databases, data is not
centralized but distributed to many system nodes. Thus, a computer cluster is a natural
platform to store a distributed database where each node is capable of storing a part
of information. This approach allows it to perform database operations in parallel.

The popularity of distributed databases comes together with the importance of
the MapReduce model. MapReduce is a model used for parallel data processing.
A key primitive to explore such collections is MapReduce. The essence of MapRe-
duce is a couple of functions: a map function and reduce function. A single map
function executes in parallel on independent data sets. The data sets are usually phys-
ically distributed in the system. The output from the map functions is combined and
eventually reduced to form a single or the small number of results.

References

A good example of the applications of data processing, which employ subop-
timal algorithms to replace their ideal counterparts, is real-time video compression.
A video camera delivers a substantial data stream that must be compressed to be fur-
ther handled. Motion estimation and coefficients quantization tasks are computation-
ally expensive in video compression. The research that had been carried out by the
author and author’s colleagues provides a good outline of the problem. The method
of video compression that is presented by Wiatr and Russek [43] is the modified
Embedded Zero Wavelet (EZW) algorithm. It was enhanced, by the authors, to sim-
plify quantization. Next, Dąbrowska and Wiatr [44] discussed the motion estimation
algorithm. Precisely, the work presents the modification of the Efficient Three-Step
Search motion estimation algorithm to suit an FPGA implementation.

The paper of the Berkeley group [41], the one that had been already cited in
the text, has been followed another important publication of that group which was
a report [20]. The goal of the work was to challenge the conventional wisdom that
had preserved the programming paradigms of the past, and re-invent cornerstones of

33

computing to simplify the efficient programming of parallel systems. Among others,
the report contains statements that are vital for a discussion in this paper:

• The essential function of modern databases is hashing.
• The sort is at the heart of modern databases.
• It is important to have efficient interfaces between IO and main memory to sort

large files fast.
• The future of databases was large data collections typically found on the Inter-

net. A key primitive to explore such collections is MapReduce. The essence is
a single function that executes in parallel on independent data sets, with outputs
that are eventually combined to form a single or a small number of results.

• Among ‘dwarfs’ of computing, the eighth dwarf is combinatorial logic, and the
thirteenth dwarf is Finite-State Machine processing.

The book of Han et al. [45] provides a survey of data mining. It gives intro-
ductions to concepts of database and data mining, with emphasis on data analysis.
Additionally, it covers the concepts and techniques of classification, prediction, asso-
ciation, and clustering.

J.Gray et al. [46] prepared the report, which showed that sort operation is IO-
bound. The authors presented an underutilization of the CPU for the tested sort algo-
rithms. Also, authors keep results of sorting benchmarks on the web page [47]. The
list shows the influence of the performance of IO subsystem on the sorting speed that
is obtained by the tested computer systems.

1.6. FPGAs in data-intensive applications

Performance is an important parameter of a computing system, but owners of the
big computing facilities care for energy consumption also. More precisely, they are
interested in the best performance per watt ratio. Energy-efficiency is an important
system quality measure for big computer clusters. Thus, FPGA devices come in use-
ful as they outperform other computing devices in performance and energy savings
in selected tasks.

One can distinguish perfect algorithm’s features that lead to successful FPGA
implementation. Non-standard data representation, simple logic like operations, and
fine-grain parallelism are the most general characteristics of them. The above at-
tributes might serve as a guideline of a system designer when he considers FPGAs
to reinforce CPUs. They mark the perfect candidate that probably does not exist in
practice. However, algorithms exist that partly meet the above criteria. It is important
for the discussion in this paper that some of them can assist browsing and searching
in data-intensive applications.

34

CPUs use integers and IEEE-754 floating-point data representation for arith-
metic. Correspondingly, processor registers have a definite binary size. Meanwhile,
database’s data representation is far more rich. Databases use character string, date,
time, and binary formats for instance. Also, the size of database fields is arbitrary. It
does not come naturally to manipulate data elements of an unconstrained type and
size in CPU. Consequently, the end performance is affected. It is wasteful to use 32
or 64-bit registers to deal with eight-bit characters for example. Although, data can
be re-expressed to fit the internal data representation of CPU better, that solution is
not always the best approach because it requires constant data conversion between
human-friendly and internal computer format. Also, it may be necessary to keep na-
tive data representation to allow for some types of data manipulation; like comparison
for example. Finally, it is not possible to use an auxiliary representation for an ad
hoc data processing.

Contrary to CPUs, FPGAs can be configured to conform to random data formats
and data size. FPGAs naturally handle and process information in its native form.
They can instantly produce adequately formatted, human-friendly output data. It is
possible, for instance, to encode ‘A’, ‘C’, ‘G’, and ‘T’ nucleotides in a two-bit field
for DNA processing. Such reduction of register size to two-bits spares functional
resources and allows the designer to introduce more parallelism.

Components that support floating-point arithmetic consume much logic re-
sources of a processor. Floating-point registers and arithmetic units occupy silicon
area that could be used to introduce additional parallelism. Contrary, such data ma-
nipulations like compare, bitwise logic operation, register bits swap, arbitrary register
shift, and rotation are cheap in hardware implementations. Shift and swap operations
do not require any logic because they need only wiring resources for example. Addi-
tionally, an FPGA designer of the custom processor can combine the above operations
into any user-defined function if necessary.

Data formatting that is necessary to prepare an output file often requires a lot
of data movement. It extensively employs strings manipulations such as extractions,
truncations, and insertions. These types of activity are simple in an FPGA. It re-
quires a customized register-to-register data flow only. Data manipulation of long
data records requires many read/write operations in a CPU. It should be noted that
data movement is a source of significant energy consumption in electronic devices.
When the task of data formatting is put into an FPGA, the speedup of processing
might not be experienced, because of the IO transfer limitation, but it leads to sub-
stantial energy savings.

Regular expression matching is a form of non-exact matching where the search
pattern is given in the form of the character string, and it is a common task for data
browsing. The string is enhanced by control symbols like: ‘match any character’,

35

‘match character from the list’, etc. The regular expression (RegEx) can be also ex-
pressed in a form of Finite-State Machine (FSM), and FSMs are used to run com-
plex regular expression searches in software applications. Tools exist that transform
RegEx to FSM graphs that can be later used by a software or hardware application.
Additionally, it is possible to compile a set of many regular expressions to a single
FSM. Such FSMs can lead to the complex automata with many states and transitions.
The use of a powerful CPU to implement the FSM and traverse through its states is
possible, but it is a waste of processor capabilities, as the most natural environment
for the FSMs is logic. Consequently, the FSMs, which run in FPGAs are faster and
more energy-efficient than their software counterparts.

FPGAs can be helpful to manipulate bitmap indexes. The bitmap index stores
information in a binary coded format where certain attributes are marked as a bit
field. The binary index is useful for enumerated field types such as a gender field:
‘male’, ‘female’ for example. This technique allows it to aggregate data records to
a single binary field, and to improve further data processing. It introduces a powerful
advantage for simple data types because most queries can be performed by bitwise
logical operations. FPGA devices can produce any logic condition that can be written
as a boolean expression to manipulate the bitmap index.

The hashing operation, which is valuable for data search algorithms, is essential
in modern databases. It is a very simple function that involve a combinatorial logic
or integer number operations. The hash function maps a record of data of arbitrary
size to a binary value of fixed size. The binary size of the output hash is always
smaller than the size of input data. Hash tables, which store hash codes, are used for
rapid lookup operations where the hash is used to address the table. The hash index
is another name for the hash table because hashing is one of the techniques used to
index databases. It is an important experience for the idea of browsing and searching
in FPGA that hashing can be very efficiently implemented in logic.

The search process is usually supported by appropriate search data structures
in databases. The most common search structures that are used by software appli-
cations are binary trees, linked lists, heaps, hash tables, and tries. These structures
significantly reduce the complexity of a search tasks. It will be presented in this work
how some of the mentioned structures can be implemented in hardware. However,
the most intensive is a linear search that is usually required when a processor scans
ad-hoc data. Ad-hoc data is unstructured data, and such processing exists when net-
work packets are analysed for example. Despite that ad-hoc data processing is less
common than processing of indexed data, the FPGA accelerator should be appreci-
ated for that purpose. An example of an operation that needs an exhaustive search is
the SELECT JOIN operation of unsorted (ad-hoc) data. Also, when a search query is
complex, it can be additionally parallelized in FPGA.

36

In conclusion, it must be stated that FPGAs are excellent for data pre-processing
and low-level manipulation. It is a general remark that covers the use of FPGAs
in many different areas of processing (e.g. video and image processing). Today, the
main reason to replace CPUs by FPGAs is the substantially lower power consumption
of the latter. Data-intensive calculations are IO-bound, so only a moderate speedup
(about two-times) is possible in practical applications.

References

Mueller and Teubner [48] focus on the FPGA use in database systems. Their
paper demonstrates the potential of reconfigurable logic, but it also recognizes some
hurdles that need to be solved before the FPGA-accelerated database systems can
go mainstream. The paper unveils limitations that the hardware-accelerated database
processing faces.

An excellent example of the use of FPGA in search applications is provided by
Putnam et al. [49]. The authors present reconfigurable fabric to accelerate portions
of large-scale software services for Microsoft’s Bing web search engine. The system
ranks the candidate documents that are results from users’ queries. When a server
wishes to rank a document, it performs the software portion of the scoring, converts
the text into a format suitable for FPGA evaluation, and then injects the material to its
local FPGA. The authors argument that as data center services evolve rapidly, non-
programmable hardware alternatives were impractical for the purpose. The authors
report that, thanks to FPGAs, they were able to increase throughput by a factor of
two in the number of documents ranked per second per server.

Another use of FPGAs to enhance web search engines is presented by Yan et al.
in [50]. In that paper, the authors investigate FPGAs as an implementation platform
for power efficient inverted index search engines, as well as a host for the accelerator
of an inverted list compressor/decompressor, matcher, and ranker. Matching, which
is implemented as a full binary tree, traverses the inverted lists and applies boolean
operations (intersection, union, and subtraction) to the matched documents according
to the input queries. The FPGA-based hardware index server achieves up to 19.52×
power efficiency and 7.17× price efficiency over a commodity server processor.

Leber et al. [51] present a work that shows ad-hoc data processing in FPGA.
Their paper presents the design of an application specific hardware for accelerating
High-Frequency Trading applications. By using FPGAs the authors, could offload
protocol and data decoding tasks from the CPU to optimized hardware blocks. It
shows a 4× latency reduction in comparison to the software based approach.

Halstead et al. [52] investigate the use of FPGAs for relational joins. The paper
presents a hash-join engine that performs hashing, conflict resolution and joining on
a PCIe-attached system, achieving greater than 11× speedup over the software.

37

Many papers discuss the implementation of Finite-State Machines in FPGA de-
vices. The problem splits into two approaches: Deterministic Finite-state Automata
(DFA) and Non-deterministic Finite-state Automata (NFA) algorithms. NFAs are
smaller in size since the number of states in an NFA is usually comparable to the
number of characters presented in its regular expressions. On the other hand, the
DFA works faster by proceeding one character each clock cycle, but the DFA has the
potential state explosion problem for complex regular expressions.

Sidhu and Prasanna [53] present an efficient method for finding matches to
a given regular expression using FPGA. Good results were obtained due to the use
of NFA. Sourdis et al. [54] give the design methodology of regular expression pat-
tern matching that assumes the use of a tool that automatically generates the cir-
cuitry for the given regular expressions and outputs the HDL representations ready
for logic synthesis. Kumar et al. [55] introduce a new representation for regular ex-
pressions, called the Delayed Input DFA (D2FA), which substantially reduces space
requirements as compared to a Deterministic Finite Automation (DFA). Bispo and
Cardoso [56] present the synthesis of regular expressions with the aim of achieving
high-performance engines for FPGAs. Hutchings et al. [57] developed a “regular-
expression to the FPGA circuit” module generator that creates an FPGA bitstream.
The authors claim that the FPGA-based string matcher exceeds the performance of
the software-based system by 600× for large patterns.

1.7. Architectures for energy-efficient computing

The task to select the best architecture for the general purpose computing plat-
form involves many trade-offs. Unfortunately, it is possible to compose the optimized
computing system only if target algorithms are well-defined. Optimization often con-
cerns the system’s price/performance ratio, where price involves both purchase and
maintenance costs.

The excessive CPU computing power is unnecessary in the case of memory-
bound processing. Thus, power-hungry processors, which are valuable for fast ex-
ecution of sequential, compute-intensive applications are not a perfect choice for
data-oriented platforms. Despite, system architects often choose powerful state-of-
the-art processors for data-analytic systems, and it holds because a complete, end-
to-end data analysis and data-mining require compute-intensive algorithms as well.
Although, data analysis involves data browsing and searching at the early processing
stage, and browsing is used for the selection and preparation of data, data-mining
requires machine learning and Artificial Intelligence (AI) algorithms also. However,
the necessity for compute-intensity is not always the case, and many real-life services
rely on IO-bound operations only.

38

The performance of the elements that constitute complex system should always
fit. There is no rationale to put high-performance components in cooperation with
slower devices, as the quality of the whole system is a quality of its worst element.
Thus, the system should be balanced. In the case of a computer system, the through-
put of the data storage and the throughput of the processor need to correspond to
certain algorithm needs. The throughput of the processor depends on the algorithm’s
computational requirement so if an algorithm is IO-bound, the computing power of
the CPU can be reduced with no overall system performance loss.

Thus, it is probably more rational to use less complex CPUs that are usually more
energy-efficient to perform data-intensive tasks. Such processors are also simpler and
cheaper. Downsizing of servers allows the increase of a number of cluster’s comput-
ing nodes within the same energy, space, and monetary budget. It is possible to put
more nodes into a single computer chassis and increase a node’s density if lower-
range processors are installed, as the cooling system efficiency limits the maximum
electric power of the system rack. Consequently, the advantages are more servers in
a server room and the reduced maintenance costs.

It is always uncertain to compare CPUs of different architectures, but we will
compare processors of two distinct IT segments to illustrate how processor selection
influences the computing node measures. We will compare an embedded system pro-
cessor and server processor. Both processors provide Intel Ivy Bridge CPUs, which
are fabricated in Intel’s 22 nm technology. Ivy Bridge is highly sophisticated super-
scalar CISC architecture Table 1.1 presents a number of CPU cores, memory band-
width, IO bandwidth and other parameters. It is clear that the embedded processor
outperforms the server processor in terms of power, price, and bandwidth (memory
and IO) per core. An embedded system processor has fewer cores (two vs. four), the
lower clock frequency (1.7 GHz vs. 2.3 GHz), and only two memory channels (Xeon
has four). It has lower maximum memory bandwidth (25.6 GB/s vs. 68 GB/s), but it
offers higher memory bandwidth per core (12.8 GB/s vs. 5.6 GB/s). Power consump-
tion of an embedded processor is 17 W, whereas a server processor requires 105 W.
The more striking power efficiency difference could be expected if Ivy Bridge would
be compared to a processor of a simpler, RISC-like, architecture.

The HP Moonshot system is an example of a cluster solution that comprises
of light-weight computing nodes [58]. It uses a new type of server nodes that can
address specific workloads. Nodes are built from chips that are more commonly found
in tablets and smartphones, but allow the servers to deliver reduced energy use and
a high-density footprint, at a significantly lower cost. The servers use energy-efficient
CPUs like ARM’s Cortex A9 or Intel’s Atom processors. They draw less energy, uses
less space and costs less than full-size servers. Additionally, these small-size servers
can use DSPs, FPGAs, and GPUs as well.

39

Table 1.1. A comparison of embedded and server processors. The CPU architecture is Ivy
Bridge and 22nm technology for both architectures

Processor’s characteristic Embedded Server
Processor type Core i7-3517UE Xeon E7- 8850 v2
Number of cores 2 12
CPU clock frequency [GHz] 1.7 2.3
Memory type DDR3 DDR3
Memory clock [MHz] 1333/1600 1066/1333/1600
Number of memory channels 2 4
Max Memory Bandwidth [GB/s] 25.6 68
Number of PCIe v 3.0 lines 16 32
Max PCIe Bandwidth [GB/s] 15.8 31.5
Memory bandwidth per core [GB/s] 12.8 5.6
PCIe bandwidth per core [GB/s] 7.9 2.7
Power (TDP) [W] 17 105
Price $330 $3000

Accelerators experience obstacles that are similar to those of CPUs. Just like
CPUs, they suffer a data throughput bottleneck. The GPGPU and FPGA accelerators
are the most successful in speeding up compute-intensive algorithms because, in that
case, the inner parallelism can be fully exploited. Simply, data is not delivered fast
enough to cover all the accelerator’s computing power in data-intensive problems.
Consequently, the number of accelerator processing elements could be reduced with
no system performance penalty and an accelerator chip that is smaller in size could
be used to fit the available data transfer capabilities.

The idea of simpler CPUs and smaller accelerators meet the notion of embedded
systems. Thanks to the expansion of mobile devices, semiconductor devices that in-
tegrate all computer elements on a chip are now available. They constitute so-called
System-On-Chip (SoC) devices. The growth of the SoC market makes these devices
an attractive alternative also for building data-processing clusters. The SoC can inte-
grate a CPU with a GPU and recently a CPU with a DSP or an FPGA structure. Today,
all the advantages of heterogeneous computing platforms are available on a chip.

The problem of the integration of an accelerator with a host system diminishes
for the SoC. Close integration is now possible through an embedded system bus
that connects an accelerator with the CPU subsystem and memory. No additional
PCB space is necessary, and on-chip integration improves overall system reliabil-
ity. For example, the HP Moonshot architecture offers a 32-bit ARM option from

40

Texas Instruments with an integrated DSP chip. Further, Altera announced recently
that its FPGA devices would incorporate a high-performance, quad-core 64-bit ARM
Cortex-A53 processor.

References

Russek and Wiatr [59] describe and compare a regular expression matching sys-
tem on SoC device. The system matches a big set of regular expressions from an
anti-virus database simultaneously. The authors present an algorithm that was de-
vised for the execution on an FPGA-accelerated platform. The system offloads the
majority of computations to the custom hardware, and only a small part is left for the
CPU. Thanks to the FPGA accelerator, a single ARM Cortex-A9 core is sufficient to
perform the software part of the algorithm for the input data stream of 1 Gbps.

Also, Russek and Wiatr [60] present an algorithm for a regular expression pattern
matching system. The article focuses on the comparison of the mobile processor with
the server processor. The authors offer a SoC solution that comprises of dual-core
ARM Cortex-A9 CPU and FPGA structure. Thanks to FPGA, the SoC could perform
as fast as Intel Xeon E5645 2.4GHz (12MB Cache) CPU. The work highlights that the
problem is memory-bound, and the server processor is underutilized. The total power
consumption of the SoC (2×CPU+FPGA) solution was about 2.8 W in comparison
to 80 W of Thermal Design Power (TDP) of the Intel processor.

Wang et al. [61] considered the platform with mobile processors and FPGA. In
their paper, the authors proposed a practical study of the Xilinx Zynq board for the
problem of short-read mapping. Short-read mapping is the DNA sequencing problem
that recently attracted attention due to the approach of the Next-Generation Sequenc-
ing (NGS) technology. The speedup analysis on a Hadoop cluster was evaluated. The
authors claim that their architecture and methods have a speedup of more than 112×
and is scalable to the number of accelerators.

The next paper describes an integration of the FPGA with the ARM processor in-
side the Xilinx Zynq SoC [62]. An eight-slave Zynq-based Hadoop cluster was built,
and a customized hardware accelerator for a standard FIR filter was implemented to
demonstrate the effectiveness of hardware acceleration. The input data sent to the FIR
was a dataset of ASCII text files. The ARM+FPGA system achieved a 2.4× speedup
compared to the ARM processor alone.

1.8. Energy efficiency of FPGAs

The higher density of transistors on the same chip makes power consumption one
of the major challenges of semiconductor design. Effectively, for the applicable num-
ber of available gates, FPGAs consume a higher number of transistors compared to

41

their closest alternative i.e. ASICs. The same rule is evident as one compares FPGAs
to processors. Power consumption in the CMOS technology, which includes SRAM-
based FPGAs, is a sum of static and dynamic power [63]. Static power is caused by
leakage currents inside transistors while dynamic power originates from the transistor
toggling operation.

Switching activity causes dynamic power by the charging and discharging of
load capacitance. Also, short-circuit currents that flow when the transistors toggle
contributes to dynamic power. Dynamic power is given by the equation

Pdynamic = α ∗ C ∗ V 2 ∗ f.

The formula is a linear dependency on the clock frequency f and a quadratic
dependency on the supply voltage V. Additionally; it takes into account the total
input capacitance C of logic gates in the design. In an FPGA, the load capacitance
depends on the number of logic and routing elements used in the architecture. The
constant α is the toggle rate of gates and is dependent on the design and its input
stimuli.

Static power is the power consumed by the FPGA when no signals are toggling.
The sources of static leakage current are mainly subthreshold leakage and gate di-
rect tunneling leakage in transistors. The static power is between 25-40% of total
power dissipation, depending on the temperature, device, running frequency, and de-
sign [64].

In ASICs, power correlates to the area used. However, it is different for FPGAs,
where static power correlates to the total FPGA area, and dynamic power correlates
to the used FPGA area. According to Shang et al. [65], the FPGA’s power dissipation
share of routing, logic, and clocking resources are 60%, 16%, and 14%, respectively.
Power dissipation of FPGA may vary significantly depending on the input switching
activity.

The total electric power is defined as the sum of static power (which is dependent
on temperature T) and dynamic power (which rises with clock frequency f):

Ptotal = Pstatic(T) + Pdynamic(f).

The total energy consumption of electronic chips, including CPUs and other
computing devices, comes from their electric power and the time of operation. One
can distinguish the idle and active states in the device operation. It is important to
note, that the power dissipation of modern devices is significantly lower in the idle
state than in the active state. This experience comes with CMOS technology charac-
teristics (dynamic and static power) and the device’s structural improvements (low-
power modes, sleep states, functional unit block power downs). Therefore, the term

42

of average power Pavg is in use, which is design power time averaged over a pe-
riod of time t. The total energy consumption of the processing element Etotal can be
calculated according to the formulas

Etotal = Pavg ∗ t,

and

Etotal = Pidle ∗ (t− tactive) + Pactive ∗ tactive,

where Pidle and Pactive are power dissipation in the idle and active states respectively,
and tactive is time spent by the device on the actual processing. As Pidle is smaller than
Pactive, one can conclude that the speed-up of computing leads to energy savings for
a given task.

This conclusion is not straightforward when the faster calculation comes from
the addition of a co-processor that enhances the CPU. Such a co-processor reduces
the calculation time but also contributes to the total system power. However, the light-
weight custom architecture usually characterises co-processors, so their extra contri-
bution to dissipated power is easily mitigated by the shorter processing time. The
engineering practice indeed confirms this experience. The observation is both true
for the System-on-Chip and board level designs. For example, Putnam et al. [49]
introduced FPGA accelerators into their servers. To measure the maximum power
overhead of introducing FPGAs, they ran a ‘power virus’ bitstream, i.e. the configu-
ration that maximise the area and gate activity factor. Consequently, they measured
a modest power consumption of approximately 23 W. The added FPGA compute
boards increased power consumption by 10%, but the throughput in the production
search infrastructure increased by 95% if compared to a software-only solution.

The general comparison of the FPGAs and the GPPs in terms of the power con-
sumption is hardly feasible. It can be conducted only when a particular application
is considered. However, even for the same processing task implemented on the CPU
and FPGA, it is unreasonable to draw general conclusions. For example, the CPU
and FPGA may differ in semiconductor technology, and no one can guarantee the
optimality of the compared FPGA and CPU designs.

More difficulties exist in the assessment of the energy-efficiency of the FPGA-
enabled systems. One should consider that the CPU power consumption is only about
30% of the total computer server power [66]. Other sources include AC/DC conver-
sion losses (25%), memory (11%), DC/DC losses (10%), fans (9%), hard disk drives
(6%), and others (9%). Therefore, the exclusive power comparison of the processor
and FPGA device is not sufficient in practice. On the other hand, the FPGA acceler-
ators also integrate other components. The external FPGA memory, which is usually
the DDR SRAM, is a standard part of the accelerator cards for instance.

43

Measurement of the power consumption of separated devices in an electronic
system is troublesome. Today’s chips require that the power supply is connected to
many different pins simultaneously, and the PCBs provide many independent power
tracks to fulfill that. Usually, there are also a couple of different supply voltages
required for the same device. Furthermore, the chip’s pins are often out of mechanical
reach, and the measuring equipment cannot be connected easily. Thus, specialised
accessories are required. Consequently, the measurement of power dissipation of the
whole system is an option that is frequently used in the basic elaboration of power
savings.

Although phsyical measurements are difficult, a theoretical estimation of power
consumption is possible. Hardware designers have access to a gate level simulator to
assess the power of the given hardware architecture. The hardware description has
to be provided for the simulator in an HDL to get the expected power consumption,
which is calculated with respect to the given semiconductor technology. For the con-
venience of the designer, the higher level simulators are available in the case of FPGA
technology also.

The Xilinx’s Power Estimator [67], which is a calculation spreadsheet, allows
a quick power elaboration. One must provide details of the FPGA design, the re-
spective clock frequencies and the expected toggle rate to get a rough power value
from the power estimator. For instance, the details of an inspected design for the Xil-
inx Power Estimator is provided in the form of a computer file, which is the output
of the FPGA synthesis and implementation tools. The file contains the facts about
the utilization of resources of a different type and thus allows the tool to determine
expected power dissipation. The Xilinx Power Estimator provides the dynamic and
static power separately and reports the amount of energy consumed by various FPGA
resources (clocks, BRAMs, etc.).

The assessment of power consumption in the case of FPGAs is not a compli-
cated task, as it can be easily done thanks to the power estimators. Unfortunately,
corresponding tools, which allow the designer to emulate the processor’s power con-
sumption for a given program are not in common use. Manufacturers can estimate
processor’s power at the gate level, but the tools are not available for the users of
commodity CPUs like Intel’s and ARM’s. Instead, Thermal Design Power (TDP)
Ptdp is offered for the processors users [68]. TDP is the maximum sustained power,
across a set of realistic applications, drawn under normal operating conditions, nom-
inal voltage, and a realistic ambient temperature. There is also idle power Pidle and
maximum power Pmax defined for processors. Pmax is power of the worst case (V,
T) scenario, executing the worst case (synthetic) instruction. Compared to Pmax, Ptdp
gives some notion of the expected power consumption of the user application. Conse-
quently, the TDP is in use when a comparison of the CPU to other computing devices
is requested.

44

1.9. Types of FPGA-enabled architectures

A CPU is central to contemporary computing systems. The CPU is superior to
every device that is present on the computer because it executes an operating system
(OS). Consequently, the operation of the accelerator must be also coordinated by the
processor in any hybrid computer architecture. The processor sets up tasks for the
accelerator(s) and controls a process of data sending and receiving from it.

Various approaches to integration of acceleration with the rest of a computer
exist. A model of the accelerator fusion decides how tight is the integration with the
host system. The two-fold distinction is probably the most principal in that matter.
The first approach makes the accelerator act as an IO device, and the second method
assumes it is a co-processor. However, despite how close is an integration of the
accelerator with the system, the CPU always initiates the accelerator’s actions. Below,
we will discuss several FPGA integration solutions in more detail.

The type of accelerator interface decides if it is classified as a co-processor or
an IO device. Accelerators can use either a peripheral bus or a processor’s system
bus to exchange data. Devices that use a system bus play a role of co-processor.
Otherwise, they are peripheral accelerators and act like IO devices. A co-processor
is more tightly coupled with the system, and the selection of the system bus instead
of IO-bus helps to reduce communication latency. A small latency is most important
when many independent write/read transactions are performed, and host-accelerator
data delivery incorporates short chunks of data. However, the system bus solutions
are rare, and high-speed IO interconnects prevail in practical solutions.

HyperTransport (HT) interface is an example of a system bus that enables co-
processor-like integration. The direct link from the CPU to the FPGA is possible
thanks to the HT bus. Accelium Co-processor of DRC Computer Corporation is an
example of a system that uses the HT link [69]. Accelium (Fig. 1.1) is a solution
where an FPGA resides in a CPU socket, and it is highly integrated with the system.
The FPGA accelerator accesses system resources like a CPU does. It can read and
write from the corresponding memory banks of the host’s motherboard, and it can
initiate and accept read/write operations on three associated HT links. In addition, the
Accelium Co-processor locally integrates Module DRAM and Low-latency RAM.
The processor accesses a Local DRAM and RAM through HT links. The Accelium
Co-processor of the DRC Computer Corporation is presented briefly in works by
Wielgosz et al. [40] and Cichoń and Gorgoń [70].

The Convey HC-1 hybrid computer is another example of the FPGA empowered
architecture [71]. It also uses a system bus for accelerator integration, but in contrast
to the point-to-point HT connection, it uses the multi-drop Intel’s Front Side Bus
(FSB) interface. There are a couple of distinctive features of HC-1. First of all, there
are 14 FPGAs on the coprocessor (see Fig. 1.2).

45

Figure 1.1. A system organization of the Accelium co-processor from DRC Computer
Corporation

Figure 1.2. The Convey HC-1 architecture

Four FPGA chips serve as the user Application Engines (AEs), two FPGAs com-
prise the Application Engine Hub (AEH) that handles communication to and from the
host, and eight FPGAs build the controller that provide the very fast memory interface
in the Convey HC-1. The HC-1 integrates four FPGAs, which execute a user algo-
rithm. These application engines are connected to eight local memory controllers,
which provide a highly parallel and high bandwidth connection between the AEs
and the co-processor physical memory. Another virtue is that the system incorporates
a cache coherent Non-Uniform Memory Access (ccNUMA) across the whole system.
There are two physical memory subsystems (one for the host and one for the AEs co-
processor), and all physical memory is addressable by all processing elements. The
ccNUMA allows all CPUs and AEs to access data in the CPU’s memory and the ac-
celerator device memory. The Convey HC-1 hybrid computer as a platform for the
research in the numerical simulation was presented by Augustin et al. [72].

46

Figure 1.3. A functional block diagram of the SGI’s RASC accelerator

The SGI’s RASC (Reconfigurable Application-Specific Computing) is an exam-
ple of the accelerator module that is integrated with a host system using a propri-
etary interfacing [73]. The RASC is intended for Silicon Graphics ccNUMA sys-
tems; specifically for SGI Altix systems that use the high bandwidth and low latency
NUMALink 4 interconnect fabric. To address performance issues, RASC connects
FPGAs into the NUMAlink fabric making them a peer to the microprocessor. Thanks
to NUMALink, RASC’s FPGAs are located inside the coherency domain of the com-
puter system. The RASC basic structure is depicted in Figure 1.3. It consists of two
independent FPGA modules; each features its NUMA interface and synchronous
SRAM memory block. The RASC hardware module is based on an ASIC called
TIO. The TIO the Scalable System Port (SSP) port that is used to connect the FPGA
to the rest of the Altix system. The maximum bandwidth is up to 6.4 GB/s/FPGA,
however, it gains approximately 4.0 GB/s in practical application.

Barriers exist that make the processor system bus a rare choice for the integra-
tion of an FPGA accelerator. HT is an open standard specification, but proprietary
rights of the other commonly used processors interconnect become an obstacle for
the vendors to integrate FPGAs as coprocessors. Further, part of the interface logic
that put the FPGA to work as accelerator must be implemented in the reconfigurable
array, and implementation of the complicated bus standard in the FPGA also requires
a substantial amount of the FPGA’s resources. Additionally, OS support for the solu-
tion that put the FPGA and CPU on an equal footing does not exist. In the mentioned
DRC solution, the operations are possible thanks to a low-level function library only.

47

Today, the PCI Express bus (PCIe) is a standard to unify a discrete FPGA card
with a host server. Opposite to the HT, the PCI Express interface is ubiquitous and
hard-wired in some FPGA devices. PCIe hard-wired integration saves more FPGA’s
logic for user’s algorithms. The PCIe also ensures cross-platform compatibility. The
data throughput value of the PCIe, a high-speed communication interface, satisfies
physical IO capabilities of FPGA. The data throughput, between the host and FPGA
card, is not limited by the host’s capabilities but by the FPGA boundary. However,
PCIe-based accelerators feature higher transaction latencies in comparison to their
counterparts that use the system bus.

Usually, an FPGA chip is accompanied by local memory on an accelerator board.
The reason for that is that the access of the IO device to the host’s main memory is
restrained. The local memory is particularly important for the FPGA accelerators
because their internal memory size is very modest. Also, the local memory helps to
synchronize data exchange between the host and the accelerator. The memory acts as
a high-capacity local cache, so the technology of fast static RAM is favourable for the
purpose. One can use the cheaper and larger dynamic RAM also, but static memory
is significantly faster.

Despite the technology the external memory chips are fabricated, the FPGA
accelerators suffers a memory bottleneck phenomenon. Therefore, a sequential ac-
cess of large memory blocks is preferable to gain good data transmission speed.
The memory that is local to the accelerator buffers data transmitted from the host
memory and thus allows it to aggregate read/write operations for faster communi-
cation. A multi-buffering technique allows for further throughput improvements. In
the multi-buffering solution, the system allocates independent data buffers in the lo-
cal memory. The host transmits data to the one buffer while the FPGA processes
another buffer that was previously loaded. The FPGA and host swap buffers when
the cycle finishes. The work of Wielgosz et al. [74] presents the advantages of the
multi-buffering technique in IO-based accelerators.

Systems-on-a-Chip devices from Xilinx and Altera that implement heteroge-
neous CPU-FPGA platforms became popular recently. These platforms combine
a dual-core ARM Cortex-A9 processor, peripherals, and memory interfaces with the
FPGA fabric using a high-bandwidth interconnect bus (see Figure 1.4). Addition-
ally, Altera SoCs offer a shared memory controller that can be accessed directly from
FPGA logic. This controller feature allows for the easy integration of local mem-
ory with a co-processor. On-chip integration of a processor and an FPGA acceler-
ator offers better reliability, more energy efficiency, and system downsizing. ARM
AMBA/AXI is a bus standard that dominates the SoC solutions. The AXI interfaces
provide high bandwidth, low latency connections between the CPU part and pro-
grammable part of the device. Both Xilinx’s Zynq and Altera FPGA SoC solutions
use this bus.

48

Figure 1.4. An architecture of the FPGA-enabled System-on-Chip device

Embedded solutions lead to the construction of ultra-low-power clusters. Ad-
mitting that full-scale computer servers outperform their SoC alternatives, it is inter-
esting to notice that it is easy to migrate a design from SoC to a regular server. That
simple shift is possible because both SoCs and servers use the same OSs and IPCores.

Figure 1.5 presents the generic structure of the modern IO based FPGA accel-
erator. Two blocks of user algorithms, depicted in the figure, are actual processing
elements that perform calculations in the structure. It is usually only one algorithm
block in the real systems, but two user algorithms highlight two different processing
modes that are use in practical approaches. The structure contains an optional local
DMA module which can improve overall system performance by offloading the CPU
from performing IO read/write operations. The DMA module autonomously copies
data between the host’s memory and the accelerator’s memory. The FPGA reads in-
put data from the local memory in this scenario. That functionality is implemented
by ’User algorithm 1’ block in Figure 1.5. It is called the memory mode. It is also
possible that, skipping accelerator memory, the DMA feeds host’s data directly to the
algorithm block. This mode is a streaming mode. The system simultaneously reads,
processes, and writes data in the streaming mode. Additional FIFOs (not presented
in Figure 1.5) usually makes the process steady in this mode.

A very efficient way of processing involves ‘Interconnect interface’ and ‘User
algorithm 2’ (Fig. 1.5). Like an IO device, the accelerator reads data through the
‘Interconnect interface’, and it performs ‘User algorithm 2’ before data is sent to the
host’s memory. Direct processing of the networking packet is possible in this way for
example. That kind of processing is exploited by Leber et al. [51].

49

Figure 1.5. The generic structure of a modern FPGA accelerator

It is worth to note that the presented in Figure 1.5 design represents the archi-
tecture of such state-of-the-art FPGA accelerators, which are offered on the market
today. For example, the architecture of the cards from Maxeler Technologies, Nallat-
ech, Terasic, Gidel, Picocomputing, and other reconfigurable computing companies
fall into the presented scheme.

Finally, the Convey HC-2 Computer is a solution worth mentioning to visualize
the evolution of hybrid computing nodes. The Convey HC-2 is a derivative of the
HC-1, and it integrates four FPGAs, which are devoted to executing a user applica-
tion. Just like the HC-1, it also implements the globally addressable shared memory
architecture. However, an important difference to the HC-1 is that the shared Non-
Uniform Memory Architecture (NUMA) is implemented logically across the PCI
Express connection. It utilizes the memory mapped IO (MMIO) function of the host
x86 processor to map memory references to/from the co-processor’s physical mem-
ory. Thus, the integration of the FPGA accelerator by the system bus was abandoned
by the Convey Corporation, and IO-bus was incorporated instead.

50

2. Custom processor design in FPGAs

2.1. The general architecture of a custom processor

An FPGA accelerator requires a configuration bitstream that is downloaded to
the reconfigurable logic array. The configuration materializes a co-processor struc-
ture that was prepared by a hardware designer. The co-processor has customized ar-
chitecture that meets user’s requirements. The custom processor is usually employed
if a GPP cannot convey those requirements. As it was stated earlier, it is the sole dis-
tinction between a custom processor and a general-purpose processor that a custom
processor has a user’s algorithm wired into its structure. In other words, the structure
of the custom processor reflects algorithms operations and its data flow. The princi-
ples of custom processor designs for a generic algorithm are outlined in this section.

2.1.1. Algorithm selection

The algorithm shapes the architecture of the custom processor, but not every
algorithm suits well hardware implementation. Therefore, the successful hardware
architecture starts with the mindful algorithm selection. The most critical stage of
the custom processor design is the algorithm planning. The proper algorithm choice
determines the gain of the requested goals. The good knowledge of FPGA technology
helps the designer to select the algorithm that produces expected results.

The methods of custom processor design and optimization are already well-
known. They have been presented and widely discussed in many works. The schemes
that allow a hardware designer to convert a formal algorithm description into hard-
ware architecture are available. Consequently, the process of custom processor de-
sign, when the algorithm is defined, can be done, in theory at least, automatically.
The only problem is that the above statement is the truth only when an unconstrained
design is carried. Resource and performance constraints make the design task much
more complicated in practice. Constrained design is an optimization problem that
might not have the solution if the requirements are too strict.

51

Thanks to the advancement and development of Electronic Design Automation
(EDA) tools, designers no longer have to deliver hardware architecture in a structural
form. At present, behavioral algorithm description in HLLs is also acceptable. Al-
though, programming (or coding) of an algorithm for a digital circuit still requires
skills of a hardware designer, it has become much easier now. Consequently, dur-
ing the creation of the custom processor, the designer should focus on the algorithm
rather than on coding process. That algorithmic effort is most significant because al-
gorithms that are the easiest to be found in the literature were devised for software,
not hardware, applications. Consequently, they rarely exploit advantages and abilities
of the hardware implementation. The algorithms theory and practice of software so-
lutions is well ahead compared to their hardware counterparts. The basic fact of the
importance of the sole hardware algorithm creation becomes evident then.

The creation of a hardware specific algorithm is a necessary and most important
step in hardware design. An algorithm formalization is a real act of creation, and the
following stages are more or less procedural. The correct algorithm selection requires
knowledge of target semiconductor technology. The designer must be well aware of
FPGA technology in our case.

2.1.2. An example of the SQL custom processor

Following the statement that an inference of the hardware structure from the for-
mal algorithm description is the definite task, for the clarity of further discussion, we
will recall the most important steps of custom processor deduction. We will discuss
a design of a custom processor for a simple SQL method as an example.

Figure 2.1 presents relationship of data in an example database. The database op-
erations are conducted on the database tables that are named ‘employee’ and ‘bonus’.
The task is to calculate a total value of the tax that is imposed on the bonuses that
the company paid to employees in the country represented by an identifier ten. In
our example, columns of ‘employee’ table are limited to employee’s identifiers and
the affiliated country only. The ‘bonus’ table contains employee identifiers and the
corresponding values of bonus. The procedure starts with an inner join operation of
the input tables. That process creates ‘bonus10’ table that contains the bonus values
for the employees in the chosen country. Later, ‘tax’ table is created, where tax is
calculated as 20% of the bonus value minus 1250. The total tax value is summed up
in the end.

Declarative languages, such as SQL, can not be directly converted to the hard-
ware structure. A procedural description is necessary for that migration. Accordingly,
the C-like code that is equivalent to the presented SQL is given in Listing 2.1. The
‘main’ procedure from the listing performs the consecutive database processing op-
erations.

52

Figure 2.1. The description of an SQL problem

The database operations from Figure 2.1 that can be found in Listing 2.1 are:
• table inner join,

• selection of the country,

• tax calculation,

• the summation of the total value.
All input/output operations are programmed as an access to IO registers in our ex-
ample. A direct use of the IO registers is essential because our code will end up as
a hardware structure. The IO registers are represented as C-style pointers and they
mimic IO ports that allow the custom processor to read and write external data.

Listing 2.1. C code for the SQL example

t y p e d e f s t r u c t {
i n t i d ;
i n t c o u n t r y ;

} TEmployee ;

t y p e d e f s t r u c t {
i n t i d ;
f l o a t v a l u e ;

} TData ;

53

TEmployee * E_in ; / * IO p o r t f o r emploee , bonus , and t a x * /
TData * B_in , * T_out ;

main () { / * 1 * /
/ * V a r i a b l e d e c l a r a t i o n * /
TEmployee e ; / * To read employee r e c o r d * /
TData d ; / * To read bonus r e c o r d and s t o r e t a x v a l u e s * /
i n t t ax , sum =0;

whi le (1) { / * 2 * /
e=* E_in ; / * Read n e x t e l e m e n t s p o r t s E and B * /
d=* B_in ;
/ * 3 * / / * JOIN t a b l e s s o r t e d by i d . * /
whi le (e . i d != d . i d && d_ id != −1) { / * Find i d match * /

i f (e . i d < d . i d)
e=* E_in ; / * 4 * / / * Read n e x t employee * /

e l s e
d=* B_in ; / * 5 * / / * Read n e x t bonus * /

}
i f (d . i d == −1)

break ; / * L a s t e l e m e n t i s marked −1. S top loop * /

/ * e . i d == d . id , so check c o u n t r y * /
/ * SELECT c o u n t r y * /
i f (e . c o u n t r y != 10) { / * 6 * /

co n t i n u e / * Match f a i l . Go f o r n e x t e l e m e n t s * /
}
e l s e {
/ * CALCULATE t a x v a l u e * /

i f (d . v a l u e < 1250) { / * C a l c u l a t e t a x v a l u e * /
t a x = 0 ; / * 7 * /

e l s e
t a x = 0 . 2 * (d . v a l u e − 1 2 5 0) ; / * 8 * / / * 9 * /

}
d . v a l u e = t a x ; / * 10 * /
* T_out=d ; / * W r i t e t a x da ta t o o u t p u t p o r t * /
/ * SUM * /
sum+= t a x ; / * T o t a l t a x v a l u e * /

}
}

Among other ways a processor retrieves data for processing, the most standard
method is a random access that is used to read and write RAM. However, the most
efficient and frequently used scheme for FPGA co-processors is a sequential read-
/write method. Therefore, each IO port implements a queue in our program. Consec-
utive records of ‘employee’ and ‘bonus’ tables are obtained by reading input ports E,

54

and B. Port T is an output port for the ‘tax’ table and the processor writes a sequence
of results to port T. The necessary assumption for the join operation, which will be
implemented, is that records of the input tables are sorted by the ‘id’ field. Our algo-
rithm is a good candidate for a custom processor because it contains an outer ‘while’
loop. The loop operations are repeated many times, and that makes the loop body
a computational kernel.

2.1.3. The Finite-State Machine with Data

The custom processor design starts with a conversion of a candidate algorithm to
the Finite-State Machine with Data (FSMD). The FSMD is an extension of the FSM
concept, and it can be easily derived from a sequential program code. The FSM does
not allow for variables and arithmetic operations, so the FSMD adds these statements
to conform with sequential program representation. The FSMD can be represented in
a form of an Algorithmic State Machine (ASM). Figure 2.2 gives the ASM for our
algorithm. It consists of states (rectangles) and state transitions (arrows).

Figure 2.2. An algorithmic state diagram for an example application

55

The state symbols contain arithmetic operations that are scheduled for the state
execution. The processor performs all the operations that are assigned to the corre-
sponding state when it is reached. Although, the FSMD can be automatically taken
from a program’s sequential code, a designer should govern the conversion process.
The FSMD denotes parallelism if many code statements are assigned to a single state.
The designer can introduce concurrent execution of selected instructions if he wants
to exploit parallelism. The FSMD creation gives a designer an opportunity to deploy
his ideas about algorithm’s parallelism and hugely influence the processor perfor-
mance. Parallel execution leads to a performance gain, but it usually requires more
processor’s resources. Explicit parallelism control allows it to regulate resources and
performance trade-offs. In theory, any sequential code portion without data depen-
dency among statements can be executed in parallel but IO bottlenecks are often
a limitation in practice. The HLS languages usually allow a designer to control con-
current statement execution by an insertion into the code of the special programming
directives.

A classic custom processor does not execute a software code. Instead, the pro-
gram execution is controlled by the FSM that is obtained from the algorithm’s FSMD.
The FSM governs the data path that carries arithmetic and logic operations that are
encoded in the FSMD. The FSM uses control signals to activate selected functional
units and switching resources (e.g. multiplexers) in the data path, and it uses status
signals from the data path as arguments to its ‘next state’ function.

Figure 2.3. The architecture of an SQL processor

56

Figure 2.3 presents the custom processor architecture for our SQL example.
It contains the FSM and the data path. The data path consist of registers (‘e_id’,
‘e_country’, etc.), multiplexers, and functional units (‘+,-,<>=’; ‘*’; ‘!=’).

The structure like presented in Figure 2.3 is usually taken from the Register
Transfer Level (RTL) description of the hardware operations [75] in practice. A cus-
tom processor designer delivers the RTL definition that is formalized by Hardware-
Description Languages (HDL). However, the processor architecture was created man-
ually from the FSMD in our case. Today, the behavioral description is also possible
in HDL, but there is no designer’s control over the operation scheduling and resource
allocation in that case. We are not discussing behavioral synthesis here.

2.1.4. The controller and data path

The data path consists of registers, functional units, multiplexers, IO ports, and
wiring connections. The registers are used to store algorithm’s variables. The func-
tional units perform arithmetic and logic operations. The multiplexers connect the
registers’ outputs to the functional elements’ inputs and the functional elements’ out-
puts to the registers’ inputs. Also, multiplexers wires input/output ports with the reg-
isters and the functional units.

Data movement in the data path is governed by the FSM’s output lines. The
control is possible thanks to the control inputs of the data path. Let’s consider state
ten of our ASM. To add a content of ‘tax’ register to the content of ‘sum’ register and
store the result back in ‘sum’‘ register, the following must be set up by the controls:

• the ALU’s input multiplexer must be set to feed outputs of ‘tax’ and ‘sum’ reg-
isters to the ALU,

• the ALU must be put in an ‘add’ mode,

• the ALU’s output multiplexer must be set to direct an output of the ALU to an
input of ‘sum’ register,

• ‘load enable’ control of the ‘sum’ register must be active,

• the clock cycle must be executed.

Status signals are a feedback from the data path to the FSM. They allow it to
implement conditional program statements. For example, the comparator’s outputs
are FSM’s input signals that control next state logic of the Finite-State Machine in
the states three and six.

There are ten states in our ASM for the SQL algorithm. Each FSMD state corre-
sponds to a single execution step of the sequential custom processor. The processor
performs all operations denoted inside an ASM’s state rectangle simultaneously. The
capacity of the data path must allow for a concurrent execution of a few statements

57

in each state. For example, the country identifier is compared to ten and the bonus
identifier is compared to 1250 value in state six. Thus, two separate comparator units
in the data path are necessary. Besides, an extended comparator (with implemented
‘equal’ and ‘greater-than’ functions) and simple comparator (with ‘equal’ function
only) are necessary to perform operations in state three. The extended comparator
gives the result of ‘d_id’ and ‘e_id’ comparison in a form of two outputs: ‘greater-
than’ and ‘equal’. The simple comparator compares ‘d_id’ variable to -1 value.

The table of operations usage helps to determine functional units that should be
implemented in a data path [76]. The operation usage for our example is presented in
Table 2.1. The table summarizes the functions performed at each algorithm state. The
table exposes that as much as two operations are performed in a single algorithm’s
state. Thus, the minimum number of functional units for a data path is two also. Such
a simple assignment is possible when multi-functional units are possible. Similarly
to an ALU, multi-functional units can perform more than one type of operation. The
introduction of multi-functional units allows it to reduce custom processor resources.
It is a consequence of functions grouping into single units, and it improves resources
utilization of the processor during program execution because it eliminates idle states
of processing elements. That technique is called functional units sharing.

However, a functional unit cannot perform an arbitrary operation that is re-
quested by the algorithm. An adder cannot multiply, and multiplier cannot compare
values for example. This limitation leads to the increase of the number of necessary
functional units in the data path. Table 2.1 shows that state three requires at least two
separate comparators for example. Additionally, states eight, ten, and nine require a
subtraction, addition, and multiplication respectively. One could easily group a sub-
traction, addition, and comparison to be the single unit. However, the second compare
units would have to implement the multiplication to meet the requirements for two
functional units. The processing elements that integrate a multiplication and a com-
parison are impractical in digital design practice. FPGAs implement multipliers as a
separate dedicated DSP blocks for instance. Thus, an independent multiplier is more
practical here.

A variable lifetime table determines the number of required registers in the data
path. Table 2.2 gives the variable usage for the SQL example. We denote the variable
to be alive (active) in all states between its first assignment and last usage. The total
number of variables can be higher than the number of registers because sharing of
registers is possible. For example variables ‘tax’ and ‘d_value’ have non-overlapping
lifetimes, and they can share a register. The maximum number of simultaneously
active variables in the lifetime table determines a maximum number of necessary
registers. The sharing of registers is an important tool for custom processor optimiza-
tions. Properly planned assignments of variables to registers allow it to reduce the
number of necessary connections in a data path.

58

Table 2.1. The table of operation usage in the SQL example

Cycle #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
compare 2 2
subtract 1
addition 1
multiply 1
Total 2 2 1 1 1

Table 2.2. The table of variable lifetime for the SQL example

Cycle #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
e_id X X X
e_country X X X X
d_id X X X X X X X X X
d_value X X X X X X X
tax X X
sum X X X X X X X X X
Total 5 5 5 4 3 3 3 3 3

The throughput and latency are well-known parameters that characterize the per-
formance of processing systems. The latency provides a measure that tells how long
it takes, for a processor, to finish the processing of input data. The processor of our
interest (Fig. 2.3) has a variable processing time. It consumes from two to six clock
cycles to complete one processing round. The sequence of states two, three, six, eight,
nine and ten constitute the six clock cycle processing path. The pairs of states [three,
four] and [three, five] process an input record in two clock cycles only. Correspond-
ingly, the throughput is an amount of input data elements accepted by a processor
during a given period of processing. The latency and throughput do not correspond
as the processor may be able to take a new data unit before it finishes previously
started rounds. Our SQL processor receives a new record only when it completes
prior processing. Thus, the latency and throughput are equivalent here. The minimum
throughput is one data element per six clock cycles in our example.

59

References

Books by Gajski & Kleinsmith [76], Vahid & Givargis [76] and Giovanni de
Micheli [77] present the practical approach to custom processor design. Micheli’s
book covers techniques for synthesis and optimization of digital circuits thoroughly,
and other books offer a more descriptive approach. Gajski’s book [76] delivers vari-
ous optimization techniques additionally. One can find the overview of strategies for
the reduction of the number functional units, registers, and data path connections.

Gajski and Ramachandran [78] introduce the Finite-State Machine with Data
model, which forms the basis for hardware synthesis. One can also find an introduc-
tion to FSMD and Algorithmic State Machine (ASM) in Baranov’s work [79].

Vahid’s book [75] offers modern approach the role of Register Transfer Level
(RTL) description in contemporary digital circuits design.

Scheduling and resource allocation problems were stated first by Hafer and
Parker [80] but a good overview is also offered by [77]. Leive and Thomas [81]
sparked a research on a problem of modules selection for use in an automated digital
system design.

2.2. Algorithm scheduling

A sequential algorithm consists of instructions that are executed by a processor
in defined order. However, a superscalar processor can change the sequence of in-
structions to gain better performance. Superscalar processors introduce out-of-order
execution to improve the use of multiple execution units and avoid their idle states.
A processor amends the order of instructions dynamically during its run-time. Sim-
ilarly, the hardware designer may want to reschedule algorithm’s instructions to in-
crease the efficiency of the custom processor. The scheduling that is done prior to
custom processor design is static; in difference to scheduling that is performed by
a superscalar processor.

The order of instructions in the algorithm can be changed if a result of the pre-
vious instruction is not an argument for the later instruction. In other words, there is
no data dependency between swapped instructions. It is also worth noting that data-
independent instructions can also be executed in parallel.

One builds the Data Flow Graph (DFG) to discover parallelism that is hidden
in the sequential algorithm. The DFG is also called the Data Dependency Graphs
(DDG). The DDG is a direct graph whose vertexes represent algorithm statements
and edges show the data dependence of adjacent instructions. No instruction can start
until its every ancestor finishes its operation. It is important to say that the Data
Dependency Graph covers assignment expressions only. It does not represent the
algorithms’ control statements that are the branch and conditional constructs.

60

Figure 2.4. A sample code and its Data Dependency Graph

A simple sequence of assignments and their data dependency graph is presented
in Figure 2.4. For example, statements ‘c=a+b’ and ‘d=a*b’ are independent and can
be executed in parallel, but assignment ‘e=c-d’ has to wait until their completion.

Instruction scheduling assigns instructions to clock cycles in custom processor
design. The DDG allows it to schedule the instruction in the correct order. The ex-
ample plan of the instruction order for the algorithm is proposed in Figure 2.5a. For
the synchronous digital circuits, the scheduler assigns each instruction to the par-
ticular clock cycle. However, data dependency is not the only constraint that drives
the scheduling. It is also the number and type of available functional units that in-
fluence how instructions are ordered. An assignment of two additional instructions
for the same clock cycle requires that at least two ‘add’ units are present in the data
path. The second additional operation has to be postponed if only one ‘add’ unit is
available. Figure 2.5a shows an unconstrained schedule where the limit of functional
units does not exist. Unconstrained scheduling is often a case for FPGA technology
as a designer can freely customize a data path for an algorithm.

The scheme in Figure 2.5a assumes that instructions are completed in one clock
cycle. That is rarely the case, so the next scheduling example assumes that multipli-
cation takes two clock cycles. Figure 2.5b gives the corresponding solution.

The As-Soon-As-Possible (ASAP) schedule is presented in Figure 2.5b. In
ASAP, each instruction is scheduled to start immediately when all its predecessors
are ready. As-Late-As-Possible (ALAP) scheduling scheme is also possible. In that
scenario, a statement is delayed as long as the delay does not postpone its derivative
instructions. Figure 2.5c outlines the difference between ASAP and ALAP processes.
Both ASAP and ALAP are unconstrained scheduling methods. Total execution time
for ASAP and ALAP are the same, and it provides the minimum possible latency of
the algorithm. However, each instruction can be scheduled differently in ASAP and
ALAP. The comparison of ASAP and ALAP schedules give execution boundaries
for each instruction for the constrained scheduling. The constrained schedule gains
minimum algorithm’s latency if it meets these boundaries for each instruction. The
algorithm is executed in the fastest possible time in that case [77].

61

(a) (b) (c)

Figure 2.5. Examples of instruction scheduling: a) Unconstrained; b) ASAP; c) ALAP

References

The reader can find the definition of the DDG and the formal algorithms for
ASAP and ALAP methods in [77].

The very first works about scheduling regarded software. Fernandez and Lang
[82] considered the scheduling of a set of tasks with precedence constraints and
known execution times into a set of identical processors. Fisher [83] developed “trace
scheduling” as a proposal for the code scheduling problem.

For hardware, scheduling problem was formalized by Hafer and Parker [84]. Au-
thors designed the allocator that selects registers and data operators and interconnects
them with data paths to implement the specified behavior. An Integer Linear Pro-
gramming (ILP) model for the scheduling problem is presented by Hwang and Lee
[85]. In addition to time-constrained scheduling and resource-constrained scheduling,
a scheduling problem called feasible scheduling is constructed.

2.3. Loop pipelining

Loops mark the most computationally intensive parts of algorithms. Many loop
optimization techniques for parallel computing exist. However, loop parallelization
is possible if data dependency between subsequent loop iterations does not exist. One
can consider so-called loop dependency (or dependence in loops) property [86].

Available data throughput decides whenever loop parallelization improves sys-
tem performance. For example, the loop: for (i=0; i<N; i++) output[i]=i2; can be
executed simultaneously by N processing elements in a single processor step. All
square values can be available in one clock cycle, but it does not lead to a perfor-
mance gain if the system is capable of performing one output operation per clock
cycle only.

62

Likewise the parallelism, the pipelining is another method to run more than one
instruction simultaneously. Opposite to the parallelism, pipelining is not IO through-
put dependent. Pipelining is a form of parallelism that works despite a bottleneck of
IO channels. Pipelining allows it to reduce register-to-register data movement and the
processor’s clock frequency. These features are followed by the energy efficiency of
the custom processor.

The execution of independent sets of input data overlaps in algorithm pipelining.
Algorithm’s outer loop makes the particular space for pipelining. One can consider
loop pipelining as a simultaneous overlapping execution of the separate loop state-
ments for the consecutive loop iterations. In hardware, the loop pipelining induces
the introduction of the additional storage and functional units elements if compared
to sequential loop implementation. Most of the stream processing algorithms, which
receive input data in the form of a stream and generate the stream of output data, are
suitable for pipelining optimization.

We will consider the loop and its code schedule that is given in Figure 2.6a. The
designer divided the loop body into two separate pipeline stages. The loop processes
N sets of input pairs (ai, bi). It is convenient to denote the variables according the
iteration number in pipeline analysis (‘a’ became ‘ai’ for example) because iterations
are separated in time. This approach is universal for arrays and single variables that
are used in the code. The progress of work is as follows:

1. Stage one starts the calculation for the first pair (a1, b1),
2. stage one passes the pair (c1, d1) to stage two and starts to process the pair

(a2, b2) after three clock cycles,
3. stage two finishes with the final result e1 and stage one with the result of the pair

(c2, d2) after next three cycles,
4. stage one passes the pair (c2, d2) to stage two and starts to process the pair

(a3, b3),
5. etc.

A table in Figure 2.6b gives the detailed explanation of the pipeline work. The
table contains the iteration number processed by functional units in each clock cycle.

The design of the pipelined system requires that the designer creates a separate
processing unit for each processing stage. The output ports of the previous stage are
connected to the inputs of the next stage, and so the system works in a passage.
Consequently, a pipelined solution requires more resources than a sequential one.
However, the expense of additional resources benefits in the higher overall throughput
of the system. The throughput of the sequential system is one input record per six
clock cycles in our example. The pipelined, two-stage system processes one input
set in three clock cycles only. Though, the latency is six clock cycles for both the
solutions.

63

(a)

(b)

Figure 2.6. An example of a loop and its two-stage pipelining: a) the program code and the
DDG of a loop body; b) processing of input sets in each clock cycle

Figure 2.7 introduces the five-stage pipeline architecture for our example case.
Its throughput is one data set per one clock cycle. Thanks to the new scheduling
scenario, where addition and subtraction are performed in parallel, the latency is re-
duced to five clock periods. Additionally, the method of functional unit pipelining
is introduced in this architecture. The multiplier that previously required two clock
cycles to complete the operation is pipelined now. The multiplier has the throughput
of one operation per one clock cycle and the latency of two clock cycles. Opposite to
algorithm pipelining, functional unit pipelining requires the new hardware library of
functional units. Combinatorial processing elements, sufficient for sequential custom
processors and algorithm pipelining, must be redesigned now. One must put registers
across its internal data paths and make them work in a pipeline. Boundaries of algo-
rithm pipeline stages are cut across processing elements in functional unit pipelining.

64

Figure 2.7. An example of an algorithm and its five-stage loop pipelining

Loops with dependencies

In special cases, loop pipelining is also possible if dependencies exist in the loop
i.e. circular paths are present in a DFG of the loop body. Let’s consider the code from
Figure 2.8a.

Variable ‘b’ gets the result of the preceding loop iteration in line six. The variable
‘sum’ also takes its previous result. The above settlement causes a circular depen-
dency in the data flow graph. Obviously, the arguments must be already calculated
when they are assigned during the following loop cycle. Pipeline processing intro-
duces delay D between subsequent iteration.

When stage number Sa executes iteration number Ia, stage number Sb = Sa +
D − 1 executes iteration Ib = Ia −D + 1. In can be seen in the table in Figure 2.8b
that when stage one processes iteration five (Sa = 1, Ia = 5), stage five processes
iteration one (Sb = Sa +D − 1 = 5, Ib = Ia −D + 1 = 1, D = 5). The iteration
delay is defined as D = Diter = Ia − Ib + 1. The pipeline delay is defined as D =
Dpipe = Sb−Sa+1. One can derive the iteration delay from an assignment statement
‘b=B[i−delay]’ in the example code, where ‘delay’ is equivalent to the iteration
delay Diter. The iteration and pipeline delays have very practical implications for
pipelining feasibility. Loop pipelining cannot be introduced if the pipeline delay is
higher than the iteration delay.

Let’s consider line four of the loop body in the example. It is trivial but the usual
case of the circular dependency. The statement ‘sum=sum+c’ can be elaborated as
‘sum[i]=sum[i−1]+c’. Thus, the iteration delay is one. Further, Sa and Sb are equal,
so pipeline delay is also one. The pipeline delay does not exceed the iteration delay,
so loop pipelining is possible.

65

(a)

(b)

Figure 2.8. An example of the pipelining of a loop with data dependency: a) the program
code and DDG of a loop body; b) processing of the input sets in each clock cycle

References

Pietroń, Russek, and Wiatr [87] discuss the loop pipelining. The paper considers
loop profiling and data dependency to implement algorithms efficiently in FPGA cir-
cuits. Loop pipelining for hardware synthesis is discussed in Fingeroff’s book [88].
Among other issues, the author also presents the problem of data feedback (cycle
dependency) during loop pipelining. The reader can find the descriptions of the algo-
rithm pipelining and the functional unit pipelining in the book of Gajski and Klein-
smith [76]. Selected algorithms for scheduling pipelined functional elements are pre-
sented in Micheli’s book [77].

The problem of scheduling a loop in a pipelined fashion such that the iteration
time (turnaround time) is minimized is considered in the paper of Lee et al. [89].
Jeon and Choi [90] present a hardware-software partitioning algorithm that exploits
a loop pipelining technique. The proposed loop pipelining technique is an adaptation
of a compiler optimization technique for instruction level parallelism. The authors

66

considered the resource-constrained scheduling of loops with inter-iteration depen-
dencies. Chao et al. [91] present rotation scheduling for scheduling cyclic DFGs us-
ing loop pipelining. A loop is modelled as a data flow graph, where edges are labelled
with the number of iterations between dependencies.

The paper of Gielata, Russek, and Wiatr [35] gives the practical example of the
technique of the algorithm pipelining. The authors pipelined Rijndael’s cryptographic
algorithm to achieve the spectacular throughput. The architecture processes data in
independent blocks of 128 bytes. The latency is eleven clock cycles.

An example of the pipelined functional element, one can find in the paper of
Wielgosz et al. [92]. The authors present the implementation of the double precision
exponential function that is pipelined to enhance the throughput.

2.4. Control statements pipelining

We considered program codes that did not contain any jumps or their targets in
Section 2.2 and 2.3. The codes, so far, were a straight piece of a processor’s pro-
gram that contained assignment statements only. Besides simple assignments, the
conditional and loop statements are possible also. A compiler generates assembly
jumps and conditional branch instructions from the constructs ‘if’, ‘case/switch’,
‘while’, ‘do-until’, and ‘for’, which are available in high-level programming lan-
guages. A fully functional program can use the simple assignments and branches
only. Consequently, it is enough for a custom processor to implement those types of
instructions.

One can organize a program code into blocks, where each block starts with
a jump target and ends with a jump instruction. It is possible to construct a Control
Flow Graph (CFG) for such an organized program code. The graph vertexes represent
the code blocks in the CFG, and the graph edges denote the possible program flow.
When the CFG and the DFGs of its blocks are combined, the Control and Data Flow
Graph (CDFG) can be created (see Fig. 2.9b).

Now, we will consider the feasibility of pipelining of the loop body that contains
the control statements. As we already stated, algorithms pipelining is crucial in de-
signing of custom processors for data-intensive problems because it is immune to IO
bottleneck.

2.4.1. Conditional statement pipelining

Let’s discuss pipelining of a conditional statement first. Figure 2.9a gives the
example of a code of the outer loop where a loop body contains the ‘if-else’ construct.
The loop body can be expressed as the CDFG that is presented in Figure 2.9b.

67

(a) (b)

(c) (d)

Figure 2.9. The scheduling of control statements: a) the loop with a control statement;
b) the Data Flow Graph of a loop; c) a variable loop latency; d) a constant loop latency

There are two independent program execution paths that start with ‘? a>b’ com-
pare instruction in listing in Figure 2.9a. Figure 2.9c presents the schedule of the
instructions of the CDFG. Apparently, the introduction of the conditional jump into
a program can result in the variable execution time of the single loop iteration. The
execution of the whole loop body takes either four or five clock cycles. The variable
execution length of the program is an obstacle that inhibits pipelining. The ‘Store c’
node has to consume exactly one data element at each clock cycle. In other words, the
‘Store c’ instruction must be assigned to a particular pipeline stage. For this reason,
an ‘if- then-else’ or ‘case/switch’ constructs can be pipelined when a pipeline length
of each conditional branch is the same. The length of both branches of the condition

68

‘? a>b’ have to fit to fix the pipe’s position for ‘Store c’ instruction in the example.
The equalization of a program’s execution paths is possible by the addition of ‘do-
nothing’ instructions. An empty instruction was added after ‘c=a−b’ instruction in
the scheduling that is presented in Figure 2.9d.

2.4.2. Loop statement pipelining

When the outer loop contains the inner loop statements, it is possible, in selected
cases, to pipeline its body. The loops that are a part of an outer loop body are referred
to as inner loops. The serialization of the inner loop is possible thanks to loop un-
rolling. In loop unrolling, the loop statement is removed, and each loop iteration is
explicitly expressed in the program code. Consequently, the number of the loop iter-
ation must be static to enable unrolling. Figure 2.10 gives the simple example of the
unrolling. The example program invokes two ‘for’ loops (Fig. 2.10a). Interestingly,
the first ‘for’ statement features no loop dependency but the second ‘for’ statement
contains loop dependence. When unrolled (Fig. 2.10b), iterations of the first loop
could be executed in parallel, but iterations of a second loop cannot. The DFG of the
code allows to explore parallelism (Fig. 2.10c). Despite that, both the first and second
loop can be pipelined. A decision, whenever to execute the unrolled instructions in
parallel or pipeline, takes place during the instruction scheduling process. The pos-
sible schedule for the example is given in Figure 2.10d. We can notice that despite
there is no data dependency between these operations, assignments ‘c1=a+2’ and
‘c2=a+3’ run one after another in our example.

The unrolling of static loops is possible if the iteration count is modest. The
long loop may consume the prohibitive amount of hardware resources when unrolled.
A partial loop unrolling is possible in some situations. For example, a loop

f o r (i =0 ; i <N; i ++) {
/ * loop body * /

}

is equivalent to the two nested loops

f o r (i =0 ; i <N; i += s t e p)
f o r (j =0 ; j < s t e p ; s t e p ++) {

/ * loop body * /
} .

Now, the inner loop in the second expression can be unrolled and then parallelized.
The outer loop is executed sequentially while the inner loop is executed in parallel,
so the scenario decreases the latency by a factor of ‘step’. Unfortunately, the custom
processor has to execute a loop in sequence if the loop has a dynamic iteration range.

69

(a) (b)

(c) (d)

Figure 2.10. An illustration of loop unrolling: a) the loop with loop statements; b) the code
after loop unrolling; c) DFG for the unrolled code; d) scheduling of the unrolled loop

2.4.3. Pipelining of the CFG

Although, pipelining conserves the system’s latency, it increases the throughput;
therefore, it is a very valuable for performance enhancement. The algorithms that
exhibit a clear outer loop are good candidates for pipeline execution. Unfortunately,
the control statements that are included in the majority of algorithms do not allow
a designer to introduce pipelining freely. The algorithms with control statements can
be still pipelined; however, with an additional constraint that control statements are
entirely incorporated into the single pipeline stage. Thus, every pipeline stage per-
forms its code sequentially and passes results to the next stage. In other words, CFG
can be cut across the edge that completely separates vertexes of a newly created CFG.
Figure 2.11 shows how to divide an example CFG. When the edge is removed (the
dashed line), no path can exist between nodes of the upper and the lower graph.

70

Figure 2.11. An example of the Control Flow Graph

It is important to balance throughputs of the pipeline blocks. Otherwise, we can
expect underutilization of faster blocks. As we know, a designer can adjust the proces-
sor’s performance by controlling the number of its processing units, so the through-
put of pipeline stages can be equalized when a processor’s architecture is planned.
However, problems with inter-stage communication emerge if blocks contain control
statements. Due to the variable execution path in code branches every stage in such
a pipeline has the fluctuating throughput and latency. The communication channel
between blocks requires handshake signalling in that case. It can also be helpful to
include FIFOs between the pipeline stages to make the communication smooth. Fig-
ure 2.12 presents the two-stage pipeline realization of the SQL processor that was
introduced in Section 2.1.

References

Kavi, Buckles, and Bhat [93] presented the formal definition of the DFG. Jong
[94] defined a new data flow graph concept. It was established to be used for ar-
chitectural synthesis, as well as the verification of a system. Amellal and Kaminska
[95] outlined a new representation of the behavioral specification of algorithms. Also,
Amellal and Kaminska [96] presented a CDFG model for system representation that
includes a representation of conditional branches. Wu et al. [97] present a hierarchi-
cal CDFG model. The hierarchical feature can be straightly obtained by extending
the definition of nodes. It is demonstrated how to build basic control constructs of
branches and loops. The hierarchical CDFG model can capture the design informa-
tion from the source file specified by VHDL or C language. Loop unrolling for FPGA
implementation is discussed by Pietroń et al. [87] also.

71

Figure 2.12. A two-stage SQL processor

72

2.5. Memory handling

We have already stated in Section 1.2 that the performance of the computer mem-
ory is one of the most important factors that impact the overall system performance.
Computational power is delivered to the user by the CPU, but it needs user data to
make calculations useful. The system of computer memory that stores data is hi-
erarchical. The hierarchy typically consists of the register, cache, RAM, and mass
storage levels. The significant role of the memory also applies to other computational
elements, including the FPGA accelerators. Each processing element has to retrieve
data for its calculations, and it should be able to do it fast. Good speed is the first
reason to optimize memory access. Another aim is energy efficiency because data
movement is the most energy-consuming action in the computation. Therefore, the
memory architecture and memory access strategies for FPGA technology are the sole
topic of this section.

An FPGA accelerator relies on a memory system that is, similarly to a CPU,
organized in a hierarchy, but the FPGA memory architecture is different then its
CPU equivalent. At the time of writing this text, the state-of-the-art Intel Xeon E7-
8890v2 processor that is fabricated in 22-nm technology, offers 296 Mb (37 MB)
of cache memory. At the same moment, Xilinx Virtex-7 XC7V2000T that is a high-
performance 28-nm FPGA device contains in total 47.5 Mb of the internal memory
only. The FPGA’s internal memory can be considered as the CPU cache counter-
part. It is organized in blocks that are hard-wired, 36 kb, dual-port, synchronous
SRAM elements. These FPGA memory blocks are called Block RAMs (BRAMs).
XC7V2000T delivers 2,584 of BRAMs for example. Each BRAM act separately or
it is combined with other BRAMs into larger memory blocks by the FPGA imple-
mentation software. It is always difficult to compare processors and FPGA devices
because both exist in a variety of different types, but we can conclude that FPGAs
offer an order of magnitude smaller internal memory than processors.

Shortage of SRAM is among major FPGA’s features that cause difficulties in
making FPGA accelerators more competitive to CPU processors. Tasks that exhibit
repeated access to the same portion of data reveal the lack of big local SRAM mem-
ory in FPGAs. Computing problems that easily fit the CPU cache exceed the available
FPGA BRAM size. On the other hand, the BRAM memory has an advantage over the
CPU cache. Each BRAM has a separate read/write interface, and that allows a hard-
ware designer to implement fine-grain memory architecture. Independent access is
possible to each BRAM, and the designer can take advantage of the massive total
memory bandwidth. Thanks to that, parallel execution units do not suffer data starva-
tion once data is located in that distributed RAM. However, the above characteristic
is usually in favour of computationally-intensive problems.

73

2.5.1. Local arrays of data

Some program variables have a short lifetime, and they are necessary only to
compute a single or few algorithm’s statements. In other words, they are local to a se-
lected group of code statements. Consequently, some variables are used exclusively
in distinctive CDFG blocks. It should be noted here, that the term variable that we use
covers program arrays as well. It is convenient to keep array variables in a local mem-
ory block. When a CDFG block or its part become a pipeline stage, the corresponding
pipeline processor uses local memory to keep local data. Thus, we have a pipeline of
processors that execute separate CDFG blocks in our model. The pipeline blocks fea-
ture the local memories if necessary, and that memories are implemented as FPGA
BRAMs.

If a designer or a hardware compiler discovers the locality of the algorithm’s
variables, he or she can benefit from the FPGA architecture hugely. However, like
the CPU cache, BRAMs must be preloaded with data from an external memory first,
so data reuse is also necessary to benefit at all. Figure 2.13 shows the example of
the pipeline stage processor architecture. The BRAM enhances the processor to store
local data. In the presented solution, the memory variables must be loaded to the
register first to perform calculations.

Figure 2.13. An FPGA processor with local BRAM memory

74

Two independent memory operations are possible thanks to the two separate
read/write ports of BRAM. It is useful in many applications and provides an efficient
mechanism that allows it to preload the local memory with user’s data for exam-
ple. For this purpose, the separate FIFO stream (‘memory fifo’) is implemented in
Figure 2.13. The processor can quickly load successive data thanks to the automatic
address increment that is enabled by the additional counter. Preloaded data are used
during the principal algorithm execution. The local memory is useful not only to
store constant arrays that are required by an algorithm but also to provide explicit
caching of data that otherwise would have to be repeatedly sent through the input in-
terface. The explicit caching scenario assumes memory data replacement more than
once during a program execution.

Please, also refer to the architecture of the binary tree processor in Section 3.6.1
for an example application of local memories.

2.5.2. Explicit data caching

The mechanism of data caching is a standard enhancement of CPUs for faster
execution of programs. Data is cached automatically by GPPs, as caching is not pro-
grammed by a software engineer. Cache automation is very convenient, and it short-
ens the programming process. Caching relies on two assumptions. The first is that the
data already used will be used again soon. The second is that if an array’s element ‘i’
is used, then an element ‘i + 1’ will be used as well. The first assumption is called
a data reuse policy. The benefits of reuse are evident because it keeps data locally in
a low-latency memory to make access faster. The consequence of the second rule is
that the cache acts as a data buffer for an external memory. Buffering is beneficial
because the external DRAM features a decent throughput but introduces high access
latency. That is the reason memory controllers access data in chunks (lines) to carry
them between a cache and DRAM. Reading and writing data in portions of adja-
cent memory addresses is favourable because latency applies to every new memory
transaction.

Preferably, custom processors should also exploit cache policies, and they should
implement both data reuse and buffering. The only problem is that caching must
be planned by hardware designer manually in that case. Unlike CPU programmers,
designers of custom processors organize the strategy of data caching explicitly. Al-
though the explicit planning of buffering and reuse is tedious, it is usually more ef-
fective than implicit cache work.

Note, that implicit caching is also available in FPGAs, as a cache implementa-
tion requires logic and memory resources that are available in FPGAs. The implicit
cache is limited in its size, and more complicated than the explicit cache, but it is
feasible in FPGAs. An FPGA implementation of the implicit cache consumes ad-

75

ditional hardware resources and works slower than the dedicated CPU cache. It is
necessary to use slow reconfigurable interconnects when BRAMs are combined into
large memory components like a cache. The final performance is affected because,
large memories require many data and address lines and use a lot of routing resources
in FPGAs. Additionally, the logic of an implicit cache is complicated.

More straightforward buffering solutions than implicit caching are favourable
for FPGA custom processors. The storing of auxiliary data in an FIFO-style cache is
a very efficient technique in searching and browsing applications for example. The
FIFO-style cache uses queues to keep data locally. Every method that involves FIFOs
is very convenient for FPGA designs because FIFOs are FPGA components that are
hard-wired. An FIFO mode is one of the BRAM’s operation mode, and a BRAM is
configured to be an FIFO at a designer’s request.

The most advantageous feature of an FIFO-style cache is that an FIFO does
not require lines for an address bus. The lack of memory addressing simplifies both
wirings of a hardware and operation of a system. On the other hand, the use of queues
requires the careful organization of data because FIFOs can be accessed on a one-by-
one manner only. Figure 2.14 presents how the concept of the FIFO-style cache works
for the custom architecture. The processor can access only the first element from the
FIFO queue and once the operation is done the item is not available anymore.

Figure 2.14. An FPGA processor with local FIFO storages

76

The next advantage of FPGA FIFOs is that they are synchronous digital elements
and offer registered outputs. Consequently, the variables do not need to be transferred
to the registers before functional units can process them. Figure 2.14 provides the
design that offers processing of data that is latched by FIFO’s output. Data elements
are sequentially sent from the FIFO to an ALU directly, and the ALU stores its result
in a selected flip-flop register. However, there are cases that data reuse is requested.
A data loop-back path that links an FIFO’s output with its input is necessary then. The
data loop-back is presented in the Figure 2.14. Data that has been already processed
is put back to the FIFO queue and waits for the next data processing cycle.

Thanks to the existence of the two ALUs and two FIFOs, powerful parallel pro-
cessing is possible in the design that is presented in Figure 2.14. Each ALU can
process data that is directly read from the FIFO. The two-fold architecture that is
presented in the figure is just a presentation of the forceful concept that can be scaled
up to process in parallel many local data streams that are stored in the independent
FIFO caches.

In practice, it is not a rare scenario that a processor has to combine an input
data stream with multiple independent local memory streams, and every such a cou-
ple produces a separate result. This scheme fits matrix-vector product, for example,
where the vector is an input stream, and matrix rows are kept locally. The overall
algorithm that explains that plan is given in Listing 2.2.

Listing 2.2. An example of the algorithm that process an input stream and many local
streams simultaneously

Algor i t hm () {
i n p u t A;
a r r a y b1 , b2 , b3 ;
o u t p u t r e s1 , r e s2 , r e s 3 ;

f o r (i =1 ; i <N; i ++){
a = A[i] ;
r e s 1 += f u n c t i o n 1 (a , b1 [i] , r e s 1) ;
r e s 2 += f u n c t i o n 2 (a , b2 [i] , r e s 2) ;
r e s 3 += f u n c t i o n 3 (a , b3 [i] , r e s 3) ;

}
}

Consecutive elements of input ‘A’ are used for independent calculations: ‘func-
tion1’, ‘function2’, Each calculation is separated in a sense that it uses a distinct
function and a different ‘bn’ array. The arrays of ‘bn’ elements are stored in the local
FIFO caches. Importantly, sequential access to elements of ‘bn’ is sufficient to per-
form computations. Functions ‘function1’, ‘function2’, ... can perform the same or
different calculations.

77

The architecture in Figure 2.14 also presents another interesting feature that is
common to data processing in FPGA devices. It enables immediate data processing
from an input port. Previously, the presented architectures required that data be stored
in a register before any further processing is possible. Here, we have reduced a pro-
cessor’s latency thanks to the execution of input element that is taken directly from
the input port.

2.5.3. Sequential-Access Buffering

We have introduced an FIFO as a cache supplement that provides a mechanism
for data reuse and buffering of an external memory. Another buffering technique will
be presented now, and it exploits, just like a CPU cache, a data locality property.
The advantage of that method is that it allows a custom processor to access the data
arrays efficiently even if they are located in the external DRAM. It possible to work
with data sets that do not fit the FPGA’s BRAMs size. Here, in this paper we call the
method Sequential-Access Buffering.

Similarly to a processor, an FPGA device needs a memory controller to connect
to the external DRAM memory. The FPGA’s memory controller can be hard-wired
inside a reconfigurable structure, or it can be implemented as the IPCore that uses
reconfigurable resources. The hard-wired version consumes less transistors, but it
wastes silicon area if it is not used. Despite its architecture, just like a CPU’s memory
controller, FPGA’s controller suffers the problem of the high data access latency. It
can read efficiently data in large chunks, but accessing single memory elements is
time-consuming.

The Sequential-Access Buffers (SABs) are the solution that mitigate the problem
of the DRAM’s latency. They help to access many individual, unbroken regions of
external memory faster. Each region has to be accessed sequentially, but accesses to
different regions can interleave in random order. In the other words, a processor can
skip randomly between regions but the region elements must be scanned one element
after another.

A designer declares areas of external memory that an FPGA has to access in
the SAB method. The complete system of the Sequential-Access Buffers is presented
in Figure 2.15. The FIFO buffers go between a custom processor and the SAB con-
troller. The processor accesses the next region element by an appropriate FIFO op-
eration. When, during a read operation, the FIFO becomes almost empty, the SAB
controller reads a new chunk of data from external memory. As we know, accessing
external memory data in bulk spares unnecessary latency. Data is ready in the corre-
sponding FIFO in advance, and the processor meets no wait-states. A similar scenario
is valid for write operations, but the controller initiates write of a chunk of data when
the FIFO is almost full.

78

Figure 2.15. A system of the four Sequential-Access Buffers

References

Local BRAM memories are used in the architecture presented by Russek and
Wiatr [59]. The work describes the solution for regular expressions matching sys-
tems. The solution presents the new approach to the problem. The authors introduce
the original multi-stage algorithm for incremental data screening. The algorithm is
intended for the reconfigurable SoC devices as it gains from the execution of its ini-
tial stage in the custom coprocessor. The paper gives the architecture of the pipelined
custom processor that uses local memory blocks of data to store dictionary patterns.

Karwatowski et al. [98] presented the architecture for document similarity cal-
culations. Searching a large database requires repeated execution of the same oper-
ations for the various data, so the number of operations can be easily parallelized
to reduce the time required for the processing. The text vectors from the database
are sent through the dedicated communication pipe to FPGA and compared online
to many reference vectors simultaneously. The design uses FIFO cache to calculate
cosine similarity for eight documents in parallel.

2.6. The FPGA-oriented algorithms

The essential goal of the discussion that is provided in this paper is to highlight
potential benefits of custom processor technology for data-intensive computing. The
particular focus is put on reconfigurable devices because they play a practical role
in general purpose computing as a part of reconfigurable accelerator cards that are
available on the market today.

We mentioned in Section 2.1.1 that the careful algorithm selection is the most
important part of the custom processor design. Algorithms that work successfully

79

on general purpose CPUs rarely suit implementation as custom hardware. The usual
approach to finding a suitable architecture for the custom processor is to start with
the original definition of the problem and then try to devise a solution that exploits
strengths of custom processing. The designer’s knowledge of the hardware’s charac-
teristics allows one to recognize correctly the distinctive attributes of the algorithm
that suits hardware implementation.

We will enumerate eight unique algorithm’s features that warrant to benefit from
the migration of the processing from CPU to FPGA.

1. The algorithm constitutes the outer loop. Thanks to the outer loop, the processor
executes the same program code many times. This perpetual operation leads to
better hardware utilization and enables the pipelining method.

2. The algorithm exposes concurrency, but the introduction of the parallelism does
not lead to data starvation.

3. The maximum number of alive variables is limited. A large number of variables
disturb pipelining because all active arguments have to be shifted along from
one stage to another. Moving variables along a pipe consumes a lot of register
resources.

4. The control-intensive algorithms (many ifs) are troublesome. The alternative ex-
ecution branches that exist in condition statements introduce underutilization of
resources because only one branch is chosen at a time. Also, ‘if’ and ‘switch’
constructs limit pipelining.

5. The dynamic-range inner loops do not exist. Static range loops are easier to
enhance because unrolling is possible. Dynamic-range loops must be executed
sequentially.

6. The algorithms access data in sequence. It is possible to organize the order of
input data to allow the processor to access the memory consecutively. Access-
ing memory data in chunks hugely improves the average data throughput. Algo-
rithms that process data that is organized in streams offer the best performance.

7. Fix-point arithmetic is preferred. Functional elements consume fewer resources
for fix-point and integer arguments. Consequently, more processing elements fit
the FPGA device.

8. The algorithms perform bit-wise and logic operations. Basically, CPUs imple-
ment arithmetic and logic operations only. Peculiar bit manipulations are faster
in custom hardware.

80

Over years, research in algorithms and computing methods has been focused
on general-purpose processors mainly. Methods for custom hardware have been pro-
posed only recently. These methods usually derive from the same stem as their CPU
counterparts, but they have developed independently. The reason is that a software de-
signer focuses on finding the best algorithm for fixed processor architecture whereas
a hardware engineer looks for the hardware architecture, which is the best problem
solution. However, designing of the custom processors must involve the algorithm
considerations as well.

Fortunately, software concepts that directly fit hardware design exist. Algo-
rithms, data structures, and software methods, together with their variations that are
suitable for hardware implementation, in an area of browsing and searching will be
presented, in the next chapter.

References

Mueller et al. [99] study how data processing can be accelerated using an FPGA.
The results indicate that efficient usage of FPGAs involves the right computation
model, the careful implementation that balances all the design constraints, and the
proper integration strategy to link the FPGA to the rest of the system.

81

3. Data-intensive algorithms for FPGAs

3.1. Sorting and searching

Sorting and searching are principal operations for database systems. A variety
of data organization schemes for the database systems exist. There are relational,
NoSQL, centralized, distributed, to mention only a few types that are in common use.
Nonetheless, despite the high-level database organization, sorting and searching re-
main the kernel operations for every database. We have already stated in Section 1.6
that the speed of data-intensive activities is not CPU-bound, but an IO-bound pa-
rameter. Therefore, the expected speedup of FPGA-based acceleration of sorting and
searching is limited. However, FPGA devices are still beneficial for the improvement
of energy efficiency. It takes effect because data movement optimization, resource
usage optimization, and system clock reduction is possible when custom processors
are employed.

A CPU reads data from its operation memory. If the data is not available in the
main memory, it must be transferred to RAM from the secondary storage which is
usually a disk drive. The IO subsystem performs the transfer from the mass storage
device to the main memory. The Direct Memory Access (DMA) mechanism is em-
ployed to transfer data to the memory for the best performance. The DMA engine
usually transfers data in blocks; therefore, it can copy information much more ef-
ficiently than a CPU. When data is already available in RAM, a CPU moves data,
forth and back, to its registers to complete calculations. Additionally, data manipu-
lation that is performed by a CPU always involves data caching, whenever it helps
to improve the processing speed or not. When processing is finished, the results are
transferred back to the local or remote disk storage by the DMA. We can recognize
a lot of data movement that takes part in CPU-based computations in the above de-
scription. Therefore, we might prefer to use the FPGA accelerator that is capable of
processing IO data directly and consequently more energy efficient.

We have already stated in Section 1.9 that two major modes of data processing
are available for IO FPGA accelerator. The first, more common way, is to use an

82

accelerator to processes data which is already available in the main memory. For
processing, data is transferred from the main memory to the accelerator in this mode.
The second mode of data processing uses an accelerator to conduct data processing
on-the-fly, during its transfer from an IO device (e.g. Ethernet card or discs storage),
via FPGA to the main memory. The first mode is referred as a central mode, and the
second mode is an IO mode.

The work of an accelerator in the central mode resembles the CPU’s operations,
but it usually minimizes data movement. First, data is transferred from the host’s
memory to the accelerator’s memory. Then, it is read, processed, and sent back to
the accelerator’s memory. Finally, the results are transferred to the host’s memory.
It is also possible that accelerator’s local memory is bypassed. In that scenario, the
accelerator processed the data directly while it is transmitted from the host’s memory,
and the results are immediately sent back to the host. The second method requires no
local storage, but it is not suitable for every algorithm. The elimination of unnecessary
data movement reduces energy consumption.

CPU-style implicit caching is not necessary if data reuse is a rare, as in the case
of simple searching, for example. FPGA can dismiss the cache and start to exploit the
phenomenon of data locality by the introduction of the simple data buffering method
(see Section 2.5). Further, the accelerator can process data as a stream if an algorithm
is carefully devised and data is well-organized. The stream processing minimizes
unnecessary copying of data; therefore, custom architectures that attain stream pro-
cessing reduce energy consumption. It is worth noting that an accelerator’s IO mode
of operation while data is read from a mass storage device, for example, reduces data
copying even more. Unfortunately, that kind of processing is troublesome due to the
lack of support of contemporary OS.

Under those circumstances, porting of some sorting and searching activities to
the customized hardware is worth a try. Interestingly, several well-known software
algorithms have their hardware counterparts. Such algorithms are ready to act as
custom processors immediately without an additional reworking. Among such al-
gorithms, the sorting nets and merge tree are known for sorting, for example. Ac-
cordingly, the Bloom filter, binary tree, and prefix tree are ready to perform searching
as custom processors. Those architectures will be discussed in the following sections
of this paper.

3.2. The sorting nets

The sorting networks, also called sorting nets, are a concept that was developed
to provide deterministic sorting algorithms. A characteristic of the sorting nets al-
gorithms is that they define a fixed sequence of ordering operations which can be

83

presented as a structure of wires and ordering elements. The sorting networks orig-
inate from the software theory, but they provide a perfect definition for sorting ar-
chitectures in hardware. They present a perfect example of software algorithms that
directly define hardware implementations and explicitly characterize the design of
custom processors. The sorting nets inherently provide information of parallelism
and pipelining. In the previous chapter of this work, we presented how to derive cus-
tom processors from the algorithms’ sequential codes but those procedures are not
necessary for sorting nets. It is exceptional that custom architecture can be taken di-
rectly from the algorithm’s native definition. The approaches that skip intermediate
problem representation and lead naturally to hardware solution provide better final
results.

The sorting network consists of many ordering elements that are connected by
wires. The ordering element performs the ordering operation. Figure 3.1a presents
the symbol for the ordering element. The input arguments that are given to the inputs
of the ordering element are compared and swapped if necessary. An ordering element
sends a smaller argument to its upper output and a bigger argument value to its lower
output. It is convenient to recognize that an ordering element is itself a two-input
sorting network.

The structure of the sorting network defines which operations can be performed
in parallel, and which has to be run in sequence. Obviously, all operations that are
defined by the network can be carried in a sequence. However, the main reason to
implement a sorting network algorithm is its inherent parallelism because faster than
sorting nets sequential sorting algorithms exist. That feature explains the appreciation
of sorting networks for sorting in GPGPUs. Unfortunately, a designer has to provide
all the sorting elements at once to complete the sorting in a minimum number of
steps; which is equivalent to the exploitation of the maximum possible parallelism.
It is unique in a computing system that all necessary input elements are available
at the same time for the big sorting net. Thus, the sorting net algorithm is typically
executed in a mixed, parallel-and-serial manner. The available architectures of an
FPGA accelerators offer limited IO throughput and inhibit the direct use of a fully
parallel sorting network. Therefore, in practice, the algorithm is more useful as a part
of SoC where an internal source of input data exists and input sequence length is
moderate.

Various schemes are known to construct sorting networks. Figure 3.1b presents
the method for iterative construction of the bitonic sorting net [100]. We present an
N-element bitonic sorter structure that consist of four N/2-sorters and one N-merger.
The name ‘bitonic’ comes from the definition of bitonic sequence that is not ascend-
ing first and then not descending. In the other words, the bitonic sequence is created
by a juxtaposition of increasing and decreasing sequences. In Figure 3.1b, we can
recognize the concatenation of the two sorted sequences at the merger inputs. It can

84

be seen as the rearranged bitonic sequence where the second sequence has to be re-
versed to get the true bitonic string. Figure 3.1c shows the structure of a merger that
regards the rearrangements of the input shuffled bitonic sequence. The merger opera-
tion has a property that when a bitonic sequence is sent to its inputs, each element in
the first half of the output sequence is not bigger than any element in the second half.
Thus, an additional pair of output sorters is necessary to compose the correct result
of the N-element sorter (see Figure 3.1b).

(a) (b)

(c)

Figure 3.1. The architecture of bitonic sorting nets: a) the ordering element; b) the overall
architecture; c) the merger construction

Russek and Wiatr [101] gave method and example results of the construction
of bitonic sorting networks in FPGAs. Their work regarded implementations of the
bitonic sorting nets in Xilinx’s Virtex XCV1000 device. The authors had developed
a software tool that generated a VHDL description of a sorting network for a given
parameter. The tool read a desired quantity and bit-width of inputs and outputted an
RTL description. The sorting network that was generated considered input arguments
to be integer numbers. The paper provided the necessary number of ordering elements
for a different size of the network (Tab. 3.1). The number grows exponentially with
the size of the network, so the networks that fit FPGA had a very limited span. The
paper presented implementation results to support that thesis. In conclusions, the
article suggested the use of an FPGA accelerator as a pre-processing step of sorting.

85

In that scheme, the sorted sequence was split into shorter subsequences first and,
then the hardware accelerator sorted the subsequences. Afterward, the merge sort
algorithm was applied on the CPU.

Table 3.1. The growth of resource requirements for the bitonic net

Number of inputs 4 8 16 32 64
Number of ordering elements 6 24 80 240 672

The work of Russek and Wiatr also delivered resource utilization of the pipelined
version of the nets. As expected, the introduction of pipeline registers did not influ-
ence utilization of resources. It happened because every FPGA’s logic element has
an assigned flip-flop that is wasted if it is not used. The article also offered an idea
of inputs serialization. Serialized FPGA inputs accepted one bit per clock cycle, and
arguments were shifted bit by bit. The serialized solution required significantly fewer
input wires, but it degraded the input throughput and consumed more flip-flops.

References

The reader can find comprehensive details about the theory and architectures
of sorting networks in [102]. Batcher describes networks that have a fast ordering
capability in [103]. Batcher’s sorting network could order 2p words in 1

2 ∗ p ∗ (p+1)
steps. Ajtai et al. [104] give a sorting network with c∗n∗ log(n) comparisons, where
n is a number of elements and c is some constant. The algorithm can be performed
in c ∗ log(n) parallel steps as well, where in a parallel step we compare n/2 disjoint
pairs. Thus, authors propose a sorting algorithm working in O(log(n)) parallel steps,
but the constant value that is hidden in O notation is huge.

Zhang and Zheng [105] shows the parallel sorting architecture, denoted as MM-
SORT (min-max sort). The proposed architecture took advantage of a sorting network
and the distributed processors coupled with the local memory. A small sorting net-
work can be used iteratively to sort a large number of elements. The major upside
of the idea is that it can be executed in a pipeline if only some conditions are ful-
filled. There is no need to wait for the results of the previous iteration to start the
next one. However, a distributed memory of a large size is necessary to this solution.
It holds because the complete input dataset must fit simultaneously into the sorting
processor’s memory. The authors didn’t deploy their proposal in practice, so no im-
plementation results are known.

Huang et al. [106] discuss hardware design approach to Batcher’s sorting net-
work. A list of elements is partitioned first into shorter lists. Batcher’s network is

86

used to sort those lists. The shorter lists are then merged into the final complete list
by the merge sort algorithm. The merge sort is performed sequentially on the ele-
ments that are stored in the local memory.

Greß and Zachmann [107] present a novel approach for parallel sorting on stream
architectures. It is based on adaptive bitonic sorting. The approach achieves the com-
plexity O(n log(n))/p) for sorting n values utilizing p stream processor units.

Mueller et al. [108] focus on the problem how an FPGA can be exploited when
they are used for sorting network implementation. The paper provides a set of guide-
lines how to make design choices. Two application scenarios that are provided are
based on sorting networks. The first is a median operator; the second is an HW/SW
Co-Design case. Authors’ experiments showed that FPGAs are a useful component
of modern data processing.

Peters et al. [109] present a high-performance, in-place implementation of
Batcher’s bitonic sorting networks for CUDA-enabled GPUs. The authors adapted
bitonic sort for arbitrary input length and assigned operations to threads in a way that
decreases low-performance global memory access.

3.3. The merge sort tree

A merge sort algorithm creates a single sorted list out of elements of two (or
more) sorted lists [102]. At each step, the algorithm compares the head elements of
the input lists and moves the smallest one to the output list. It is also possible to
sort an unordered set of elements, but the merge sort has to be applied several times
iteratively. In that case, the procedure starts with merge sort of one-element lists.
First, it joins elements into couples; next, couples are linked into fours, fours into
eights, and so on. Joining sequences of equal length minimizes the computational
complexity of the algorithm, but merging sequences of unequal length is also possible
and inevitable in practice if the size of the sorted set is not a power of two.

The merge sort is the plainest algorithm that is used for sorting. It is deterministic
and sorts N input elements in N ∗ log(N) steps. In practice, it allows the build sort
solutions of the highest performance. The merge sort requires more algorithm steps
than a quicksort or heapsort algorithms, for example, but it is popular because it
outperforms other algorithms in real-life applications. The speed of the merge sort
algorithm comes from its regularity and sequential data access.

The merge sort can be combined with the quicksort or heapsort, to enhance sort-
ing. In that method, a big set of elements is split into many smaller sets. The small sets
are sorted independently by the quicksort or heapsort, and then they are merged into
the sorted output. The drawback of a merge sort algorithm is its memory requirement
because it needs additional space to store all elements of the output sequence.

87

The simplicity makes the merge sort to be a perfect candidate for implementation
as the custom processor. Figure 3.2a shows the proposed architecture of the merge
sort hardware. The inputs and output are buffered in FIFOs in order to make data
access easy. The system is synchronous, but the clock is not present in the figure. The
system picks the smaller value and transfers it from the input FIFOs to the output
FIFO at each clock cycle. The read signal ‘rd’ activates a read operation of the se-
lected FIFO. The output FIFO acknowledges it can accept next element by asserting
its ready signal ‘rdy’.

(a) (b)

Figure 3.2. The construction of a merge sort processor: a) the basic merge element;
b) an architecture of the merge tree

Using the structure that is given in Figure 3.2a as a building block, one can con-
struct the bigger tree. The multi-input merge sort tree that is presented in Figure 3.2b
merges many lists simultaneously. It is not necessary to add FIFO buffering to the in-
ternal tree nodes. The tree can work correctly without those FIFOs if the input ready
‘rdy’ signal is short-cut with the output read ‘rd’ signal of each removed FIFO. The
removal of internal FIFOs leads to a combinatorial logic. The combinatorial version
of the merge tree contains FIFOs only on inputs and output. However, a lack of reg-
ister buffering may lead to a long combinatorial path and cause degradation of the
maximum clock frequency. Effectively, the two groups of combinatorial paths exist
in the combinatorial version of the tree. The first group consists of the paths that start
with the output ‘rdy’ signal and ends at the input ‘rd’ signals. The second group con-
sists of the paths that start with the input ‘data_in’ signals and stops at the output
‘data_out’ signal. If many levels of the tree exist, the combinatorial path latency is
significant; therefore, the tree should be pipelined i.e. registers should be put at each

88

tree node. On the other hand, if the sorted elements have a substantial bit-width, the
registers may employ additional resources. However, the problem is not crucial for
FPGAs because a quantity of logic and flip-flop resources is balanced. Logic gates
(LUTs) that are used to create multiplexers have associated registers that are available
to pipeline the tree.

The merge sort tree is a perfect example of an algorithm that gains when it is
combined with Sequantial-Access Buffering that is presented in Section 2.5.3. Each
input list are emptied in a sequential order, one element after another, but the merge
sort processor reads its input ports in a random sequence. It is beneficial to use the
Sequantial-Access Buffers if input lists are kept in separate but continuous regions
of the external memory. In this scenario, the SABs replaced the input FIFOs and
perfectly buffer random access to the external RAM.

3.3.1. The FPGA-accelerated sorting system

Russek and Wiatr [110] tested an idea of building a hybrid sorting system. Their
paper compares the efficiency of the merge sort custom processor with an efficiency
of the merge sort application that was run by a CPU. The authors proposed to break
an input data set into smaller groups of elements, and then to use a CPU to sort each
group separately. The idea was to make the size of the group to match the size of the
available CPU cache. The CPU’s work was followed up by the tasks of the merge
sort accelerator in FPGA. That scheme had a proper background in an observation
that the best results are achieved by hybrid solutions that combine different types of
sorting algorithms [47]. The approach also had a support in the paper given by Gray
and Nyberg [46], which compared the efficiency of different sorting architectures and
scenarios.

Additionally, Russek and Wiatr presented the implementation and its results for
the merge sort tree processor in the XC4VLX200 device that is a high-performance
Xilinx’s FPGA with 200 K logic cells and enlarged memory resources. The achieve-
ment was significant because it applied to the HPC system. The heart of the solution
was the RASC accelerator. The RASC was the integral component of the SGI’s Altix
4700 HPC system. To provide a good throughput, proprietary NUMALink intercon-
nect linked the accelerator with the system. Similarly to the standard accelerator, the
RASC offered external memory to provide data exchange between the host and the
FPGA device. In the merge sort application, sorted lists were loaded into one memory
region and results were read from another memory area.

The paper highlighted the problem of the consumption of FPGA register re-
sources also. The authors proposed to use BRAMs, instead of flip-flops when sorted
elements have a meaningful bit-width. Consequently, two different sorting architec-
tures were compared. The paper gave the performance and resources utilization of the

89

two solutions. Both architectures worked similarly in the terms of performance, but
their clock speed was not limited by a delay of the critical path but by RASC max-
imum available clock frequency. Nonetheless, the BRAM version was able to sort
64 lists of 64-bit elements, and the flip-flop version worked with 32 lists of 32-bit
elements only.

The accelerated merge sort algorithm that was presented in the paper outper-
formed the CPU-only solution by a factor of two only. However, HLL, specifically
Mitrion-C [111], was used to create the hardware accelerator. In the authors’ opin-
ion, the use of HLL could cause a degradation of the performance with respect to the
design that could be prepared using low-level HDL. However, one can notice that the
solution did not take advantage of the SAB technique. Consequently, the hardware
processor had accessed addresses of an external memory in an inefficient way. The
SABs would speed the processing up, but they were not inserted due to the HLL’s
limitations.

Additionally in their work, Russek and Wiatr assessed the energy requirements
of the FPGA and CPU chips. According to Xilinx’s Power Estimator tool, the FPGA’s
power dissipation was 3.1 W only. Due to the lack of proper equipment, the authors
did not measure the energy consumption of the 1.5 GHz Itanium2 CPU processor.
So, the energy was derived from TDP parameter that was provided by the processor’s
manufacturer. It was 104 W accordingly. It was obvious that the FPGA and CPU
differ an order of magnitude in the power consumption. It should be noted that the
performance and energy comparison that were presented in the paper were done with
respect to Itanium2 processor that was not a state-of-the-art processor at the time.
More advanced CPUs were available, but the Itanium was manufactured in the same
90nm technology as the Virtex4 FPGA device that was used for the experiment. In
that sense, the comparison was fair.

References

Koch and Torresen [112] analysed the different hardware sorting architectures in
FPGAs. It was proven that a combination of an FIFO-based merge sorter and a tree-
based merge sorter resulted in the best performance at low cost.

Harkins et al. [113] compared the execution speed of hardware modules which
were implemented in FPGA with the speed of the functions executed by the micro-
processor. Algorithms for sorting: quicksort, heapsort, radix sort, bitonic sort, and
odd/even merge sort were tested. Results showed that the merge sort performed the
best, both for the CPU and the FPGA.

Marcelino et al. [114] presented and evaluated three hardware sorting units for
embedded computing systems implemented in FPGAs. They compared Batcher’s
odd-even sorting network, insertion sorting, and FIFO-based merge sorting. The

90

study showed that the best is a hybrid of an insertion sorting and an FIFO-based
merge sorting. The sorting speedup was between 1.6 and 15-fold in comparison to
a pure software solution of the quicksort.

3.4. The Bloom filter

The Bloom filter algorithm belongs to the class of search algorithms. The method
was first proposed by B. H. Bloom [115]. The algorithm analyses items those are
processed as b-bit long messages. Bloom proposed to use a memory array to verify
the existence or non-existence of a given message in a pre-defined set.

The Bloom filter operation consists of two steps:

1. The deterministic generation of a pseudorandom number for the message. That
number is called hash.

2. The lookup in the memory at the address given by the hash. If the memory cell
is empty, the message does not belong to the set.

The hashing converts a b-bit input message into an h-bit output hash, where h is
smaller than b. Different types of the hash function can be used for the Bloom filter
algorithm. One can adapt a checksum algorithm that returns the remainder of a poly-
nomial division for example [116]. The generation of a hash is a one-way operation
because different messages end up with the same hash value (h < b). Consequently,
a message can produce a non-empty memory cell despite it does not exist in a refer-
ence set. Thus, the Bloom filter returns, so called, false-positives; therefore, it is not
entirely trustworthy. On the other hand, false-negatives do not occur as the algorithm
correctly rejects messages that are outer to the set. A probability of a false-positive
can be calculated for a given dimension of the set of patterns and the h value.

One can minimize the likelihood of the false-positive when the two-step proce-
dure, described above, is repeatedly applied for different hashing functions. In this
multi-hash scenario, the message is considered the member of a set if every hash
round returns a non-empty memory cell. The algorithm rounds share the single mem-
ory array for different hash functions in the classic Bloom filter. Obviously, the mem-
ory content must be prepared beforehand to put the Bloom filter into work. Hash
values are calculated for all hashing functions and all messages in a reference set in
the preparation phase. Then corresponding locations in the memory are marked.

The probability of a false-positive in the sequential Bloom filter is given by for-
mula

perr =≈ [1− e−
kn
m]k,

where n is a number of searched patterns; m is a bit size of memory and k is a number
of hash functions (the algorithm’s rounds).

91

It is possible to select the optimal value of k, for a given m and n, to minimize
the hazard of the false-positive. The optimal value of k can be calculated by formula

kopt = ln(2
m

n
),

and its corresponding optimal probability by equation

popt ≈ −2−k.

Bit-wise manipulations such as logic operations or shift and swap transforma-
tions are the basis for many hash functions that are used in practice. Those elementary
operations make hardware that is necessary for hashing to be very easy to implement.
Similarly, the memory operation of the Bloom filter is a simple, very much favoured
by hardware designers, the look-up table operation. Additionally, phases of hash-
ing and look-up can run in the pipeline to generate one result of message matching
at each clock cycle. That makes the Bloom filter another algorithmic candidate that
naturally suits for a custom processor design. Accordingly, many applications that
are reported in the literature, which perform various kind of search operations, take
advantage of the Bloom filter. The papers give its example applications in Network
Intrusion Detection Systems (NIDS) [117] [118], anti-virus systems [59] or firewall
solutions [119]. Web search [120] and database search [121] are other examples of
the Bloom filter utilization.

3.4.1. The parallel Bloom filter

The original Bloom filter algorithm which is implemented in software is sequen-
tial. Parallel execution of the algorithm is requested to take full advantage of a hard-
ware version of the Bloom filter. To meet this requirement, Jamro et al. [122] present
multi-fold parallel version of the Bloom filter as a custom processor architecture.
Among other enhancements, authors proposed to perform rounds of separate hash
functions concurrently. According to their idea, a single memory block of size m
has to be substituted by k memory blocks of size m

k . In that parallel scheme, each
hash function checks up cells in the independent memory block. The transition of
the Bloom filter that uses two hashes to its two-way parallel counterpart is given in
Figure 3.3. The total memory bit-size of both solutions is equal. The hash length h
can be reduced for the parallel version because its memory blocks are smaller. For
example, parallel hashes are one bit shorter for k = 2, as presented in Figure 3.3b.
In their paper, Jamro et al. [122] show that for constant m and the small size of the
reference set n, the probability of a false-positive for the sequential and the parallel
solution is the same.

92

(a) (b)

Figure 3.3. Hardware configurations for the Bloom filter: a) sequential configuration;
b) parallel configuration

The Bloom filter custom processor is a very compact solution that consumes
a very moderate amount of FPGA resources. The implementation results of the
Bloom filter that are delivered by Jamro et al. [122] and Russek and Wiatr [60]
demonstrate that the number of BRAM resources is the only limitation for the filter
implementations in FPGA devices. The logic elements and flip-flops are in minimal
use. Both works present the designs that take advantage of many parallel Bloom filter
structures that are put into the single FPGA architecture. These structures work uni-
son to analyse concurrently overlapped messages that are extracted from a long string
of characters. It is necessary to employ more than one matching structure to process
data seamlessly with no stalls of the input channel when more than one character of
the message arrives in the system at each clock cycle (see also Section 3.5).

References

Dharmapurikar et al. [123] considered the implementation of the Bloom filter
that fetches one byte of input data at each clock cycle. A parallel Bloom filter opera-
tion was performed for the patterns of the different lengths in that work. The through-
put achieved in that solution was 100 Mbyte/s which was sufficient for an inspection
of data in a Fast Ethernet network.

Suresh et al. [118] presented an automatic VHDL code generation for the Bloom
filter. A ‘C’ program was developed for this purpose. The detection of viruses was
the main goal of that project. The speed of data processing was 3.1 GBytes/s for
the Virtex XC2V8000 FPGA, but only a single word could be localized with this
performance.

93

A completely different solution was presented by Jacob and Gokhale [124].
The goal was to detect the language of the text that was presented to the proces-
sor. A set of different Bloom filters was implemented. Each filter was programmed
to detect a certain language. Due to IO bandwidth limitation, a theoretical through-
put of 1.4 GBytes/s was reduced to 500 Mbyte/s. The eight bytes packet could be
read at each clock cycle (the clock frequency was 194 MHz). The data processing
performance and the fast programmability of the searched patterns distinguished that
solution from the others.

3.4.2. Enhancement of the Bloom filter

The Bloom filter algorithm needs enhancement in applications where the exact
recognition of the matching pattern is required or ‘false-positives’ are not acceptable.
Thus, other compression and memory based ideas were proposed. The simplest solu-
tion to the Bloom filter’s limitations is to follow the Bloom’s procedure by a simple
comparison algorithm. In that approach, patterns that are thrown out by the filter are
looked up in the dictionary. The additional lookup process starts when the Bloom
filter reports a membership.

The enhancement that can be introduced is the improvement of the lookup speed
for that scheme. One can use hash values that come from the Bloom filter to en-
hance the verification process by the use of a hash index. The process is presented
in Figure 3.4. It uses the hash index table for indirect addressing of patterns in the
dictionary. The method is similar to the one utilized in [125]. The hash addresses
a position in the index table that contains an address(es) of the pattern(s) in the dic-
tionary. In practice, as hash values overlap, the lookup deals with a list of candidate
patterns.

Figure 3.4. A dictionary lookup using the hash index

94

Additional improvement can be achieved by the reduction of the number of the
dictionary items that have to be verified. The verification of the single pattern only
would be the best and fastest scenario. The most straightforward method to speed up
the dictionary lookup is to introduce the perfect hashing scheme [125]. The perfect
hash function delivers one-to-one mapping of the pattern space into the hash space.
This feature means that no overlapping hashes exist, and the mapping is not ubiq-
uitous. In consequence, one can use the hash to point directly to the value in the
dictionary.

It can be easily noticed that the index table can contain unused locations that
are called gaps in Figure 3.4. These gaps can lead to inefficient memory utilization.
Therefore, some applications [126] do not implement an index table and use a hash
value to address the patterns memory directly. For memory efficiency, this approach
requires a very careful hash function and pattern mapping to avoid underutilization of
the patterns memory. The best implementation results can be achieved when the min-
imal perfect hash function is used. The minimal perfect hash function maps m keys
to m consecutive integers – usually [0, ..,m− 1] or [1, ..,m]. However, construction
of a perfect hash function is cumbersome and if possible in practice, applies only to
static dictionaries. It is unpractical if the set of elements changes dynamically.

It is worth noting that the perfect hashing contradicts the idea of the Bloom filter,
which allows it to reject at once some of the candidate patterns. The hash table is full
in the minimal perfect hashing, so there are no ‘miss’ events. The Bloom filter can
detect membership and perfect hashing simplifies exact matching. In other words,
the perfect hashing is a fast index generator. The perfect hashing was exploited in the
works of Sourdis et al. [125] and Papadopoulos et al. [126], for example.

Even non-minimal perfect hashing is very difficult to design in applications.
Thus, other algorithms are in practical use. One is Cuckoo hashing [127]. Cuckoo
hashing relies on k hash functions, and it uses k distinct hash tables. As in the perfect
hashing, the hash tables are index tables to the patterns dictionary. The reason to use
a k table is to allow for hash function imperfections. When hash values overlap for
different hash functions, different index tables are utilized by them. The process of
preparing tables looks as follows. When a new pattern ‘p1’ overlaps with a previous
pattern ‘p2’ in the hash table 1, the ‘p2’ is moved out to the hash table 2. The position
in the table 1 and table 2 are calculated according to hash functions ‘h1’ and ‘h2’ re-
spectively. If a collision occurs again in the table 2, the previous occupant is expelled
and moved to the table 3. It is possible, however, that the process gets caught in an
infinite loop i.e. the set-up process fails, and another set of hash functions need to be
used for a given dictionary. A lookup requires inspection of a definite number of loca-
tions in the dictionary, which takes constant time in the worst case. This is in contrast
to many other hash table algorithms, which may not have a constant worst-case time
to do a lookup.

95

The disadvantage of Cuckoo hashing is that during the matching process k index
tables and k locations of the patterns must be looked up. There is also a hash size
dilemma in the Cuckoo algorithm. The big hash space allows it to map easily the pat-
terns dictionary but cause large memory requirements for the index tables. Although
the hash table construction is easier in Cuckoo hashing than in perfect hashing, its
memory requirements are higher. Cuckoo hashing was used in the work of Thinh
et al. [128].

3.4.3. Modified Cuckoo hashing

The author presents his original method of modified Cuckoo hashing in this sec-
tion. This new method also uses k hash functions, but it requires one hash table only.
Furthermore, modified Cuckoo hashing is proposed to eliminate the need for k lo-
cation lookups that was required in the original Cuckoo scheme. Thanks to the new
hash allocation method, it is possible to check only one dictionary location and thus
spare the processor’s operations.

Like Cuckoo hashing, modified Cuckoo hashing uses the k different hash func-
tions that are necessary to prepare, similarly to the Bloom filter algorithm, a content
of a single memory array. In the preparation phase, patterns are hashed, and appropri-
ate locations are marked in the memory. If the new hash conflicts with a previously
located hash, the memory location is emptied and marked as forbidden. Conflicting
patterns are relocated to the new locations using the next available hash function.
The memory’s locations that are marked as forbidden must remain empty in the final
memory map. Therefore, if the preparation algorithm meets the forbidden location
during its work, it has to relocate a pattern to another location using the next avail-
able hash function. The procedure stops when the k-th hash function fails or when
all patterns are allocated in the memory array. Thus, like Cuckoo hashing, the new
scheme may also fail.

An example of memory array design in the modified Cuckoo hashing method is
given in Figure 3.5. Patterns ‘p1’, ‘p2’, and ‘p3’ will be mapped to the memory. The
example uses three hash functions ‘Hash h’, Hash g’ and ‘Hash f’. The hash values
are denoted as ‘hi’, ‘gi’ and ‘fi’ respectively. In the example, the memory array offers
six positions only. The patterns and their hash values are given in the table of hash
values in Figure 3.5. The preparation procedure starts with ‘Hash h’ function. Hash
values ‘h1’, ‘h2’, and ‘h3’ are located in the hash memory in Step 1. We see that
‘h2’ and ‘h3’ overlaps in the third cell. Thus, the third memory cell is marked as
forbidden and patterns ‘p2’ and ‘p3’ are relocated using ‘Hash g’ function. Next, we
see overlapping ‘h1’ and ‘g3’ in Step 2, so the second cell is forbidden, and ‘p1’,
‘p3’ are relocated. ‘P1’ is moved using ‘Hash g’ and ‘p3’ is moved using ‘Hash f’.
Luckily, there are no conflicts in Step 3.

96

Figure 3.5. The procedure of hash table mapping in modified Cuckoo hashing

The resulting memory has three empty cells and the hash values ‘g1’, ‘g2’ and
‘f3’ are allocated. It is worth noting that ‘f1’ still overlaps ‘g2’, and ‘f2’ overlaps ‘g1’.
However, those conflicts are not an obstacle to performing one lookup operation in
the matching phase of modified Cuckoo hashing.

In the matching phase, a processor can resolve the matching pattern using only
one hash lookup operation. It is possible to meet up to k matches, but there is no need
to look up all matching locations. If a match happens for more than one location, one
choose the highest priority hash function. The first hash function has the precedence
over the rest of the hashes; the second hash function has the precedence over all but
first hash function, etc. Let’s consider pattern ‘p1’ as an example. If the algorithm
finds both ‘g1’ in cell five and ‘f1’ (which is ‘g2’ really) in cell four then ‘Hash g’
has to be look up only. That holds because ‘Hash g’ has a precedence over ‘Hash f’.
The ‘Hash f’ function has never been used in the preparation step. Next, a dictionary
lookup can be done. Each hash function has a separate index table, so we will get the
pattern location from the index table of ‘Hash g’ in our example.

As an example application for modified Cuckoo hashing, the dictionary of
58,109 English was processed to develop the unique 24-bits hashes. The two-way
(k = 2) modified Cuckoo hashing was adopted to map the dictionary. The CRC32
hash algorithm was chosen. The CRC32 is easy to implement and parallelize in
FPGAs. The first hash function hashed bytes of input words while the second function
hashed inverted bytes of the words. The hashes were truncated to 24 bits. That pro-
cedure allowed it to map of all but eight words from the English dictionary. Modified
Cuckoo hashing is an important part of the application that is presented in Chapter 4.

97

3.5. A shifting substring search
Custom acceleration is most beneficial when the computation needs prevails over

the capability of data delivery. Consequently, matching and searching problems are
not particularly suitable candidates for processing in FPGAs. However, there are cir-
cumstances and additional conditions those make the above statement to become less
strict. As it has been already stated, the searching in unstructured data is one coin-
cidence, and the huge volume of searched patterns is another. We will consider the
problem of matching of shifting data in this section. Shifting substring searching oc-
curs when analysed tokens are overlapping substrings of a long character string. The
number of characters that the processor must acquire to run consecutive matching
tasks is reduced in the shifting search scenario. The processor starts by reading all
the characters that constitute the first substring and analyses it. Then, it takes the
next character from the input, adds it at the end of the previously analysed substring,
discards the string’s first character and perform the next match. The cycle repeats
until the last input character is reached. It may be the case that the relatively complex
operations are associated with a single character read operation. One can recognise
presented scenario as a sliding window search that is depicted in Figure 3.6. Obvi-
ously, the longer window (i.e. substring), the more complex matching.

Figure 3.6. A shifting substring search with the Bloom filter

The shifting substring search is a problem for many practical applications, such
as a search of anti-virus software or Network Intrusion Detection Systems (NIDS)
for example. Occasionally, when word tokenization is not applicable, it can also be
useful for text analysis in the Internet, databases or other repositories. Unfortunately,
exhaustive processing of an input string, in a character by character manner, is trou-
blesome for software. The Knuth-Morris-Pratt and Boyes-Moor algorithms exist to
lessen the number of necessary comparisons. Another fix that is proposed for the
shifting search is the Rabin-Karp algorithm. Similarly to the Bloom filter, this algo-
rithm takes advantages of substring hashing.

The Knuth-Morris-Pratt, Boyes-Moor, and Rabin-Karp algorithms do not suit
hardware structures due to complex control operations. Thus, the Bloom filter is the
best option to search using a shifting window if many patterns exist simultaneously.

98

The architecture and data flow of the parallel Bloom filter have the capability to
process one input message at each clock cycle. It allows the processing of the input
data stream without any stalls. The window that is presented in Figure 3.6 moves in
pace with input data.

The input data stream bit-width exceeds the size of a single character size in
some situations. Today, 32-bit or 64-bit bus interconnects are a standard and the in-
put/output can deliver four or eight characters at a time. In that case, custom processor
architecture can handle smooth data processing if four or eight parallel Bloom filters
work together concurrently.

Russek and Wiatr [60] exploited the concept of parallel execution of the Bloom
filter wider. The custom processor for the Bloom filtering was created in reconfig-
urable hardware. It is implemented as dual-port synchronous RAM memory. Hashes
are sent directly to the BRAM’s address bus. The size of the bus fits the bit-width
of hashes. To achieve the highest throughput, the execution of the incoming data is
performed both in a parallel and pipelined manner. The input buffer is analysed with
one-byte resolution. To fit that requirement within the 32-bit architecture of the host
system, the Bloom processors consist of four parallel block modules. The modules
inspect the input data with a different byte offset (ranging from 0 to 3). The concept
is presented in Figure 3.7.

Figure 3.7. A four-way shifting substring search in 32-bit architecture

99

3.6. The binary tree

The binary search that is also named half-interval search is presented in Knuth’s
book [102] for example. The algorithm is used to find a match for a random data ele-
ment in a set of reference patterns. An architecture of the binary tree is the hardware
counterpart of the half-interval search algorithm, and it is introduced by Cormen et
al. [100].

The binary tree is depicted in Figure 3.8. It can be seen as a tree of the con-
secutive decisions. The sorted dictionary patterns have to be properly located in the
tree’s nodes. We assume that a set of reference data counts 2L − 1 elements, where
L is a natural value. The node denoted as ni corresponds to i-th pattern from the
sorted set. The input element propagates down from the tree’s stub. At each node, it
is compared against the corresponding reference patterns and continues left or right
according to the comparison result.

The tree is organized into levels, and there are L levels that are enumerated from
0 to L − 1 in Figure 3.8. The tree processing can be easily pipelined, and L data
elements can be processed by the tree concurrently. A single input data element is
processed by the each tree level at every algorithm step. It is possible to feed the tree
serially by the elements of an input data stream. One element enters and one element
leaves the tree at each algorithm step. The processing latency is L. The ‘hit/miss’ flag
and the index of the matching pattern are the results of tree processing. The result is
denoted as ‘HIT info’ in Figure 3.8.

Figure 3.8. The operation concept of a binary tree processor

Figure 3.9 presents the structure of the tree node. The operation of the node is
described in pseudo-code given in Listing 3.1. The ‘Data’ and ‘Pattern’ elements,
depicted in the figure are registers; the rest of the hardware requires a comparator and
minor logic. The ‘H’ field contains the ‘hit/miss’ flag and a matching leaf index. The
‘H’ and ‘Data’ elements propagate together down the structure of the tree.

100

Figure 3.9. The structure of a binary tree node

Listing 3.1. The example algorithm for the single global stream and many local streams.

i f (LD == t r u e)
Data := INPUT ;
i f (Data <= P a t t e r n)

L D _ l e f t := t r u e ;
end i f ;
i f (Data > P a t t e r n)

LD_r igh t := t r u e ;
end i f ;
i f (Data == P a t t e r n)

HIT := t r u e ;
end i f ;

end i f ;

3.6.1. The binary-tree processor

By studying the pipeline execution concept described in the previous section,
one can easily notice that just single node is busy at each level of the tree in each
processing step. It can be hardly accepted when hardware efficiency is the priority. If
only one node per a tree level is active, the rest of the hardware is idle, and it causes
resource underutilization.

The hardware synthesis technique, known as register ports sharing can be used to
optimize the tree [76]. That optimization gathers all registers that belong to the same
tree level and puts them into a single memory block. Thanks to that, the hardware of
the nodes that belong to the same tree level can be reduced to the single processing
unit. The register ports sharing allows nodes that belong to a single level of the tree
to share hardware. Additionally, this approach gives the opportunity to utilize the

101

FPGA’s memory resources and to free flip-flops for the other algorithm’s needs. In
practice, the use of BRAMs allows a designer to fit bigger trees into the FPGA device.
The architecture that comes from the idea is presented in Figure 3.10. It consists of
four processing stages that correspond to the four tree levels. The indexes of nodes
that are assigned to the RAMs and presented in the figure are taken from Figure 3.11.

Figure 3.10. The pipeline architecture of a binary tree custom processor

Figure 3.11. The location of patterns’ indexes in a binary tree

At each clock cycle, every processor’s stage module reaches a single node value
from its RAM to perform a comparison. A memory address generation unit is nec-
essary for each stage module of the binary tree processor. The memory address gen-
eration is necessary to access the right node value from the RAM cells. The module
can be integrated with the level processing unit (module ‘proc.’). The address for the
stage’s RAM is generated according to the comparison results that were performed

102

by the stages that had run prior to the considered stage. Let’s assume that cl is a com-
parison result at the level l. If Data > Pattern, then cl is ‘1’, otherwise cl is ‘0’.
The cell address (addrl) for RAM at level l can be expressed as given by equation

addrl ← cL−1&cL−2&...&cn+2&cl+1,

where ‘&’ is a symbol for bits concatenation.
If the match occurs at a certain level, the hit information is placed in the ‘hit info’

register. The register consists of the two fields: the level number l and matching RAM
address for that level. One can use the level number and address to recover the match-
ing node index. The index recovery procedure is described in the next paragraph.
The task of the node index calculations can be performed in the hardware. The in-
dex derived from the tree can be directly used to access the matching pattern in the
dictionary. Thanks to that feature, it is possible to determine the matching pattern im-
mediately which is an advantage if compared to the lack of this functionality offered
by the Bloom filter algorithm.

3.6.2. Mapping of patterns to memories

The binary search that is implemented as the binary tree processor requires that
patterns are properly located in the stages’ memories. Therefore, the processor’s ar-
chitecture should offer an adequate mechanism that maps the patterns that are down-
loaded during a configuration phase to the correct address at the right RAM block.
The tree processor offers a self-organize mechanism of patterns in the proposed archi-
tecture. The sorted reference patterns can be sequentially downloaded to the device,
and each element is automatically stored in the correct RAM cell. The addresses are
internally generated; therefore, no external addressing of the nodes is necessary. The
only requirement that applies is that the data has to be sorted in the downloaded
stream. Also, the reverse mechanism guarantees that the appropriate pattern index is
produced during the matching process. The output pattern index is derived from the
matching level number and memory block address.

As it is presented in Figure 3.12, the level number l and the memory block
address addr can be relatively simply derived from the pattern (node) index
nbn...b2,b1,b0, where bn...b2, b1, b0 is a binary representation of the node index. Level
number l can be derived from the less significant bits of the index. For level l, we
need to decode l + 1 less significant bits. All bits but the first must be ’0’ in the
less significant (l + 1)-bit field of the index. The rest of bits (most significant) can
be used to address the selected memory block. That observation can be used by the
hardware to address the RAMs properly on configuration, and to generate the right
pattern index on the output during operation.

103

Figure 3.12. The method for mapping of patterns’ indexes to the tree level and memory
address

References

Le and Prasanna [129] presented the string matching for NIDSs. It was imple-
mented in the Virtex-5 FX200T FPGA. A novel method of memory-efficient architec-
ture for string matching was proposed. The method was based on a pipelined binary
search tree. The implementation results showed a sustained throughput of 3.2 Gbps.
The dictionary update involved only rewriting the memory content, which could be
done quickly without reconfiguring the chip. Very efficient memory usage in this
solution was achieved.

3.7. The prefix tree
The prefix tree, also called the trie, is a data organization structure that helps

to retrieve elements from a defined data set. Like the binary tree, it consists of leafs
(nodes) that are connected by branches (edges). Formally, the tree is a directed graph
where exactly one path exists between any two nodes. Also, the tree distinguishes
one of the nodes that is the root. As the root is the end node of any graph path,
the edges naturally point from the root to other nodes, and each node is the root’s
descendant. In contrary to the binary tree, where nodes are associated with elements
of the reference set, each node of a trie represents a single character. One can restore
the strings of the set running all paths down the trie and collecting characters on the
way from the root to the bottom leafs. Each path from the root node to the bottom
node represents a single element from the data set. The example of the trie is given
in Figure 3.13a. For simplicity, an alphabet is reduced to ‘0’ and ‘1’ symbols and the
dictionary consists of binary strings.

104

(a) (b)

Figure 3.13. The design method of a pipelined automata for a prefix tree: a) an example of
the prefix tree; b) an FSM automata for the prefix tree

The searching in the trie is easy: one takes a string and follows down the tree,
taking branches according to the string’s consecutive symbols. The pattern fits if
it reaches the trie’s bottom. Thanks to a tree structure, all dictionary’s patterns are
searched simultaneously. The root node usually represents an empty symbol (no char-
acter) because all the elements of the set rarely start with the same character. The trie
compresses information because element patterns share nodes that keep their pre-
fixes. For the trie, to have a good effect on compression and search, the dictionary
strings should share prefixes, and that is where the prefix tree takes its name.

For a hardware designer, the prefix tree resembles an FSM diagram. FSM’s input
symbols are characters of the alphabet, and the output are ‘hit’, and ‘miss’ symbols.
The trie can easily be converted to the FSM. Interestingly, the trie structure is an
acyclic graph; therefore, it is possible to run FSM as a pipelined system. The known
method of automata division [130] lies behind the concept of pipelining. The state
transition path is the one-way route from the root to a bottom leaf in the case of the
tree-like state diagram. Accordingly, it is possible to process many independent input
symbols in one FSM hardware simultaneously. We divided nodes into five groups in
Figure 3.13b. Each group consists of nodes (or FSM states rather) that can be reached
in the same number of FSM transitions, starting from the root. The groups constitute
the independent FSMs that process the character of the definite position from the
input string. The procedure goes as follows. The first FSM (A1) takes the first sym-
bol from the input string, selects the state and outputs to the second FSM (A2) its
state information together with ‘hit/miss’ symbol. A2 takes the second input string’s
character and the state info from A1, processes and sends results to A3. At the same

105

time, A1 takes the first symbol of the next input pattern. The procedure continues,
and effectively the system analyzes five input patterns at a time. The block diagram
of an architecture for the trie processor is given in Figure 3.14.

The presented design fits perfectly into a shifting string search scenario because
serialized characters can be sent one-by-one to all stages of the system simultane-
ously. Also, the searched patterns are localized in any position in the input string.
That property is similar to that of the Aho-Corasick algorithm (see Section 3.8.) The
parallel pattern delivery requires additional delay registers to synchronize data on the
stages’ inputs.

Figure 3.14. A pipelined prefix tree processor

3.8. The Aho-Corasick algorithm
Back in 1975, Alfred V. Aho and Margaret J. Corasick [131] proposed the algo-

rithm that efficiently solved the problem of the shifting sub-string search for a large
set of patterns. Computational complexity of the Aho-Corasick Algorithm (ACA) is
linearly proportional to the input string length l plus the total length of the patterns
p plus the number of output matches m: O(l + p+m). In fact, the authors proposed
two versions of the algorithm in their paper. Both versions had derived from FSM,
but only the second version was true DFA that made exactly one transition for each
input symbol at each step. The DFA version makes the algorithm be another example
of a software method that is easily applicable to the hardware.

Thanks to the additional transition links between the various internal nodes, the
ACA is an enhancement of the presented in the previous section trie-based method.
Like the pipelined trie search algorithm, ACA scans the shifting input string and finds
occurrences of patterns in a single pass. In difference to the trie-based approach, the
FSM for the ACA does not need pipelining. The ACA takes the single-pass ability
from algorithmic, not hardware, property. Thus, the ACA suits also a sequential exe-
cution by a CPU. The second version of ACA, proposed in [131], is a true DFA that
is ready for hardware application. Comparing the custom hardware for the ACA and

106

pipelined trie, both FSMs require the same number of states but the number of tran-
sitions is higher for the ACA. On the other hand, a pipelined trie requires passing the
‘Previous state’ (see Figure 3.14) information which consumes additional resources.

The Aho-Corasick method involves the construction of the three functions: Goto
function, Failure function, and Output function. Construction of the Goto function is
equivalent to the construction of a prefix trie. If we denote Goto function as G(s, c),
where s is an FSM state and c is an input symbol, G() returns the next state in the
prefix tree. Figure 3.15 gives an example diagram for the ACA if the patterns are:
‘scan’, ’cat’, ’cats’, and ’cash’. The arrows denote the Goto function, dashed arrows
represent the Failure function, and filling of nodes gives the Output function; ‘gray’
filling is for the ‘hit’ output.

Figure 3.15. A diagram of an example FSM for the Aho-Corasick algorithm

For example, G(2, ‘s’) returns ‘5’ in Figure 3.15. The picture shows only cor-
rect transitions, but a mismatch to expected symbols is possible at each node also.
For example at node ‘2’, symbols ‘t’ and ‘s’ are valid only. Symbols that are not
correct cause the machine to execute the Failure function. The failure means that the
algorithm swaps the states and tries to execute the inadequate symbol at a new FSM
position. What the Failure function does, it points to the next state that should be
checked when the failure occurs. In most cases, the failure brings algorithm realiza-
tion to the ‘0’ state which is the root state.

The construction of the Failure function for the ACA expects that one adds ad-
ditional transitions that cover common substrings of patterns in the dictionary. More
specifically, patterns that contain a prefix of another pattern should be regarded. For
example, pattern ‘scan’ contains the substring ‘ca’ that is a prefix of the pattern ‘cat’.
Consequently, the inclusion of the substring ‘cat’ causes the Failure function F (s) to

107

return state ‘1’ for state ‘7’ (F (7) = 1) and state ‘2’ for state ‘8’ (F (8) = 2). Dashed
lines denote Failure function transitions in Figure 3.15.

The Output function signalizes when the algorithm meets the match of any dic-
tionary pattern and the input string. The Output function returns the value of the
detected match for states that are gray circles in Figure 3.15.

The performance of the Aho-Corasick algorithm can be improved by its imple-
mentation in hardware. It is a standard to use memory blocks for realizing next-state
and output logic for large state machines. It is also a case for the ACA automata, but
the problem of alphabet size exists in practical applications. For the eight-bit charac-
ter string, it is necessary to resolve 256 transition vertexes for each state. Despite the
fact that the majority of the transitions in the ACA algorithm are transitions to the
root state, the hardware logic has to implement those passings. Repetitive encoding
of the default state transition results in redundancy in the memory that implements
logic of the next-state function.

The ACA is a choice for search applications if the alphabet is small in compar-
ison to the size of the dictionary. That scenario leads to prefix sharing and excellent
utilization of the ACA properties. The opposite scheme, where the alphabet is rich,
and the number of patterns is modest, suggests considering the binary tree rather.

References

Tan and Sherwood [132] were the first to propose the memory spare ACA hard-
ware architecture. They compress the state machine by converting it to many tiny
state machines. In the method, each state machine analyses a distinctive portion of
bits for each symbol. All tiny state machines run in parallel, and the match arises
when all machines agree. Jung, Baker, and Prasanna improved the method further in
their work [133].

108

4. The Hash Binary Tree

4.1. Hashing of the binary tree patterns

Functional elements and registers that are implemented in matching custom pro-
cessors offer arbitrary bit-width. Thus, comparators perform a comparison operation
that takes a one clock cycle despite the patterns’ length. The advantage of the custom
architecture is that the size of comparators and registers implemented in hardware
can fit the size of the matched patterns. The length has to be reasonable, but it can be
much longer than a CPU’s register size if it is necessary. This capability of custom
processing exploits the low-level parallelism. However, very long comparators intro-
duce inefficient utilisation of resources in the case of pattern comparison. A CPU di-
vides a long pattern into fragments that fit its registers and performs a full comparison
in several clock cycles. It often happens that a CPU determines that the pattern does
not match after comparing its very first characters only. If the beginning chunk of the
pattern does not match, a CPU also completes a comparison in one clock cycle. This
phenomenon leads to the conclusion that the implementation of long comparators in
hardware processors is a waste of computational resources, and low-level parallelism
is not very attractive in that case. The observation brought the author to the idea of
pattern compression to spare register flip-flops and comparator gates.

An interesting functionality of the binary tree processor that is presented in Sec-
tion 3.6.1 can be achieved if patterns of the tree nodes are replaced by their hashes.
The procedure of preparing an appropriate tree structure is very simple for the given
dictionary of patterns. It is enough to compress (hash) the patterns, sort the hash val-
ues and download them to the tree processor. The binary tree that holds hashes is
named the Hash Binary Tree (HBT) in this work. Like the Bloom filter, the HBT
requires the verification of the results to reject ‘false-positives’. However, the clear
advantage of the HBT is a simplification of the results validation. The Bloom filter re-
quires an additional index retrieval procedure before one can fetch the original pattern
to check up a ‘false-positive’; in contrary, the HBT offers quick pattern verification
because the original pattern index is known from the tag of the matching node.

109

4.2. Two-fold pipelined HBT architecture

The binary tree processor allows for pipeline execution, and the same property
applies to the HBT processor that is the binary trie processor with reduced memory
requirements. The pipeline execution of the HBT introduces a latency. However, the
latency usually does not matter for the execution of sequential data; and therefore,
pipelining is particularly useful when a stream of input data must be processed. It
is possible to execute simultaneously L input elements at each level of the tree. The
bigger the patterns’ dictionary, the more tree levels have to be used, and deeper par-
allelism is possible. However, the big disadvantage of the tree is that it is necessary
to double the number of nodes to add another level to the tree. That can lead to quick
saturation of memory resources if HBT is implemented in the FPGA. Consequently,
an excessive amount of memory might be necessary to achieve a good degree of
pipeline parallelism.

Additionally, the SIMD parallelism can be achieved when HBT is implemented
on the FPGA platform. Thanks to the dual port property of the FPGA’s Block RAMs,
the simultaneous processing of two data streams is possible. One can use that property
to process two streams of different hash functions simultaneously. The concept is
presented in Figure 4.1.

Figure 4.1. The two-fold configuration of the HBT for the modified cuckoo hashing
and Bloom filter

110

The concurrent execution of two hash streams can be used in the two-fold HBT
architecture. It can be used either to implement the Bloom filter with two hash func-
tions or the two-way modified Cuckoo hashing. It is worth to note that the core archi-
tecture of the HBT processor is the same for the Bloom filter and the Cuckoo hashing
implementation. The difference lays in the algorithm that is used to prepare the hash
values. The two results from the HBT streams are marked the ‘Hit 1’ and ‘Hit 2’.
These results are logically AND-ed when the Bloom filtering is used, and they are
OR-ed for the processing with the modified Cuckoo hashing algorithm.

4.3. Memory requirements of the HBT

The advantage of the proposed HBT solution is that it offers a matching result in
every clock cycle. Besides, in contrary to the Bloom filter, the HBT provides not only
membership verification but also a matching pattern identification. This functionality
of pattern’s index recognition is similar to that offered by the index hash table. In
this sense, the HBT can serve as the hash index where it is necessary. We will see
that the HBT requires fewer memory resources than the hash index in this section.
Additionally, it will be presented that the HBT needs fewer bits of memory than the
Bloom filter for the selected system parameters.

The Bloom filter is very competitive to the HBT approach in operations where
only membership verification is required. In some applications, however, the HBT is
a better choice because of lower memory size requirements. The memory requirement
of the Bloom filter is 2h bits. The HBT consumes h ∗ 2L bits, where h is the hash
bit-width and L is the number of tree’s levels. Let the value of Lmax is an upper bound
value of L when the HBT filter requires fewer memory bits than the Bloom filter. The
formula for Lmax is given by

Lmax =
h log(2)− log(h)

log(2)
,

that is a solution of the equation

2h = h ∗ 2L.

The upper bound of L for selected values of h is also presented in Figure 4.2. For
example, in the figure one can see that if the hash width is twenty bits, and the num-
ber of levels of the HBT is smaller than fifteen, the HBT requires fewer memory
resources than the Bloom filter. That means that the architecture can match up to
215 = 32, 767 different hashes. That is equivalent to the minimum number of 32, 767
patterns if k = 1. The number of patterns and the number of hashes are not equal
because some patterns may share common hashes.

111

 0

 5

 10

 15

 20

 25

 30

 10 15 20 25 30

N
u
m
b
e
r

o
f

H
B
T

l
e
v
e
l
s
(
L
)

Number of Hash function bits(h)

L
max

(h)

Figure 4.2. The value of L for equal memory requirements of the HBT and Bloom filter

Just like the hash table, the HBT algorithm returns the position of the pattern
in the dictionary. Thus, the HBT can be also used instead of the hash index. It is
interesting to compare memory requirements of both structures then. The hash table
requires L ∗ 2h memory bits, where L = dlog2(n)e and n is the number of patterns.
Because the HBT consumes h ∗ 2L bits, the memory requirements of the HBT and
the hash index are equal if h = L. This equation is valid for the best hashing scenario
i.e. the minimal perfect hashing (see Section 3.4.2). That leads to the conclusion that
the HBT always requires less memory than the hash index table.

4.4. The example application

The HBT processor was used by the author to implement the problem of mapping
text terms to term’s unique identifiers (Ids). The goal of mapping is to replace each
text words with an integer number. This procedure is used as the pre-processing step
in the text analysis applications for example. It processes input text data and replaces
each word (term) by a unique identification number. The dictionary of 58,109 English
words was processed to develop hashes that were downloaded to the HBT. The HBT
had sixteen levels and kept 24-bit hash in each node.

The two-way (k = 2) modified Cuckoo hashing was used to derive hashes from
the dictionary words. The CRC32 function was chosen to create the hashes. The rea-
son for the use of the CRC32 function was that it is easy to implement and parallelize

112

in FPGA logic. Two similar CRC32 hardware modules generated data for the two
HBT paths. The first module calculated hash values of the input words while the sec-
ond module hashed inverted bytes of the words. Hashes were truncated to 24 bits in
order to fit the HBT memory words. That procedure allowed the mapping of all but
eight words from the English dictionary to their unique 16-bit Ids.

The proposed hardware was implemented on the Zedboard platform [134]. The
ZedBoard development kit uses the Xilinx XC7Z020 FPGA from the Zynq-7000
family of All Programmable SoCs [135]. Zynq-7000 integrates two ARM Cortex-
A9 CPUs with an FPGA structure. The HBT processor was located in Zynq’s Pro-
grammable Logic (PL). The 32-bit, high-performance AXI4 interface was used to
couple the HBT with the ARM Processing System (PS). The HBT processed 32-bits
of input text data at one read cycle. In order to hash words correctly, the text alignment
module was necessary to place single words in 32-bits compatible boundaries. The
system clock frequency was 100 MHz, so the theoretical throughput is 400 MB/s.
The AXI DMA [136] module was used to transfer data between the HBT and the
Zedboard’s operation memory (32-bit 533 MHz DDR2 RAMs). The DMA ran in
the simple mode, and the real throughput was measured to be 398 MB/s. The FPGA
resource utilization is summarized in Table 4.1. The RAMB36E1, and RAMB18E1
respectively are 36 kbit and 18 kbit, the BRAM blocks. The Xilinx’s Design Suite
14.6 toolchain was used for design, synthesis and implementation of the system.

Table 4.1. The logic utilization of the HBT processor (L = 16, h = 24) in programmable
logic of Zynq XC7Z020. The two CRC32 hash modules and word alignment module were

included

Resource Utilization Available Utilization
Register 4,042 106,400 3%
LUT 4,213 53,200 7%
Slice 1,728 13,300 12%
RAMB36E1 96 280 34%
RAMB18E1 8 280 2%

The HBT consumed ca. 96 ∗ 36 kbit+8 ∗ 18 kbit = 3, 686, 400 bits of memory.
The regular hash table would require 16 ∗ 224 = 256 Mbits of memory, for the
presented terms mapping problem. It is worth noting that such memory resources are
not available in today’s FPGAs. Thus, it is a clear advantage of the HBT scheme. The
perfect hashing requirements would be 216, but it is probably not feasible to find an
appropriate hash function to implement this method in the terms mapping application.

113

The power consumption of the XC7Z020 FPGA SoC was 2.8 W. The power was
estimated by Xilinx’s Power Estimator tool [67].

For reference, the algorithm of mapping terms to term’s IDs was also run on
a computer server with two Intel’s Xeon 5650, and 16 GB of memory. Twelve CPUs
were available. Thanks to OpenMP, the problem was parallelised to six threads, and
run on six CPUs. The input text and index table were located in the operating memory,
and the text was divided into six separate buffers, which were processed by individ-
ual threads. To improve the CPU performance, the CRC32 function was replaced by
the SAX hash function. SAX has good statistical properties also, but it is faster when
implemented in software. The Intel’s C++ Compiler (icc) was used. The maximum
measured performance of Xeon’s six CPUs was ca. 460 MB/s. The reason to chose
six CPUs was that it is equivalent to one processor socket and one memory bank that
is similar to SoC’s configuration. Another processor socket has own memory bank
in the server architecture. A single CPU core was tested for the mapping applica-
tion also, and it achieved the performance of approximately 80 MB/s. The Thermal
Design Power of Xeon 5650 is 95 W.

4.5. Conclusions

The performance of multi-core processors cannot be fully utilized in the case of
IO-bound problems. That was the reason that the 3 W SoC came out to be equivalent
to a high-performance server. The mapping is a strongly data-dependent problem,
and the data-dependent algorithms play an important role in the web’s computing
infrastructure.

The energy consumption and power availability are the major problems when the
building of a new computer infrastructure is considered. The infrastructure mainte-
nance, not the purchase costs play the most important role. The cut of power dissipa-
tion is the priority for the further growth of resources that are available at computing
centers. Many techniques have become popular recently, but most of them focus on
more efficient cooling methods. An alternative method is the employment of energy-
efficient processors, which is not easy because it requires the parallelization of exis-
tent algorithms.

Efficient parallelization requires the development of new algorithms and meth-
ods. In the author’s opinion, the existence of FPGA computing should not be ne-
glected when the new methods are considered.

The existing FPGA design tools have matured enough, to allow for fast hardware
architecture development. The software can be developed faster than hardware, but
the design of good quality parallel software is also complicated and time-consuming.
That should increase the importance and attractiveness of custom hardware solutions.

114

The development of the VHDL code for the HBT architecture was much faster than
had been expected. It took approximately three man-months. Obviously, it is not fea-
sible to rebuild all existing codes to migrate them to dedicated computer architec-
tures; however, the shift of some kernel computations towards an energy-efficient
environment is seriously considered in the industry.

The module that was presented here may be a part of the hardware library of
IPCores that can be used in the hybrid cluster of energy-efficient and FPGA-enabled
nodes.

115

5. Acceleration of genome matching

5.1. Short-read alignment

The new DNA sequencing technologies generate an enormous amount of, so-
called, short reads. That calls for fast read alignment programs [137]. The applica-
tion that is presented in this chapter gives an example of the use of the trie processor
for a problem of genome matching. Thanks to the use of a custom processor, it is
possible to enhance a process of DNA short-read alignment in the computer system
that contains an FPGA accelerator. A real-life DNA matching problems are huge and
requires a big memory to keep DNA data. The enormous size of the input makes the
FPGA a perfect solution to perform data pre-processing and to act as a co-processor
of a CPU. Although, both the hardware and software part is necessary to deliver
a complete solution to the problem, it will be the hardware component that is pre-
sented in this chapter only. The reader will be provided with references that allow
him/her to study the concept of the software for the system.

The short-read alignment belongs to a class of genome matching problems. An
introduction to the problem of DNA short-read alignment that is sufficient for a hard-
ware designer is provided by Heng Li and Richard Durbin [138]. The authors deliv-
ered a problem description and a successful implementation of DNA short-read align-
ment as a software application. The authors took advantage of the Burrows-Wheeler
transform (BWT) to achieve the solution that is fast and spares memory space.

In short, the problem of short-read alignment is to match a set of short genome
reads that come from a genome sequencer with a long DNA reference sequence.
Usually, the source of short reads are commercially available the Next-Generation
Sequencing (NGS) instruments. The genome is represented as a sequence of the four-
letter alphabet (‘A’, ‘C’, ‘T, ‘G’). The sequence “AGCATGCTGCAGTCATGCT-
TAGGCTA” is a trivial example the reference genome sequence that DNA matching
algorithms have to cope with. The single short read can match the reference genome
sequence at any letter position. In practice, the reference sequence can be as long as
a couple of Gbp (‘bp’ stands for base pair i.e. a letter). The set of short reads can

116

comprise of 50-100 M elements, 32-100 bp each. The most important difficulty in
the DNA alignment is that it accepts inexact matches as well. There letter insertions,
deletions, and mismatches are acceptable in genome matching. Also, the number of
acceptable errors for the match is limited, and it is a parameter that is set for a given
matching run.

5.2. Subsequences

The design of the co-processor that is proposed in this chapter starts with an ex-
traction of all subsequences of length L from the reference genome. For instance, for
the reference sequence that was proposed in Section 5.1 and the length L = 4, we
obtain the following set of subsequences (given in the order of appearance):
{‘AGCA’, ‘GCAT’, ‘CATG’, ‘ATGC’, ‘TGCT’, ‘GCTG’, ‘CTGC’, ‘TGCA’,
‘GCAG’, ‘CAGT’, ‘AGTC’, ‘GTCA’, ‘TCAT’, ‘CATG’, ‘ATGC’, ‘TGCT’, ‘GCTT’,
‘CTTA’, ‘TTAG’, ‘TAGG’, ‘AGGC’, ‘GGCT’, ‘GCTA’}.

In theory, the choice of L depends on the maximum expected short-read length.
However, a value of L is mainly limited by a quantity of available FPGA resource in
the case of the implementation of short-read alignment as a custom processor. The
processor would provide a definite location of a short read in the reference sequence if
a short-read length was smaller than L. As a short read is longer than L, the processor
will point many positions of candidates that share the common prefix of length L.
Those candidates have to be further verified and resolved by a CPU. We may say that
a screening of possible short read locations within the reference DNA is the main
task of the FPGA accelerator in our scheme. That will be further explained later.

The trie of subsequences is necessary to create the short-read alignment proces-
sor. To create the trie, one has to sort the subsequences first. Repetitions are possible,
and they are highlighted in bold letters in the following sorted list:
(‘AGCA’, ‘AGGC’, ‘AGTC’, ‘ATGC’, ‘ATGC’, ‘CAGT’, ‘CATG’, ‘CATG’,
‘CTGC’, ‘CTTA’, ‘GCAG’, ‘GCAT’, ‘GCTA’, ‘GCTG’, ‘GCTT’, ‘GGCT’, ‘GTCA’,
‘TAGG’, ‘TCAT’, ‘TGCA’, ‘TGCT’, ‘TGCT’, ‘TTAG’).

The probability of read repetitions is minimal for long enough subsequences.
Unfortunately, it is a significant phenomenon when FPGA acceleration is considered
because the value L is limited and rather small in that case. Nonetheless, the repetition
can be handled easily. Simply, when a multiple match occurs, the CPU will check all
reference sequence positions that start with the common prefix of length L. Here, we
will remove the repetitions to build the trie for the co-processor. We have the list:
(‘AGCA’, ‘AGGC’, ‘AGTC’, ‘ATGC’, ‘CAGT’, ‘CATG’, ‘CTGC’, ‘CTTA’, ‘GCAG’,
‘GCAT’, ‘GCTA’, ‘GCTG’, ‘GCTT’, ‘GGCT’, ‘GTCA’, ‘TAGG’, ‘TCAT’, ‘TGCA’,
‘TGCT’, ‘TTAG’).

117

The sorted list of subsequences will be referred to as the Sorted Subsequences
List (SLL) in this paper. Additionally, for the discussion of the custom processor and
CPU cooperation, it is useful to create a table that contains locations of the SLL items
within the reference genome. The table will be called the Subsequences’ Positions
Table (SPT). In our example, the SPT looks as follows:
(1, 21, 11, 4, 10, 3, 7, 18, 9, 2, 23, 6, 17, 22, 12, 20, 13, 8, 5, 19).

5.3. The trie

The sorted list of subsequences is used to build the search trie. The trie’s root rep-
resents an empty ‘_’ symbol, and each trie node has an associated letter ‘A’,‘C’,‘G’ or
‘T’. At the lowest level of the trie, each node corresponds to the single SSL entity. The
subsequence that corresponds to the trie node can be determined from letters those
make a path from the root to the node. The letters which constitute the paths from the
root to the nodes of the lowest level make the sequences for the SLL members.

The trie can be used for fast matching of short reads with the reference genome.
Each match starts at the root and traverses the trie, according to the short-read letters.
If the short read matches any genome’s subsequence, it will find a valid path in the
trie. For the short reads of the length l < L, one can locate the read in l steps of letter
matching.

If a matching short read is shorter than L, it corresponds to the group of subse-
quences. For example, the node denoted as ‘1’ in Figure 5.1 corresponds to the group
{‘GCTA’, ‘GCTG’, ‘GCTT’} and the node ‘2’ corresponds to the sequence ‘TTAG’
only. An algorithm knows where to find the matching subsequence in the genome
if it knows how to locate the group in SPT. It is an important property that the sub-
sequences that share a common prefix are adjacent on the SLL. Thus, the positions
of subsequences that correspond to a given node in genome sequence can be eas-
ily retrieved from the SPT. For example, if the search stops at the node ‘1’ then the
matching group boundaries on the SLL are <11, 13>. It reflects (‘GCTA’, ‘GCTG’,
‘GCTT’) group and genome locations {23, 6, 17} in the SPT.

As we stated, the real-life short reads are longer than a value of L that can be
implemented in FPGA. That is a reason to build the additional SSL and SPT for sub-
sequences of length l > L in software. These tables are to be used by the CPU, which
cooperates with the FPGA co-processor in genome location checkup procedure. Each
subsequence of length L on the hardware SSL corresponds to many subsequences of
length l > L on the software SLL. Accordingly, each lowest level node represents
a group of subsequences of length l > L that share the common prefix of length L
in the software SSL. The subsequences of the software SSL that share a common trie
node (and similarly the common prefix) are adjacent. That property is exploited in

118

a procedure of the resolution of short read locations that is performed by the CPU. It
will be discussed in Section 5.10 how to follow Li and Durbin [138] and replace the
software SSL and SPT with BWT’s structures for memory efficiency.

Figure 5.1. An example of the trie for short-read alignment

5.4. The sequential co-processor

Figure 5.2 presents a custom processor for the sequential traversing of the
trie. The solution uses a single block of memory, and it resembles a well-known,
RAM-based implementation of an FSM automata. The figure explains principles of
processor’s operations in a form of a block diagram.

Figure 5.2. A block diagram of the sequential processor for short-read alignment

119

Shift=4 Shift=20 Shift=64

Addr
First
letter Data Data+Shift Addr

Second
letter Data Data+Shift Addr

Third
letter Data Data+Shift Addr

Fourth
letter Data Id Read

0 A 0 4 4 AA stop 20 AGA stop 64 AGCA Id=0 0 AGCA
1 C 4 4 5 AC stop 21 AGC 0 64 65 AGCC stop 1 AGGC
2 G 8 8 6 AG 0 20 22 AGG 4 68 66 AGCG stop 2 AGTC
3 T 12 12 7 AT 4 24 23 AGT 8 72 67 AGCT stop 3 ATGC

8 CA 8 28 24 ATA stop 68 AGGA stop 4 CAGT
9 CC stop 25 ATC stop 69 AGGC Id=1 5 CATG
10 CG stop 26 ATG 12 76 70 AGGG stop 6 CTGC
11 CT 12 32 27 ATT stop 71 AGGT stop 7 CTTA
12 GA stop 28 CAA stop 72 AGTA stop 8 GCAG
13 GC 16 36 29 CAC stop 73 AGTC Id=2 9 GCAT
14 GG 20 40 30 CAG 16 80 74 AGTG stop 10 GCTA
15 GT 24 44 31 CAT 20 84 75 AGTT stop 11 GCTG
16 TA 28 48 32 CTA stop 76 ATGA stop 12 GCTT
17 TC 32 52 33 CTC stop 77 ATGC Id=3 13 GGCT
18 TG 36 56 34 CTG 24 88 78 ATGG stop 14 GTCA
19 TT 40 60 35 CTT 28 92 79 ATGT stop 15 TAGG

36 GCA 32 96 80 CAGA stop 16 TCAT
37 GCC stop 81 CAGC stop 17 TGCA
38 GCG stop 82 CAGG stop 18 TGCT
39 GCT 36 100 83 CAGT Id=4 19 TTAG
40 GGA stop 84 CATA stop
41 GGC 40 104 85 CATC stop
42 GGG stop 86 CATG Id=5
43 GGT stop 87 CATT stop
44 GTA stop 88 CTGA stop
45 GTC 44 108 89 CTGC Id=6
46 GTG stop 90 CTGG stop
47 GTT stop 91 CTGT stop
48 TAA stop 92 CTTA Id=7
49 TAC stop 93 CTTC stop
50 TAG 48 112 94 CTTG stop
51 TAT stop 95 CTTT stop
52 TCA 52 116 96 GCAA stop
53 TCC stop 97 GCAC stop
54 TCG stop 98 GCAG Id=8
55 TCT stop 99 GCAT Id=9
56 TGA stop 100 GCTA Id=10
57 TGC 56 120 101 GCTC stop
58 TGG stop 102 GCTG Id=11
59 TGT stop 103 GCTT Id=12
60 TTA 60 124 104 GGCA stop
61 TTC stop 105 GGCC stop
62 TTG stop 106 GGCG stop
63 TTT stop 107 GGCT Id=13

108 GTCA Id=14
109 GTCC stop
110 GTCG stop
111 GTCT stop
112 TAGA stop
113 TAGC stop
114 TAGG Id=15
115 TAGT stop
116 TCAA stop
117 TCAC stop
118 TCAG stop
119 TCAT Id=16
120 TGCA Id=17
121 TGCC stop
122 TGCG stop
123 TGCT Id=18
124 TTAA stop
125 TTAC stop
126 TTAG Id=19
127 TTAT stop

Figure 5.3. The contents of the sequential processor ‘Memory’ for the trie of Figure 5.1

120

The architecture works as follows. The short reads are processed sequentially in
the read by read and letter by letter manner. The processing of a new short read is
initialized by the ‘next read’ signal. The ‘next read’ signal loads the new read into the
Parallel Input Serial Output (PISO) register, clears the ‘FF’ data register, and resets
the ‘Letter counter’. The ‘Next letter’ signal triggers processing of read’s consecutive
letter. The address for the ‘Memory’ in the next cycle is calculated as a sum of the
‘Letter’, ‘Shift’ and ‘Data’ values. ‘Letter’ values are 0, 1, 2 and 3 for ‘A’, ‘C’, ‘G’ ,
and ‘T’ respectively. ’Shift’ is kept in ’Shift memory’, and it is an address offset to
the next letter region in the ‘Memory’ table. ‘Data’ is stored in the ‘FF’ register and
it provides an FSM’s next-state info that was read from the ‘Memory’. The contents
of the ‘Memory’ is given in Figure 5.3.

The data that is stored in the ‘Memory’ can be either the next-state address,
‘stop’ word or ‘id’ word. The ‘stop’ word means that the next letter of the short read
does not match any available trie’s path. The ‘id’ word signals that a match occurs,
and it delivers an index of the matching node. If the data is the next-state address, the
search proceeds to the next short read’s letter.

The ‘Shift’ value is different in every letter iteration. It is stored in the ‘Shift
Memory’ which is addressed by the ’Letter counter’. In a sense, the ‘Shift’ value
introduces the compression of the data in the ‘Memory’ because the address that is
kept in this RAM is smaller of the ‘Shift’ value. In the other words, the values in
‘Shift memory’ mark the ‘Memory’ addresses where the data for the consecutive
letter iteration begins.

5.5. The pipelined co-processor

The pipelined version of the short-read alignment processor will be proposed in
this section. The advantage of the pipeline execution is that, in effect, a single short
read is processed in a single algorithm step.

The pipelined architecture that is presented can be easily mapped into the FPGA
structure. The single ‘Memory’ block that is a part of the sequential alignment pro-
cessor is split into several memory blocks in the pipelined architecture. Each memory
block is bond to a single pipeline stage. The block diagram of the architecture is given
in Figure 5.4. The additional components that are associated with each stage are sim-
ilar to those of the sequential processor version.

Serialized pipeline stages process the successive letters of the short reads. The
first letter is processed by the ‘First Letter Memory’, the second letter is processed
by the ‘Second Letter Memory’, etc. The processor processes as many letters as the
number of stages at each clock cycle. According to a basic principle of outer loop
pipelining, simultaneously processed letters belong to different short reads.

121

Figure 5.4. A block diagram of the pipelined processor for short-read alignment

Just like in the sequential version, the processor’s memories contain next-state
address data, ‘stop’ words and ‘id’ words. The addresses are passed from one stage to
the another. The ‘Shift’ value of the sequential version is no longer necessary because
memory blocks have separate address buses. However, the ‘stop’ word and ‘id’ word
requires an additional propagation path in the pipelined architecture. Components of
the ‘stop’ path are grayed, and elements of the ‘id’ path are lined in the figure. The
‘id’ word consists of the ‘id’ flag and ‘id’ value which holds matching node identi-
fication. The flag and value are propagated together by the ‘id’ path. The matching
identification is latched in the ‘Id reg’ register.

122

The ‘id’ path is not necessary if the matches occur only in the last stage of the
algorithm. It can be discarded if only the memory block of the final stage contains
the ‘id’ words. That is a usual situation when the length of real short reads is longer
than the length of subsequences L. According the assumptions taken in Section 5.3,
it is always the case when the alignment processor works as a CPU’s co-processor.
The size of the trie that suits that practical short-read range (the length of short reads
starts with 30 bp) is out of the reach of today’s FPGA devices. Such big tries just
do not fit into the size of available FPGAs. Consequently, the last stage carries ‘id’
symbols only.

5.6. Inexact matching

The exact search checks for the existence of a substring in a string template. In
fact, exact matching does not apply to genomics. Accordingly, k-mismatch search
is used instead in short-read alignment. The task of k-mismatch search is to locate
substrings that have a maximum of k mismatches to a matching element. One can
calculate the number of mismatches as a minimal number of edit operations that has
to be performed on the substring, to match the string correctly. Three basic types of
edit operation are in use: a substitution, insertion, and deletion of a letter.
The illustrations of the three edit operations are:

• substitution ‘AGCATG’→‘AGCGTG’,

• insertion ‘AGCAT’→‘AGCCATG’,

• deletion ‘AGCATG’→‘AGATG’.

The naïve search algorithm would check for all possible modification of the
string. For example, the series of subsequences that must be checked for ‘AGCT’
in one-mismatch search is:
{‘AGCT’, ‘CGCT’, ‘GGCT’, ‘TGCT’, ‘AACT’, ‘ACCT’, ‘ATCT’, ‘AGAT’, ‘AGGT’,
‘AGTT’, ‘AGCA’ ‘AGCG’, ‘AGCC’, ‘AGCG’, ‘AAGCT’, ‘ACGCT’, ‘AGGCT’, ‘AT-
GCT’, ‘AGACT’, ‘AGCCT’, ‘AGGCT’, ‘AGTCT’, ‘AGCAT’, ‘AGCCT’, ‘AGCGT’,
‘AGCTT‘, ‘GCT’, ‘ACT‘, ‘AGT’, ‘AGC’}.

The example illustrates a computational complexity of the k-mismatch search.
In the series, we have the original string and a set of the twelve substitutions, twelve
insertions, and four deletions. Thus, the series of exact matching operations must
be performed to fulfill the k-mismatch search. Some of the sequences in the set are
repetitions (‘AGCCT’ for example).

The series of modified subsequences can be generated dynamically during the
matching process when a custom processor is employed. The idea to combine the

123

generation of mismatches with the matching operation limits the number of per-
formed checkups. For example, there is no point to check for the ‘AGCG’ modified
sequence if the ‘AGC’ prefix of ‘AGCT’ does not exist in the reference genome.

The concept of the edit-and-check algorithm is presented in Listing 5.1.

Listing 5.1. A pseudocode for the k-mismatch search

/ * K−mismatch e d i t and s e a r c h f o r a s h o r t−read s e q u e n c e * /
/ * Arguments : * /
/ * t r i e − r e p r e s e n t s r e f e r e n c e genome * /
/ * s h o r t R e a d − i n p u t read * /
/ * Re t u rn : * /
/ * L o c a t i o n s o f match ing misma tches * /

L o c a t i o n s T y p e MismatchSearch (Tr i eType t r i e ,
SequenceType s h o r t R e a d) {

/ * Dec lare a l i s t o f c a n d i d a t e mismatch r e a d s * /
SequenceType r e a d s L i s t ;
/ * Dec lare c o n t a i n e r f o r mismatch l o c a t i o n s i n genome * /
L o c a t i o n s T y p e l o c a t i o n s ;

/ * Empty l i s t o f c a n d i d a t e mismatches * /
r e a d s L i s t . empty () ;
/ * Add s i n g l e empty s t r i n g t o t h e l i s t o f c a n d i d a t e s * /
r e a d s L i s t . add ("") ;
/ * Repea t f o r each l e t t e r i n t h e i n p u t s h o r t−read * /
f o r (l e t t e r : l e t t e r s i n s h o r t R e a d) {

/ * Repea t f o r each c a n d i d a t e i n mismatch read l i s t * /
f o r (r : r e a d s i n r e a d s L i s t) {
/ * Get a n e x t read from r e a d L i s t * /

r e a d = r ;
/ * D e l e t e t h i s c a n d i d a t e from t h e l i s t * /

r e a d s L i s t . d e l e t e (r e a d) ;
/ * Check i f read i n t h e t r i e * /
i f (! t r i e . c o n t a i n (r e a d)) t h e n {

/ * go to n e x t c a n d i d a t e * /
break ;

}
/ * Add t h e n e x t l e t t e r o f t h e s h o r t−read t o c a n d i d a t e * /
r e a d . c a t (s h o r t R e a d . pos (l e t t e r)) ;
/ * Add a new , l o n g e r c a n d i d a t e t o t h e l i s t * /
r e a d s L i s t . add (r e a d) ;
/ * Genera te mismatches f o r c a n d i d a t e i f p o s s i b l e * /
i f (r e a d . nbrOfMismatches < MAX_NBR_OF_MISMATCH) {

/ * Crea t e c a n d i d a t e w i t h l a s t c h a r a c t e r d e l e t e d * /
c a n d i d a t e = r e a d D e l e t e (r e a d) ;
/ * Add t o t h e l i s t * /

124

r e a d s L i s t . add (c a n d i d a t e) ;
/ * C r e a t e r e p l a c e m e n t s and add t o t h e l i s t * /
c a n d i d a t e = r e a d S u b s t i t u t e (read ,’A’) ;
r e a d s L i s t . add (c a n d i d a t e) ;
c a n d i d a t e = r e a d S u b s t i t u t e (read ,’C’) ;
r e a d s L i s t . add (c a n d i d a t e) ;
c a n d i d a t e = r e a d S u b s t i t u t e (read ,’G’) ;
r e a d s L i s t . add (c a n d i d a t e) ;
c a n d i d a t e = r e a d S u b s t i t u t e (read ,’T’) ;
r e a d s L i s t . add (c a n d i d a t e) ;
/ * C r e a t e i n s e r t i o n s and add t o t h e l i s t * /
c a n d i d a t e = r e a d I n s e r t (read ,’A’) ;
r e a d s L i s t . add (c a n d i d a t e) ;
c a n d i d a t e = r e a d I n s e r t (read ,’C’) ;
r e a d s L i s t . add (c a n d i d a t e) ;
c a n d i d a t e = r e a d I n s e r t (read ,’G’) ;
r e a d s L i s t . add (c a n d i d a t e) ;
c a n d i d a t e = r e a d I n s e r t (read ,’T’) ;
r e a d s L i s t . add (c a n d i d a t e) ;

}
}

}
/ * Re tu r n p o s i t i o n s o f r e m a i n i n g c a n d i d a t e s * /
f o r (r e a d : r e a d s i n r e a d s L i s t) {

l o c a t i o n s . add (r e a d) ;
}
re turn p o s i t i o n s ;

}

The algorithm is simple, regular, and its outer loop can be easily pipelined. The
inner loop can be implemented as the automata circuit in hardware respectively. The
scheme of the appropriate hardware architecture is presented in Figure 5.5.

In comparison to the exact search architectures, the key modification is the in-
troduction of the ‘Letter Edit and Match‘ (LEM), ‘FIFO Search Data‘, and ‘FIFO
Edit Data’ blocks. Both the ‘stop’ and ‘id’ propagation hardware is not included in
the figure. The LEM block generates all possible letter mismatches in a single short-
read position. Each LEM block requires an access to its position letter and the letter’s
neighbourhood letters. The neighbourhood is necessary for the insertions and dele-
tions. For example, if the first stage of the LEM inserts a letter, the actual first letter
must be shifted to the second stage LEM. Similarly, if the first LEM deletes the letter
it needs to fetch the second letter to address the ‘First Letter Memory’. Moreover,
the accumulated number of performed insertions and deletions has to be propagated
between stages. For instance, if the first stage deletes the letter and the second stage

125

inserts one then, because of accumulation, the third stage uses the third letter. A bal-
ance of insertions and deletions is transferred through the ‘FIFO Edit Data‘.

Figure 5.5. A block diagram of the pipelined custom processor for k-mismatch short-read
alignment

The size of the neighbourhood that has to be accessed by the single stage depends
on the maximum number of allowed edit operations. Also, the ‘FIFO Edit Data’ car-
ries the number of edits that have been performed on the short read on its way. The
‘LEM’ does not introduce a new edit operation if the number of edits reached a pro-
grammed limit. Additionally, to keep track of short reads, the ‘FIFO Edit Data’ passes
the ‘id‘ of the currently processed item. Each stage generates a variable number of
mismatches for a single short read because some of the candidates disappear on the
way throughout the pipeline.

126

5.7. The control block

Each pipeline stage features its own ‘Letter Edit and Match’ element. The archi-
tecture and operations of the LEM element will be described in more details. Figure
5.6 presents the LEM block and its ports. The names of ports and their functions are
as follows:

• ‘Data_in’ receives data that has been read from the ‘Memory’ of the preceding
stage. The data is an address or a ‘stop’ symbol. The address and the input letter
value are summed up to calculate the access location in the stage’s ’Memory’
block. The ‘stop’ symbol indicates the termination of the trie traversal i.e. oper-
ations of the remaining stages are abandoned. The ‘match’ symbols exist in the
‘Memory’ of the final stage only, so the LEM block never meets this symbol on
its ‘data_in’ port.

• ‘Data_out’ propagates to ‘Data_in’ of the next stage.
• ‘Next_in’ and ‘Next_out’ are used to keep track of the short reads those are

currently processed by the stage. An existence of ’stop’ symbols causes that the
number of mismatches that are generated by the edit operation for a given short
read is not deterministic. So, the LEM fetches a next read from the short-read
buffer when it detects an active the ‘Next_in’ signal.

• ‘Edit_in’ is used by the LEM to control the number of edit operations that had
been performed until the short read arrived at the corresponding pipe’s stage.
Additional edit operations are possible only if the number of edits does not reach
the preprogrammed limit. The binary coded value of ‘Edit_in’ is equal to the
number of edits committed.

• ‘Edit_out’ propagates to ‘Edit_in’ of the next LEM. If a new edit operation is in-
troduced by the LEM, ‘Edit_out’ equals ‘Edit_in’ plus one. Otherwise, ‘Edit_in’
copies ‘Edit_out’. If ‘Edit_in’ has reached the maximum number of allowed ed-
its, edit operations are not allowed, and ‘Edit_out’ follows ‘Edit_in’.

• ‘Shift_in’ and ’Shift_out’ reflect the balance of the insert and delete operations
that had been performed so far. The LEM uses the ‘Shift_in’ value to pick the
letter from a correct short read’s position. When an insert operation is performed,
the next stages should get a letter that is left positioned to the actual stage num-
ber position. Similarly, the right positioned letter should be taken when a delete
operation has been performed in the previous stage. The insert and delete oper-
ations cancel each other. ’Shift_in’ is used to shift left or right a fetch position
in the short-read buffer. Consequently, the LEM increments/decrements a value
of ‘Shift_in’ when the delete/insert operation is performed. The ‘Shift_in’ value
can be positive or negative, but its absolute value is always less or equal the value
of ‘Edit_in’. Altered ‘Shift_in’ is sent to the ‘Shift_out’ port.

127

Figure 5.6. Input-output ports of the ‘Letter Edit and Match’ block

5.8. Resource requirements

The trie nodes are organized in levels. We will denote the maximum number of
trie nodes at level l = {0, 1, 2, . . .} as NNl, where NNl = 4l. The single top node
’_’ is localized at level l = 0. The memory block at each pipeline’s stage consist of
words, and the number of words is 4 ∗NNl.

As data that is kept in memory at level l addresses memory at level l+1, the size
of a word at level l is

WSl = 2 + log2 (NNl+1).

If we denote the memory size at level l as MSl, we have

MSl = 4 ∗NNl ∗WSl.

The capacity of the trie level i.e. the number of its nodes grows very fast with
a value of l. Consequently, it reaches the total number of available subsequences
quickly. The number of subsequences is NS = TL−L ≈ TL, where TL is a genome
template length, and L is a subsequence length. The approximation is valid because
TL is much bigger than L. It is possible to define lsat which is the smallest integer
value that satisfies 4lsat > NS. The trie stops to expand its breadth at the level lsat and
the number of nodes saturates at lsat level, where the maximum number of TL nodes
reside. The expected memory requirement for l > lsat is

MSl = 4 ∗ TL ∗ log2(TL).

128

The above discussion has an impact on the size of ‘Memory’ block that should be
allocated for individual pipeline stages of the short-read alignment processor. The trie
data is downloaded to ‘Memory’ blocks during processor operation, but the proper
BRAM size has to be reserved in the design process. Figure 5.7 gives the theoretical
and practical notion for memory size requirements.

Figure 5.7. A visualization of memory requirement for the short-read alignment processor.
The NNL is a number of nodes at the trie level l, and the lsat is the tree level, where
a theoretical number of nodes is greater than the number of genome’s subsequences

The FPGA coprocessor is not able to perform a complete short-read search. To-
day’s FPGA devices are not capable of storing all nodes that are necessary to im-
plement the trie that accommodates the real-life DNA data. The equations that were
provided in this section allows it to derive the memory requirement for the single trie
level l. The appropriate formula is given by equation

MEMsize = 4NNl ∗WSl = 4 ∗ 4l(2 + log2 4
l+1) = 4l+1(2l + 4). (5.1)

However, for levels l > lsat, the formula takes lsat instead of l. The real-life
problems of DNA alignments require the short-read length of 30-100 bp, and a typical
length of a genome ranges from 100 Mbp to 1.5 Gbp. Using Equation 5.1, one can
calculate the memory requirements for L = 30 and TL = 100, 000, 000 bp (lsat =
14). It reaches the prohibitive value of 207 Tb!

The disadvantage of the trie, when it is used for short-read alignment, is a huge
expansion of the genome data size during SSL creation. The algorithm scans the ref-
erence genome to extract the set of the subsequences that overlap in the reference
genome. Contrary, each subsequence is coded separately in the SSL. Thus, the refer-

129

ence genome that occupies 2 ∗ TL bits of memory generates the set of subsequences
that requires roughly 2 ∗ TL ∗L bits! Although, the sequences share their prefixes in
the trie, and this property mitigates the explosion of data, it compensates the problem
only partially. Intuitively, the trie wastes most memory to implement its levels for
l > lsat because no prefix sharing exists for those nodes. Therefore, it seems to be
rational to implement the trie coprocessor that features up to lsat levels only.

5.9. Reducing software memory requirements
Here, it is necessary to mention Li and Durbin’s [138] work again. The authors

proposed the fast match algorithm for CPU that needs 2 ∗ TL bits to keep the ref-
erence genome. Their algorithm keeps the genome data in a form that is an output
of Burrows-Wheeler Transform. The BWT of the reference genome is defined as B
array in [138]. Additionally, the method of Li and Durbin needs two extra tables,
which allow it to search in B array in a manner that resembles trie traversal. Thanks
to the extra tables, the algorithm sees the reference genome as a list of sorted pre-
fixes. That approach gives the algorithm speed and modest memory requirements.
The extra tables are referred as C(·) and O(· , ·) in [138]. Array C(·) requires four
words only and can be neglected in the discussion. However, the complete O(· , ·)
array needs 4TLdlog2(TL)e bits, which is a huge memory. Therefore, Li and Durbin
store O(· , k) for k that is a factor of 128 and calculate the rest of the elements using
the content of the stored BWT array B at program runtime.

Each trie’s node in an FPGA custom processor represents a prefix that can be
identified by a certain position in the SPT (see Section 5.2). Similarly, taking Lee and
Durbin’s approach, the node index can be used to select the initial value from a pre-
calculated O(· , ni) table, where ni is the node’s index. The value ni is a starting point
for a CPU to perform Li and Durbin’s traversal in B array. That scheme allows the
system to adopt the successful BWT method for the CPU to finish up the matching
process that is initialized by the short-read alignment processor in FPGA.

5.10. Implementation results
Balcerak et al. [139] devoted their work to the problem of DNA short-read align-

ment. The authors implemented in an FPGA the short-read alignment processor that
is presented in this chapter. To develop, programme, run and test their concept, they
used the ZedBoard platform [134]. The ZedBoard development kit uses the Xilinx
Zynq-7000 All Programmable SoC [135], and it is a cheap System-On-a-Chip hard-
ware platform that is perfect to develop Xilinx’s Zynq applications. Zynq, which is all
programmable SoC, integrates two ARM Cortex-A9 CPUs with an FPGA structure.

130

In their experiments, they made the custom coprocessor enhance the CPU’s
work. The idea of CPU-FPGA co-processing assumes the use of a trie processor
for short reads pre-screening. In the trie that is truncated to lsat levels the bottom level
nodes represent the group of short reads that share a common prefix of length lsat. The
FPGA coprocessor returns the node’s index in order to point to the common prefix
group in SSL and SPT (see Section 5.3), or in the O(· , ni) table (see Section 5.9).
The CPU follows up the FPGA matching process for the selected subset only.

One can assess the memory requirement of the trie processor as roughly 20 Mb
for TL = 10, 000, 000 bp and L = 9. That size of BRAM memory is available in
today’s FPGAs. If the work was distributed in the cluster of FPGA-enabled nodes,
it would be possible to process genomes that fit the length of real-life DNA appli-
cations. The value of lsat for 10,000,000 gnome base pairs is twelve. Accordingly,
an expected number of subsequences that share the common prefix is 412−9 = 64.
Thus, each trie’s node of the lowest level represents on average 64 common prefix
subsequences. In other words, 64 checkups would have to be done by a cooperating
CPU for each FPGA hit.

Balcerak et al. implemented the trie of 8 levels in the XC7Z020 FPGA SoC. They
experimented with the genome size of 4 kbp. They assumed that lsat was 7 for a given
genome length. Consequently, the size of local memory for levels eight and higher
was constant. The experiment showed that the CPU-FPGA couple performed 1.7
times faster than the CPU alone. The authors concluded that the implementation of
the trie with a depth that is greater than lsat gave no advantage of the CPU-FPGA pair
over CPU processing. That is because FPGA matches against the single subsequence
effectively when it goes beyond the lsat level, and no advantage of parallel matching
of many subsequences occurs. The implementation results of Balcerak et al. are given
in Table 5.1. The clock frequency for the FPGA was 100 MHz.

Table 5.1. The use of XC7Z020 FPGA resources for the trie processor (L = 8, lsat = 7)

Resource type Utilization
Flip-Flops 5,239 out of 106,400 (4%)
LUTs 5,778 out of 53,200 (10%)
Slices 2,648 out of 13,300 (19%)
BRAMs (RAMB36E1/FIFO36E1) 90 out of 140 (64%)
BRAMs((RAMB18E1/FIFO18E1) 29 out of 280 (10%)

The implementation result of the short-read alignment processor in a large, state-
of-the-art FPGA is given in Table 5.2.

131

Table 5.2. The use of XC6VSX475T resources for the trie processor (L = 10, lsat = 9)

Resource type Utilization
Flip-Flops 552 out of 595,200 (<1%)
LUTs 1,136 out of 297,600 (<1%)
Slices 492 out of 74,400 (<1%)
BRAMs (RAMB36E1/FIFO36E1) 910 out of 1,064 (85%)
BRAMs(RAMB18E1/FIFO18E1) 12 out of 2,128 (<1%)

Table 5.2 regards Xilinx’s XC6VSX475T FPGA of the Virtex 6 family. The
FPGA is big enough to fit the trie of eleven levels (L = 10) and lsat = 9.

5.11. Conclusions
The author proposed the hardware solution to the problem of the inexact short-

read alignment. The architecture is derived from a pipelined prefix tree processor
that is proposed in Section 3.7. The automatic mismatch generation module (Letter
Edit and Match) was added to the original solution to provide the inexact genome
matching. Genome short reads are input to the processor and candidate matching po-
sitions in the reference genome are its outputs. An implementation of the architecture
on the FPGA-enabled SoC platform allowed the test and validation of the concept.
Thanks to the pipelined architecture several operations are performed in parallel, and
the data movement is minimized. That allows it to improve the processing efficiency
if compared with the CPU-only solutions. The combination of an ARM and an FPGA
outperformed the CPU-only solution mentioned in the Zynq experiment.

The extent of real genome matching problems is too big to fit a capacity of
today’s FPGAs. On the other hand, it was shown that parallel processing is available
to some breadth of the prefix tree and tree size reduction has its rationale. Only the
pre-processing of the input short reads is possible and practical in FPGA. That leads
to the conclusion that a complete practical system of the best choice is a processing
platform that combines both a CPU and an FPGA. This observation corresponds to
the general remark of this work.

The author came up with the BWT-based software algorithm to conveniently
integrate the custom alignment processor with an efficient CPU-dedicated solution
that is fast and with spare memory. The FPGA provide data screening and reduce the
complexity of CPU-bound operations in the proposed scheme. As it was presented,
the capacity of the present state-of-the-art FPGA allows it to approach short-read
alignment problems of reasonable and practical size.

132

6. Final remarks

Obstacles in FPGA-based computing

The FPGA devices play an insignificant role in the computing infrastructure to-
day. However, we have analyzed the methods and pointed out the potential advan-
tages of FPGA-accelerated computing for data-dominant problems in this work. We
underlined the clear benefits of FPGAs in the context of CPU-central systems, and
we denoted obstacles that cause that FPGA technology is still minor in the computer
industry. The FPGA and CPU devices share the same semiconductor technology but
differ significantly in the design methods and principles of operation.

The discussion provided in this paper made it clear that processors deliver a well-
proven and accessible solution to data processing, but FPGAs offer powerful, al-
though still underutilized, technology for computing applications. Unfortunately, at
present, the processing architectures that are established by CPU-based solutions can-
not be easily replaced by other processing schemes e.g. the heterogeneous platforms
that include GPGPUs, DSPs, and/or FPGAs.

The unprecedented flexibility of general purpose processors makes them a uni-
versal platform that can be used to solve any practical problem quickly. At the mo-
ment, the GPPs are the most affordable, cheap, popular, stable, and easy to develop
technology that have been present on the market for many years. The position of the
traditional sequential computing is also well-established, and multi-CPU processors
even have difficulties to make way for quick replacement of the single-CPU appli-
cations by their more efficient parallel counterparts. Programmers meet barriers to
delivering the scalable concurrent equivalents for the sequential software programs
because the preparation of a parallel, multi-threaded application requires substantial
efforts, programming skills, and adequate algorithms (the need for the adequate al-
gorithm should be particularly highlighted here). Consequently, the design process
is long, difficult, and expensive. Additionally, the final result is often uncertain. The
same or even higher barriers apply to GPGPU programming. Those hindrances make
multi-core and many-core processing reserved for the class of most demanding high-
performance applications.

133

Just like the multi-core processors and GPGPUs, the FPGAs require parallel
programming. Besides, in the case of reconfigurable devices that is the only available
option. FPGA applications are developed exclusively using the model of concurrent
processing. Furthermore, the parallel programming that is involved in an FPGA de-
sign covers very fine grain parallelism (system activities that are planned by a de-
signer must be synchronized at a level of logic signals), but also the parallelism of
functional units and processors apply in FPGAs. For that reason, the complexity of
a design process is higher in the case of FPGAs than for multi-CPU processors.

At the very beginning of the design process, a designer has to choose correct
processor technology for his/her solution. First of all, one considers all options that
allow them to meet design constraints. Afterwards, programming simplicity has its
direct impact on the selection of the suitable solution and rejection of others. General-
purpose processors do not meet design constraints in rare cases of special applica-
tions, and only exclusive projects require parallel processing in practice. As a conse-
quence, the most troublesome technologies, including FPGAs, are less popular, and
they are seldom in the real-life service. However, the above experience does not imply
that there is no space to develop methods for accelerated computing.

FPGA devices aroused interest and high expectations of the computing indus-
try at the very beginning of the 21-st century. Major vendors of high-performance
computing systems, like Cray, SGI, and Convey, incorporated custom built FPGA
accelerators into their high-performance systems. Later, they found that ready to run
applications for the FPGAs hardly existed. The programmer community was not pre-
pared for the new technology, and the costs of the FPGA-based solutions was not
compensated for by the adequate rise of a computer’s performance. That caused a big
disappointment in FPGAs and impacted on the recession in the further development
of reconfigurable computing systems. Additionally, GPGPUs rose in popularity. As
their offers included appropriate free development tools and application libraries,
GPGPUs drew the rest of the community’s interest away from the FPGAs.

As it was stated, FPGA technology was not the only possible platform for the
custom computing processors. A variety of ASIC technologies is also available, but
they do not suit where the programmability of the computing system is required.
Although the use of ASIC technology can reduce electric power consumption even
more than FPGAs, ASICs exclude system programmability, and this is prohibitive
when the general purpose systems are concerned.

The future of FPGA-based computing

The lack of popularity of FPGAs in the computing industry is compensated by
their great acceptance by other ICT branches; such as communication networking and
real-time processing for example. Reconfigurable technology thrives in these fields.

134

As a result, the production volume of FPGAs is significant, and it is comparable to
those of graphics processors at present. That coincidence is a drive for the further
development of FPGA methods, and it helps to promote the popularity of FPGA in
computing applications. The migration of FPGAs from the telecommunication and
military industries to other branches is an undoubtful fact. Unfortunately, it is an
evolution that takes a substantial amount of time.

Today, the topic of FPGA-accelerated computing is advancing in an evolutionary
way. Reconfigurable accelerators are more and more tightly integrated with CPUs,
successful FPGA applications are reported in the literature, and design tools have
been evolving to make FPGA programming easier. Additionally, we are experiencing
a kind of hardware unification for reconfigurable technology standards as FPGA ac-
celerators have adopted commodity interfaces; like the PCI-E interface or an ARM’s
AMBA peripheral bus. The most important advantage is that the new algorithms for
custom hardware are developed and proposed by researchers. In that sense, studies
and research in the area of FPGA processing are vital to the advancement of comput-
ing systems for the future.

The lack of high-level design tools for development in FPGAs is often identified
as the main reason for the limited popularity of the custom processor technology.
However, in the author’s opinion that influence is overestimated. Obviously, the quick
design process is a critical circumstance when the processing platform is selected
for a new application. Although HLS tools are available for hardware development
today, they do not revolutionize the FPGA popularity. In fact, the majority of FPGA
projects are still developed as Register Transfer Level (RTL) description because it
best suits hardware designers. One can argue that HLS, due to their immaturity, lead
to degradation of performance and still more time is necessary for HLLs to catch up
with speed and efficiency of RTL-based designs. That argument cannot be accepted
for two facts. The first experience is that, according the author’s practice, HLLs allow
a designer to gain performance that is similar to that of the HDLs, and one can notice
a higher resource consumption in HLL-based designs only. The second observation
is that high-level languages lead to performance degradation of software applications
as well, and that does not interfere with the GPP processor’s popularity. The lack
of development tools for concurrent programming cannot be raised as an argument
of low popularity in the case of multi-core and GPGPU processors because they are
widely available.

In the authors’ opinion, FPGAs are underutilized due to the lack of algorithms
and methods that benefit from fine grain parallelism. For years, von Neuman’s se-
quential machine allows computer scientist to solve information processing problems
in the plainest possible way. In consequence, that approach dominates in software
programming. The sequential algorithms allow it to work out any processing and
computing problem. In contrast, parallelism makes its way to commodity processing

135

with problems. Simply, parallel processing is a supreme technique that is too expen-
sive for the development of the commodity applications. The custom processors and
FPGAs are on the parallel side of computing technology, and one cannot measure
their value by their popularity only.

In this work, the author highlighted that data-intensive processing becomes an
essential part of today’s Internet services. That type of processing is a severe concern
of the web search service providers for example. The commodity server solutions
are not optimal for browsing and searching tasks, as the data-intensive processing
exhibits a computing power imbalance of the commodity computer components. The
infrastructure for web services has become a significant part of the ICT market, so
new server solutions have become available to better suit that purpose. As we have
seen, mobile processors have become a new option for server infrastructure where
energy-efficiency is a major constraint. We underlined that the memory wall phe-
nomenon and the IO-bottleneck limited the real-life performance of the CPUs. Today,
large-scale processing solutions that are offered on the market for web-services use
mobile processors instead of server processors. The necessity of high-performance
processing is replaced by the requirement of energy efficiency. FPGA devices fit that
trend because the custom processors that are implemented in reconfigurable logic
consume an order of magnitude less power than general-purpose processors.

The role of programmable logic devices for browsing and searching had already
been noticed earlier, as Finite-State Machine and logic manipulation were pointed
as ‘dwarves’ of the computing by the analytics of Berkeley University. The strength
of FPGAs in computing comes from fine grain parallelism. Most successful custom
processor architectures are solutions of parallel processing. Parallel processing holds
if all processing elements perform without stalls. We have noted that such a condition
can be easily met for compute-intensive algorithms. Data-intensive problems in IO-
bound systems make it hard to utilize FPGAs in a way that leads to a higher yield in
speed compared to CPUs.

At the very beginning of this work, it was stated that there was not enough algo-
rithmic research effort for custom computing processors. Particularly there is a d

eficit of pipeline algorithms. Pipelining is not applicable to multi-core general
purpose processors or GPGPUs. It is an exclusive FPGA feature to perform process-
ing in the pipe. Exclusively, FPGA-oriented pipelining algorithms must be developed.
It is a particularly important observation as pipelining techniques overcome the IO-
bottleneck problem.

The author believes that the use of the FPGA as a CPU co-processor delivers
the highest value for custom processor technology. Today, the method of FPGA-
accelerated computing has strong support in technology development. We have seen
the examples of two applications that were developed for mobile SoC devices. Those
SoC chips combined two-core ARM Cortex A9 devices and the Xilinx’s FPGA struc-

136

ture. The tight integration of CPUs and FPGA within a single silicon structure makes
constant progress. One can shortly expect 64-bit processors, both Intel’s and ARM’s,
which integrates state-of-the-art reconfigurable structures and CPUs on a single chip.
The announcement of such solutions indicates an additional incentive for custom
architectures development. Although on-chip integration of CPU and FPGA does
not solve the problem of communication throughput, it undoubtedly makes FPGA-
accelerated solutions more affordable and reliable. Thus, the significance of proper
algorithmic solutions for custom processing grows. The presented solutions of the
Hash Binary Tree and short-read alignment custom processors, which were presented
in this work, belong to that category.

The exact role that FPGAs play in computing comes with their applicability.
According to the author’s experience, despite the application area, FPGAs are best
suited to data pre-processing. This conclusion applies to the image processing, video
compression, network processing, signal processing, etc. Accordingly, FPGAs are
designated for sorting, searching and formatting in data-mining applications. CPUs
are the better choice than FPGAs for control-intensive algorithms of artificial intel-
ligence and machine learning. However, most practically used algorithms need the
data pre-processing step, and that makes the CPU+FPGA couple a very flexible so-
lution. A good example of FPGA-accelerated pre-processing was presented in this
work. The trie custom processor could enhance the software application of short-read
alignment, where an FPGA alone would not be capable of performing the complete,
full-size DNA matching process.

Today’s computing platforms use the operating system to interact with the
user and peripherals and to orchestrate information processing. As an operating
system needs a processor, processor-based platforms that are enhanced by FPGA-
accelerators seems to be the most rational solution at present. The CPU is necessary
for OS to run, and an FPGA helps to improve system performance.

In the summary, we should conclude that custom computing processors are un-
doubtedly an attractive opportunity for the future of computing. Although, the plat-
form technology for the future custom processors is yet unknown, FPGAs are the ba-
sis for custom computing of the present day. FPGAs deliver programmable switching
resources for experiments, algorithm development, and real-life solutions. Thanks to
FPGA technology we have experienced the progress in parallel algorithms, automatic
synthesis, and development tools. Those solutions can be immediately offered to the
market and applied to real applications. Custom computing processor technology
should be separated from switching technology. The expense of reconfigurable rout-
ing resources is too high in FPGAs to allow them to gain more over CPUs, but the fu-
ture alternatives of reconfigurable semiconductor technology might provide a change
to that predicament.

137

The author’s contribution

The elements of the original author’s contribution to the topic of FPGA-based
data-intensive computing has been scattered throughout the text of this paper. They
were put in a wider context, and it might be hard to distinguish and isolate them.
Now, the author’s contribution will be gathered and emphasised here in this section.
The improvements should be recognised in three significant areas. There is an algo-
rithmic and theoretical effort that allows the author to propose the new solutions for
FPGA custom computing, and it is the primary and most significant advancement.
The second one is the work of designing and implementing the custom processor ar-
chitectures for sorting and searching. Finally, the third field is constituted out of the
experiments that allow the author to compare the performance and efficiency of the
proposed solutions to the existing ones.

In this paper, the author presented custom architectures for browsing and search-
ing that gain from pipeline processing. It was demonstrated that pipeline processing
overcomes the ubiquitous IO-bottleneck and memory wall. We have found how to
maximize the length of the pipe to perform more instructions in a single clock cycle.
Solutions that have been presented in this work avoided control-intensive algorithms
because they disrupt the powerful concept of pipelining. It was shown how the inner
loop body could be pipelined and converted into the hardware structure.

It was stated in Section 3.2 that author developed the tool for automatic gener-
ation of the parametrised architectures for bitonic sorting networks in VHDL [101].
This approach allowed the author to verify the performance and estimate the amount
of resources that were necessary to implement that kind of a sorting solution in
FPGAs. Both parallel and sequential input-output methods were examined. In the
work [101], an important observation was derived which highlighted a limitation for
practical use of sorting networks in real-life systems. The IO bandwidth bottleneck
caused that problem.

The custom processor for merge sorting was discussed in Section 3.3. The cor-
responding structure was implemented and examined by author on SGI’s RASC ac-
celerating platform [110]. The custom architecture was developed in the Mitrion-C
HLS language (that was a state-of-the-art solution at that time) to verify the emerg-
ing methods for FPGA development. The conclusions were taken that the FPGA
accelerator should act as a co-processor for a CPU in real-life sorting applications.
The algorithm that combined an efficient software-based sorting with the FPGA co-
processor was benchmarked. Explicit caching was necessary to enhance processing
in the case of the merge sort architecture. This conclusion was a spark to the idea of
Sequential-Access Buffering (see Section 2.5.3).

The Bloom filter is the essential and most efficient browsing and searching tool
for data processing acceleration. The work by Jamro et al. [122] that was mentioned

138

in Section 3.4 has been conducted by the team with the author’s contribution. The col-
lective group effort delivered the multi-fold parallel Bloom filter architecture which
featured unprecedented data throughput on the accelerator implemented on SGI’s
RASC platform. Exclusively, the author developed the formulas for a probability of
the false-positive for a parallel version of the Bloom filter. The detailed discussion can
be found in [122]. We have seen the significant role of the internal dedicated Block
RAM memory in the design for FPGAs. The authors demonstrated that the number
of BRAM resources was the only limitation for the Bloom filter implementations in
FPGA devices.

Another author’s work [60], also mentioned in Section 3.4, takes advantages of
Bloom filtering in the SoC environment. The paper demonstrated the application of
the anti-virus system that was implemented in the FPGA-enabled SoC. The exper-
iment that was conducted by the author showed that an energy-efficient processor,
when supported by an FPGA accelerator, is capable of gaining an efficiency of the
server’s CPU for the data-intensive problem. The meaningful experience was taken
as the CPU&FPGA solution consumed an order of magnitude less energy in this
attempt.

Another novelty that was introduced by the author is the Hash Binary Tree that
works as the Bloom filter and the hash index simultaneously. It offers the solution that
is fast, accurate and spares hardware memory resources. Accordingly, this author’s
remarkable achievement is presented in Chapter 4. The solution is the consequence
of the original concept of the custom binary tree processor that was presented in Sec-
tion 3.6.1. In that section, the author gave his BRAM-based architecture of the binary
tree processor and proposed the algorithm to restore the matching pattern index (see
Section 3.6.2). This smart index restoring method allows the binary tree to work as
the fast index table. As it was proved by the author in Section 4.3, for a few patterns
the HBT offers memory savings when compared to the index table and the Bloom
filter.

The author proposed the modified Cuckoo hashing scheme (see Section 3.4.3)
that eliminates the problem of pattern verification completely if the dictionary is well-
defined. Also, it reduces a check to a single dictionary comparison if the analyzed
data is allowed to contain a random pattern. The original Cuckoo method offered
deterministic verification time only. The modified Cuckoo hashing scheme works
well with the HBT, which was presented in Section 4.4.

Chapter 5 presents the original authors contribution. Together with Balcerak et
al. [139], the author worked on the problem of short-read alignment. The author
devised the appropriate pipelined architectures for the custom processor and proposed
the solution to fuse the FPGA accelerator with the Burrow-Wheeler Transform-based
matching algorithm (see Section 5.10). The algorithm conveniently integrates the
custom alignment processor with an efficient CPU-dedicated solution that is fast and

139

with spare memory. The FPGA provide data screening and reduces the complexity
of the CPU-bound operations in the proposed scheme. The performed experiments
showed that an FPGA can provide acceleration of short-read alignment. Also, the
author’s further analysis, which was presented in the chapter, leads one to believe that
state-of-the-art FPGAs provide enough resources to enhance genome processing.

Further work

The works presented in this paper is a result of the author’s interest in customized
computing architectures. These structures enhance calculations and information pro-
cessing in practical applications. At present, the choice of FPGA technology, as the
most flexible and affordable for the purpose, is straightforward. For years, FPGAs
and CPUs constituted separate design domains, and their integration was a very chal-
lenging design task. These difficulties made the practical hybrid solutions of CPUs
and FPGAs rare. Today, with the help of new EDA tools and reprogrammable SoC
devices, co-design in the software and hardware domain is becoming easier and con-
stantly more popular.

Custom architectures that were presented in this dissertation were implemented
and optimized in the FPGA domain mainly. An additional focus is necessary to pro-
vide seamless integration of custom architectures with CPUs to allow practical ben-
efits. For example, the sorting and searching solutions should become a part of the
libraries that encapsulate the hardware functionality. Preferably, the library interface
should be compatible with the commonly recognized standards (like C++ <algo-
rithm> for example). The proposed hardware architectures often require a redesign
of the existing software solutions. This is the case of the custom trie processor and
BWT-based short-read alignment algorithm. The adjustments of the existing software
have to be done to make essential use of the new ideas. The effort that is required to
perform the necessary integration of the hardware and software will be, in the author’s
opinion, significant and time-consuming.

Other promising algorithms for the FPGA-based processing exist in the data-
intensive processing domain. Text similarity discovery is another research area of the
group the author works with. As text similarity calculation is a useful tool for many
practical large-scale applications, it has become a goal to port a part of the exhaustive
processing to an FPGA. The paper of Karwatowski et al. [98], from the author’s re-
search group, presents preliminary results of the cosine-similarity-measure processor
for text classification. Remarkably, the similarity processor powerfully implements
the solutions described in this monograph i.e. deep pipeling and execution of parallel
tasks for the single input data stream.

At this time, the MapReduce model is a standard for data processing of large
datasets in distributed databases. Hadoop is the first and most popular framework

140

for the MapReduce calculations. For the problem of the text similarity calculations,
it is worth to combine the two: an FPGA accelerator and a MapReduce distributed
processing model. Russek et al. [140] present preliminary results of the effort to de-
velop an energy-efficient cluster for text search and comparison applications. Hadoop
classes to delegate data execution to the hardware accelerator are presented in the
paper. The authors’ long-term goal is to introduce an alternative FPGA-enhanced so-
lution that enables green computing in the infrastructure for a search in the Internet
or huge repository.

141

Bibliography

[1] Lin M., El Gamal A., Lu Y.-C., Wong S.: Performance benefits of monolithi-
cally stacked 3-D FPGA. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 26, no. 2, 2007, 216–229

[2] Oldfield J. V., Dorf R. C.: Field-programmable gate arrays. John Wiley &
Sons, 1995

[3] Trimberger S.: Field-programmable gate array technology. Springer Science
& Business Media, 1994

[4] Salcic Z., Smailagic A.: Digital systems design and prototyping: using field
programmable logic and hardware description languages. Springer Science
& Business Media, 2000

[5] Villasenor J., Mangione-Smith W. H.: Configurable computing. Scientific
American, vol. 276, no. 6, 1997, 54–9

[6] Horta E. L., Lockwood J. W., Taylor D. E., Parlour D.: Dynamic hardware
plugins in an FPGA with partial run-time reconfiguration. [In:] Proceedings
of the 39th annual Design Automation Conference. ACM, 2002, 343–348

[7] Oliver T., Schmidt B., Maskell D.: Hyper customized processors for bio-
sequence database scanning on FPGAs. [In:] Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate ar-
rays. ACM, 2005, 229–237

[8] Ditmar J., Torkelsson K., Jantsch A.: A dynamically reconfigurable FPGA-
based content addressable memory for Internet protocol characterization.
[In:] Field-Programmable Logic and Applications: The Roadmap to Reconfig-
urable Computing. Vol. 1896, Lecture Notes in Computer Science, Springer,
2000, 19–28

[9] Divyasree J., Rajashekar H., Varghese K.: Dynamically reconfigurable regu-
lar expression matching architecture. [In:] Application-Specific Systems, Ar-
chitectures and Processors, 2008. ASAP 2008. International Conference on.
IEEE, 2008, 120–125

143

[10] Ruta A., Brzoza-Woch R., Zielinski K.: On fast development of FPGA-based
SOA services-machine vision case study. Design Automation for Embedded
Systems, vol. 16, no. 1, 2012, 45–69

[11] Amos D., Lesea A., Richter R.: FPGA-Based Prototyping Methodology Man-
ual. Happy About, 2011

[12] Kuon I., Rose J.: Measuring the gap between FPGAs and ASICs. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 26, no. 2, 2007, 203–215

[13] Zahiri B.: Structured ASICs: opportunities and challenges. [In:] Computer
Design, 2003. Proceedings. 21st International Conference on. IEEE, 2003,
404–409

[14] Rodriguez-Andina J. J., Moure M. J., Valdes M. D.: Features, design tools,
and application domains of FPGAs. Industrial Electronics, IEEE Transactions
on, vol. 54, no. 4, 2007, 1810–1823

[15] Darema F.: The SPMD Model: Past, Present and Future. [In:] Recent Advances
in Parallel Virtual Machine and Message Passing Interface. Vol. 2131, Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2001, 1–1

[16] Gara A., Blumrich M. A., Chen D., Chiu G.-T., Coteus P., Giampapa M. E.,
Haring R. A., Heidelberger P., Hoenicke D., Kopcsay G. V. et al.: Overview of
the Blue Gene/L system architecture. IBM Journal of Research and Develop-
ment, vol. 49, no. 2.3, 2005, 195–212

[17] Hennessy J. L., Patterson D. A.: Computer architecture: a quantitative ap-
proach. Elsevier, 2012

[18] Akhter S., Roberts J.: Multi-core programming. Vol. 33, Intel Press Hillsboro,
2006

[19] Herlihy M., Shavit N.: The Art of Multiprocessor Programming, Revised
Reprint. Elsevier, 2012

[20] Asanovic K., Bodik R., Catanzaro B. C., Gebis J. J., Husbands P., Keutzer K.,
Patterson D. A., Plishker W. L., Shalf J., Williams S. W., Yelick K. A.: The
Landscape of Parallel Computing Research: A View from Berkeley. Technical
report, EECS Department, University of California, Berkeley, Dec 2006

[21] Gepner P., Kowalik M. F.: Multi-core processors: New way to achieve high sys-
tem performance. [In:] Parallel Computing in Electrical Engineering, 2006.
PAR ELEC 2006. International Symposium on. IEEE, 2006, 9–13

[22] Mahapatra N. R., Venkatrao B.: The processor-memory bottleneck: problems
and solutions. Crossroads, vol. 5, no. 3es, 1999, 2

[23] Borkar S.: Design challenges of technology scaling. Micro, IEEE, vol. 19,
no. 4, 1999, 23–29

144

[24] Amdahl G. M.: Validity of the single processor approach to achieving large
scale computing capabilities. [In:] Proceedings of the April 18-20, 1967,
spring joint computer conference. ACM, 1967, 483–485

[25] Gustafson J. L.: Reevaluating Amdahl’s law. Communications of the ACM,
vol. 31, no. 5, 1988, 532–533

[26] Deng Y., Zhang P., Marques C., Powell R., Zhang L.: Analysis of Linpack and
power efficiencies of the world’s TOP500 supercomputers. Parallel Comput-
ing, vol. 39, no. 6, 2013, 271–279

[27] Morse H. S.: Practical parallel computing. Academic Press, 2014
[28] Loshin D.: High Performance Computing Demystified. Academic Press, 2014
[29] Kitowski J., Turała M., Wiatr K., Dutka Ł.: PL-Grid: foundations and per-

spectives of national computing infrastructure. [In:] Building a National Dis-
tributed e-Infrastructure–PL-Grid. Vol. 7136, Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 2012, 1–14

[30] Ultsch A.: Proof of Pareto’s 80/20 Law and Precise Limits for ABC-Analysis.
Technical Report 2002/c, DataBionics Reseach Group, University of Marburg,
2002

[31] Kuna D., Jamro E., Russek P., Wiatr K.: Using standard hardware accelerators
to decrease computation times in scientific applications. Computer Science,
vol. 10, 2009, 65–74

[32] Pietroń M., Russek P., Wiatr K.: Accelerating Select where and select join
queries on a GPU. Computer Science, vol. 14, no. 2, 2013, 243

[33] Dąbrowska-Boruch A., Jamro E., Janiszewski M., Kuna D., Machaczek K.,
Russek P., Wiatr K., Wielgosz M.: Utilization of FPGA Architectures for High
Performance Computations. Computational Methods in Science and Technol-
ogy, 2010, 63–69

[34] Jamro E., Janiszewski M., Machaczek K., Russek P., Wiatr K., Wielgosz M.:
Computation acceleration on SGI RASC: FPGA based reconfigurable com-
puting hardware. Computer Science, vol. 9, 2008, 21–34

[35] Gielata A., Russek P., Wiatr K.: AES hardware implementation in FPGA for
algorithm acceleration purpose. [In:] Signals and Electronic Systems, 2008.
ICSES’08. International Conference on. IEEE, 2008, 137–140

[36] Russek P., Wiatr K.: The prospect of computing acceleration using reconfig-
urable logic technology in huge computational power systems. [In:] Proceed-
ings of the IFAC Workshop on Programable Devices and Embedded Systems,
PDeS 2006, Brno, Czech Republic. 2006, 44–49

[37] Russek P., Wiatr K.: Dedicated architecture for double precision matrix mul-
tiplication in supercomputing environment. [In:] Design and Diagnostics of
Electronic Circuits and Systems, 2007. DDECS’07. IEEE. IEEE, 2007, 1–4

145

[38] Wielgosz M., Pietroń M., Jamro E., Russek P., Wiatr K.: Two electron inte-
grals calculation accelerated with double precision exp () hardware module.
Reconfigurable Systems Summer Institute, RSSI proceedings, 2007

[39] Wielgosz M., Mazur G., Makowski M., Jamro E., Russek P., Wiatr K.: Anal-
ysis of the Basic Implementation Aspects of Hardware-Accelerated Density
Functional Theory Calculations. Computing and Informatics, vol. 29, no. 6,
2012, 989–1000

[40] Wielgosz M., Jamro E., Żurek D., Wiatr K.: FPGA Implementation of the Se-
lected Parts of the Fast Image Segmentation. [In:] Intelligent Tools for Building
a Scientific Information Platform. Springer, 2012, 203–216

[41] Asanovic K., Bodik R., Demmel J., Keaveny T., Keutzer K., Kubiatowicz J.,
Morgan N., Patterson D., Sen K., Wawrzynek J. et al.: A view of the parallel
computing landscape. Communications of the ACM, vol. 52, no. 10, 2009,
56–67

[42] Pike R. Notes on Programming in C. http://doc.cat-v.org/bell_
labs/pikestyle/, 1989. Accessed: 2015-09-03

[43] Wiatr K., Russek P.: Embedded zero wavelet coefficient coding method for
FPGA implementation of video codec in real-time systems. [In:] Information
Technology: Coding and Computing, 2000. Proceedings. International Con-
ference on. IEEE, 2000, 146–151

[44] Dąbrowska A., Wiatr K.: Modyfikacja algorytmu E3SS estymacji ruchu na
potrzeby implementacji w układach FPGA. Automatyka/Akademia Górniczo-
Hutnicza im. Stanisława Staszica w Krakowie, vol. 10, 2006, 345–353

[45] Han J., Kamber M., Pei J.: Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA, 3rd edition, 2011

[46] Gray J., Coates J., Nyberg C.: Performance/price sort and pennysort. Techni-
cal report, Technical Report MS-TR-98-45, Microsoft, 1998

[47] Nyberg C., Shah M., Govindaraju N. Sort benchmark home page. http:
//sortbenchmark.org. Accessed: 2015-09-03

[48] Mueller R., Teubner J.: FPGA: what’s in it for a database? [In:] Proceedings
of the 2009 ACM SIGMOD International Conference on Management of data.
ACM, 2009, 999–1004

[49] Putnam A., Caulfield A. M., Chung E. S., Chiou D., Constantinides K.,
Demme J., Esmaeilzadeh H., Fowers J., Gopal G. P., Gray J. et al.: A recon-
figurable fabric for accelerating large scale datacenter services. [In:] Com-
puter Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on.
IEEE, 2014, 13–24

146

[50] Yan J., Zhao Z.-X., Xu N.-Y., Jin X., Zhang L.-T., Hsu F.-H.: Efficient Query
Processing for Web Search Engine with FPGAs. [In:] Field-Programmable
Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on. IEEE, 2012, 97–100

[51] Leber C., Geib B., Litz H.: High frequency trading acceleration using FPGAs.
[In:] Field Programmable Logic and Applications (FPL), 2011 International
Conference on. IEEE, 2011, 317–322

[52] Halstead R. J., Sukhwani B., Min H., Thoennes M., Dube P., Asaad S., Iyer
B.: Accelerating join operation for relational databases with FPGAs. [In:]
Field-Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on. IEEE, 2013, 17–20

[53] Sidhu R., Prasanna V. K.: Fast regular expression matching using FPGAs. [In:]
Field-Programmable Custom Computing Machines, 2001. FCCM’01. The 9th
Annual IEEE Symposium on. IEEE, 2001, 227–238

[54] Sourdis I., Bispo J., Cardoso J. M., Vassiliadis S.: Regular expression matching
in reconfigurable hardware. Journal of Signal Processing Systems, vol. 51,
no. 1, 2008, 99–121

[55] Kumar S., Dharmapurikar S., Yu F., Crowley P., Turner J.: Algorithms to accel-
erate multiple regular expressions matching for deep packet inspection. ACM
SIGCOMM Computer Communication Review, vol. 36, no. 4, 2006, 339–350

[56] Bispo J., Cardoso J. M.: Synthesis of regular expressions for FPGAs. Interna-
tional Journal of Electronics, vol. 95, no. 7, 2008, 685–704

[57] Hutchings B. L., Franklin R., Carver D.: Assisting network intrusion detection
with reconfigurable hardware. [In:] Field-Programmable Custom Computing
Machines, 2002. Proceedings. 10th Annual IEEE Symposium on. IEEE, 2002,
111–120

[58] Ranganathan P.: The new (system) balance of power and opportunities for op-
timizations. [In:] Proceedings of the 2014 international symposium on Low
power electronics and design. ACM, 2014, 331–332

[59] Russek P., Wiatr K.: FPGA-accelerated algorithm for the regular expression
matching system. International Journal of Electronics, vol. 102, no. 1, 2015,
71–88

[60] Russek P., Wiatr K.: The Regular Expression Matching Algorithm for the
Energy Efficient Reconfigurable SoC. [In:] Parallel Processing and Applied
Mathematics. Springer, 2014, 545–556

[61] Wang C., Li X., Zhou X., Chen Y., Cheung R. C.: Big data genome sequencing
on zynq based clusters. [In:] Proceedings of the 2014 ACM/SIGDA interna-
tional symposium on Field-programmable gate arrays. ACM, 2014, 247–247

147

[62] Lin Z., Chow P.: ZCluster: A Zynq-based Hadoop cluster. [In:] Field-
Programmable Technology (FPT), 2013 International Conference on. IEEE,
2013, 450–453

[63] Jamieson P., Luk W., Wilton S. J., Constantinides G. et al.: An energy and
power consumption analysis of FPGA routing architectures. [In:] Field-
Programmable Technology, 2009. FPT 2009. International Conference on.
IEEE, 2009, 324–327

[64] Altera Corp. Reducing Power Consumption and Increasing Bandwidth on 28-
nm FPGAs. http://www.altera.com, 2012. Accessed: 2015-09-03

[65] Shang L., Kaviani A. S., Bathala K.: Dynamic power consumption in Virtex-II
FPGA family. [In:] Proceedings of the 2002 ACM/SIGDA tenth international
symposium on Field-programmable gate arrays. ACM, 2002, 157–164

[66] Intel Corp. Power Management in Intel Architecture Servers. http://
download.intel.com, 2010. Accessed: 2015-09-03

[67] Xilinx. Xilinx Power Estimator. http://www.xilinx.com. Accessed:
2015-04-25

[68] Viswanath R., Wakharkar V., Watwe A., Lebonheur V. et al. Thermal perfor-
mance challenges from silicon to systems. http://mprc.pku.edu.cn,
2000. Accessed: 2015-09-03

[69] DRC Corp. DRC Accelium Coprocessors Datasheet. http://
drccomputer.com, 2014. Accessed: 2015-04-25

[70] Cichoń S., Gorgoń M.: FPGA-based dvcpro hd decoder implementation using
impulse C. Computer Science, vol. 14, no. 4, 2013, 531–546

[71] Bakos J. D.: High-performance heterogeneous computing with the Convey
HC-1. Computing in Science & Engineering, vol. 12, no. 6, 2010, 80–87

[72] Augustin W., Heuveline V., Weiß J.-P.: Convey HC-1 Hybrid Core Computer:
The Potential of FPGAs in Numerical Simulation. KIT, 2010

[73] Silicon Graphics. Reconfigurable Application-Specific Computing User’s
Guide. http://techpubs.sgi.com. Accessed: 2015-07-28

[74] Wielgosz M., Jamro E., Wiatr K.: Accelerating calculations on the RASC plat-
form: A case study of the exponential function. [In:] Reconfigurable Comput-
ing: Architectures, Tools and Applications. Springer, 2009, 306–311

[75] Vahid F.: Digital Design with RTL Design, VHDL and Verilog VHDL. John
Wiley & Sons, 2010

[76] Gajski D. D., Kleinsmith J.: Principles of digital design. Vol. 42, Prentice Hall
New York, 1997

[77] Micheli G. D.: Synthesis and optimization of digital circuits. McGraw-Hill
Higher Education, 1994

148

[78] Gajski D. D., Ramachandran L.: Introduction to high-level synthesis. Design
& Test of Computers, IEEE, vol. 11, no. 4, 1994, 44–54

[79] Baranov S. I., Tehnikaülikool T.: Logic and system design of digital systems.
TUT Press Tallinn, 2008

[80] Hafer L. J., Parker A. C.: A formal method for the specification, analysis, and
design of register-transfer level digital logic. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, vol. 2, no. 1, 1983, 4–18

[81] Leive G., Thomas D. E.: A technology relative Logic Synthesis and Module Se-
lection system. [In:] Proceedings of the 18th Design Automation Conference.
IEEE Press, 1981, 479–485

[82] Fernandez E. B., Lang T.: Scheduling as a graph transformation. IBM Journal
of Research and Development, vol. 20, no. 6, 1976, 551–559

[83] Fisher J. A.: Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, vol. 30, no. 7, 1981, 478–490

[84] Hafer L. J., Parker A. C.: Automated synthesis of digital hardware. Computers,
IEEE Transactions on, vol. 100, no. 2, 1982, 93–109

[85] Hwang C.-T., Lee J.-H., Hsu Y.-C.: A formal approach to the scheduling prob-
lem in high level synthesis. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 10, no. 4, 1991, 464–475

[86] Randy A., Kennedy K.: Optimizing Compilers for Modern Architectures. Mor-
gan Kauffman, 2001

[87] Pietroń M., Russek P., Wiatr K.: Loop profiling tool for HPC code inspection
as an efficient method of FPGA based acceleration. International Journal of
Applied Mathematics and Computer Science, vol. 20, no. 3, 2010, 581–589

[88] Fingeroff M.: High-level synthesis blue book. Xlibris Corporation, 2010
[89] Lee T.-F., Wu A.-H., Gajski D. D., Lin Y.-L.: An effective methodology for

functional pipelining. [In:] Computer-Aided Design, 1992. ICCAD-92. Digest
of Technical Papers., 1992 IEEE/ACM International Conference on. IEEE,
1992, 230–233

[90] Jeon J., Choi K.: Loop pipelining in hardware-software partitioning. [In:]
Design Automation Conference 1998. Proceedings of the ASP-DAC’98. Asia
and South Pacific. IEEE, 1998, 361–366

[91] Chao L.-F., LaPaugh A. S., Sha E.-M.: Rotation scheduling: A loop pipelining
algorithm. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 16, no. 3, 1997, 229–239

[92] Wielgosz M., Jamro E., Wiatr K.: Highly efficient structure of 64-bit expo-
nential function implemented in FPGAs. [In:] Reconfigurable Computing: Ar-
chitectures, Tools and Applications. Vol. 4943, Lecture Notes in Computer
Science, Springer, 2008, 274–279

149

[93] Kavi K. M., Buckles B. P., Bhat U. N.: A formal definition of data flow graph
models. Computers, IEEE Transactions on, vol. 100, no. 11, 1986, 940–948

[94] De Jong G. G.: Data flow graphs: system specification with the most unre-
stricted semantics. [In:] Proceedings of the conference on European design
automation. IEEE Computer Society Press, 1991, 401–405

[95] Amellal S., Kaminska B.: Scheduling of a control data flow graph. [In:] Cir-
cuits and Systems, 1993., ISCAS’93, 1993 IEEE International Symposium on.
IEEE, 1993, 1666–1669

[96] Amellal S., Kaminska B.: Functional synthesis of digital systems with TASS.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, vol. 13, no. 5, 1994, 537–552

[97] Wu Q., Wang Y., Bian J., Wu W., Xue H.: A hierarchical CDFG as interme-
diate representation for hardware/software codesign. [In:] Communications,
Circuits and Systems and West Sino Expositions, IEEE 2002 International
Conference on. Vol. 2. IEEE, 2002, 1429–1432

[98] Karwatowski M., Koryciak S., Jamro E., Dąbrowska-Boruch A., Wiatr K.:
Cosine similarity metric calculation on low power heterogeneous computing
platform. [In:] KU KDM 2015 : eigth ACC Cyfronet AGH users’ conference :
Zakopane, 11-13 Mar 2015. 2015, 111–112

[99] Mueller R., Teubner J., Alonso G.: Data processing on FPGAs. Proceedings
of the VLDB Endowment, vol. 2, no. 1, 2009, 910–921

[100] Cormen T., Leiserson C., Rivest R., Stein C.: Introduction to Algorithms MIT
Press. Cambridge, MA, 2003

[101] Russek P., Wiatr K.: Hardware acceleration of sorting algorithms using re-
configuration technics. [In:] IFAC : proceedings of IFAC workshop on Pro-
grammable Devices and Systems PDS 2004 : international conference : Cra-
cow, November 18th-19th, 2004. 2004

[102] Knuth D. E.: The art of computer programming: sorting and searching. Vol. 3,
Pearson Education, 1998

[103] Batcher K. E.: Sorting networks and their applications. [In:] Proceedings of
the April 30–May 2, 1968, spring joint computer conference. ACM, 1968,
307–314

[104] Ajtai M., Komlós J., Szemerédi E.: Sorting in clogn parallel steps. Combina-
torica, vol. 3, no. 1, 1983, 1–19

[105] Zhang Y., Zheng S.: An efficient parallel VLSI sorting architecture. VLSI
Design, vol. 11, no. 2, 2000, 137–147

[106] Huang C.-Y., Yu G.-J., Liu B.-D.: A hardware design approach for merge-
sorting network. [In:] Circuits and Systems, 2001. ISCAS 2001. The 2001
IEEE International Symposium on. Vol. 4. IEEE, 2001, 534–537

150

[107] Greß A., Zachmann G.: GPU-ABiSort: Optimal parallel sorting on stream
architectures. [In:] Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International. IEEE, 2006, 45–55

[108] Mueller R., Teubner J., Alonso G.: Sorting networks on FPGAs. The VLDB
Journal-The International Journal on Very Large Data Bases, vol. 21, no. 1,
2012, 1–23

[109] Peters H., Schulz-Hildebrandt O., Luttenberger N.: Fast in-place sorting with
cuda based on bitonic sort. [In:] Parallel Processing and Applied Mathemat-
ics. Vol. 6067, Lecture Notes in Computer Science, Springer, 2010, 403–410

[110] Russek P., Wiatr K.: The enhancement of a computer system for sorting capa-
bilities using FPGA custom architecture. Computing and Informatics, vol. 32,
no. 4, 2014, 859–876

[111] Mohl S.: The Mitrion-C programming language. Mitrionics Inc, 2006
[112] Koch D., Torresen J.: FPGASort: a high performance sorting architecture ex-

ploiting run-time reconfiguration on FPGAs for large problem sorting. [In:]
Proceedings of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays. ACM, 2011, 45–54

[113] Harkins J., El-Ghazawi T., El-Araby E., Huang M.: Performance of sorting al-
gorithms on the SRC 6 reconfigurable computer. [In:] Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE International Conference on.
IEEE, 2005, 295–296

[114] Marcelino R., Neto H., Cardoso J. M.: Sorting units for FPGA-based embed-
ded systems. [In:] Distributed Embedded Systems: Design, Middleware and
Resources. Vol. 271, IFIP-The International Federation for Information Pro-
cessing, Springer, 2008, 11–22

[115] Bloom B. H.: Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, vol. 13, no. 7, 1970, 422–426

[116] Peterson W. W., Brown D. T.: Cyclic codes for error detection. [In:] Proceed-
ings of the IRE. 1961, 228–235

[117] Dharmapurikar S., Krishnamurthy P., Sproull T., Lockwood J.: Deep packet
inspection using parallel bloom filters. [In:] High performance interconnects,
2003. proceedings. 11th symposium on. IEEE, 2003, 44–51

[118] Suresh D. C., Guo Z., Buyukkurt B., Najjar W. A.: Automatic compilation
framework for bloom filter based intrusion detection. [In:] Reconfigurable
Computing: Architectures and Applications. Springer, 2006, 413–418

[119] Maccari L., Fantacci R., Neira P., Gasca R. M.: Mesh network firewalling with
bloom filters. [In:] Communications, 2007. ICC’07. IEEE International Con-
ference on. IEEE, 2007, 1546–1551

151

[120] Jain N.: Using Bloom filters to refine web search results. [In:] Proc. 7th
WebDB. 2005, 25–30

[121] Raykova M., Vo B., Bellovin S. M., Malkin T.: Secure anonymous database
search. [In:] Proceedings of the 2009 ACM workshop on Cloud computing
security. ACM, 2009, 115–126

[122] Jamro E., Russek P., Dąbrowska-Boruch A., Wielgosz M., Wiatr K.: The im-
plementation of the customized, parallel architecture for a fast word-match
program. International Journal of Computer Systems Science & Engineering,
vol. 26, no. 4, 2011, 285–292

[123] Dharmapurikar S., Krishnamurthy P., Sproull T. S., Lockwood J. W.: Deep
Packet Inspection using Parallel Bloom Filters. IEEE Micro, vol. 24, no. 1,
2004, 52–61

[124] Jacob A., Gokhale M.: Language classification using n-grams accelerated by
FPGA-based Bloom filters. [In:] Proceedings of the 1st international workshop
on High-performance reconfigurable computing technology and applications:
held in conjunction with SC07. ACM, 2007, 31–37

[125] Sourdis I., Pnevmatikatos D., Wong S., Vassiliadis S.: A reconfigurable
perfect-hashing scheme for packet inspection. [In:] Field Programmable Logic
and Applications, 2005. International Conference on. IEEE, 2005, 644–647

[126] Papadopoulos G., Pnevmatikatos D.: Hashing+ memory= low cost, exact pat-
tern matching. [In:] Field Programmable Logic and Applications, 2005. Inter-
national Conference on. IEEE, 2005, 39–44

[127] Devroye L., Morin P.: Cuckoo hashing: further analysis. Information Process-
ing Letters, vol. 86, no. 4, 2003, 215–219

[128] Thinh T. N., Kittitornkun S., Tomiyama S.: Applying cuckoo hashing for
FPGA-based pattern matching in NIDS/NIPS. [In:] Field-Programmable
Technology, 2007. ICFPT 2007. International Conference on. IEEE, 2007,
121–128

[129] Le H., Prasanna V. K.: A memory-efficient and modular approach for string
matching on fpgas. [In:] Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium on. IEEE, 2010,
193–200

[130] Katz R. H., Borriello G.: Contemporary logic design. Pearson Prentice Hall,
2005

[131] Aho A. V., Corasick M. J.: Efficient string matching: an aid to bibliographic
search. Communications of the ACM, vol. 18, no. 6, 1975, 333–340

[132] Tan L., Sherwood T.: A high throughput string matching architecture for intru-
sion detection and prevention. [In:] ACM SIGARCH Computer Architecture
News. Vol. 33. IEEE Computer Society, 2005, 112–122

152

[133] Jung H.-J., Baker Z. K., Prasanna V. K.: Performance of FPGA implementation
of bit-split architecture for intrusion detection systems. [In:] Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International. IEEE,
2006, 8–pp

[134] Avnet. ZedBoard Hardware User’s Guide. http://www.zedboard.org.
Accessed: 2015-09-03

[135] Xilinx. Zynq-7000 All Programmable SoC Overview. http://www.
xilinx.com. Accessed: 2015-05-07

[136] Xilinx. LogiCORE IP AXI DMA v6.03a. Product Guide. http://www.
xilinx.com. Accessed: 2015-09-03

[137] Metzker M. L.: Sequencing technologies – the next generation. Nature Re-
views Genetics, vol. 11, no. 1, 2010, 31–46

[138] Li H., Durbin R.: Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics, vol. 25, no. 14, 2009, 1754–1760

[139] Balcerak M., Strzebak T., Russek P., Koryciak S., Wiatr K.: Pattern Searching
Scheme Using CPU & FPGA. [In:] Cracow Grid Workshop 2015 (CGW 15).
Vol. 14, 2015, 59–60

[140] Russek P., Karwatowski M., Wielgosz M., Frączek R., Wiatr K.: Documents
similarity calculation in the low-power cluster. [In:] KU KDM 2015 : eigth
ACC Cyfronet AGH users’ conference : Zakopane, 11-13 Mar 2015. 2015,
37–38

