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JÓZEF DUDA

The Lyapunov functionals for time delay systems

Summary

In this monograph are presented results of the author’s research on the determination of the
Lyapunov functionals for linear systems with time delay and its applications in the parametric
optimization problem. The Lyapunov quadratic functionals are used to calculation of a value
of a quadratic performance index of quality in the process of parametric optimization for
time delay systems. The value of that functional at the initial state of the time delay system
is equal to the value of a quadratic performance index of quality. To calculate the value of
a performance index of quality one needs the formulas for the Lyapunov functional coefficients.
In this monograph the method proposed by Repin [79] is applied to obtain the Lyapunov
functionals, with coefficients given by analytical formulas. In Chapter 2. are considered
systems with the retarded type time delay. This method is applied to the system with one delay
(Chapter 2.2), to the system with two delays (Chapter 2.3), to the retarded type time delay
system with both lumped and distributed delay (Chapter 2.4), to the system with a retarded
type time-varying delay (Chapter 2.5). In Chapter 3. are considered neutral systems. Repin’s
method is applied to the neutral system with lumped delay (Chapter 3.2), to the neutral
system with both lumped and distributed delay (Chapter 3.3) and to the neutral system with
a time-varying delay (Chapter 3.4). In last years a method of determination of a Lyapunov
functional by means of Lyapunov matrices is very popular, see for example [50–66, 72, 73, 76,
81–83]. This method is applied to the parametric optimization problem of retarded type time
delay system both with one and two delays (Chapter 4) and to the parametric optimization
problem of neutral type time delay system for system with one and two delays (Chapter 5).
The examples of using of the Lyapunov functionals to calculation of the performance index
value in the parametric optimization problem for linear systems with time delay are given.
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JÓZEF DUDA

Funkcjonały Lapunowa dla układów z opóźnieniem

Streszczenie

W monografii przedstawiono wyniki badań autora nad określeniem funkcjonałów Lapunowa
dla liniowych układów z opóźnieniem i ich zastosowaniem w procesie optymalizacji parame-
trycznej. Kwadratowe funkcjonały Lapunowa są stosowane do wyznaczenia wartości kwadra-
towego wskaźnika jakości w procesie optymalizacji parametrycznej układów z opóźnieniem.
Wartość funkcjonału dla stanu początkowego układu z opóźnieniem jest równa wartości
kwadratowego wskaźnika jakości. Do wyznaczenia wartości wskaźnika jakości konieczna jest
znajomość wzorów na współczynniki funkcjonału Lapunowa. W monografii została zasto-
sowana metoda, zaproponowana przez Repina [79], wyznaczenia wzorów na współczynniki
funkcjonału Lapunowa. W rozdziale 2. dla układu z opóźnieniem. W kolejnych podrozdzia-
łach została zastosowana metoda Repina do wyznaczania współczynników funkcjonału La-
punowa dla układu z jednym opóźnieniem skupionym (rozdział 2.2), dla układu z dwoma
skupionymi opóźnieniami (rozdział 2.3), dla układu z opóźnieniem skupionym i rozłożonym
(rozdział 2.4), dla układu z opóźnieniem zmiennym w czasie (rozdział 2.5). W rozdziale 3.
zastosowano metodę Repina dla układu neutralnego. Kolejno dla układu neutralnego z opóźnie-
niem skupionym (rozdział 3.2), dla układu neutralnego z opóźnieniem skupionym i rozłożonym
(rozdział 3.3) oraz dla układu neutralnego z opóźnieniem zmiennym w czasie (rozdział 3.4).
W ostatnich latach jest bardzo popularna metoda wyznaczania funkcjonału Lapunowa za
pomocą macierzy Lapunowa, patrz np. [50–66, 72, 73, 76, 81–83]. Ta metoda została zasto-
sowana w procesie optymalizacji parametrycznej dla układu z jednym i dwoma opóźnieniami
(rozdział 4) i w procesie optymalizacji parametrycznej dla układu neutralnego z jednym
i z dwoma opóźnieniami (rozdział 5). W monografii zostały również przedstawione przykłady
zastosowania funkcjonałów Lapunowa do obliczania wartości wskaźnika jakości w procesie
optymalizacji parametrycznej układów z opóźnieniem.
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Notations and symbols

R – is the set of all real numbers
C – is the set of all complex numbers
Rn – is a space of all n-vectors with entries n R

Rn×m – is a space of all n×m real-valued matrices
I, In×n – is an identity matrix, identity n×n matrix

0n×m – is a zero n×m matrix
0r – is the Rn-valued trivial function, 0r(θ) = 0 ∈ Rn, θ ∈ [−r,0]

AT – transpose of a matrix A
A > 0 – symmetric matrix A is positive definite
A⊗B – is a Kronecker product of matrices A and B
col A – is a column vector which consists of columns of matrix A
λ (C) – is the eigenvalue of the matrix C
σ (C) – is a spectrum of matrix C and is defined as

σ (C) = {λ ∈ C : det(λ I−C) = 0}
γ (C) – is the spectral radius of a matrix C and is defined as

γ (C) = sup{| λ |: λ ∈ σ (C)}
‖ · ‖Rn – is an Euclidean norm in Rn

C([−r,0],Rn) – is a space of all continuous Rn valued functions defined on the segment
[−r,0] with the uniform norm ‖ ϕ ‖C= sup

θ∈[−r,0]
‖ ϕ(θ) ‖

C1([−r,0],Rn) – is a space of all continuous Rn valued functions with continuous
derivative defined on the segment [−r,0]

L2([−r,0),Rn) – is a space of all Lebesgue square integrable functions defined on the
segment [−r,0) with values in Rn

‖ ϕ ‖L2 – is a norm in L2([−r,0),Rn); (‖ ϕ ‖L2=
√∫ 0
−r
(
‖ ϕ(t) ‖2

Rn

)
dt)

W 1,2([−r,0),Rn) – is a space of all absolutely continuous functions with derivatives in
a space of Lebesgue square integrable functions on interval [−r,0) with
values in Rn
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‖ ϕ ‖W 1,2 – is a norm in W 1,2 ([−r,0),Rn);

(‖ ϕ ‖W 1,2=

√∫ 0
−r

(
‖ ϕ(t) ‖2

Rn + ‖ dϕ(t)
dt ‖

2
Rn

)
dt)

PC([−r,0],Rn) – is a space of all piece-wise continuous vector valued functions
defined on the segment [−r,0] with the uniform norm
‖ ϕ ‖PC= sup

θ∈[−r,0]
‖ ϕ(θ) ‖

PC1([−r,0],Rn) – is a space of all piece-wise continuously differentiable vector
valued functions defined on the segment [−r,0] with the uniform
norm ‖ ϕ ‖PC1= sup

θ∈[−r,0]
‖ ϕ(θ) ‖

xt(t0,ϕ) : [−h,0]→ Rn – is a shifted restriction of the function x(·, t0,ϕ) to an interval
[t−h, t] and is defined by a formula xt(t0,ϕ)(θ) := x(t +θ , t0,ϕ)
for t ≥ t0 and θ ∈ [−h,0]

xt(ϕ) : [−h,0]→ Rn – is a shifted restriction of the function x(·,ϕ) to an interval [t−h, t]
and is defined by a formula xt(ϕ)(θ) := x(t +θ ,ϕ) for t ≥ 0 and
θ ∈ [−h,0]

xt : [−h,0]→ Rn – is a shifted restriction of the function x(·,ϕ) to an interval [t−h, t]
and is defined by a formula xt(θ) := x(t + θ) for t ≥ 0 and
θ ∈ [−h,0], when the function ϕ is known

f (t +0) – is the right-hand-side limit of f (t) at a point t,
f (t +0) = limε→0 f (t+ | ε |)

f (t−0) – is the left-hand-side limit of f (t) at a point t,
f (t +0) = limε→0 f (t− | ε |)

U(ξ ) – is the Lyapunov matrix; (U(ξ ) =
∫

∞

0 KT (t)WK(t +ξ )dt)



1 Introduction

This monograph is a summary of the author’s research on the determination of the Lyapunov
functionals for linear systems with time delay and its applications in the parametric
optimization problem.

Lyapunov quadratic functionals are used to test the stability of time delay systems, in
computation of critical delay values for time delay systems, in computation of exponential
estimates for solutions of time delay systems, in calculation of robustness bounds for uncertain
time delay systems, in calculation of a quadratic performance index of quality in the process
of parametric optimization for time delay systems.

The stability criteria for time delay systems are formulated in the form of Linear Matrix
Inequalities (LMIs). A numerical scheme for construction of Lyapunov functionals was
proposed by K. Gu [37]. This method starts with discretization of the Lyapunov functional.
The scheme is based on Linear Matrix Inequality (LMI) technique. E. Fridman [30] introduced
Lyapunov–Krasovskii functionals for investigation of the stability of linear retarded and
neutral type systems with discrete and distributed delays. Method was based on an equivalent
descriptor form of the original system and obtained delay-dependent and delay-independent
conditions in terms of LMIs. D. Ivanescu et al. [48] proceeded with delay depended stability
analysis for linear neutral systems, constructed the Lyapunov functional and derived sufficient
delay-dependent conditions in terms of LMIs. Q.L. Han [41] obtained a delay-dependent
stability criterion for neutral systems with a time-varying discrete delay. This criterion was
expressed in the form of LMI and was obtained using the Lyapunov direct method. Q.L. Han
[42] investigated robust stability of uncertain neutral systems with discrete and distributed
delays, which was based on descriptor model transformation and the decomposition technique,
and formulated stability criteria in the form of LMIs. Q.L. Han [43] considered the stability
for linear neutral systems with norm-bounded uncertainties in all system matrices and derived
a delay-dependent stability criterion. Neither model transformation, nor the bounding technique
for cross terms is involved in derivation of the stability criterion. Q.L. Han [44] developed
the discretized Lyapunov functional approach to investigation of the stability of linear neutral
systems with mixed neutral and discrete delays. Stability criteria, which are applicable to
linear neutral systems with both small and no small discrete delays, are formulated in the form
of LMIs. Q.L. Han [45] studied the problem of stability of linear time delay systems, both
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retarded and neutral types, using the discrete delay N-decomposition approach to derive some
more general new discrete delay dependent stability criteria. Q.L. Han [46] employed the delay
decomposition approach to derive some improved stability criteria for linear neutral systems
and to deduce some sufficient conditions for the existence of the Lyapunov functional for
a system with k-non-commensurate neutral time delays of a delayed state feedback controller,
which ensure asymptotic stability and a prescribed H1 performance level of the corresponding
closed-loop system. K. Gu and Y. Liu [38] investigated the stability of coupled differential
functional equations using the discretized Lyapunov functional method and set forth the
stability condition in the form of LMIs, suitable for numerical computation.

E.F. Infante and W.B. Castelan [47] based the construction of the Lyapunov functional on
solution of a matrix differential-difference equation on a finite time interval. V.L. Kharitonov
and A.P. Zhabko [66] extended the results of E.F. Infante and W.B. Castelan and proposed
a procedure of construction of the quadratic functional for linear retarded type delay systems
which could be used for robust stability analysis of time delay systems. This functional was
expressed by means of a Lyapunov matrix, which depended on the fundamental matrix of
a time delay system. V.L. Kharitonov [50] extended some basic results obtained for the case
of retarded type time delay systems to the case of neutral type time delay systems, and to
neutral type time delay systems with a discrete and distributed delay [52]. V.L. Kharitonov
and D. Hinrichsen [62] used the Lyapunov matrix to derive exponential estimates for solutions
of exponentially stable time delay systems. V.L. Kharitonov and E. Plischke [65] formulated
necessary and sufficient conditions for the existence and uniqueness of the delay Lyapunov
matrix for the case of a retarded system with one delay.

The Lyapunov quadratic functionals are also used to calculation of a value of a quadratic
performance index of quality in the process of parametric optimization for time delay systems.
The value of that functional at the initial state of the time delay system is equal to the value
of a quadratic performance index of quality. To calculate the value of a performance index
of quality one needs the formulas for the Lyapunov functional coefficients. For the first time
a Lyapunov functional for time delay system was introduced by Yu.M. Repin [79] for the case
of a linear system with one retarded-type delay. Yu.M. Repin delivered also the procedure for
determination of the functional coefficients. The procedure is as follows. At first it is assumed
the form of the functional, afterwords its time derivative on the trajectory of system with
a time delay is computed and equated with the negatively definite quadratic form of a system
state. In this way we obtain the set of differential and algebraic equations, which enables us to
determine the formulas of the functional coefficients. The presented method gives analytical
formulas for the coefficients of the Lyapunov functional.

In this monograph the method proposed by Repin [79] is applied to obtain the Lyapunov
functionals, with coefficients given by analytical formulas. In Chapter 2. are considered
systems with the retarded type time delay. This method is applied to the system with one
delay (Chapter 2.2), to the system with two delays (Chapter 2.3), to the retarded type time
delay system with both lumped and distributed delay (Chapter 2.4), to the system with
a retarded type time-varying delay (Chapter 2.5). In Chapter 3. are considered neutral systems.
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Repin’s method is applied to the neutral system with lumped delay (Chapter 3.2), to the neutral
system with both lumped and distributed delay (Chapter 3.3) and to the neutral system with
a time-varying delay (Chapter 3.4). In last years a method of determination of a Lyapunov
functional by means of Lyapunov matrices is very popular, see for example [50–66, 72, 73,
76, 81–83]. This method is applied to the parametric optimization problem of retarded type
time delay system both with one and two delays (Chapter 4), to the parametric optimization
problem of neutral type time delay system for system with one and two delays (Chapter 5).
The examples of using of the Lyapunov functionals to calculation of the performance index
value in the parametric optimization problem for linear systems with a time delay are given.



2 A linear retarded type time delay system

2.1 Preliminaries

Let us consider a linear system with a retarded type time delay, whose dynamics is described
by the equation 

dx(t)
dt

= L (t,x(t),xt)

x(t0) = x0 ∈ Rn

xt0 = ϕ

(2.1)

for t ≥ t0, where x(t)∈Rn,ϕ,xt ∈ L2([−r,0),Rn), L2([−r,0),Rn) – is a space of all Rn-valued
Lebesgue square integrable functions defined on interval [−r,0) with norm

‖ ϕ ‖L2=

√√√√√ 0∫
−r

(
‖ ϕ(t) ‖2

Rn

)
dt

.
The function L is a linear and continuous and defined on the space

[0,∞)×Rn×L2([−r,0),Rn)

L : [0,∞)×Rn×L2([−r,0),Rn)→ Rn (2.2)

The space of initial values of system (2.1) is given by the Cartesian product

Rn×L2([−r,0),Rn)

The norm of an initial value (x0,ϕ) is given by

‖(x0,ϕ)‖Rn×L2 =
√
‖ x0 ‖2

Rn + ‖ ϕ ‖2
L2 (2.3)
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The solution of the functional-differential equation (2.1) with initial value (x0,ϕ) or simply
a solution through (x0,ϕ) is an absolutely continuous function defined for t ≥ t0 with
values in Rn.

x(·, t0,(x0,ϕ)) ∈W 1,2([t0,∞),Rn) (2.4)

Definition 2.1. The function xt(t0,(x0,ϕ)) : [−r,0)→ Rn is called a shifted restriction of
x(·, t0,(x0,ϕ)) to an interval [t− r, t) and is defined by a formula

xt(t0,(x0,ϕ))(θ) := x(t +θ , t0,(x0,ϕ)) (2.5)

for t ≥ t0 and θ ∈ [−r,0).

When t0 = 0, the shifted restriction is denoted as xt(x0,ϕ). When initial condition is established,
the shifted restriction is denoted by xt .
The state of system (2.1) is a vector

S(t) =
[

x(t)
xt

]
(2.6)

for t ≥ t0.
The state space is defined by the formula

X = Rn×L2([−r,0),Rn) (2.7)

with norm given by the term

‖(x0,xt)‖Rn×L2 =
√
‖ x0 ‖2

Rn + ‖ xt ‖2
L2 (2.8)

We assume that system (2.1) admits the trivial solution, i.e., the following identity holds:

L (t,0Rn ,0L2)≡ 0

for t ≥ 0.
Let x(t, t0,(x0,ϕ)) be the solution of system (2.1) with initial condition (x0,ϕ) for t ≥ t0.

Definition 2.2. [56] The trivial solution of system (2.1) is said to be stable if for any ε > 0
and t0 ≥ 0 there exists δ (ε, t0)> 0 such that for every (x0,ϕ) ∈ Rn×L2([−r,0),Rn)

‖ (x0,ϕ) ‖Rn×L2≤ δ (ε, t0)⇒‖ x(t, t0,(x0,ϕ)) ‖Rn≤ ε

for every t ≥ t0.
If δ (ε, t0) can be chosen independently of t0, then the trivial solution is said to be

uniformly stable.

Definition 2.3. [56] The trivial solution of system (2.1) is said to be asymptotically stable if
it is stable and ‖ x(t, t0,(x0,ϕ)) ‖Rn→ 0 as t− t0→ ∞.
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Definition 2.4. [56] The trivial solution of system (2.1) is said to be exponentially stable
if there exist δ > 0, M ≥ 1 and σ > 0 such that for every t0 ≥ 0 and initial condition
(x0,ϕ) ∈ Rn×L2([−r,0),Rn), with ‖ (x0,ϕ) ‖Rn×L2≤ δ the following inequality holds

‖ x(t, t0,(x0,ϕ)) ‖Rn≤Me−σ(t−t0) ‖ (x0,ϕ) ‖Rn×L2

for every t ≥ t0.

In a parametric optimization problem will be used an integral quadratic performance index
of quality

J =

∞∫
t0

xT (t)Wx(t)dt (2.9)

where W ∈ Rn×n is a positive definite matrix.

Definition 2.5. [16,18] The functional V : X× [t0,∞)→R is positive definite if it is continuous
and there exists a positive definite functional H : X → R such that V (x, t) ≥ H(x) and
V (0, t) = H(0) = 0 for x ∈ X and t ≥ t0.

Definition 2.6. [16, 18] A positive definite functional V : X× [t0,∞)→ R is upper bounded
if there exists a positive definite functional H : X → R such that V (x, t)≤ H(x) for x ∈ X and
t ≥ t0.

Definition 2.7. [16, 18] A time derivative of the functional V (x(t),xt , t) at (x(t0),ϕ, t0) on the
trajectory of system (2.1) is given by the formula

dV (x(t0),ϕ, t0)
dt

= limsup
h→0

1
h

[
V
(

x(t0 +h) ,xt0+h, t0 +h
)
−V

(
x(t0),ϕ, t0

)]
(2.10)

Definition 2.8. [16, 18] The functional V : X× [t0,∞)→R is called a Lyapunov functional if
1. V is a positive definite upper bounded functional
2. V is differentiable
3. A time derivative of V computed according to the formula (2.10) on the trajectory of

system (2.1) is negative definite

From the assumption that the Lyapunov functional is upper bounded results that there exists
a functional H such that

0≤V (x(t),xt , t)≤ H(x(t),xt) (2.11)

for t ≥ t0.
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We had assumed that system (2.1) admits the trivial solution, i.e., the following identity holds:

L (t,0Rn ,0L2)≡ 0

for t ≥ 0.
When the system (2.1) is asymptotically stable limt→∞ H(x(t),xt) = 0 implies
limt→∞ V (x(t),xt , t) = 0.
Hence

∞∫
t0

dV (x(t),xt , t)
dt

dt = lim
t→∞

V (x(t),xt , t)− lim
t→t0

V (x(t),xt , t) =

=−V ( lim
t→t0

(x(t),xt , t)) =−V (x(t0),ϕ, t0) (2.12)

Assume that the time derivative of the Lyapunov functional V is given as a quadratic form

dV (x(t),xt , t)
dt

≡−xT (t)Wx(t) (2.13)

for t ≥ t0, where W ∈ Rn×n is a positive definite matrix.
It follows from (2.9) and (2.13) that

J =

∞∫
t0

xT (t)Wx(t)dt =V (x(t0),ϕ, t0) (2.14)

Corollary 2.1. If one constructs a positive definite functional such that its time derivative
computed on the trajectory of system (2.1) is given as a negative definite quadratic form (2.13)
one can not only investigate the system (2.1) stability but also calculate a value of a square
indicator of quality (2.9) of the parametric optimization problem.

In derivation of the formula (2.14) we had assumed that system (2.1) was asymptotically
stable to achieve convergence of the integral (2.12). Existence of the Lyapunov functional
is the sufficient condition for asymptotically stability. When we construct a functional which is
positive definite, its time derivative on the trajectory of dynamical system is negative definite
and value of this functional depends on the value of the controller parameter , we can determine
the region of stability. The system is asymptotically stable for this controller parameters for
which the value of the functional is positive, when the value is negative system becomes
unstable. The value of the controller parameter for which the functional changes the sign of
value from positive to negative, is the critical value of the controller parameter. In the stability
region we can search for optimal value of controller parameter which minimizes the index of
quality. The optimization procedure will be made by means of Matlab fminsearch function.
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2.2 The Lyapunov functional for a linear system
with one delay

2.2.1 Mathematical model of a linear time delay system with one delay

Let us consider a linear system with a retarded type time delay whose dynamics is described
by a functional-differential equation (FDE)

dx(t)
dt

= Ax(t)+Bx(t− r)

x(t0) = x0

x(t0 +θ) = ϕ(θ)

(2.15)

t ≥ t0, θ ∈ [−r,0), r ≥ 0, A,B ∈ Rn×n, x0 ∈ Rn, x(t) ∈ Rn, ϕ ∈ L2([−r,0),Rn). The space of
initial data is given by the Cartesian product Rn×L2([−r,0),Rn).
The norm of an initial value (x0,ϕ) is given by (2.3).
The solution of the functional-differential equation (2.15) with initial value (x0,ϕ) is an
absolutely continuous function defined for t ≥ t0 with values in Rn.

x(·, t0,(x0,ϕ)) ∈W 1,2([t0,∞),Rn) (2.16)

One can obtain a solution of FDE (2.15) using a step method. The step method is a basic
method for solving FDE with a lumped delay. A solution is found on successive intervals, one
after another, by solving an ordinary equation without delay in each interval.
For t ∈ [t0, t0 + r] the equation (2.15) takes a form

dx(t)
dt

= Ax(t)+Bϕ(t− r)

x(t0) = x0

(2.17)

The solution of equation (2.17) is given by a term

x(t) = eA(t−t0)x0 +

t∫
t0

eA(t−τ)Bϕ(τ− r)dτ (2.18)

Ψ(t) = x(t) (2.19)

x(t0 + r) = x1 (2.20)

For t ∈ [t0 + r, t0 + 2r] the equation (2.15) takes a form
dx(t)

dt
= Ax(t)+BΨ(t− r)

x(t0 + r) = x1

(2.21)

and so on. By means of this procedure one can construct the solution in any finite interval.
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One can write the equation (2.15) in the form
dx(t)

dt
= Ax(t)+Bxt(−r)

x(t0) = x0

xt0 = ϕ ∈ L2([−r,0),Rn)

(2.22)

for t ≥ t0. Where xt ∈ L2([−r,0),Rn) is a shifted restriction of x(·, t0,(x0,ϕ)) to the segment
[t − r, t).
There holds a relationship

xt0(·, t0,(x0,ϕ)) = ϕ (2.23)

where xt0(·, t0,(x0,ϕ)) is a shifted restriction of x(·, t0,(x0,ϕ)) to an interval [t0− r, t0).
The theorems of existence, continuous dependence and uniqueness of solutions of equation
(2.22) are given in [32]. The controllability of the systems with time delay is presented in [67].
The state of system (2.22) is a vector

S(t) =
[

x(t)
xt

]
(2.24)

for t ≥ t0 where x(t) ∈ Rn, xt ∈ L2([−r,0),Rn).
The state space is defined by a formula

X = Rn×L2([−r,0),Rn) (2.25)

S = 0 is an equilibrium point of the system (2.22).
In a parametric optimization problem will be used an integral quadratic performance index
of quality

J =

∞∫
t0

xT (t)x(t)dt (2.26)

The value of the performance index of quality (2.26) is given by the term (2.14), which for
system (2.22) takes a form

J =

∞∫
t0

xT (t)x(t)dt =V (x0,ϕ) (2.27)

To calculate the value of the performance index (2.27), which is equal to the value of the
Lyapunov functional at the initial state of system (2.22), one needs a mathematical formula
of that functional.
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2.2.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V positive definite, differentiable, given
by the formula [79]

V (x(t),xt) = xT (t)αx(t)+
0∫
−r

xT (t)β (θ)xt(θ)dθ +

0∫
−r

0∫
θ

xT
t (θ)δ (θ ,σ)xt(σ)dσdθ (2.28)

for t ≥ t0, where α ∈ Rn×n, β ∈C1([−r,0],Rn×n), δ ∈C1(Ω ,Rn×n)

Ω = {(θ ,σ) : θ ∈ [−r,0], σ ∈ [θ ,0]}, C1 is a space of all continuous functions with
continuous derivative.
In this paragraph will be given a procedure of determination of the functional (2.28) coefficients
to obtain the Lyapunov functional.
In calculation of the time derivative of the functional (2.28) will be used the following Lemma.

Lemma 2.1. There holds the relationship

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(2.29)

Proof.
xt(θ) = x(t +θ) for t ≥ t0, θ ∈ [−r,0)

∂xt(θ)

∂ t
=

∂x(t +θ)

∂ t
=

∂x(ξ )
∂ξ

∂ξ

∂ t
=

∂x(ξ )
∂ξ

for ξ = t +θ

∂xt(θ)

∂θ
=

∂x(t +θ)

∂θ
=

∂x(ξ )
∂ξ

∂ξ

∂θ
=

∂x(ξ )
∂ξ

for ξ = t +θ

hence
∂xt(θ)

∂ t
=

∂xt(θ)

∂θ

The time derivative of the functional (2.28) on the trajectory of system (2.22) is computed.
This time derivative is defined by the formula (2.10) which for system (2.22) takes a form

dV (x(t0),ϕ)
dt

= limsup
h→0

1
h

[
V
(
x(t0 +h) ,xt0+h

)
−V (x(t0),ϕ)

]
(2.30)

It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (2.28) and one substitutes in place of dx(t)/dt and ∂xt(θ)/∂ t
the following terms

dx(t)
dt

= Ax(t)+Bxt(−r) (2.31)

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(2.32)
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In such a manner one attains [79]

dV (x(t),xt)

dt
= xT (t)

[
AT

α +αA+
β (0)+β T (0)

2

]
x(t)+

+xT (t) [2αB−β (−r)]xt(−r)+

+

0∫
−r

xT (t)
[

AT
β (θ)− dβ (θ)

dθ
+δ

T (θ ,0)
]

xt(θ)dθ+

+

0∫
−r

xT
t (−r)

[
BT

β (θ)−δ (−r,θ)
]

x(t +θ)dθ+

−
0∫
−r

0∫
θ

xT
t (θ)

[
∂δ (θ ,σ)

∂θ
+

∂δ (θ ,σ)

∂σ

]
xt(σ)dσdθ (2.33)

To achieve negative definiteness of that derivative we assume that

dV (x(t),xt)

dt
≡−xT (t)x(t) (2.34)

From equations (2.2.2) and (2.34) we obtain the set of equations

AT
α +αA+

β (0)+β T (0)
2

=−I (2.35)

2αB−β (−r) = 0 (2.36)

AT
β (θ)− dβ (θ)

dθ
+δ

T (θ ,0) = 0 (2.37)

BT
β (θ)−δ (−r,θ) = 0 (2.38)

∂δ (θ ,σ)

∂θ
+

∂δ (θ ,σ)

∂σ
= 0 (2.39)

for θ ∈ [−r,0], σ ∈ [−r,0].

The solution of a differential equation (2.39) is given in the form

δ (θ ,σ) = f (θ −σ) (2.40)

where f ∈ C1 ([−r,r],Rn×n).

From equations (2.40) and (2.38) one obtains

δ (−r,θ) = f (−r−θ) = BT
β (θ) (2.41)

f (θ) = BT
β (−r−θ) (2.42)

δ
T (θ ,0) = f T (θ) = β

T (−r−θ)B (2.43)
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After putting (2.43) into (2.37) one attains a formula

dβ (θ)

dθ
= AT

β (θ)+β
T (−r−θ)B

for θ ∈ [−r,0] .
The derivative of the function β (−θ − r) with respect to θ is calculated

dβ (−r−θ)

dθ
=

dβ (ξ )

dξ

dξ

dθ
=−dβ (ξ )

dξ
=

=−AT
β (ξ )−β

T (−r−ξ )B =−AT
β (−r−θ)−β

T (θ)B (2.44)

where
ξ =−r−θ (2.45)

The set of the differential equations is obtained
dβ (θ)

dθ
= AT β (θ)+β T (−r−θ)B

dβ (−r−θ)

dθ
=−AT β (−r−θ)−β T (θ)B

(2.46)

for θ ∈ [−r,0] .
A new function is introduced

κ(θ) = β
T (−θ − r) (2.47)

for θ ∈ [−r,0].
The set of the differential equations (2.46) takes a form

dβ (θ)

dθ
= AT β (θ)+κ(θ)B

dκ(θ)

dθ
=−κ(θ)A−BT β (θ)

(2.48)

for θ ∈ [−r,0] with initial conditions β (−r) and κ(−r).
Using the Kronecker product the set of differential equations (2.48) can be reshape to the form

d
dθ

colβ (θ)

d
dθ

colκ(θ)

=

[
I⊗AT BT ⊗ I

−I⊗BT −AT ⊗ I

][
colβ (θ)

colκ(θ)

]
(2.49)

for θ ∈ [−r,0] with initial conditions colβ (−r) and colκ(−r).
The solution of initial value problem (2.49) has a form[

colβ (θ)
colκ(θ)

]
=

[
Φ11(θ + r) Φ12(θ + r)

Φ21(θ + r) Φ22(θ + r)

][
colβ (−r)
colκ(−r)

]
(2.50)
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where a matrix Φ(θ) =

[
Φ11(θ) Φ12(θ)

Φ21(θ) Φ22(θ)

]
is a fundamental matrix of system (2.49).

Equation (2.50) implies

colβ (θ) |θ=− r
2
= Φ11

( r
2

)
colβ (−r)+Φ12

( r
2

)
colκ(−r) (2.51)

colκ (θ) |θ=− r
2
= Φ21

( r
2

)
colβ (−r)+Φ22

( r
2

)
colκ(−r) (2.52)

Equation (2.47) implies

β
T (θ) |θ=− r

2
= κ(θ) |θ=− r

2
(2.53)

Formula (2.53) presents the algebraic linear relationship between initial conditions colβ (−r)
and colκ(−r).
Equation (2.47) implies

κ(−r) = β
T (0) (2.54)

Formula (2.35) takes a form

AT
α +αA+

κ(−r)+κT (−r)
2

=−I (2.55)

Formulas (2.55), (2.36) and (2.53) create the set of algebraic equations
AT α +αA+

κ(−r)+κT (−r)
2

=−I

2αB−β (−r) = 0

β T (θ) |θ=− r
2
= κ(θ) |θ=− r

2

(2.56)

The set of algebraic equations (2.56) allows for determination of the matrix α and the initial
conditions of the set of differential equations (2.49).
From equations (2.42) and (2.47) one attains

f (θ) = BT
β (−r−θ) = BT

κ
T (θ) (2.57)

for θ ∈ [−r,0].
Taking into account (2.40) and (2.57) one obtains

δ (θ ,σ) = BT
κ

T (θ −σ) (2.58)

In this way one obtained all coefficients of the functional (2.28). This coefficients depend
on the matrices A and B of system (2.15). The time derivative of the functional (2.28) is
negative definite.
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2.2.3 The examples

2.2.3.1 Inertial system with delay and a P controller

Let us consider a first order inertial system with delay described by equation [8]

dx(t)
dt

=− q
T

x(t)+
k0

T
u(t− r)

x(0) = xo

x(θ) = 0

u(t) =−px(t)

(2.59)

t ≥ 0, x(t) ∈ R, θ ∈ [−r,0), p, k0, T, q, x0 ∈ R, r ≥ 0. The parameter k0 is a gain of a plant,
p is a gain of a P controller, T is a system time constant, x0 is an initial state of a system. In the
case q = 1 an equation (2.59) describes a static object and in the case q = 0 an equation (2.59)
describes an astatic object.
One can reshape an equation (2.59) to the form

dx(t)
dt

=− q
T

x(t)− k0 p
T

x(t− r)

x(0) = xo

x(θ) = 0

(2.60)

for t ≥ 0.
One searches for a parameter k whose minimize an integral quadratic performance index

J =

∞∫
0

x2(t)dt (2.61)

The Lyapunov functional V is defined by the formula

V (x(t),x(t + ·)) = αx2(t)+
0∫
−r

x(t)β (θ)x(t +θ)dθ +

0∫
−r

0∫
θ

x(t +θ)δ (θ ,σ)x(t +σ)dσdθ

According to a term (2.27) a performance index value is given by the formula

J =

∞∫
0

x2(t)dt =V (x(t),x(t + ·)) |t=0 (2.62)

The set of a differential equation (2.48) takes a form
dβ (θ)

dθ

dκ(θ)

dθ

=

 −
q
T
−k0 p

T
k0 p
T

q
T


 β (θ

κ(θ)

 (2.63)
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The fundamental matrix of system (2.63) takes a form

R(θ) =

 coshλθ − q
T λ

sinhλθ −k0 p
T λ

sinhλθ

k0 p
T λ

sinhλθ coshλθ +
q

T λ
sinhλθ

 (2.64)

where

λ =

√
q2− k2

0 p2

T
(2.65)

The set of algebraic equations (2.56) takes a form

−2
q
T

α +κ(−r) =−1

2α
k0 p
T

+β (−r) = 0[
cosh

λ r
2
− q+ k0 p

T λ
sinh

λ r
2

]
β (−r)+

[
−cosh

λ r
2
− q+ k0 p

T λ
sinh

λ r
2

]
κ(−r) = 0

(2.66)

From an equation (2.66) one obtains a parameter α and the initial conditions of the differential
equation (2.63).

α =
cosh

λ r
2
+

q+ k0 p
T λ

sinh
λ r
2

2
(

λ sinh
λ r
2
+

q+ k0 p
T

cosh
λ r
2

) (2.67)

β (−r) =

k0 p
T

(
cosh

λ r
2
+

q+ k0 p
T λ

sinh
λ r
2

)
λ sinh

λ r
2
+

q+ k0 p
T

cosh
λ r
2

(2.68)

κ(−r) =
−

k0 p
T

(
cosh

λ r
2
−

q+ k0 p
T λ

sinh
λ r
2

)
λ sinh

λ r
2
+

q+ k0 p
T

cosh
λ r
2

(2.69)

Having a fundamental matrix (2.64) and the initial conditions of the differential equation (2.63)
one obtains

β (θ) =
k0 p

T
(

λ sinh
λ r
2
+

q+ k0 p
T

cosh
λ r
2

)[(q+ k0 p
T λ

cosh
λ r
2
− sinh

λ r
2

)
sinhλθ+

+

(
q+ k0 p

T λ
sinh

λ r
2
− cosh

λ r
2

)
coshλθ

]
(2.70)
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κ(θ) =−k0 p
T λ

sinhλθ+

−
k0 p

T
(

λ sinh
λ r
2
+

q+ k0 p
T

cosh
λ r
2

)(cosh
λ r
2
+

q+ k0 p
T λ

sinh
λ r
2

)
coshλθ (2.71)

δ (θ ,σ) =
k2

0 p2

T 2λ
sinhλ (θ −σ)+

+
k2

0 p2

T 2

(
λ sinh

λ r
2
+

q+ k0 p
T

cosh
λ r
2

)(cosh
λ r
2
+

q+ k0 p
T λ

sinh
λ r
2

)
coshλ (θ −σ) (2.72)

Now a performance index value is calculated

J =
x2

0

2
(

λ sinh
λ r
2
+

q+ k0 p
T

cosh
λ r
2

)[cosh
λ r
2

+
q+ k0 p

T λ
sinh

λ r
2

]
(2.73)

Figure 2.1 shows the value of the index J(p) for x0 = 1, k0 = 1, q = 1, and T = 5 and r = 2.
You can see that there exists a critical value of the gain pcrit . The system (2.60) is stable for
gains less then critical one and unstable for gains grater then critical.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−800

−600

−400

−200
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200

400

ko=1, q=1, T=5, r=2

J(p)

Fig. 2.1. Value of the index J(p) for p greater then pcrit

Figure 2.2 shows the value of the index J(p) for p less then critical gain. You can see that
the function J(p) is convex and has a minimum.
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Fig. 2.2. Value of the index J(p) for p less then pcrit

We search for an optimal gain which minimizes the index (2.73). Optimization results, obtained
by means of the Matlab function fminsearch, are given in Table 2.1. These results are obtained
for x0 = 1, k0 = 1, q = 1, and T = 5.

Table 2.1
Optimization results

Delay r Optimal gain Index value Critical gain

1.0 3.4329 1.1014 8.50

1.5 2.2020 1.4331 5.89

2.0 1.5871 1.6778 4.58

2.5 1.2188 1.8610 3.80

3.0 0.9738 1.9997 3.28

3.5 0.7993 2.1060 2.91

4.0 0.6689 2.1880 2.64

4.5 0.5681 2.2518 2.43

5.0 0.4878 2.3019 2.26
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2.2.3.2 Inertial system with delay and an I controller

Let us consider a first order inertial system with delay described by the equation [9]

dx(t)
dt

=− 1
T

x(t)+
k0

T
u(t− r)

x(0) = xo

x(θ) = 0

u(t) =− 1
Ti

∫ t

0
x(ξ )dξ + z0

(2.74)

t ≥ 0, x(t) ∈ R, θ ∈ [−r,0), Ti, k0, T, x0, z0 ∈ R, r ≥ 0. The parameter k0 is a gain of a plant,
Ti is a time of isodrome of an I controller, T is a system time constant, x0 is an initial state
of a system, z0 is an amplitude of a disturbance.
One introduces the state variables x1(t) and x2(t) as followsx1(t) = x(t)

x2(t) =
1
Ti

∫ t

0
x(ξ )dξ

(2.75)

The set of equations (2.74) takes a form

dx1(t)
dt

=− 1
T

x1(t)+
k0

T
u(t− r)

dx2(t)
dt

=
1
Ti

x1(t)

x1(0) = xo

x2(0) = 0

x1(θ) = 0

x2(θ) = 0

u(t) =−x2(t)+ z0

(2.76)

for t ≥ 0, θ ∈ [−r,0).
One can reshape equation (2.76) to the form

dx1(t)
dt

=− 1
T

x1(t)−
k0

T
x2(t− r)+

k0z0

T
dx2(t)

dt
=

1
Ti

x1(t)

x1(0) = xo

x2(0) = 0

x1(θ) = 0

x2(θ) = 0

(2.77)

for t ≥ 0, θ ∈ [−r,0).
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The equilibrium point of system (2.77) is given by a term{
x∗1 = 0

x∗2 = z0
(2.78)

One introduces a new variable y1(t) = x1(t)

y2(t) = x2(t)− z0

(2.79)

Taking a term (2.79) into account a set of equations (2.77) takes a form

dy1(t)
dt

=− 1
T

y1(t)−
k0

T
y2(t− r)

dy2(t)
dt

=
1
Ti

y1(t)

y1(0) = xo

y2(0) =−z0

y1(θ) = 0

y2(θ) =−z0

(2.80)

Equations (2.80) in a matrix form are as below

dy(t)
dt

= Ay(t)+By(t− r)

y(0) =

[
x0

−z0

]

y(θ) =

[
0

−z0

] (2.81)

where

A =

 − 1
T

0

1
Ti

0

 (2.82)

B =

 0 −k0

T
0 0

 (2.83)

One searches for a parameter Ti whose minimize an integral quadratic performance index

J =

∞∫
0

yT (t)y(t)dt (2.84)
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The Lyapunov functional is given

V (y(t),y(t + ·)) = yT (t)αy(t)+
0∫
−r

yT (t)β (θ)y(t +θ)dθ+

+

0∫
−r

0∫
θ

yT (t +θ)δ (θ ,σ)y(t +σ)dσdθ (2.85)

where

α =

[
α11 α12

α12 α22

]
(2.86)

β (θ) =

[
β11(θ) β12(θ)

β12(θ) β22(θ)

]
(2.87)

δ (θ ,σ) =

[
δ11(θ ,σ) δ12(θ ,σ)

δ21(θ ,σ) δ22(θ ,σ)

]
(2.88)

J =

∞∫
0

yT (t)y(t)dt =V (y(0),y(θ)) (2.89)

The set of differential equations (2.48) takes a form

dβ11(θ)

dθ
=− 1

T
β11(θ)+

1
Ti

β21(θ)

dβ21(θ)

dθ
= 0

dβ12(θ)

dθ
=− 1

T
β12(θ)+

1
Ti

β22(θ)−
k0

T
κ11(θ)

dβ22(θ)

dθ
=−k0

T
κ12(θ)

dκ11(θ)

dθ
=

1
T

κ11(θ)−
1
Ti

κ21(θ)

dκ21(θ)

dθ
= 0

dκ12(θ)

dθ
=

1
T

κ12(θ)−
1
Ti

κ22(θ)+
k0

T
β11(θ)

dκ22(θ)

dθ
=

k0

T
β12(θ)

(2.90)

for θ ∈ [−r,0], where

κ(θ) = β (−θ − r) (2.91)

for θ ∈ [−r,0].
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The two first equations of (2.56) takes a form

− 2
T

α11 +
2
Ti

α12 +κ11(−r) =−1

− 2
T

α12 +
2
Ti

α22 +κ12(−r)+κ21(−r) = 0

κ22(−r) =−1

β11(−r) = 0

β21(−r) = 0

−2k0

T
α11−β12(−r) = 0

−2k0

T
α12−β22(−r) = 0

(2.92)

Equations (2.90), (2.91) and (2.92) implies β21(θ) = 0, κ21(θ) = 0, β11(θ) = 0, κ11(θ) = 0
for θ ∈ [−r,0].
Formula (2.87) takes a form

β (θ) =

[
0 β12(θ)

0 β22(θ)

]
(2.93)

and

κ(θ) =

[
0 κ12(θ)

0 κ22(θ)

]
(2.94)

The set of equations (2.90) takes a form

dβ12(θ)

dθ
=− 1

T
β12(θ)+

1
Ti

β22(θ)

dβ22(θ)

dθ
=−k0

T
κ12(θ)

dκ12(θ)

dθ
=

1
T

κ12(θ)−
1
Ti

κ22(θ)

dκ22(θ)

dθ
=

k0

T
β12(θ)

(2.95)

The fundamental matrix of solutions of equation (2.95) is given by

R(θ) =
1

s2
1 + s2

2


r11(θ) r12(θ) r13(θ) r14(θ)

r21(θ) r22(θ) r23(θ) r24(θ)

r31(θ) r32(θ) r33(θ) r34(θ)

r41(θ) r42(θ) r43(θ) r44(θ)

 (2.96)

where

si =
1
T

√√√√√√
√

1+
4k2

0T 2

T 2
i

+(−1)i

2
for i = 1,2 (2.97)

35



r11(θ) = s2
1 coss1θ − s1

T
sins1θ + s2

2 coshs2θ − s2

T
sinhs2θ (2.98)

r21(θ) =
k2

0
T 2Ti

(
− 1

s1
sins1θ +

1
s2

sinhs2θ

)
(2.99)

r31(θ) =
k0

T Ti

(
coss1θ − coshs2θ

)
(2.100)

r41(θ) =
k0

T

(
s1 sins1θ +

1
T

coss1θ + s2 sinhs2θ − 1
T

coshs2θ

)
(2.101)

r12(θ) =
1
Ti

(
1
T

coss1θ + s1 sins1θ − 1
T

coshs2θ + s2 sinhs2θ

)
(2.102)

r22(θ) = s2
2 coss1θ + s2

1 coshs2θ (2.103)

r32(θ) =
k0

T T 2
i

(
1
s1

sins1θ − 1
s2

sinhs2θ

)
(2.104)

r42(θ) =
k0

T Ti

(
−coss1θ +

1
T s1

sins1θ − 1
T s2

sinhs2θ + coshs2θ

)
(2.105)

r13(θ) =
k0

T Ti

(
coss1θ − coshs2θ

)
(2.106)

r23(θ) =
k0

T

(
−s1 sins1θ +

1
T

coss1θ − s2 sinhs2θ − 1
T

coshs2θ

)
(2.107)

r33(θ) = s2
1 coss1θ +

s1

T
sins1θ + s2

2 coshs2θ +
s2

T
sinhs2θ (2.108)

r43(θ) =
k2

0
T 2Ti

(
1
s1

sins1θ − 1
s2

sinhs2θ

)
(2.109)

r14(θ) =
k0

T T 2
i

(
− 1

s1
sins1θ +

1
s2

sinhs2θ

)
(2.110)

r24(θ) =
k0

T Ti

(
−coss1θ − 1

T s1
sins1θ +

1
T s2

sinhs2θ + coshs2θ

)
(2.111)

r34(θ) =
1
Ti

(
1
T

coss1θ − s1 sins1θ − 1
T

coshs2θ − s2 sinhs2θ

)
(2.112)

r44(θ) = s2
2 coss1θ + s2

1 coshs2θ (2.113)
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The solution of the differential equations (2.95) is given by the terms

β12(θ) =
1

s2
1 + s2

2

[
r11(θ + r)β12(−r)+ r12(θ + r)β22(−r)+

+r13(θ + r)κ12(−r)− r14(θ + r)
]

(2.114)

β22(θ) =
1

s2
1 + s2

2

[
r21(θ + r)β12(−r)+ r22(θ + r)β22(−r)+

+r23(θ + r)κ12(−r)− r24(θ + r)
]

(2.115)

κ12(θ) =
1

s2
1 + s2

2

[
r31(θ + r)β12(−r)+ r32(θ + r)β22(−r)+

+r33(θ + r)κ12(−r)− r34(θ + r)
]

(2.116)

κ22(θ) =
1

s2
1 + s2

2

[
r41(θ + r)β12(−r)+ r42(θ + r)β22(−r)+

+r43(θ + r)κ12(−r)− r44(θ + r)
]

(2.117)

The matrix α and the initial conditions β12(−r), β22(−r), κ12(−r) are obtained from the
set of algebraic equations

− 2
T

α11 +
2
Ti

α12 =−1

− 2
T

α12 +
2
Ti

α22 +κ12(−r) = 0

−2k0

T
α11−β12(−r) = 0

−2k0

T
α12−β22(−r) = 0

q11β12(−r)+q12β22(−r)+q13κ12(−r) = q14

q21β12(−r)+q22β22(−r)+q23κ12(−r) = q24

(2.118)

where

q11 =

(
s2

1−
k0

T Ti

)
cos

s1r
2
− s1

T
sin

s1r
2

+

(
s2

2 +
k0

T Ti

)
cosh

s2r
2
− s2

T
sinh

s2r
2

(2.119)

q12 =
1

T Ti
cos

s1r
2

+
s2

1−
k0

T Ti
Tis1

sin
s1r
2
− 1

T Ti
cosh

s2r
2

+
s2

2 +
k0

T Ti
Tis2

sinh
s2r
2

(2.120)
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q13 =

(
k0

T Ti
− s2

1

)
cos

s1r
2
− s1

T
sin

s1r
2
−
(

k0

T Ti
+ s2

2

)
cosh

s2r
2
− s2

T
sinh

s2r
2

(2.121)

q14 =−
1

T Ti
cos

s1r
2

+
s2

1−
k0

T Ti
Tis1

sin
s1r
2

+
1

T Ti
cosh

s2r
2

+
s2

2 +
k0

T Ti
Tis2

sinh
s2r
2

(2.122)

q21 =−
k0

T 2 cos
s1r
2
−

k0

(
s2

1 +
k0

T Ti

)
T s1

sin
s1r
2

+
k0

T 2 cosh
s2r
2
−

k0

(
s2

2−
k0

T Ti

)
T s2

sinh
s2r
2

(2.123)

q22 =

(
s2

2+
k0

T Ti

)
cos

s1r
2
− k0

T 2Tis1
sin

s1r
2

+

(
s2

1−
k0

T Ti

)
cosh

s2r
2

+
k0

T 2Tis2
sinh

s2r
2

(2.124)

q23 =
k0

T 2 cos
s1r
2
−

k0

(
s2

1 +
k0

T Ti

)
T s1

sin
s1r
2
− k0

T 2 cosh
s2r
2
−

k0

(
s2

2−
k0

T Ti

)
T s2

sinh
s2r
2

(2.125)

q24 =−
(

s2
2 +

k0

T Ti

)
cos

s1r
2
− k0

T 2Tis1
sin

s1r
2
+

+

(
−s2

1 +
k0

T Ti

)
cosh

s2r
2

+
k0

T 2Tis2
sinh

s2r
2

(2.126)

The solution of the set of equations (2.118) has a form

α11 =
1
M

[(
k0 +

T
Ti

)(
s2

1 + s2
2

)
cos

s1r
2

cosh
s2r
2

+
k0(T − k0Ti)(s2

1 + s2
2)

T 2
i T s1s2

sin
s1r
2

sinh
s2r
2
+

+

(
s2

2−
k0

T Ti

)[
1+2k2

0 + k0T Ti(s2
1 + s2

2)

]
Tis2

cos
s1r
2

sinh
s2r
2
+

+

(
s2

1 +
k0

T Ti

)[
1+2k2

0− k0T Ti(s2
1 + s2

2)

]
Tis1

sin
s1r
2

cosh
s2r
2

]
(2.127)

α12 =
1
M

[(
s2

1 + s2
2

)
cos

s1r
2

cosh
s2r
2

+
k0(s2

1 + s2
2)

T Tis1s2
sin

s1r
2

sinh
s2r
2
+

+

(
s2

2−
k0

T Ti

)(
1+2k2

0

)
T s2

cos
s1r
2

sinh
s2r
2

+

(
s2

1 +
k0

T Ti

)(
1+2k2

0

)
T s1

sin
s1r
2

cosh
s2r
2

]
(2.128)
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α22 =
1
M

[
(k0T + k2

0Ti +Ti)(s2
1 + s2

2)

T
cos

s1r
2

cosh
s2r
2
+

+

Tis2
2

(
s2

2 +
k2

0

T 2

)
+

k0

T

(
s2

1−
k2

0

T 2

)
s2

cos
s1r
2

sinh
s2r
2
+

+

Tis2
1

(
−s2

1 +
k2

0

T 2

)
+

k0

T

(
s2

2 +
k2

0

T 2

)
s1

sin
s1r
2

cosh
s2r
2
+

+
k0(−k0T + k2

0Ti +Ti)(s2
1 + s2

2)

T 2Tis1s2
sin

s1r
2

sinh
s2r
2

]
(2.129)

β12(−r) =− 2k0

T M

[(
k0 +

T
Ti

)(
s2

1 + s2
2

)
cos

s1r
2

cosh
s2r
2
+

+

(
s2

2−
k0

T Ti

)[
1+2k2

0 + k0T Ti(s2
1 + s2

2)
]

Tis2
cos

s1r
2

sinh
s2r
2
+

+

(
s2

1 +
k0

T Ti

)[
1+2k2

0− k0T Ti(s2
1 + s2

2)
]

Tis1
sin

s1r
2

cosh
s2r
2
+

+
k0(T − k0Ti)(s2

1 + s2
2)

T 2
i T s1s2

sin
s1r
2

sinh
s2r
2

]
(2.130)

β22(−r) =− 2k0

T M

[
(s2

1 + s2
2)cos

s1r
2

cosh
s2r
2

+
k0(s2

1 + s2
2)

T Tis1s2
sin

s1r
2

sinh
s2r
2
+

+

(
s2

2−
k0

T Ti

)(
1+2k2

0

)
T s2

cos
s1r
2

sinh
s2r
2

+

(
s2

1 +
k0

T Ti

)(
1+2k2

0

)
T s1

sin
s1r
2

cosh
s2r
2

]
(2.131)

κ12(−r) =
2

T M

[
−k0(k0Ti +T )(s2

1 + s2
2)

Ti
cos

s1r
2

cosh
s2r
2
+

+
[
(k0Ti +T )s1s2

2−
k0s1

T Ti
(T − k0Ti)

]
sin

s1r
2

cosh
s2r
2
+

+
[k0s2(k0Ti−T )

T Ti
− (k0Ti +T )s2

1s2

]
cos

s1r
2

sinh
s2r
2
+

+T (T − k0Ti)(s2
1 + s2

2)s1s2 sin
s1r
2

sinh
s2r
2

]
(2.132)
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where

M =−2k0

T

(
s2

1 + s2
2

)[
−cos

s1r
2

cosh
s2r
2

+
k0

T Tis1s2
sin

s1r
2

sinh
s2r
2
+

+

(
k0

Tis2
−T s2

)
cos

s1r
2

sinh
s2r
2

+(
k0

Tis1
+T s1)sin

s1r
2

cosh
s2r
2

]
(2.133)

According to the formula (2.89) the value of index is given by a term

J =V (y(0),y(θ)) (2.134)

After calculations one obtains

J = x2
0α11−2x0z0α12 + z2

0α22−
x0z0

s2
1 + s2

2

[(
s1 sins1r+

1
T

coss1r+ s2 sinhs2r+

− 1
T

coshs2r
)

β12(−r)+
1

T Ti

( 1
s1

sins1r− 1
s2

sinhs2r−T coss1r+T coshs2r
)

β22(−r)+

+
k0

T Ti

( 1
s1

sins1r− 1
s2

sinhs2r
)

κ12(−r)− k0

T T 2
i

( 1
s2

1
coss1r+

1
s2

2
coshs2r− 1

s2
1
− 1

s2
2

)]
+

+
z2

0k0r
T 2Ti(s2

1 + s2
2)

[
k0

( 1
s2

sinhs2r− 1
s1

sins1r
)

β12(−r)+
k0

Ti

( 1
s2

1
coss1r+

+
1
s2

2
coshs2r

)
β22(−r)+Ti(coss1r−T s1 sins1r− coshs2r−T s2 sinhs2r)κ12(−r)+

+
1
s1

sins1r+T coss1r− 1
s2

sinhs2r−T coshs2r
]

(2.135)

Figure 2.3 shows the value of the index J(1/Ti) for x0 = 1, z0 = 1, k0 = 1, T = 5 and r = 1.
You can see that there exists a critical value of the 1/Ti crit . The system (2.80) is stable for
1/Ti less then critical one and unstable for 1/Ti greater then critical.
Figure 2.4 shows the value of the index J(1/Ti) for 1/Ti less then critical one. You can see
that the function J(1/Ti) is convex and has a minimum.
We search for an optimal time of isodrome which minimizes the index (2.135). Optimization
results, obtained by means of the Matlab function fminsearch, are given in Table 2.2. These
results are obtained for x0 = 1, z0 = 1, k0 = 1, and T = 5. Critical time of isodrome is
a maximal admissible time of isodrome for system (2.77). System (2.77) is unstable for time
of isodrome less then critical one.

40



0 0.2 0.4 0.6 0.8 1 1.2 1.4
−4000

−2000

0

2000

4000

6000

8000

10000

12000

J(1/Ti)

k0=1, x0=1, z0=1, T=5
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Table 2.2
Optimization results

Delay r Optimal 1/Ti Index value Critical 1/Ti

1.0 0.1879 10.5870 1.03

1.5 0.1602 12.3667 0.69

2.0 0.1396 14.1349 0.53

2.5 0.1237 15.8853 0.42

3.0 0.1112 17.6164 0.36

3.5 0.1010 19.3293 0.31

4.0 0.0926 21.0264 0.27

4.5 0.0856 22.7108 0.24

5.0 0.0796 4.3854 0.22

2.3 The Lyapunov functional for a linear system
with two delays

2.3.1 Mathematical model of a linear time delay system with two delays

Let us consider a linear system with two delays, whose dynamics is described by equation [12]


dx(t)

dt
= Ax(t)+Bx(t− r2)+Cx(t− r1)

x(t0) = x0

x(t0 +θ) = ϕ(θ)

(2.136)

t ≥ t0, θ ∈ [−r2,0), r2 ≥ r1 ≥ 0, A,B,C ∈ Rn×n, x0 ∈ Rn, ϕ ∈ L2([−r2,0),Rn), where
L2([−r2,0),Rn) is a space of Lebesgue square integrable functions on interval [−r2,0) with
values in Rn.
The solution of the functional-differential equation (2.136) with initial value (x0,ϕ) is
an absolutely continuous function defined for t ≥ t0 with values in Rn and is denoted as
x(·, t0,(x0,ϕ)).
The function xt is a shifted restriction of the function x(·, t0,(x0,ϕ)) to the interval [t− r2, t).

The state is a vector S =

[
x(t)
xt

]
. The state space is given by the Cartesian product

X = Rn×L2([−r2,0),Rn) (2.137)
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2.3.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V , positive definite, differentiable,
given by the formula [12]

V (x(t),xt) = xT (t)αx(t)+
0∫

−r2

xT (t)β (θ)xt(θ)dθ +

0∫
−r1

xT (t)κ(σ)xt(σ)dσ+

+

0∫
−r2

0∫
θ

xT
t (θ)δ1(θ ,ξ )xt(ξ )dξ dθ +

0∫
−r1

0∫
σ

xT
t (σ)δ2(σ ,ς)xt(ς)dςdσ+

+

0∫
−r2

0∫
−r1

xT
t (θ)δ3(θ ,σ)xt(σ)dσdθ (2.138)

for t ≥ t0, where α = αT ∈ Rn×n, β ∈C1([−r2,0],Rn×n), κ ∈C1([−r1,0],Rn×n),
δ1 ∈ C1(Ω1,Rn×n), δ2 ∈ C1(Ω2,Rn×n), δ3 ∈ C1(Ω3,Rn×n),
Ω1 = {(θ ,ξ ) : θ ∈ [−r2,0], ξ ∈ [θ ,0]},
Ω2 = {(σ ,ς) : σ ∈ [−r1,0], ς ∈ [σ ,0]}, Ω3 = {(θ ,σ) : θ ∈ [−r2,0], σ ∈ [−r1,0]}
C1 is a space of continuous functions with continuous derivative.
It is taken the following procedure of determination of the functional (2.138) coefficients. One
computes the time derivative of each term of the right-hand-side of the formula (2.138) and
one substitutes in place of dx(t)/dt and ∂xt(θ)/∂ t the following terms

dx(t)
dt

= Ax(t)+Bxt(−r2)+Cxt(−r1) (2.139)

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(2.140)

In such a manner one attains

dV (x(t),xt)

dt
= xT (t)

[
AT

α +αA+
β (0)+β T (0)

2
+

κ(0)+κT (0)
2

]
x(t)+

+xT (t) [2αB−β (−r2)]xt(−r2)+ xT (t) [2αC−κ(−r1)]xt(−r1)+

+

0∫
−r2

xT (t)
[

AT
β (θ)− dβ (θ)

dθ
+δ

T
1 (θ ,0)+δ

T
3 (θ ,0)

]
xt(θ)dθ+

+

0∫
−r2

xT
t (−r2)

[
BT

β (θ)−δ1(−r2,θ)
]

xt(θ)dθ+

+

0∫
−r2

xT
t (−r1)

[
CT

β (θ)−δ
T
3 (θ ,−r1)

]
xt(θ)dθ+
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+

0∫
−r1

xT (t)
[

AT
κ(σ)− dκ(σ)

dσ
+δ

T
2 (σ ,0)+δ3(0,σ)

]
xt(σ)dσ+

+

0∫
−r1

xT
t (−r1)

[
CT

κ(σ)−δ2(−r1,σ)
]

xt(σ)dσ+

+

0∫
−r1

xT
t (−r2)

[
BT

κ(σ)−δ3(−r2,σ)
]

xt(σ)dσ+

−
0∫

−r2

0∫
θ

xT
t (θ)

[
∂δ1(θ ,ξ )

∂θ
+

∂δ1(θ ,ξ )

∂ξ

]
xt(ξ )dξ dθ+

−
0∫

−r1

0∫
σ

xT
t (σ)

[
∂δ2(σ ,ς)

∂σ
+

∂δ2(σ ,ς)

∂ς

]
xt(ς)dςdσ+

−
0∫

−r2

0∫
−r1

xT
t (θ)

[
∂δ3(θ ,σ)

∂θ
+

∂δ3(θ ,σ)

∂σ

]
xt(σ)dσdθ (2.141)

To achieve negative definiteness of that derivative we assume that

dV (x(t),xt)

dt
≡−xT (t)x(t) (2.142)

From equations (2.141) and (2.142) one obtains a system of equations

AT
α +αA+

β (0)+β T (0)
2

+
κ(0)+κT (0)

2
=−I (2.143)

2αB−β (−r2) = 0 (2.144)

2αC−κ(−r1) = 0 (2.145)

AT
β (θ)− dβ (θ)

dθ
+δ

T
1 (θ ,0)+δ

T
3 (θ ,0) = 0 (2.146)

BT
β (θ)−δ1(−r2,θ) = 0 (2.147)

CT
β (θ)−δ

T
3 (θ ,−r1) = 0 (2.148)

AT
κ(σ)− dκ(σ)

dσ
+δ

T
2 (σ ,0)+δ3(0,σ) = 0 (2.149)
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CT
κ(σ)−δ2(−r1,σ) = 0 (2.150)

BT
κ(σ)−δ3(−r2,σ) = 0 (2.151)

∂δ1(θ ,ξ )

∂θ
+

∂δ1(θ ,ξ )

∂ξ
= 0 (2.152)

∂δ2(σ ,ς)

∂σ
+

∂δ2(σ ,ς)

∂ς
= 0 (2.153)

∂δ3(θ ,σ)

∂θ
+

∂δ3(θ ,σ)

∂σ
= 0 (2.154)

for θ ∈ [−r2,0], σ ∈ [−r1,0], ξ ∈ [θ ,0], ς ∈ [σ ,0].
The solutions of equations (2.152)-(2.154) are functions

δi(θ ,σ) = fi(θ −σ) (2.155)

where fi ∈ C1([−r2,r1]) for i = 1,2,3.
From equations (2.147) and (2.155) we obtain

δ1(−r2,θ) = f1(−θ − r2) = BT
β (θ) (2.156)

Hence

δ
T
1 (θ ,0) = f T

1 (θ) = β
T (−θ − r2)B (2.157)

From equations (2.148) and (2.155) we obtain

δ
T
3 (θ ,−r1) = f T

3 (θ + r1) =CT
β (θ) (2.158)

Hence

δ
T
3 (θ ,0) = f T

3 (θ) =CT
β (θ − r1) (2.159)

When we put (2.157) and (2.159) into (2.146), we get the formula

dβ (θ)

dθ
= AT

β (θ)+β
T (−θ − r2)B+CT

β (θ − r1) (2.160)

for θ ∈ [−r2,0].
From equation (2.150) we obtain

δ2(−r1,σ) = f2(−σ − r1) =CT
κ(σ) (2.161)

Hence
δ

T
2 (σ ,0) = f T

2 (σ) = κ
T (−σ − r1)C (2.162)
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From equation (2.151) we obtain

δ3(−r2,σ) = f3(−σ − r2) = BT
κ(σ) (2.163)

Hence
δ3(0,σ) = f3(−σ) = BT

κ(σ − r2) (2.164)

When we put (2.30) and (2.164) into (2.149), we get the formula

dκ(σ)

dσ
= AT

κ(σ)+κ
T (−σ − r1)C+BT

κ(σ − r2) (2.165)

for σ ∈ [−r1,0].
We introduce two new functions

η(θ) = β (−θ − r2) (2.166)

ϑ(σ) = κ(−σ − r1) (2.167)

for θ ∈ [−r2,0], σ ∈ [−r1,0].
We calculate the derivatives of (2.34) and (2.167)

dη(θ)

dθ
=−β

T (θ)B−AT
η(θ)−CT

η(θ + r1) (2.168)

dϑ(σ)

dσ
=−κ

T (σ)C−AT
ϑ(σ)−BT

ϑ(σ + r2) (2.169)

for θ ∈ [−r2,0], σ ∈ [−r1,0].
We obtained the system of differential equations

dβ (θ)

dθ
= AT β (θ)+ηT (θ)B+CT β (θ − r1)

dη(θ)

dθ
=−β T (θ)B−AT η(θ)−CT η(θ + r1)

dκ(σ)

dσ
= AT κ(σ)+ϑ T (σ)C+BT κ(σ − r2)

dϑ(σ)

dσ
=−κT (σ)C−AT ϑ(σ)−BT ϑ(σ + r2)

(2.170)

for θ ∈ [−r2,0], σ ∈ [−r1,0].
Relations (2.34) and (2.167) implies β (−r2) = η(0) and κ(−r1) = ϑ(0) and

β (θ) |
θ=− r2

2
= η(θ) |

θ=− r2
2

(2.171)

κ(σ) |
σ=− r1

2
= ϑ(σ) |

σ=− r1
2

(2.172)
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Equations (2.143), (2.144) and (2.145) take a form

AT
α +αA+

β (0)+β T (0)
2

+
κ(0)+κT (0)

2
=−I (2.173)

2αB−η(0) = 0 (2.174)

2αC−ϑ(0) = 0 (2.175)

The set of algebraic equations (2.171)–(2.175) enables determination of the initial conditions
of the differential equations (2.170) and the matrix α .
Matrix δ1(θ ,σ) we obtain from equations (2.155), (2.157) and (2.34)

δ1(θ ,σ) = BT
η(θ −σ) (2.176)

Matrix δ2(θ ,σ) we obtain from equations (2.155), (2.30), (2.167)

δ2(θ ,σ) =CT
ϑ(θ −σ) (2.177)

Matrix δ3(θ ,σ) we obtain from equations (2.155), (2.159), (2.164)

δ3(θ ,σ) = BT
κ(σ −θ − r2) (2.178)

In this way we obtained all parameters of the functional (3.6).

2.3.3 Solution of the set of differential equations (2.170)
for commensurate delays

Functions β , η , κ , ϑ are not independent, β and η are linked by formula (2.34), κ and ϑ

by formula (2.167). The functions β and κ are also combined. This is implied by formulas
(2.159) and (2.163). From (2.159) we obtain

f3(θ) = β
T (θ − r1)C (2.179)

and from (2.163) we have

f3(σ) = BT
κ(−σ − r2) (2.180)

According to (2.155), function f3 is defined on the interval [−r2,r1]. Now we can write down
the following functional interdependences between the functions β , η , κ , ϑ

CT
β (θ − r1) = ϑ

T (θ + r2− r1)B f or θ ∈ [−r2,−r2 + r1] (2.181)

CT
η(θ + r1) = κ

T (θ)B f or θ ∈ [−r1,0] (2.182)

BT
κ(σ − r2) = η

T (σ − r2 + r1)C f or σ ∈ [−r1,−r1 + r2− r1] (2.183)

BT
ϑ(σ + r2) = β

T (σ)C f or σ ∈ [−r1,0] (2.184)
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Let us consider a special case, in which the system of equations (2.170) will be transformed
into the set of ordinary differential equations.
We assume that the following relationships hold

r1 = mh; r2 = nh; m,n ∈ N; n≥ m; R 3 h > 0 (2.185)

We introduce the functions

βi(ξ ), ηi(ξ ), κ j(ξ ), ϑ j(ξ )

for ξ ∈ [−h,0]; i = 1,2, ...,n; j = 1,2, ...,m defined by formulas

βi(θ) = β (θ) f or θ ∈ [−r2 +(i−1)h,−r2 + ih], i = 1, ...,n (2.186)

ηi(θ) = η(θ) f or θ ∈ [−r2 +(i−1)h,−r2 + ih], i = 1, ...,n (2.187)

κ j(σ) = κ(σ) f or σ ∈ [−r1 +( j−1)h,−r1 + jh], j = 1, ...,m (2.188)

ϑ j(σ) = ϑ(σ) f or σ ∈ [−r1 +( j−1)h,−r1 + jh], j = 1, ...,m (2.189)

These functions satisfy the following set of conditions



β1(−h) = β (−r2) = η(0)

βi(−h) = βi−1(0) f or i = 2, ...,n

η1(−h) = η(−r2) = β (0)

ηi(−h) = ηi−1(0) f or i = 2, ...,n

κ1(−h) = κ(−r1) = ϑ(0)

κ j(−h) = κ j−1(0) f or j = 2, ...,m

ϑ1(−h) = ϑ(−r1) = κ(0)

ϑ j(−h) = ϑ j−1(0) f or j = 2, ...,m

(2.190)
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We can write equations (2.170) with regard to dependencies (2.181)–(2.184) for functions
(2.186)–(2.189) in a form

dβi(ξ )

dξ
= AT βi(ξ )+ηT

i (ξ )B+ϑ T
i (ξ )B f or i = 1, ...,m

dβi(ξ )

dξ
= AT βi(ξ )+ηT

i (ξ )B+CT βi−m(ξ ) f or i = m+1, ...,n

dηi(ξ )

dξ
=−β T

i (ξ )B−AT ηi(ξ )−CT ηi+m(ξ ) f or i = 1, ...,n−m

dηi(ξ )

dξ
=−β T

i (ξ )B−AT ηi(ξ )−κT
i−(n−m)(ξ )B f or i = n−m+1, ...,n

dκ j(ξ )

dξ
= AT κ j(ξ )+ϑ T

j (ξ )C+ηT
j (ξ )C f or j = 1, ...,n−m

dκ j(ξ )

dξ
= AT κ j(ξ )+ϑ T

j (ξ )C+BT κ j−(n−m)(ξ ) f or j = n−m+1, ...,m

dϑ j(ξ )

dξ
=−κT

j (ξ )C−AT ϑ j(ξ )−β T
j+n−m(ξ )C f or j = 1, ...,m

(2.191)

for ξ ∈ [−h,0].
There are relationships between the initial conditions of system (2.191) as below

βi(0) = ηn−i(0) f or i = 1, ...,n−1

βn(0) = β (0)

ϑ j(0) = κm− j(0) f or j = 1, ...,m−1

ϑm(0) = ϑ(0)

(2.192)

We obtain matrix α and the initial conditions of the system (2.191) by solving the set of
algebraic equations

AT α +αA+
β (0)+β T (0)

2
+

κ(0)+κT (0)
2

=−I

2αB−η(0) = 0

2αC−ϑ(0) = 0

βi(ξ ) |ξ=− h
2
= ηn+1−i(ξ ) |ξ=− h

2
f or i = 1, ...,n

κ j(ξ ) |ξ=− h
2
= ϑm+1− j(ξ ) |ξ=− h

2
f or j = 1, ...,m

(2.193)

Having a solution of the set of equations (2.191) we can obtain the matrices β (θ), η(θ),
κ(σ), ϑ(σ) from equations (2.186)–(2.189) and the matrices δ1(θ ,σ), δ2(θ ,σ), δ3(θ ,σ)

from equations (2.176)–(2.178).
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2.3.4 The example

Let us consider a system described by equation
dx(t)

dt
= ax(t)+bxt(−2h)+ cxt(−h)

x(0) = x0

xt=0 = ϕ

(2.194)

t ≥ 0, x(t) ∈ R, xt ∈ L2([−2h,0),R), xt(θ) = x(t +θ), a,b,c ∈ R, h > 0.
The Lyapunov functional is defined by the formula

V (x(t),xt) = αx2(t)+
0∫

−2h

β (θ)x(t)xt(θ)dθ +

0∫
−h

κ(σ)x(t)xt(σ)dσ+

+

0∫
−2h

0∫
θ

δ1(θ ,ξ )xt(θ)xt(ξ )dξ dθ +

0∫
−h

0∫
σ

δ2(σ ,ς)xt(σ)xt(ς)dςdσ+

+

0∫
−2h

0∫
−h

δ3(θ ,σ)xt(θ)xt(σ)dσdθ (2.195)

The set of equations (2.191) becomes

dβ1(ξ )

dξ

dβ2(ξ )

dξ

dη1(ξ )

dξ

dη2(ξ )

dξ

dκ(ξ )

dξ

dϑ(ξ )

dξ



=



a 0 b 0 0 b

c a 0 b 0 0

−b 0 −a −c 0 0

0 −b 0 −a −b 0

0 0 c 0 a c

0 −c 0 0 −c −a





β1(ξ )

β2(ξ )

η1(ξ )

η2(ξ )

κ(ξ )

ϑ(ξ )


(2.196)

for ξ ∈ [−h,0].
Eigenvalues of the matrix of equation (2.196) are as follows
λ1 = a, λ2 = −a, λ3 =

√
g+d, λ4 = −

√
g+d, λ5 =

√
g−d, λ6 = −

√
g−d

where g = a2− b2− c2/2, d = c
√

c2/4+2b2−2ab
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Now we give the formulas for determination of the set of initial conditions of equation (2.196).
Relations (2.190) take the form as below

β1(−h) = η(0)

β2(−h) = β1(0)

η1(−h) = β (0)

η2(−h) = η1(0)

κ(−h) = ϑ(0)

ϑ(−h) = κ(0)

(2.197)

Among the initial conditions there are relations as below

β1(0) = η1(0)

β2(0) = β (0)
(2.198)

Relations (2.193) become



2aα +β (0)+κ(0) =−1

2bα−η(0) = 0

2cα−ϑ(0) = 0

η1(ξ ) |ξ=− h
2
= β2(ξ ) |ξ=− h

2

β1(ξ ) |ξ=− h
2
= η2(ξ ) |ξ=− h

2

κ(ξ ) |
ξ=− h

2
= ϑ(ξ ) |

ξ=− h
2

(2.199)

Having the solution of equations (2.196)
β1(ξ ), β2(ξ ), η1(ξ ), κ(ξ ), ϑ(ξ )

for ξ ∈ [−h,0] and the matrix α we obtain
β (θ), η(θ), κ(σ), ϑ(σ)

δ1(θ ,σ) = bη(θ − σ)

δ2(θ ,σ) = cϑ(θ − σ)

δ3(θ ,σ) = cβ (θ −σ − r1).
Figure 2.5 shows the graphs of functions β (θ), η(θ), κ(σ), ϑ(σ) and α , obtained with the
Matlab code, for given values of parameters a, b and c of the system (2.194).
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Fig. 2.5. Coefficients of the Lyapunov functional for a system with two delays

2.4 A linear system with both lumped and distributed
retarded type time delay

2.4.1 Mathematical model of a linear system
with both lumped and distributed retarded type time delay

Let us consider the linear system with both lumped and distributed delay, whose dynamics
is described by equation [15]

dx(t)
dt

= Ax(t)+Bxt(−r)+
0∫
−r

Gxt(θ)dθ

x(t0) = x0 ∈ Rn

xt0 = ϕ ∈ L2([−r,0),Rn)

(2.200)

for t ≥ t0, r > 0, where A, B, G ∈ Rn×n, x(t) ∈ Rn, xt ∈ L2([−r,0),Rn) , L2([−r,0),Rn) is
a space of a Lebesgue square integrable functions on interval [−r,0) with values in Rn.
The solution of the functional-differential equation (2.200) with initial value (x0,ϕ) is an
absolutely continuous function defined for t ≥ t0 with values in Rn.

x(·, t0,(x0,ϕ)) ∈W 1,2([t0,∞),Rn) (2.201)
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The function xt ∈ L2([−r,0),Rn) is a shifted restriction of x(·, t0,(x0,ϕ)) to the segment
[t − r, t).
The state of system (2.200) is a vector

S(t) =
[

x(t)
xt

]
(2.202)

where x(t) ∈ Rn,xt ∈ L2([−r,0),Rn) for t ≥ t0
The state space is defined by the formula

X = Rn×L2([−r,0),Rn) (2.203)

S = 0 is the equilibrium point of system (2.200).
In a parametric optimization problem is used an integral quadratic performance index of quality

J =

∞∫
t0

xT (t)Wx(t)dt (2.204)

where W ∈ Rn×n is a positive definite matrix.

2.4.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V , positive definite, differentiable,
given by the formula [15]

V (x(t),xt) = xT (t)αx(t)+
0∫
−r

xT (t)β (θ)xt(θ)dθ +

0∫
−r

0∫
θ

xT
t (θ)δ (θ ,σ)xt(σ)dσdθ (2.205)

for t ≥ t0, where α ∈ Rn×n, β ∈C1([−r,0],Rn×n), δ ∈C1(Ω ,Rn×n)

Ω = {(θ ,σ) : θ ∈ [−r,0], σ ∈ [θ ,0]}C1 is a space of continuous functions with continuous
derivative.
In this paragraph we present a procedure of determination of the functional (2.205) coefficients
to obtain the Lyapunov functional.
The time derivative of the functional (2.205) on the trajectory of system (2.200) is computed.
It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (2.205) and one substitutes in place of dx(t)/dt and ∂xt(θ)/∂ t
the following terms

dx(t)
dt

= Ax(t)+Bxt(−r)+
0∫
−r

Gxt(θ)dθ (2.206)

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(2.207)
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In such a manner one attains

dV (x(t),xt)

dt
= xT (t)

[
AT

α +αA+
β (0)+β T (0)

2

]
x(t)+

+xT
t (−r)

[
2BT

α−β
T (−r)

]
x(t)+

+

0∫
−r

xT (t)
[

2αG+AT
β (θ)− dβ (θ)

dθ
+δ

T (θ ,0)+δ (0,θ)
]

xt(θ)dθ+

+

0∫
−r

xT
t (−r)

[
BT

β (θ)−δ
T (θ ,−r)−δ (−r,θ)

]
xt(θ)dθ+

−
0∫
−r

0∫
−r

xT
t (θ)

[
∂δ (θ ,σ)

∂θ
+

∂δ (θ ,σ)

∂σ
−GT

β (σ)

]
xt(σ)dσdθ (2.208)

To achieve negative definiteness of that derivative we assume that the time derivative of the
Lyapunov functional V is given as a quadratic form

dV (x(t),xt)

dt
≡−xT (t)Wx(t) (2.209)

for t ≥ t0, where W ∈ Rn×n is a positive definite matrix.
When is known the Lyapunov functional and the relationship (2.209) holds, one can easily
determine the value of a square indicator of quality of the parametric optimization, because

J =

∞∫
t0

xT (t)Wx(t)dt =V (x(t0),ϕ) (2.210)

From equations (2.208) and (2.209) one obtains the set of equations (2.211) to (2.215)

AT
α +αA+

β (0)+β T (0)
2

=−W (2.211)

2BT
α−β

T (−r) = 0 (2.212)

AT
β (θ)− dβ (θ)

dθ
+δ (0,θ)+δ

T (θ ,0)+2αG = 0 (2.213)

BT
β (θ)−δ (−r,θ)−δ

T (θ ,−r) = 0 (2.214)

∂δ (θ ,σ)

∂θ
+

∂δ (θ ,σ)

∂σ
−GT

β (σ) = 0 (2.215)

for θ ∈ [−r,0], σ ∈ [−r,0].
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Let us consider that the solution of equation (2.215) is as below

δ (θ ,σ) = f (θ −σ)+ f T (σ −θ)+

σ∫
0

GT
β (ξ )dξ (2.216)

where f ∈ C1 ([−r,r],Rn×n).
From equation (2.216) one obtains

δ
T (θ ,0) = f (−θ)+ f T (θ) (2.217)

δ (0,θ) = f (−θ)+ f T (θ)+

θ∫
0

GT
β (ξ )dξ (2.218)

δ (−r,θ) = f (−θ − r)+ f T (θ + r)+
θ∫

0

GT
β (ξ )dξ (2.219)

δ
T (θ ,−r) = f T (θ + r)+ f (−θ − r)+

−r∫
0

β
T (ξ )Gdξ (2.220)

One puts (2.217) and (2.218) into (2.213), and one gets the formula

− dβ (θ)

dθ
+AT

β (θ)+2 f T (θ)+2 f (−θ)+

θ∫
0

GT
β (ξ )dξ +2αG = 0 (2.221)

for θ ∈ [−r,0] .
One substitutes (2.219) and (2.220) into (2.214). After some calculations one obtains

2 f T (θ)+2 f (−θ) = β
T (−θ − r)B−

−θ−r∫
0

β
T (ξ )Gdξ −

−r∫
0

GT
β (ξ )dξ (2.222)

One puts (2.222) into (2.221). After some calculations one attains

dβ (θ)

dθ
= AT

β (θ)+β
T (−θ − r)B+

θ∫
−r

β
T (−ξ − r)Gdξ +

θ∫
−r

GT
β (ξ )dξ +2αG (2.223)

A new function is introduced

κ(θ) = β (−θ − r) (2.224)

for θ ∈ [−r,0].
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Now the formula (2.223) can be written in a form

dβ (θ)

dθ
= AT

β (θ)+κ
T (θ)B+

θ∫
−r

κ
T (ξ )Gdξ +

θ∫
−r

GT
β (ξ )dξ +2αG (2.225)

One calculates the derivative of the function κ given by the formula (2.224). The relation
(2.225) was taken into account

dκ(θ)

dθ
=−AT

κ(θ)−β
T (θ)B+

θ∫
0

GT
κ(ξ )dξ +

θ∫
0

β
T (ξ )Gdξ −2αG (2.226)

One introduces two new functions

η(θ) = AT
β (θ)+κ

T (θ)B+

θ∫
−r

κ
T (ξ )Gdξ +

θ∫
−r

GT
β (ξ )dξ +2αG (2.227)

ϑ(θ) =−AT
κ(θ)−β

T (θ)B+

θ∫
0

GT
κ(ξ )dξ +

θ∫
0

β
T (ξ )Gdξ −2αG (2.228)

Functions η and ϑ are not independent.It is easy to check that they are linked by the formula

η(−θ − r) =−ϑ(θ) (2.229)

for θ ∈ [−r,0].
From equations (2.225) and (2.227) it results that

dβ (θ)

dθ
= η(θ) (2.230)

From equations (2.226) and (2.228) it results that

dκ(θ)

dθ
= ϑ(θ) (2.231)

The derivatives of (2.227) and (2.228) are computed. Upon taking the relations (2.230) and
(2.231) into account, one gets the formulas

dη(θ)

dθ
= AT

η(θ)+ϑ
T (θ)B+GT

β (θ)+κ
T (θ)G (2.232)

dϑ(θ)

dθ
=−AT

ϑ(θ)−η
T (θ)B+GT

κ(θ)+β
T (θ)G (2.233)
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One obtains the system of differential equations

dβ (θ)

dθ
= η(θ)

dκ(θ)

dθ
= ϑ(θ)

dη(θ)

dθ
= AT η(θ)+ϑ T (θ)B+GT β (θ)+κT (θ)G

dϑ(θ)

dθ
=−AT ϑ(θ)−ηT (θ)B+GT κ(θ)+β T (θ)G

(2.234)

for θ ∈ [−r,0] .
The solution of the differential equations (2.234) satisfies the conditions

β (θ) |θ=− r
2
= κ(θ) |θ=− r

2
(2.235)

η (θ) |θ=− r
2
=−ϑ(θ) |θ=− r

2
(2.236)

Formula (2.235) was obtained from (2.224) and formula (2.236) from (2.229). Now will be
obtained the initial conditions of the differential equations (2.234). From equation (2.224)
it results that

κ(−r) = β (0) (2.237)

Equation (2.227) implies

η(−r) = AT
β (−r)+κ

T (−r)B+2αG (2.238)

Upon taking the relation (2.237) into account, equations (2.211) and (2.212) take the form

AT
α +αA+

κ(−r)+κT (−r)
2

=−W (2.239)

2BT
α−β

T (−r) = 0 (2.240)

One obtains the system of algebraic equations

AT α +αA+
κ(−r)+κT (−r)

2
=−W

2BT α−β T (−r) = 0

−η(−r)+AT β (−r)+κT (−r)B+2αG = 0

β (θ) |θ=− r
2
= κ(θ) |θ=− r

2

η (θ) |θ=− r
2
=−ϑ(θ) |θ=− r

2

(2.241)

The set of algebraic equations (2.241) allows for determination of the matrix α and the initial
conditions of system of differential equations (2.234).
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From equations (2.221) and (2.230) one obtains

f T (θ)+ f (−θ) =−αG− 1
2

AT
β (θ)+

1
2

η(θ)− 1
2

θ∫
0

GT
β (ξ )dξ (2.242)

Putting (2.242) into (2.216), one gets the matrix δ (θ ,σ)

δ (θ ,σ) =−1
2

β
T (θ −σ)A+

1
2

η
T (θ −σ)+

−1
2

θ−σ∫
0

β
T (ξ )Gdξ +

σ∫
0

GT
β (ξ )dξ −GT

α (2.243)

for θ ∈ [−r,0], σ ∈ [−r,0].
In this way one obtained all coefficients of the functional (2.205). This coefficients depend
on the matrices A, B and G of system (2.200). The time derivative of the functional (2.205)
is negative definite.

2.4.3 The examples

2.4.3.1 The example 1

Let us consider the system described by equation



dx(t)
dt

= ax(t)+bxt(−r)+
∫ 0
−r gxt(θ)dθ

x(t0) = x0 ∈ R

xt0 = ϕ ∈ L2([−r,0),R)

(2.244)

t ≥ t0, x(t) ∈ R, xt(θ) = x(t +θ), θ ∈ [−r,0), xt ∈ L2([−r,0),R), a, b, g ∈ R, r > 0
The Lyapunov functional is defined by the formula

V (x(t),xt) = αx2(t)+
0∫
−r

x(t)β (θ)xt(θ)dθ +

0∫
−r

0∫
−r

xt(θ)δ (θ ,σ)xt(σ)dσdθ (2.245)

In a parametric optimization problem is used an integral quadratic performance index of quality

J =

∞∫
t0

wx2(t)dt =V (x0,Φ) (2.246)
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The set of equations (2.234) becomes

dβ (θ)

dθ

dη(θ)

dθ

dκ(θ)

dθ

dϑ(θ)

dθ


=



0 1 0 0

g a g b

0 0 0 1

g −b g −a





β (θ)

η(θ)

κ(θ)

ϑ(θ)


(2.247)

The fundamental matrix of solutions of equation (2.88) is given by

R(θ) =



r11(θ) r12(θ) r13(θ) r14(θ)

r21(θ) r22(θ) r23(θ) r24(θ)

r31(θ) r32(θ) r33(θ) r34(θ)

r41(θ) r42(θ) r43(θ) r44(θ)


(2.248)

where

r11(θ) = 1− g
s2 +

1
s2(b2−ab−g)

[
g(bs2 +ag−bg)θ+

− g
2s

(g+bs)(s+a−b)exp(sθ)− g
2s

(g−bs)(s−a+b)exp(−sθ)

]
(2.249)

r21(θ) =
1

s2(b2−ab−g)

[
g(bs2 +ag−bg)− g

2
(g+bs)(s+a−b)exp(sθ)+

+
g
2
(g−bs)(s−a+b)exp(−sθ)

]
(2.250)

r31(θ) =−
g
s2 +

1
s2(b2−ab−g)

[
−g(bs2 +ag−bg)θ+

− g
2s

(s2−as−g)(s+a−b)exp(sθ)− g
2s

(s2 +as−g)(s−a+b)exp(−sθ)

]
(2.251)

r41(θ) =
1

s2(b2−ab−g)

[
−g(bs2 +ag−bg)+

−g
2
(s2−as−g)(s+a−b)exp(sθ)+

g
2
(s2 +as−g)(s−a+b)exp(−sθ)

]
(2.252)
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r12(θ) =−
a
s2 +

g
s2 θ +

1
s2(b2−ab−g)

[
− 1

2s
(g+bs)(a2 +as−bs−ab+g)exp(sθ)+

+
1
2s

(g−bs)(a2−as+bs−ab+g)exp(−sθ)

]
(2.253)

r22(θ) =
g
s2 +

1
s2(b2−ab−g)

[
−1

2
(g+bs)(a2 +as−bs−ab+g)exp(sθ)+

−1
2
(g−bs)(a2−as+bs−ab+g)exp(−sθ)

]
(2.254)

r32(θ) =
b
s2 −

g
s2 θ +

1
s2(b2−ab−g)

[
− 1

2s
(s2−as−g)(a2 +as−bs−ab+g)exp(sθ)+

+
1
2s

(s2 +as−g)(a2−as+bs−ab+g)exp(−sθ)

]
(2.255)

r42(θ) =−
g
s2 +

1
s2(b2−ab−g)

[
−1

2
(s2−as−g)(a2 +as−bs−ab+g)exp(sθ)+

−1
2
(s2 +as−g)(a2−as+bs−ab+g)exp(−sθ)

]
(2.256)

r13(θ) =−
g
s2 +

1
s2(b2−ab−g)

[
g(bs2 +ag−bg)θ − g

2s
(g+bs)(s+a−b)exp(sθ)+

− g
2s

(g−bs)(s−a+b)exp(−sθ)

]
(2.257)

r23(θ) =
1

s2(b2−ab−g)

[
g(bs2 +ag−bg)− g

2
(g+bs)(s+a−b)exp(sθ)+

+
g
2
(g−bs)(s−a+b)exp(−sθ)

]
(2.258)

r33(θ) = 1− g
s2 +

1
s2(b2−ab−g)

[
−g(bs2 +ag−bg)θ+

− g
2s

(s2−as−g)(s+a−b)exp(sθ)− g
2s

(s2 +as−g)(s−a+b)exp(−sθ)

]
(2.259)

r43(θ) =
1

s2(b2−ab−g)

[
−g(bs2 +ag−bg)− g

2
(s2−as−g)(s+a−b)exp(sθ)+

+
g
2
(s2 +as−g)(s−a+b)exp(−sθ)

]
(2.260)
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r14(θ) =−
b
s2 −

g
s2 θ +

1
2s3 (g+bs)exp(sθ)− 1

2s3 (g−bs)exp(−sθ) (2.261)

r24(θ) =−
g
s2 +

1
2s2 (g+bs)exp(sθ)+

1
2s2 (g−bs)exp(−sθ) (2.262)

r34(θ) =
a
s2 +

g
s2 θ +

1
2s3 (s

2−as−g)exp(sθ)− 1
2s3 (s

2 +as−g)exp(−sθ) (2.263)

r44(θ) =
g
s2 +

1
2s2 (s

2−as−g)exp(sθ)+
1

2s2 (s
2 +as−g)exp(−sθ) (2.264)

where

s =
√

a2−b2 +2g (2.265)

The solution of the set of equations (2.247) is given in a form

β (θ) = r11(θ + r)β (−r)+ r12(θ + r)η(−r)+ r13(θ + r)κ(−r)+ r14(θ + r)ϑ(−r) (2.266)

η(θ) = r21(θ + r)β (−r)+ r22(θ + r)η(−r)+ r23(θ + r)κ(−r)+ r24(θ + r)ϑ(−r) (2.267)

κ(θ) = r31(θ + r)β (−r)+ r32(θ + r)η(−r)+ r33(θ + r)κ(−r)+ r34(θ + r)ϑ(−r) (2.268)

ϑ(θ) = r41(θ + r)β (−r)+ r42(θ + r)η(−r)+ r43(θ + r)κ(−r)+ r44(θ + r)ϑ(−r) (2.269)

Now will be given the formulas for determination of the set of the initial conditions of equation
(2.247) and the coefficient α

2aα +κ(−r) =−w

2bα−β (−r) = 0

−η(−r)+aβ (−r)+bκ(−r)+2gα = 0

β (θ) |θ=− r
2
= κ(θ) |θ=− r

2

η (θ) |θ=− r
2
=−ϑ(θ) |θ=− r

2

(2.270)

The set of algebraic equations (2.270) can be written in the equivalent form

κ(−r) =−w−2aα (2.271)

β (−r) = 2bα (2.272)
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η(−r) = (2g−bw)α (2.273)

2p11α + p12ϑ(−r) = p13w (2.274)

2p21α + p22ϑ(−r) = p23w (2.275)

where

p11 = (s2−g)(a+b−gr)− g
2s

(
a2−b2−as−bs

)
exp
(
− sr

2

)
+

+
g
2s

(
a2−b2 +as+bs

)
exp
( sr

2

)
(2.276)

p12 =−a−b+gr− 1
2s

(
a2−b2−as−bs

)
exp
(
− sr

2

)
+

+
1
2s

(
a2−b2 +as+bs

)
exp
( sr

2

)
(2.277)

p13 =−s2−ab−b2 +agr+
1
2s

(
bs2 +b2s+abs+2ag

)
exp
(
− sr

2

)
+

− 1
2s

(
bs2−b2s−abs+2ag

)
exp
( sr

2

)
(2.278)

p21 =
gs
2

(
s−a+b

)
exp
(
− sr

2

)
+

gs
2

(
s+a−b

)
exp
( sr

2

)
(2.279)

p22 =
s
2

(
s−a+b

)
exp
(
− sr

2

)
+

s
2

(
s+a−b

)
exp
( sr

2

)
(2.280)

p23 =
s
2

(
s2−a2 +ab−bs

)
exp
(
− sr

2

)
− s

2

(
s2−a2 +ab−bs

)
exp
( sr

2

)
(2.281)

The parameter α is given by a term

α =
1
M

[
−aw(a+b)(b2−ab−g)+

−w
2

(
s2−a2 +ab−bs

)
(a2−b2)+

bsw
2

(
a+b

)
(s−a+b)exp(−sr)+

+
sw
2

(
−s3−a3−b3−2b2s−2abs+a2b+ab2−grs(s−a−b)

)
exp
(
− sr

2

)
+

+
sw
2

(
−s3 +a3 +b3−2as2−a2b−ab2 +grs(s+a−b)

)
exp
( sr

2

)]
(2.282)
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where

M = s3(a+b−gr)(s−a+b)exp
(
− sr

2

)
+

+s3(a+b−gr)(s+a−b)exp
( sr

2

)
(2.283)

Having the solution of equations (2.247) and the coefficient α one obtains δ (θ ,σ)

δ (θ ,σ) =−ga− 1
2

aβ (θ −σ)+
1
2

η(θ −σ)+

−1
2

θ−σ∫
0

gβ (ξ )dξ +

σ∫
0

gβ (ξ )dξ (2.284)

Figure 2.6 shows graphs of functions β (θ), η(θ), κ(θ), ϑ(θ) and α , obtained with the
Matlab code, for given values of parameters a, b, g, w, r of system (2.177).

−3 −2.5 −2 −1.5 −1 −0.5 0
−2.5
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−0.5

0

0.5
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1.5

2

2.5

 −r ≤ θ ≤ 0

a = −1  b = 2  g = 1  w = 1

 

 
β(θ)
η(θ)
κ(θ)
ϑ(θ)

α=0.3782

Fig. 2.6. Coefficients of the Lyapunov functional with distributed delay
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2.4.3.2 The example 2

Let us consider the system described by the equation


dx1(t)

dt
dx2(t)

dt

=

[
a11 a12

a21 a22

][
x1(t)

x2(t)

]
+

[
b11 b12

b21 b22

][
x1(t− r)

x2(t− r)

]
+

+

0∫
−r

[
g11 g12

g21 g22

][
x1(t +θ)

x2(t +θ)

]
dθ

 x1(t0)

x2(t0)

=

 x10

x20


 x1(t0 +θ)

x2(t0 +θ)

=

 ϕ1(θ)

ϕ2(θ)



(2.285)

The Lyapunov functional is defined by the formula

V (x1(t),x2(t),x1(t + ·),x2(t + ·)) =
[

x1(t) x2(t)
][ α11 α12

α12 α22

][
x1(t)
x2(t)

]
+

+

0∫
−r

[
x1(t) x2(t)

][ β11(θ) β12(θ)

β21(θ) β22(θ)

][
x1(t +θ)

x2(t +θ)

]
dθ+

+

0∫
−r

0∫
−r

[
x1(t +θ) x2(t +θ)

][ δ11(θ ,σ) δ12(θ ,σ)

δ21(θ ,σ) δ22(θ ,σ)

][
x1(t +σ)

x2(t +σ)

]
dσdθ (2.286)

The set of equations (2.167) becomes

d
dθ


col β (θ)

col η(θ)

col κ(θ)

col ϑ(θ)

= Q


col β (θ)

col η(θ)

col κ(θ)

col ϑ(θ)

 (2.287)

for θ ∈ [−r,0], where

Q =
[

Q1 Q2
]

(2.288)
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Q1 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

g11 g21 0 0 a11 a21 0 0
g12 g22 0 0 a12 a22 0 0
0 0 g11 g21 0 0 a11 a21

0 0 g12 g22 0 0 a12 a22

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

g11 g21 0 0 −b11 −b21 0 0
0 g21 g11 0 0 0 −b11 −b21

g12 g22 0 0 −b12 −b22 0 0
0 0 g12 g22 0 0 −b12 −b22



(2.289)

Q2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

g11 g21 0 0 b11 b21 0 0
0 0 g11 g21 0 0 b11 b21

g12 g22 0 0 b12 b22 0 0
0 0 g12 g22 0 0 b12 b22

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

g11 g21 0 0 −a11 −a21 0 0
g12 g22 0 0 −a12 −a22 0 0
0 0 g11 g21 0 0 −a11 −a21

0 0 g12 g22 0 0 −a12 −a22



(2.290)


col β (θ)

col η(θ)

col κ(θ)

col ϑ(θ)

= eQ(θ+r)


col β (−r)

col η(−r)

col κ(−r)

col ϑ(−r)

 (2.291)

for θ ∈ [−r,0].
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We introduce

eQ r
2 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 (2.292)

Now we give the formulas for determination of the set of the initial conditions of equation
(2.287) and the matrix α .

Z



α11

α12

α22

col β (−r)

col η(−r)

col κ(−r)

col ϑ(−r)


=


−w11

−w12

−w22

0(16,1)

 (2.293)

where

Z =

 Z11 Z12 Z13

0(8,3) Z22 Z23

 (2.294)

Z11 =



2a11 2a21 0

a12 a11 +a22 a21

0 2a12 2a22

b11 b21 0

b12 b22 0

0 b11 b21

0 b12 b22

2g11 2g21 0

2g12 2g22 0

0 2g11 2g21

0 2g12 2g22



(2.295)
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Z12 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1
2

0 0 0 0 0 0 0

0 0 −1
2

0 0 0 0 0

0 −1
2

0 0 0 0 0 0

0 0 0 −1
2

0 0 0 0

a11 a21 0 0 −1 0 0 0

0 0 a11 a21 0 0 −1 0

a12 a22 0 0 0 −1 0 0

0 0 a12 a22 0 0 0 −1



(2.296)

Z13 =



1 0 0 0 0 0 0 0

0
1
2

1
2

0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

b11 b21 0 0 0 0 0 0

b12 b22 0 0 0 0 0 0

0 0 b11 b21 0 0 0 0

0 0 b12 b22 0 0 0 0



(2.297)

Z22 =

 p11− p31 p12− p32

p21 + p41 p22 + p42

 (2.298)

Z23 =

 p13− p33 p14− p34

p23 + p43 p24 + p44

 (2.299)
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Now we obtain the matrix δ (θ ,σ)

δ11(θ ,σ) =−1
2

a11β11(θ −σ)− 1
2

a21β21(θ −σ)+
1
2

η11(θ −σ)+

−1
2

θ−σ∫
0

[
g11β11(ξ )+g21β21(ξ )

]
dξ +

σ∫
0

[
g11β11(ξ )+g21β21(ξ )

]
dξ+

−g11α11−g21α12 (2.300)

δ12(θ ,σ) =−1
2

a12β11(θ −σ)− 1
2

a22β21(θ −σ)+
1
2

η21(θ −σ)+

−1
2

θ−σ∫
0

[
g12β11(ξ )+g22β21(ξ )

]
dξ +

σ∫
0

[
g11β12(ξ )+g21β22(ξ )

]
dξ+

−g11α12−g21α22 (2.301)

δ21(θ ,σ) =−1
2

a11β12(θ −σ)− 1
2

a21β22(θ −σ)+
1
2

η12(θ −σ)+

−1
2

θ−σ∫
0

[
g11β12(ξ )+g21β22(ξ )

]
dξ +

σ∫
0

[
g12β11(ξ )+g22β21(ξ )

]
dξ+

−g12α11−g22α12 (2.302)

δ22(θ ,σ) =−1
2

a12β12(θ −σ)− 1
2

a22β22(θ −σ)+
1
2

η22(θ −σ)+

−1
2

θ−σ∫
0

[
g12β12(ξ )+g22β22(ξ )

]
dξ +

σ∫
0

[
g12β12(ξ )+g22β22(ξ )

]
dξ+

−g12α12−g22α22 (2.303)

Figures 2.7–2.10 show graphs of functions β (θ), η(θ), κ(θ), ϑ(θ) obtained with the Matlab
code, for given values of matrices A, B, G, W of system (2.285)

A =

[
−1 0.3
0.5 −2

]
B =

[
1 0.4

0.1 2

]

G =

[
1 0.7

0.3 2

]
W =

[
1 0
0 1

] (2.304)
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Fig. 2.7. Elements of matrix β (θ)
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Fig. 2.8. Elements of matrix η(θ)
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Fig. 2.9. Elements of matrix κ(θ)
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Fig. 2.10. Elements of matrix ϑ(θ)
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Matrix α obtained for the values (2.304) is given below

α =

[
0.1833 0.0281
0.0281 0.1600

]
(2.305)

2.5 A linear system with a retarded type time-varying delay

2.5.1 Mathematical model of a linear system
with a retarded type time-varying delay

Let us consider a linear system with a retarded type time-varying delay, whose dynamics
is described by the equation [16]

dx(t)
dt

= Ax(t)+Bx(t− τ(t))

x(t0) = x0 ∈ Rn

x(t0 +θ) = ϕ(θ)

(2.306)

for t ≥ t0, θ ∈ [−r,0),where A, B∈Rn×n, x(t)∈Rn,ϕ ∈ L2([−r,0),Rn), τ(t) is a time-varying
delay satisfying the condition 0≤ τ(t)≤ r; dτ(t)/dt 6= 1; t ≥ t0 where r is positive constant.
L2([−r,0),Rn) is a space of Lebesgue square integrable functions on interval [−r,0) with
values in Rn.
Using the formula (2.5) one can write the equation (2.306) in a form

dx(t)
dt

= Ax(t)+Bxt(−τ(t))

x(t0) = x0 ∈ Rn

xt0 = ϕ ∈ L2([−r,0),Rn)

(2.307)

The solution of the functional-differential equation (2.307) with initial value (x0,ϕ) is an
absolutely continuous function defined for t ≥ t0 with values in Rn.

x(·, t0,(x0,ϕ)) ∈W 1,2([t0,∞),Rn) (2.308)

The function xt ∈ L2([−r,0),Rn) is a shifted restriction of x(·, t0,(x0,ϕ)) to the segment
[t − r, t).
The state of system (2.307) is a vector

S(t) =
[

x(t)
xt

]
(2.309)

for t ≥ t0.
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The state space is defined by the formula

X = Rn×L2([−r,0),Rn) (2.310)

In a parametric optimization problem is used an integral quadratic performance index of quality

J =

∞∫
t0

xT (t)Wx(t)dt (2.311)

where W ∈ Rn×n is a positive definite matrix.

2.5.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V , positive definite, differentiable,
given by the formula [16]

V (x(t),xt , t) = xT (t)α(t)x(t)+
0∫

−τ(t)

xT (t)β (θ + τ(t))xt(θ)dθ+

+

0∫
−τ(t)

0∫
θ

xT
t (θ)δ (θ + τ(t),σ + τ(t))xt(σ)dσdθ (2.312)

for t ≥ t0, where α ∈C1 ([t0,∞),Rn×n), α(t) is positively defined,
β ∈C1([0,τ(t)],Rn×n), δ ∈C1(Ω ,Rn×n), Ω = {(θ ,σ) : θ ∈ [0,τ(t)], σ ∈ [θ ,0]},
0 ≤ τ(t) ≤ r.
C1 is a space of continuous functions with continuous derivative.
In this paragraph is given a procedure of determination of the functional (2.312) coefficients
to obtain the Lyapunov functional.
The time derivative of the functional (2.312) on the trajectory of system (2.307) is computed.
It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (2.312) and one substitutes in place of dx(t)/dt and ∂xt(θ)/∂ t
the following terms

dx(t)
dt

= Ax(t)+Bxt(−τ(t)) (2.313)

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(2.314)

In such a manner one attains

dV (x(t),xt , t)
dt

= xT (t)
[
AT

α(t)+α(t)A+
dα(t)

dt
+β (τ(t))

]
x(t)+

+xT
t (−τ(t))

[
BT (

α(t)+α
T (t)

)
+β

T (0)
(dτ(t)

dt
−1
)]

x(t)+
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+

0∫
−τ(t)

xT (t)
[
AT

β (θ + τ(t))+
dβ (θ + τ(t))

dt
− dβ (θ + τ(t))

dθ
+

+δ
T (θ + τ(t),τ(t))

]
xt(θ)dθ +

0∫
−τ(t)

xT
t (−τ(t))

[
BT

β (θ + τ(t))+

+δ (0,θ + τ(t))
(dτ(t)

dt
−1
)]

xt(θ)dθ +

0∫
−τ(t)

0∫
θ

xT
t (θ)

[dδ (θ + τ(t),σ + τ(t))
dt

+

−∂δ (θ + τ(t),σ + τ(t))
∂θ

− ∂δ (θ + τ(t),σ + τ(t))
∂σ

]
xt(σ)dσdθ (2.315)

for t ≥ t0 where α ∈C1 ([t0,∞),Rn×n), β ∈C1([0,τ(t)],Rn×n), δ ∈C1(Ω ,Rn×n),
Ω = {(θ ,σ) : θ ∈ [0,τ(t)],σ ∈ [θ ,0]}, 0≤ τ(t)≤ r.

To achieve negative definiteness of that derivative we assume that the time derivative (2.315)
satisfies the relationship

dV (x(t),xt , t)
dt

≡−xT (t)Wx(t) (2.316)

for t ≥ t0, where W ∈ Rn×n is positive definite matrix.
From equations (2.315) and (2.316) the set of equations is obtained

AT
α(t)+α(t)A+

dα(t)
dt

+β (τ(t)) =−W (2.317)

BT (
α(t)+α

T (t)
)
+β

T (0)
(

dτ(t)
dt
−1
)
= 0 (2.318)

AT
β (θ + τ(t))+

dβ (θ + τ(t))
dt

− dβ (θ + τ(t))
dθ

+δ
T (θ + τ(t),τ(t)) = 0 (2.319)

BT
β (θ + τ(t))+δ (0,θ + τ(t))

(
dτ(t)

dt
−1
)
= 0 (2.320)

dδ (θ + τ(t),σ + τ(t))
dt

− ∂δ (θ + τ(t),σ + τ(t))
∂θ

− ∂δ (θ + τ(t),σ + τ(t))
∂σ

= 0 (2.321)

for t ≥ t0; θ ∈ [−τ(t),0]; σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.

The new variables are introduced

ξ = θ + τ(t) (2.322)

η = σ + τ(t) (2.323)
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One calculates the derivatives

dδ (θ + τ(t),σ + τ(t))
dt

=
dδ (ξ ,η)

dt
=

∂δ (ξ ,η)

∂ξ

dτ(t)
dt

+
∂δ (ξ ,η)

∂η

dτ(t)
dt

(2.324)

∂δ (θ + τ(t),σ + τ(t))
∂θ

=
∂δ (ξ ,η)

∂θ
=

∂δ (ξ ,η)

∂ξ
(2.325)

∂δ (θ + τ(t),σ + τ(t))
∂σ

=
∂δ (ξ ,η)

∂σ
=

∂δ (ξ ,η)

∂η
(2.326)

dβ (θ + τ(t))
dt

=
dβ (ξ )

dξ

∂ξ

∂ t
=

dβ (ξ )

dξ

dτ(t)
dt

(2.327)

dβ (θ + τ(t))
dθ

=
dβ (ξ )

dξ

∂ξ

∂θ
=

dβ (ξ )

dξ
(2.328)

The formula (2.321) takes a form

∂δ (ξ ,η)

∂ξ
+

∂δ (ξ ,η)

∂η
= 0 (2.329)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0], ξ ∈ [0,τ(t)], η ∈ [ξ ,τ(t)] where 0≤ τ(t)≤ r.
The solution of equation (2.321) is given by the formula

δ (θ + τ(t),σ + τ(t)) = δ (ξ ,η) = f (ξ −η) = f (θ −σ) (2.330)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0], 0 ≤ τ(t) ≤ r where f ∈C1 ([−r,r],Rn×n)

Taking into account the formula (2.330) one gets from equation (2.320) the relationship

δ (0,θ + τ(t)) = f (−τ(t)−θ) =

(
1− dτ(t)

dt

)−1

BT
β (θ + τ(t)) (2.331)

Hence

f (ξ ) =
(

1− dτ(t)
dt

)−1

BT
β (−ξ ) (2.332)

for ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r
Formula (2.330) implies

δ
T (θ + τ(t),τ(t)) = f T (θ) =

(
1− dτ (t)

dt

)−1

β
T (−θ)B (2.333)

After putting the term (2.333) into the formula (2.319) one obtains a relationship

AT
β (θ + τ(t))+

dβ (θ + τ(t))
dt

− dβ (θ + τ(t))
dθ

+

(
1− dτ (t)

dt

)−1

β
T (−θ)B = 0 (2.334)
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Taking into account the formulas (2.322), (2.327) and (2.328) one obtains from equation
(2.334) the relationship

dβ (ξ )

dξ
=−

(
dτ (t)

dt
−1
)−1

AT
β (ξ )+

(
dτ (t)

dt
−1
)−2

β
T (−ξ + τ (t))B (2.335)

for ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r
Using the relationship (2.335) the derivative of the term β (−ξ + τ(t)) with respect to ξ is
calculated. One obtains

dβ (−ξ + τ(t))
dξ

=−
(

dτ(t)
dt
−1
)−2

β
T (ξ )B+

(
dτ (t)

dt
−1
)−1

AT
β (−ξ + τ(t)) (2.336)

for ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r
In such a way one attains the set of differential equations

dβ (ξ )

dξ
=−

(
dτ (t)

dt
−1
)−1

AT β (ξ )+

+

(
dτ (t)

dt
−1
)−2

β T (−ξ + τ (t))B

dβ (−ξ + τ(t))
dξ

=−
(

dτ(t)
dt
−1
)−2

β T (ξ )B+

+

(
dτ (t)

dt
−1
)−1

AT β (−ξ + τ(t))

(2.337)

for each fixed t ≥ t0, ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r with the initial conditions β (0) and
β (τ (t)).
There holds the relationship between β (ξ ) and β (−ξ + τ(t))

β (ξ ) |
ξ=

τ(t)
2
= β (−ξ + τ (t)) |

ξ=
τ(t)

2
(2.338)

The derivative of equation (2.318) with respect to t is calculated

BT
(

dα(t)
dt

+
dαT (t)

dt

)
+

dβ T (0)
dt

(
dτ(t)

dt
−1
)
+β

T (0)
d2τ(t)

dt2 = 0 (2.339)

From equation (2.335) it results that

dβ T (0)
dt

=−dτ(t)
dt

(
dτ (t)

dt
−1
)−1

β
T (0)A+

dτ(t)
dt

(
dτ (t)

dt
−1
)−2

BT
β (τ(t)) (2.340)

The equation (2.317) implies

dα(t)
dt

=−AT
α(t)−α(t)A−β (τ(t))−W (2.341)
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One puts the terms (2.340) and (2.341) into equation (2.339). After calculations one attains

BT [AT (
α(t)+α

T (t)
)
+
(
α(t)+α

T (t)
)

A
]
+β

T (0)
(

dτ(t)
dt

A− d2τ(t)
dt2 I

)
+

−
(

dτ (t)
dt
−1
)−1

BT
β (τ(t))+BT

β
T (τ(t)) =−BT (W +W T ) (2.342)

Solving the set of equations (2.342), (2.318) and (2.338) one obtains the matrix α(t) and the
initial conditions of system (2.337). That set of equations is written below

BT
[
AT (

α(t)+α
T (t)

)
+
(
α(t)+α

T (t)
)

A
]
+β

T (0)
(

dτ(t)
dt

A− d2τ(t)
dt2 I

)
+

−
(

dτ (t)
dt
−1
)−1

BT
β (τ(t))+BT

β
T (τ(t)) =−BT (W +W T ) (2.343)

BT (
α(t)+α

T (t)
)
+β

T (0)
(

dτ(t)
dt
−1
)
= 0 (2.344)

β (ξ ) |
ξ=

τ(t)
2
= β (−ξ + τ (t)) |

ξ=
τ(t)

2
(2.345)

Having the solution of the set of differential equations (2.337) and taking into account the
formulas (2.322), (2.330) and (2.332) one can get the matrices

β (θ + τ(t)) = β (ξ ) |ξ=θ+τ(t) (2.346)

δ (θ + τ(t),σ + τ(t)) =
(

1− dτ(t)
dt

)−1

BT
β (σ −θ) (2.347)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.
In this way one obtained all coefficients of the functional (2.312). This coefficients depend
on the matrices A and B of system (2.307). The time derivative of the functional (2.312)
is negative definite.

2.5.3 The examples

2.5.3.1 Inertial system with delay and a P controller

Let us consider a first order inertial system with delay described by the equation

dx(t)
dt

=− q
T

x(t)+
k0

T
u(t− τ (t))

x(t0) = xo

x(t0 +θ) = ϕ(θ)

u(t) =−px(t)

(2.348)

t ≥ t0, x(t) ∈ R, ϕ ∈W 1,2([−r,0),R), θ ∈ [−r,0), p, k0, T, q, x0 ∈ R, r ≥ 0, τ(t) is a time-
varying delay satisfying the condition 0≤ τ(t)≤ r; dτ(t)/dt 6= 1; t ≥ t0 where r is positive
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constant. The parameter k0 is a gain of a plant, p is a gain of a P controller, T is a system
time constant, x0 is an initial state of system. In the case q = 1 an equation (2.348) describes
a static object and in the case q = 0 an equation (2.348) describes an astatic object.
One can reshape an equation (2.348) to a form

dx(t)
dt

=− q
T

x(t)− k0 p
T

x(t− τ (t))

x(t0) = x0

x(t0 +θ) = ϕ(θ)

(2.349)

Using the formula (3.7) one can write the equation (2.349) in a form
dx(t)

dt
=− q

T
x(t)− k0 p

T
xt (−τ (t))

x(t0) = x0

xt0 = ϕ

(2.350)

The Lyapunov functional is given by the formula

V (x(t) ,xt , t) = α(t)x2 (t)+
0∫

−τ(t)

β (θ + τ(t))x(t)xt (θ)dθ+

+

0∫
−τ(t)

0∫
θ

δ (θ + τ(t),σ + τ(t))xt (θ)xt (σ)dσdθ (2.351)

The coefficients of the functional (2.351) will be obtained.
Equation (2.337) takes a form


dβ (ξ )

dθ

dβ (−ξ + τ(t))
dθ

=



−q

T
(

1−
dτ(t)

dt

) −k0 p

T
(

1−
dτ(t)

dt

)2

k0 p

T
(

1−
dτ(t)

dt

)2
q

T
(

1−
dτ(t)

dt

)


 β (ξ )

β (−ξ + τ(t))



(2.352)
for t ≥ t0, ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r.
The fundamental matrix of the differential equation (2.352) is given by the formula

R(ξ ) =



chλξ −
q

λT
(

1−
dτ(t)

dt

)shλξ −
k0 p

λT
(

1−
dτ(t)

dt

)2shλξ

k0 p

λT
(

1−
dτ(t)

dt

)2shλξ chλξ +
q

λT
(

1−
dτ(t)

dt

)shλξ


(2.353)
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where

λ =

√
q2

(
1−

dτ(t)
dt

)2

− k2
0 p2

T
(

1−
dτ(t)

dt

)2 (2.354)

Hence [
β (ξ )

β (−ξ + τ(t))

]
= R(ξ )

[
β (0)

β (τ(t))

]
(2.355)

for t ≥ t0, ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r. One needs the initial conditions of the set of
differential equations (2.352) to obtain

β (θ + τ(t)) = β (ξ ) |ξ=θ+τ(t) (2.356)

δ (θ + τ(t),σ + τ(t)) =−k0 p
T

(
1− dτ(t)

dt

)−1

β (σ −θ) (2.357)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.
The initial conditions of the differential equation (2.352) and the coefficient α(t) are obtained
by solving the set of equations (2.343) to (2.345) which takes the form as below

4
qk0 p
T 2 α(t)+

(
− q

T
dτ(t)

dt
−

d2τ(t)
dt2

)
β (0)+

1−
1

dτ(t)
dt
−1

bβ (τ(t)) =−2bw (2.358)

− 2k0 p
T

α(t)+
(

dτ(t)
dt
−1
)

β (0) = 0 (2.359)

p1β (0)+ p2β (τ(t)) = 0 (2.360)

where

p1 = ch
λτ(t)

2
+

(
−

q

λT
(

1−
dτ(t)

dt

)− k0 p

λT
(

1−
dτ(t)

dt

)2

)
sh

λτ(t)
2

(2.361)

p2 =−ch
λτ(t)

2
+

(
−

q

λT
(

1−
dτ(t)

dt

)− k0 p

λT
(

1−
dτ(t)

dt

)2

)
sh

λτ(t)
2

(2.362)

We compute the value of the performance index for initial conditions given below

x(0) = x0 = 1, ϕ(θ) = 0 for θ ∈ [−r,0)

J(t) = x2
0α(t) for t ≥ 0.
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Figures show the graphs of function J(t), obtained with the Matlab code, for given values
of parameters q = 1, T = 5, k0 = 1 and τ(t) = r(1− exp(−t)), r = 0.5 of system (2.348).
Figure 2.11 presents the index value graph for p = 15.11 and Figure 2.12 for p = 15. The gain
p = 15.1129 is called the critical gain. For gain greater then critical gain system (2.348)
becomes unstable.
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Fig. 2.11. Value of the index J(t) for p = 15.11
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Fig. 2.12. Value of the index J(t) for p = 15
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Figure 2.13 shows the function β (ξ ) for p = 5 and Figure 2.14 shows the function
β (−ξ + τ(t)) for p = 5.

0 0.1 0.2 0.3 0.4 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 ≤ ξ ≤ τ(t)

 

 
β(ξ)

p=5

Fig. 2.13. Function β (ξ ) for p = 5
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Fig. 2.14. Function β (−ξ + τ(t)) for p = 5
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2.5.3.2 The example. Two dimensional system

Let us consider a system described by the equation


dx1(t)

dt
dx2(t)

dt

=

[
a11 a12

a21 a22

][
x1(t)

x2(t)

]
+

+

[
b11 b12

b21 b22

][
xt1(−τ(t))

xt2(−τ(t))

]
[

x1(t0)

x2(t0)

]
=

[
x10

x20

]
[

xt1(θ)

xt2(θ)

]
=

[
ϕ1(θ)

ϕ2(θ)

]
(2.363)

The Lyapunov functional is defined by the formula

V (x(t),xt , t) =
[

x1(t) x2(t)
][ α11(t) α12(t)

α21(t) α22(t)

][
x1(t)
x2(t)

]
+

+

0∫
−τ(t)

[
x1(t) x2(t)

][ β11(θ + τ(t)) β12(θ + τ(t))

β21(θ + τ(t)) β22(θ + τ(t))

][
xt1(θ)

xt2(θ)

]
dθ+

+

0∫
−τ(t)

0∫
θ

[
xt1(θ) xt2(θ)

] δ11(θ + τ(t),σ + τ(t)) δ12(θ + τ(t),σ + τ(t))

δ21(θ + τ(t),σ + τ(t)) δ22(θ + τ(t),σ + τ(t))

×

×
[

xt1(σ)

xt2(σ)

]
dσdθ (2.364)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.
The set of equations (2.337) becomes

d
dξ

 col β (ξ )

col β (−ξ + τ(t))

= Q

 col β (ξ )

col β (−ξ + τ(t))

 (2.365)

for ξ ∈ [0,τ(t)], 0 ≤ τ(t) ≤ r where

Q = [Q1Q2] (2.366)
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Q1 =



a11
dτ(t)

dt −1

a21
dτ(t)

dt −1
0 0

a12
dτ(t)

dt −1

a22
dτ(t)

dt −1
0 0

0 0
a11

dτ(t)
dt −1

a21
dτ(t)

dt −1

0 0
a12

dτ(t)
dt −1

a22
dτ(t)

dt −1
b11(

dτ(t)
dt −1

)2

b21(
dτ(t)

dt −1
)2 0 0

0 0
b11(

dτ(t)
dt −1

)2

b21(
dτ(t)

dt −1
)2

b12(
dτ(t)

dt −1
)2

b22(
dτ(t)

dt −1
)2 0 0

0 0
b12(

dτ(t)
dt −1

)2

b22(
dτ(t)

dt −1
)2



Q2 =



b11(
dτ(t)

dt −1
)2

b21(
dτ(t)

dt −1
)2 0 0

0 0
b11(

dτ(t)
dt −1

)2

b21(
dτ(t)

dt −1
)2

b12(
dτ(t)

dt −1
)2

b22(
dτ(t)

dt −1
)2 0 0

0 0
b12(

dτ(t)
dt −1

)2

b22(
dτ(t)

dt −1
)2

a11
dτ(t)

dt −1

a21
dτ(t)

dt −1
0 0

a12
dτ(t)

dt −1

a22
dτ(t)

dt −1
0 0

0 0
a11

dτ(t)
dt −1

a21
dτ(t)

dt −1

0 0
a12

dτ(t)
dt −1

a22
dτ(t)

dt −1
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 col β (ξ )

col β (−ξ + τ(t))

= eQξ

 col β (0)

col β (τ(t))

 (2.367)

for ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r.
We introduce

eQ τ(t)
2 =



p11 p12 p13 p14 p15 p16 p17 p18

p21 p22 p23 p24 p25 p26 p27 p28

p31 p32 p33 p34 p35 p36 p37 p38

p41 p42 p43 p44 p45 p46 p47 p48

p51 p52 p53 p54 p55 p56 p57 p58

p61 p62 p63 p64 p65 p66 p67 p68

p71 p72 p73 p74 p75 p76 p77 p78

p81 p82 p83 p84 p85 p86 p87 p88



(2.368)

Now we give the formulas for determination of the set of initial conditions of equation (2.365)
and the matrix α .

 D Z12 Z13

Z21 Z22 0(4,4)
0(4,4) Z32 Z33

 col α(t)
col β (0)

col β (τ(t))

=


−2b11w11−b21w12−b21w21

−b11w12−b11w21−2b21w22

−2b12w11−b22w12−b22w21

−b12w12−b12w21−2b22w22

0(8,1)

 (2.369)

where

D =


d11 d12 d13 d14

d21 d22 d23 d24

d31 d31 d33 d34

d41 d42 d43 d44

 (2.370)

d11 = 4a11b11 +2a12b21 (2.371)

d12 = d13 = 2a21b11 +a22b21 +a11b21 (2.372)

d14 = 2a21b21 (2.373)

d21 = 2a12b11 (2.374)

d22 = d23 = a11b11 +a22b11 +2a12b21 (2.375)
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d24 = 2a21b11 +4a22b21 (2.376)

d31 = 4a11b12 +2a12b22 (2.377)

d32 = d33 = 2a21b12 +a22b22 +a11b22 (2.378)

d34 = 2a21b22 (2.379)

d41 = 2a12b12 (2.380)

d42 = d43 = a11b12 +a22b12 +2a12b22 (2.381)

d44 = 2a21b12 +4a22b22 (2.382)

Z12 =
[
Z1

12 Z2
12
]

(2.383)

Z1
12 =



dτ(t)
dt

a11−
d2τ(t)

dt2
dτ(t)

dt
a21

dτ(t)
dt

a12
dτ(t)

dt
a22−

d2τ(t)
dt2

0 0
0 0

 (2.384)

Z2
12 =



0 0
0 0

dτ(t)
dt

a11−
d2τ(t)

dt2
dτ(t)

dt
a21

dτ(t)
dt

a12
dτ(t)

dt
a22−

d2τ(t)
dt2

 (2.385)

Z13 =
[
Z1

13 Z2
13
]

(2.386)

Z1
13 =



b11

1−
1

dτ(t)
dt
−1

 −
b21

dτ(t)
dt
−1

0 b11

b12

1−
1

dτ(t)
dt
−1

 −
b22

dτ(t)
dt
−1

0 b12



(2.387)
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Z2
13 =



b21 0

−
b11

dτ(t)
dt
−1

b21

1−
1

dτ(t)
dt
−1


b22 0

−
b12

dτ(t)
dt
−1

b22

1−
1

dτ(t)
dt
−1





(2.388)

Z21 =



2b11 b21 b21 0

0 b11 b11 2b21

2b12 b22 b22 0

0 b12 b12 2b22


(2.389)

Z22 =



dτ(t)
dt
−1 0 0 0

0
dτ(t)

dt
−1 0 0

0 0
dτ(t)

dt
−1 0

0 0 0
dτ(t)

dt
−1


(2.390)

Z32 =



p11− p51 p12− p52 p13− p53 p14− p54

p21− p61 p22− p62 p23− p63 p24− p64

p31− p71 p32− p72 p33− p73 p34− p74

p41− p81 p42− p82 p43− p83 p44− p84


(2.391)

Z33 =



p15− p55 p16− p56 p17− p57 p18− p58

p25− p65 p26− p66 p27− p67 p28− p68

p35− p75 p36− p76 p37− p77 p38− p78

p45−p85 p46−p86 p47− p87 p48− p88


(2.392)

Now we obtain the matrix δ (θ + τ(t),σ + τ(t))

δ11(θ + τ(t),σ + τ(t)) =
b11

1−
dτ(t)

dt

β11(θ −σ)+
b21

1−
dτ(t)

dt

β21(θ −σ) (2.393)
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δ12(θ + τ(t),σ + τ(t)) =
b11

1−
dτ(t)

dt

β12(θ −σ)+
b21

1−
dτ(t)

dt

β22(θ −σ) (2.394)

δ21(θ + τ(t),σ + τ(t)) =
b12

1−
dτ(t)

dt

β11(θ −σ)+
b22

1−
dτ(t)

dt

β21(θ −σ) (2.395)

δ22(θ + τ(t),σ + τ(t)) =
b12

1−
dτ(t)

dt

β12(θ −σ)+
b22

1−
dτ(t)

dt

β22(θ −σ) (2.396)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.
Figures 2.15–2.20 show graphs of functions α(t), β (ξ ), η(ξ ) obtained with the Matlab code,
for given values of matrices A, B, W of system (2.363)

A =

[
−1 0.6
0.5 −2

]
B =

[
−1 0.4
0.1 −1

]
W =

[
1 0
0 1

]
(2.397)

and time delay given by the function

τ(t) = r
(

1− exp
(
− t

T

))
where r = 0.5, T = 1.
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Fig. 2.15. Function α11(t)
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Fig. 2.19. Elements of matrix β (ξ )
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3 A linear neutral system

3.1 Preliminaries

Let us consider a neutral system whose dynamics is described by the functional-differential
equation [56] 

dx(t)
dt
−C

dx(t− r)
dt

= L (t,x(t),xt)

x(t0) = x0 ∈ Rn

xt0 = ϕ ∈W 1,2([−r,0),Rn)

(3.1)

for t ≥ t0, r > 0, x(t) ∈ Rn, xt ∈W 1,2([−r,0),Rn), where W 1,2([−r,0),Rn) is a space of all
absolutely continuous Rn - valued functions with derivatives in a space of Lebesgue square inte-

grable functions on interval [−r,0) with norm ‖ ϕ ‖W 1,2=

√∫ 0
−r

(
‖ ϕ(t) ‖2

Rn + ‖ dϕ(t)
dt ‖

2
Rn

)
dt

The norm of the initial value (x0,ϕ) is given by the formula

‖(x0,ϕ)‖Rn×W 1,2 =
√
‖ x0 ‖2

Rn + ‖ ϕ ‖2
W 1,2 (3.2)

The function L is linear, continuous and defined on the space [0,∞)×Rn×W 1,2([−r,0),Rn)

L : [0,∞)×Rn×W 1,2([−r,0),Rn)→ Rn

The solution of the functional-differential equation (3.1) with initial value (x0,ϕ) for t ≥ t0 is
an absolutely continuous function with values in Rn and is denoted as x(·, t0,(x0,ϕ)).
We say that x(t, t0,(x0,ϕ)), for t ≥ t0 is a solution of system (3.1) if it satisfies the system
equation (3.1) almost everywhere on [t0,∞).
The function xt(t0,(x0,ϕ)) ∈ W 1,2 ([−r,0),Rn) is a shifted restriction of function
x(·, t0,(x0,ϕ)) to the interval [t − r, t).
The initial condition for equation (3.1) can be written in a form

xt0(t0,(x0,ϕ)) = ϕ (3.3)
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We assume that system (3.1) admits the trivial solution, i.e., the following identity holds:

L (t,0Rn ,0W 1,2)≡ 0

for t ≥ 0.
Let x(t, t0,(x0,ϕ)) for t ≥ t0 be the solution of system (3.1) with initial condition (x0,ϕ).

Definition 3.1. [56] The trivial solution of system (2.1) is said to be stable if for any ε > 0
and t0 ≥ 0 there exists δ (ε, t0)> 0 such that for every (x0,ϕ) ∈ Rn×W 1,2([−r,0),Rn)

‖ (x0,ϕ) ‖Rn×W 1,2≤ δ (ε, t0)⇒‖ x(t, t0,(x0,ϕ)) ‖Rn≤ ε

for every t ≥ t0.

Definition 3.2. [56] The trivial solution of system (2.1) is said to be asymptotically stable if
it is stable and ‖ x(t, t0,(x0,ϕ)) ‖Rn→ 0 as t− t0→ ∞.

Definition 3.3. [56] The trivial solution of system (2.1) is said to be exponentially stable
if there exist δ > 0, M ≥ 1 and σ > 0 such that for every t0 ≥ 0 and initial condition
(x0,ϕ) ∈ Rn×W 1,2([−r,0),Rn), with ‖ (x0,ϕ) ‖Rn×W 1,2≤ δ the following inequality holds

‖ x(t, t0,(x0,ϕ)) ‖Rn≤Me−σ(t−t0) ‖ (x0,ϕ) ‖Rn×W 1,2

for every t ≥ t0.

Assumption 1. We assume that the difference x(t, t0,(x0,ϕ))−Cx(t− r, t0,(x0,ϕ))

is continuous and differentiable for t ≥ t0, except possibly a countable number of points.

Assumption 2. We assume that there exists the right-hand-side derivative of the difference
x(t, t0,(x0,ϕ))−Cx(t− r, t0,(x0,ϕ)) at the point t = t0.

Let x(t, t0,(x0,ϕ)) be a solution of the initial value problem (3.1) then

x(t, t0,(x0,ϕ)) =Cx(t− r, t0,(x0,ϕ))+ [ϕ(0)−Cϕ(−r)]+
t∫

t0

L (s,x(s),xs)ds (3.4)

for t ≥ t0.
If θ1 ∈ [−r,0] is a discontinuity point of ϕ then according to Assumption 1 the function

z(t) =Cx(t− r, t0,(x0,ϕ))+ [ϕ(0)−Cϕ(−r)]

has jump points of discontinuity at tk = t0 + θ1 + kr, for k ≥ 1, and the size of the jump
at the points is such that ∆x(t1) = C∆ϕ(θ1) where ∆x(t1) = x(t1 + 0)− x(t1 − 0) and
∆x(tk+1) = C∆x(tk) for k ≥ 1.
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We obtained the jump equation

∆x(tk+1) =C∆x(tk) (3.5)

for k ≥ 1.
The jump equation implies

∆x(tk+1) =Ck
∆x(t1) (3.6)

for k ≥ 1 and tk = t0 + θ1 + kr.
For a given t ∈ [t0,∞) we define an integer k such that t ∈ [t0 +(k−1)r, t0 + kr).
The solution (3.4) for t ∈ [t0 +(k− 1)r, t0 + kr) we can express in a form

x(t, t0,(x0,ϕ)) =Ckx(t− r, t0,(x0,ϕ))+
k−1

∑
j=0

C j[ϕ(0)−Cϕ(−r)]+

+
k−1

∑
j=0

C j
t− jr∫
t0

L (s,x(s),xs)ds (3.7)

Corollary 3.1. The system (3.1) cannot be stable if the matrix C admits an eigenvalue with
magnitude greater than one.

Indeed, if the matrix C has an eigenvalue with magnitude greater than one, then for any δ > 0
there exists an initial function (x0,ϕ) ∈ Rn×W 1,2([−r,0),Rn), with ‖ (x0,ϕ) ‖Rn×W 1,2≤ δ ,
such that the corresponding solution x(t, t0,(x0,ϕ)) has a sequence of jumps, and the size of
jumps tends to infinity, see (3.6) and (3.7).
The arbitrary eigenvalue of the matrix C will be denoted as λ (C).

Definition 3.4. The spectrum σ (C) is the set of eigenvalues of matrix C, i.e. the set of complex
numbers λ for which a matrix λ I−C is not invertible.

σ (C) = {λ ∈ C : det(λ I−C) = 0} (3.8)

Definition 3.5. The spectral radius of a matrix C is given by a form

γ (C) = sup{| λ |: λ ∈ σ (C)} (3.9)

Definition 3.6. The matrix C is called a Schur stable matrix if the eigenvalues of C lie in the
interior of the unit disk of the complex plane, i.e. if the spectral radius γ (C)< 1.

The Corollary 3.1 motivate the following assumption.
Assumption 3. In that monograph we assume that matrix C is Schur stable.

92



3.2 A linear neutral system with lumped delay
3.2.1 Mathematical model of a linear neutral system with lumped delay

Let us consider a linear neutral system, whose dynamics is described by the functional-
differential equation [13]

dx(t)
dt
−

k
∑

i=1
Bi

dx(t− τi)

dt
= Ax(t)+

k
∑

i=1
Aix(t− τi)

x(t0) = x0

x(t0 +θ) = ϕ(θ)

(3.10)

for t ≥ t0, θ ∈ [−r,0) x(t) ∈Rn, A, Ai, Bi ∈Rn×n, i = 1, ...,k, 0≤ τ1 ≤ ...≤ τi ≤ ...≤ τk = r,
ϕ ∈W 1,2([−r,0),Rn), where W 1,2([−r,0),Rn) is a space of all absolutely continuous functions
with derivatives in a space of Lebesgue square integrable functions on interval [−r,0) with
values in Rn. The solution of the functional-differential equation (3.10) with initial value
(x0,ϕ) for t ≥ t0 is an absolutely continuous function with values in Rn and is denoted as
x(·, t0,(x0,ϕ)).
Equation (3.10) can be written in a form

dx(t)
dt
−

k
∑

i=1
Bi

dxt(−τi)

dt
= Ax(t)+

k
∑

i=1
Aixt(−τi)

x(t0) = x0

xt0 = ϕ ∈W 1,2([−r,0),Rn)

(3.11)

for t ≥ t0, where xt ∈W 1,2([−r,0),Rn) is a shifted restriction of the function x(·, t0,(x0,ϕ))

to the interval [−r,0). The theorems of existence, continuous dependence and uniqueness of
solutions of equation (3.11) are given in [32].

Definition 3.7. The difference equation associated with (3.11) is given by a term

x(t) =
k

∑
i=1

Bixt(−τi) (3.12)

for t ≥ t0.

According to the Theorem 9.6.1 [40] a difference equation (3.12) for fixed rationally
independent

0 < τ1 ≤ ...≤ τ j ≤ ...≤ τk

is stable if

sup

{
γ

(
k

∑
j=1

eiθ j B j

)
: θ j ∈ [0,2π] ,1≤ j ≤ k

}
< 1 (3.13)

where γ

(
∑

k
j=1 eiθ j B j

)
is the spectral radius of a matrix ∑

k
j=1 eiθ j B j.
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If each B j is a scalar then a difference equation is stable if and only if

k

∑
j=1
| B j |< 1 (3.14)

A new variable y, is defined by the formula

y(t) = x(t)−
k

∑
i=1

Bixt(−τi) (3.15)

for t ≥ t0
Thus the equation (3.11) takes a form

dy(t)
dt

= Ay(t)+
k
∑

i=1
(Ai +ABi)xt(−τi)

y(t) = x(t)−
k
∑

i=1
Bixt(−τi)

y(t0) = x0−
k
∑

i=1
Biϕ(−τi)

xt0 = ϕ

(3.16)

Let us assume that the matrices Bi for i = 1, ...,k fulfill the condition (3.13).
The state of system (3.16) is a vector

S(t) =
[

y(t)
xt

]
(3.17)

for t ≥ t0
The state space is defined by the formula

X = Rn×W 1,2([−r,0),Rn) (3.18)

The norm in the state space X is defined by a term

‖ S(t) ‖X=
√
‖ y(t) ‖2

Rn + ‖ xt ‖2
W 1,2 (3.19)

for t ≥ t0.
In the parametric optimization problem is used the performance index of quality, which value
is given by the formula

J =

∞∫
t0

yT (t)Wy(t)dt =V (y0,ϕ) (3.20)

where V is the Lyapunov functional defined on the state space X and W is a positive definite
matrix.

94



3.2.2 Determination of the Lyapunov functional for a neutral system
with one delay

Let us consider a system [19]

dy(t)
dt

= Ay(t)+(A1 +AB1)xt(−r)

y(t) = x(t)−B1xt(−r)

y(t0) = x0−B1ϕ(−r)

xt0 = ϕ

(3.21)

The state of system (3.21) is a vector

S(t) =
[

y(t)
xt

]
(3.22)

for t ≥ t0.
The state space is defined by the formula

X = Rn×W 1,2([−r,0),Rn) (3.23)

On the state space X we define a quadratic functional V positive definite, differentiable, given
by the formula

V (y(t),xt) = yT (t)αy(t)+
0∫
−r

yT (t)β (θ)xt(θ)dθ +

0∫
−r

0∫
θ

xT
t (θ)δ (θ ,σ)xt(σ)dσdθ (3.24)

for t ≥ t0, where α ∈ Rn×n, β ∈C1([−r,0],Rn×n), δ ∈C1(Ω ,Rn×n)

Ω = {(θ ,σ) : θ ∈ [−r,0], σ ∈ [θ ,0]}C1 is a space of continuous functions with continuous
derivative.
In this paragraph will be given a procedure of determination of the functional (3.24) coefficients
to obtain the Lyapunov functional.
The time derivative of the functional (3.24) on the trajectory of system (3.21) is computed.
This time derivative is defined by the formula (2.10) which for system (3.21) takes a form

dV (y(t0),ϕ)
dt

= limsup
h→0

1
h

[
V
(
y(t0 +h) ,xt0+h

)
−V (y(t0),ϕ)

]
(3.25)

It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (3.24) and one substitutes in place of dy(t)/dt and ∂xt(θ)/∂ t
the following terms

dy(t)
dt

= Ay(t)+(A1 +AB1)xt(−r) (3.26)

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(3.27)
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In such a manner one attains

dV (y(t),xt)

dt
= yT (t)

[
AT

α +αA+β (0)
]

y(t)+

+yT (t)
[(

α +α
T )(A1 +AB1)+β (0)B1−β (−r)

]
xt(−r)+

+

0∫
−r

yT (t)
[

AT
β (θ)− dβ (θ)

dθ
+δ

T (θ ,0)
]

xt(θ)dθ+

+

0∫
−r

xT
t (−r)[(A1 +AB1)

T
β (θ)+BT

1 δ
T (θ ,0)−δ (−r,θ)]xt(θ)dθ+

−
0∫
−r

0∫
θ

xT
t (θ)

[
∂δ (θ ,σ)

∂θ
+

∂δ (θ ,σ)

∂σ

]
xt(σ)dσdθ (3.28)

for t ≥ t0.
To achieve negative definiteness of that derivative we assume that

dV (y(t),xt)

dt
≡−yT (t)Wy(t) (3.29)

From relations (3.29) and (3.28) one attains the set of equations

AT
α +αA+β (0) =−W (3.30)

(
α +α

T )(A1 +AB1)+β (0)B1−β (−r) = 0 (3.31)

AT
β (θ)− dβ (θ)

dθ
+δ

T (θ ,0) = 0 (3.32)

(A1 +AB1)
T

β (θ)+BT
1 δ

T (θ ,0)−δ (−r,θ) = 0 (3.33)

∂δ (θ ,σ)

∂θ
+

∂δ (θ ,σ)

∂σ
= 0 (3.34)

for θ ∈ [−r,0], σ ∈ [θ ,0].
The solution of equation (3.34) is as below

δ (θ ,σ) = f (θ −σ) (3.35)

for θ ∈ [−r,0], σ ∈ [θ ,0], where f ∈C1([−r,r],Rn×n), C1 is a space of continuous functions
with continuous derivative.
From equation (3.32) one determines the term

δ
T (θ ,0) =

dβ (θ)

dθ
−AT

β (θ) = f T (θ) (3.36)
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and one puts it into relation (3.33). After some calculations one gets

BT
1

dβ (θ)

dθ
+AT

1 β (θ)−δ (−r,θ) = 0 (3.37)

It follows from equation (3.36) that

δ (−r,θ) = f (−r−θ) =−dβ T (−r−θ)

dθ
−β

T (−r−θ)A (3.38)

One puts the term (3.38) into (3.37) and one obtains

BT
1

dβ (θ)

dθ
+

dβ T (−r−θ)

dθ
=−AT

1 β (θ)−β
T (−r−θ)A (3.39)

After putting in the relation (3.39) a new variable −r−θ , instead of an independent variable
θ , one attains the equation

BT
1

dβ (−r−θ)

dθ
+

dβ T (θ)

dθ
= AT

1 β (−r−θ)+β
T (θ)A (3.40)

The set of differential equations are obtained
BT

1
dβ (θ)

dθ
+

dβ T (−r−θ)

dθ
=−AT

1 β (θ)−β T (−r−θ)A

BT
1

dβ (−r−θ)

dθ
+

dβ T (θ)

dθ
= AT

1 β (−r−θ)+β T (θ)A

(3.41)

The new function is given

κ(θ) = β (−r−θ) (3.42)

The set of equations (3.41) takes a form
BT

1
dβ (θ)

dθ
+

dκT (θ)

dθ
=−AT

1 β (θ)−κT (θ)A

BT
1

dκ(θ)

dθ
+

dβ T (θ)

dθ
= AT

1 κ(θ)+β T (θ)A

(3.43)

The set of equations (3.43) can be written in the form
dβ (θ)

dθ
−BT

1
dβ T (θ)

dθ
B1 = AT

1 β (θ)B1 +AT β (θ)+κT (θ)(AB1 +A1)

dκ(θ)

dθ
−BT

1
dκT (θ)

dθ
B1 =−β T (θ)(A1 +AB1)−AT κ(θ)−AT

1 κ(θ)B1

(3.44)

To obtain the solution of equations (3.44) one needs the initial values β (−r) and κ(−r).
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Equation (3.42) implies that

κ(−r) = β (0) (3.45)

β (θ) |θ=− r
2
= κ(θ) |θ=− r

2
(3.46)

Equations (3.30) and (3.31) take a form

AT
α +αA+κ(−r) =−W (3.47)

(
α +α

T )(A1 +AB1)+κ(−r)B1−β (−r) = 0 (3.48)

The set of algebraic equations (3.46) to (3.48) enables to obtain the matrix α and the initial
conditions of the ordinary differential equations (3.44).

3.2.3 The example. Inertial system with delay and a PD controller

Let us consider a first order inertial system with delay described by the equation [19]

dx(t)
dt

=− q
T

x(t)+
k0

T
u(t− r)

x(t0) = xo

x(t0 +θ) = 0

u(t) =−px(t)−Td
dx(t)

dt

(3.49)

t ≥ t0, x(t) ∈ R, θ ∈ [−r,0), p, k0, T, Td , q, x0 ∈ R, r ≥ 0.
The parameter k0 is a gain of a plant, p is a proportional gain, Td is a derivative gain, T is
a system time constant, x0 is an initial state of system. In the case q = 1 an equation (3.49)
describes a static object and in the case q = 0 an equation (3.49) describes an astatic object.
One can reshape an equation (3.49) to a form

dx(t)
dt

+
k0Td

T
dx(t− r)

dt
=− q

T
x(t)− k0 p

T
x(t− r)

x(t0) = xo

x(θ) = 0

(3.50)

for t ≥ t0 and θ ∈ [−r,0).
It is assumed that the element k0Td/T satisfies the condition (3.14), whose takes a form∣∣∣∣k0Td

T

∣∣∣∣< 1 (3.51)
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The Lyapunov functional V is defined by the formula

V (y(t),x(t + ·)) = αy2(t)+
0∫
−r

β (θ)y(t)x(t +θ)dθ+

+

0∫
−r

0∫
θ

δ (θ ,σ)x(t +θ)x(t +σ)dσdθ (3.52)

where

y(t) = x(t)+
k0Td

T
x(t− r) (3.53)

In a parametric optimization problem is used the integral quadratic performance index of
quality

J =

∞∫
t0

wy2(t)dt =V (y(t0),ϕ) (3.54)

The set of equations (3.44) takes a form
dβ (θ)

dθ

dκ(θ)

dθ

=

[
p1 −p2

p2 −p1

][
β (θ)

κ(θ)

]
(3.55)

where

p1 =
k2

0 pT −qT
T 2− k2

0T 2
d

(3.56)

p2 =
k0 pT −qk0Td

T 2− k2
0T 2

d
(3.57)

The fundamental matrix of solutions of equation (3.55) is given by the term

R(θ) =

 cosh(λθ)+
p1

λ
sinh(λθ) − p2

λ
sinh(λθ)

p2

λ
sinh(λθ) cosh(λθ)− p1

λ
sinh(λθ)

 (3.58)

where

λ =
√

p2
1− p2

2 =

√
q2− k2

0 p2

T 2− k2
0T 2

d
(3.59)

The solution of the set of equations (3.58) is given by the formula

β (θ) = [cosh(λθ + r)+
p1

λ
sinh(λθ + r)]β (−r)− p2

λ
sinh(λθ + r)κ(−r) (3.60)

κ(θ) =
p2

λ
sinh(λθ + r)β (−r)+ [cosh(λθ + r)− p1

λ
sinh(λθ + r)]κ(−r) (3.61)
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The initial conditions of equation (3.58) and the coefficient α are obtained from the set of
algebraic equations (3.46)–(3.48) which takes a form[

cosh
(

λ r
2

)
+

p1− p2

λ
sinh

(
λ r
2

)]
β (−r)+

+
[
−cosh

(
λ r
2

)
+

p1− p2

λ
sinh

(
λ r
2

)]
κ(−r) = 0 (3.62)

− 2q
T

α +κ(−r) =−w (3.63)

2
qk0Td− k0 pT

T 2 α− k0Td

T
κ(−r)−β (−r) = 0 (3.64)

From equation (3.63) one can determine a term κ(−r) and substitute it into (3.64) and (3.62).

κ(−r) =−w+
2q
T

α (3.65)

From equation (3.64) one determines a term β (−r)

β (−r) =−2
k0 p
T

α +
k0Td

T
w (3.66)

One puts the terms (3.65) and (3.66) into (3.62) and one obtains a parameter α

α =
w
2

(T − k0Td)(p1− p2)

λ
sinh

(λ r
2

)
− (T + k0Td)cosh

(λ r
2

)
(q− k0 p)(p1− p2)

λ
sinh

(λ r
2

)
− (q+ k0 p)cosh

(λ r
2

) (3.67)

The coefficient δ (θ ,σ) is obtained from equations (3.35), (3.36) and (3.55)

δ (θ ,σ) = (p1 +
q
T
)β (θ −σ)− p2κ(θ −σ) (3.68)

We compute the value of the performance index (3.54) for initial function Φ given by a term

ϕ(θ) =


x0 for θ = 0

0 for θ ∈ [−r,0)
(3.69)

After calculations one obtains

J =
x2

0w
2

(T − k0Td)(p1− p2)

λ
sinh

(λ r
2

)
− (T + k0Td)cosh

(λ r
2

)
(q− k0 p)(p1− p2)

λ
sinh

(λ r
2

)
− (q+ k0 p)cosh

(λ r
2

) (3.70)
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We search for an optimal parameters of a PD-controller which minimize the index (3.70).
Optimization results are given in Table 3.1. These results are obtained for x0 = 1, w = 1,
q = 1, T = 5, and k0 = 1.

Table 3.1
Optimization results

Delay r Optimal p Optimal Td Index value

1.0 5.0838 2.3664 1.0245

1.5 3.3438 2.2797 1.3567

2.0 2.4745 2.1945 1.6096

2.5 1.9532 2.1110 1.8035

3.0 1.6055 2.0290 1.9528

3.5 1.3569 1.9486 2.0685

4.0 1.1699 1.8698 2.1586

3.3 The Lyapunov functional for a neutral system
with both lumped and distributed time delay

3.3.1 Mathematical model of a linear neutral system
with both lumped and distributed time delay

Let us consider a linear neutral system with both lumped and distributed time delay, which
dynamics is described by the functional-differential equation [21]



dx(t)
dt
−C

dx(t− r)
dt

= Ax(t)+Bx(t− r)+
0∫
−r

Gx(t +θ)dθ

x(t0) = x0

x(t0 +θ) = ϕ(θ)

(3.71)

for t ≥ t0, r ≥ 0, A, B,C, G ∈ Rn×n, x(t) ∈ Rn, θ ∈ [−r,0), ϕ ∈W 1,2 ([−r,0),Rn) where
W 1,2([−r,0),Rn) is a space of all absolutely continuous functions [−r,0) → Rn with
derivatives in L2([−r,0),Rn) a space of Lebesgue square integrable functions on an interval
[−r,0) with values in Rn.
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The solution of the functional-differential equation (3.71) with initial value (x0,ϕ) is an
absolutely continuous function defined for t ≥ t0 with values in Rn and is denoted as
x(·, t0,(x0,ϕ)).
Equation (3.71) can be written in the form

dx(t)
dt
−C

dxt(−r)
dt

= Ax(t)+Bxt(−r)+
0∫
−r

Gxt(θ)dθ

x(t0) = x0 ∈ Rn

xt0 = ϕ ∈W 1,2 ([−r,0),Rn)

(3.72)

for t ≥ t0, where xt ∈W 1,2 ([−r,0),Rn) is a shifted restriction of x(·, t0,(x0,ϕ)) to an interval
[t − r, t).
The theorems of existence, continuous dependence and uniqueness of solutions of equation
(3.72) are given in [34].

Definition 3.8. The difference equation associated with (3.71) and (3.72) is given by a term

x(t) =Cx(t− r) (3.73)

for t ≥ t0

The eigenvalues of neutral equation (3.72) for large modulus are asymptotically equal to the
eigenvalues of the difference equation (3.73). The stability of the difference equation (3.73)
is the necessary condition of the stability of the neutral equation (3.72).
According to the Theorem 9.6.1 [40] the difference equation (3.73) is stable when the spectral
radius γ(C) of the matrix C fulfills the condition

γ (C)< 1 (3.74)

We assume that the matrix C is not singular and fulfills the condition (3.74).
We introduce a new function y, defined by a term

y(t) = x(t)−Cxt(−r) (3.75)

for t ≥ t0.
Thus the equation (3.72) takes a form

dy(t)
dt

= Ay(t)+(AC+B)xt(−r)+
0∫
−r

Gxt(θ)dθ

y(t) = x(t)−Cxt(−r)

xt0 = ϕ ∈W 1,2([−r,0),Rn)

y(t0) = y0

(3.76)

for t ≥ t0 where y0 = x0−Cϕ(−r).
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The state of system (3.76) is a vector

S(t) =
[

y(t)
xt

]
(3.77)

for t ≥ t0.
The state space is defined by the formula

X = Rn×W 1,2([−r,0),Rn) (3.78)

In the parametric optimization problem is used the performance index of quality, which value
is given by the term

J =

∞∫
t0

yT (t)Wy(t)dt =V (y0,ϕ) (3.79)

where V is the Lyapunov functional defined on the state space X and W is a positive definite
matrix. The controllability of systems with time delay is presented in [69].

3.3.2 Determination of the Lyapunov functional coefficients

On the state space X we define a quadratic functional V positive definite, differentiable, given
by the formula [21]

V (y(t),xt) = yT (t)αy(t)+
0∫
−r

yT (t)β (θ)xt(θ)dθ +

0∫
−r

0∫
−r

xT
t (θ)δ (θ ,σ)xt(σ)dσdθ (3.80)

α = αT ∈ Rn×n; β ∈C1([−r,0],Rn×n); δ ∈C1(Ω ,Rn×n);
Ω = {(θ ,σ) : θ ∈ [−r,0], σ ∈ [−r,0]};
C1 is a space of continuous functions with a continuous derivative.
In this paragraph will be given a procedure of determination of the functional (3.80) coefficients
to obtain the Lyapunov functional. The time derivative of the functional (3.80) on the trajectory
of system (3.76) is computed. This time derivative is defined by the formula (2.10) which
for system (3.76) takes a form

dV (y(t0),ϕ)
dt

= limsup
h→0

1
h

[
V
(
y(t0 +h) ,xt0+h

)
−V (y(t0),ϕ)

]
(3.81)

It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (3.80) and one substitutes in place of dy(t)/dt and ∂xt(θ)/∂ t
the following terms

dy(t)
dt

= Ay(t)+(AC+B)xt(−r)+
0∫
−r

Gxt(θ)dθ (3.82)
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∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(3.83)

In such a manner one attains

dV (y(t),xt)

dt
= yT (t)

[
AT

α +αA+
β (0)+β T (0)

2

]
y(t)+

+yT (t) [2α (AC+B)+β (0)C−β (−r)]xt(−r)+

+

0∫
−r

yT (t)
[

2αG+AT
β (θ)− dβ (θ)

dθ
+δ (0,θ)+δ

T (θ ,0)
]

xt(θ)dθ+

+

0∫
−r

xT
t (−r)[(AC+B)T

β (θ)+CT
δ (0,θ)−δ (−r,θ)+CT

δ
T (θ ,0)−δ

T (θ ,−r)]xt(θ)dθ+

+

0∫
−r

0∫
−r

xT
t (θ)

[
GT

β (σ)− ∂δ (θ ,σ)

∂θ
− ∂δ (θ ,σ)

∂σ

]
xt(σ)dσdθ (3.84)

To achieve negative definiteness of that derivative we assume that

dV (y(t),xt)

dt
≡−yT (t)Wy(t) (3.85)

From relations (3.85) and (3.84) one attains the set of equations

AT
α +αA+

β (0)+β T (0)
2

=−W (3.86)

2α (AC+B)+β (0)C−β (−r) = 0 (3.87)

2αG+AT
β (θ)− dβ (θ)

dθ
+δ (0,θ)+δ

T (θ ,0) = 0 (3.88)

(AC+B)T
β (θ)+CT

δ (0,θ)+CT
δ

T (θ ,0)−δ (−r,θ)−δ
T (θ ,−r) = 0 (3.89)

∂δ (θ ,σ)

∂θ
+

∂δ (θ ,σ)

∂σ
= GT

β (σ) (3.90)

for θ , σ ∈ [−r,0].
Let us consider a solution of equation (3.90) as below

δ (θ ,σ) = f (θ −σ)+ f T (σ −θ)+

σ∫
0

GT
β (ξ )dξ (3.91)

where f ∈ C1([−r,r]).
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From equation (3.91) it attains

δ (0,θ)+δ
T (θ ,0) = 2 f T (θ)+2 f (−θ)+

θ∫
0

GT
β (ξ )dξ (3.92)

and

δ (−r,θ)+δ
T (θ ,−r) = 2 f (−r−θ)+2 f T (θ + r)+

θ∫
0

GT
β (ξ )dξ +

−r∫
0

β
T (ξ )Gdξ (3.93)

We put a term (3.92) into equation (3.88) and we obtain the formula

2αG+AT
β (θ)− dβ (θ)

dθ
+2 f T (θ)+2 f (−θ)+

θ∫
0

GT
β (ξ )dξ = 0 (3.94)

Now we put the terms (3.92) and (3.93) into equation (3.89) and we get a relationship(
CT AT +BT )

β (θ)+CT (2 f T (θ)+2 f (−θ)
)
−2 f (−r−θ)−2 f T (θ + r)+

+(CT − I) ·
θ∫

0

GT
β (ξ )dξ −

−r∫
0

β
T (ξ )Gdξ = 0 (3.95)

From equation (3.94) we attain the term

2 f (θ)+2 f T (−θ) =
dβ T (θ)

dθ
−β

T (θ)A−2GT
α−

θ∫
0

β
T (ξ )Gdξ (3.96)

and the term

2 f (−θ − r)+2 f T (θ + r) =−dβ T (−θ − r)
dθ

−β
T (−θ − r)+

−2GT
α−

−θ−r∫
0

β
T (ξ )Gdξ (3.97)

We put the terms (3.96) and (3.97) into equation (3.95) and after some computations we
obtain the formula

CT dβ (θ)

dθ
+

dβ T (−θ − r)
dθ

=−BT
β (θ)−β

T (−θ − r)A+

θ∫
0

GT
β (ξ )dξ+

+

θ∫
0

β
T (−ξ − r)Gdξ +2CT

αG−2GT
α (3.98)
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In computations we used a relationship

−
−θ−r∫
−r

β
T (ξ )Gdξ =

θ∫
0

β
T (−ξ − r)Gdξ

We introduce a substitution

dβ (θ)

dθ
= ϑ(θ) (3.99)

for θ ∈ [−r,0]
We compute a derivative of a term β T (−θ − r)

dβ T (−θ − r)
dθ

=−ϑ
T (−θ − r) (3.100)

for θ ∈ [−r,0].
We can write equation (3.98) in a form

CT
ϑ(θ)−ϑ

T (−θ − r) =−BT
β (θ)−β

T (−θ − r)A+

θ∫
0

GT
β (ξ )dξ+

+

θ∫
0

β
T (−ξ − r)Gdξ +2CT

αG−2GT
α (3.101)

Taking into account the formulas (3.99) and (3.100) we calculate a derivative of both sides
of equation (3.101)

CT dϑ(θ)

dθ
− dϑ T (−θ − r)

dθ
=−BT

ϑ(θ)+ϑ
T (−θ − r)A+

+GT
β (θ)+β

T (−θ − r)G (3.102)

for θ ∈ [−r,0].
We transpose both sides of equation (3.102) and then we change a variable putting θ =−ξ − r
and dθ = −dξ . In this way we obtain

dϑ(ξ )

dξ
− dϑ T (−ξ − r)

dξ
C =−ϑ

T (−ξ − r)B+AT
ϑ(ξ )+

+β
T (−ξ − r)G+GT

β (ξ ) (3.103)

for ξ ∈ [−r,0]. The sense of the formula (3.103) does not depend on the notation of the
variable, so we can use symbol θ instead of ξ .
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We introduce new functions

κ(θ) = β
T (−θ − r) (3.104)

and
η(θ) = ϑ

T (−θ − r) (3.105)

for θ ∈ [−r,0].
Formula (3.101) takes a form

CT
ϑ(θ)−η(θ) =−BT

β (θ)−κ(θ)A+

θ∫
0

GT
β (ξ )dξ+

+

θ∫
0

κ(ξ )Gdξ +2CT
αG−2GT

α (3.106)

for θ ∈ [−r,0].
From equations (3.104), (3.100) and (3.105) it results that

dκ(θ)

dθ
=−η(θ) (3.107)

for θ ∈ [−r,0].
Using the definitions (3.104) and (3.105) we can rewrite the relationships (3.102) and (3.103)
in a form

CT dϑ(θ)

dθ
− dη(θ)

dθ
=−BT

ϑ(θ)+η(θ)A+GT
β (θ)+κ(θ)G (3.108)

dϑ(θ)

dθ
− dη(θ)

dθ
C =−η(θ)B+AT

ϑ(θ)+κ(θ)G+GT
β (θ) (3.109)

for θ ∈ [−r,0].
We reshape a set of equations (3.108) and (3.109) then we add to them the equations (3.99)
and (3.107). In this way we obtain the differential equations set

dβ (θ)

dθ
= ϑ(θ)

dκ(θ)

dθ
=−η(θ)

dϑ(θ)

dθ
−CT dϑ(θ)

dθ
C = GT β (θ)−GT β (θ)C+κ(θ)G(I−C)+AT ϑ(θ)+

+BT ϑ(θ)C−η(θ)(B+AC)

dη(θ)

dθ
−CT dη(θ)

dθ
C =−

(
I−CT

)
GT β (θ)−κ(θ)G+CT κ(θ)G+

+
(
BT +CT AT

)
ϑ(θ)−η(θ)A−CT η(θ)B

(3.110)

for θ ∈ [−r,0] with initial conditions β (−r), κ(−r), ϑ(−r), η(−r).
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From formulas (3.104) and (3.105) it implies that the solution of equation (3.110) satisfies
the relationships

κ(θ) |θ=− r
2
= β

T (θ) |θ=− r
2

(3.111)

η(θ) |θ=− r
2
= ϑ

T (θ) |θ=− r
2

(3.112)

We determine a value of the initial conditions of system (3.110) to obtain a solution of the
set of differential equations (3.110) on the interval [−r,0].
From formulas (3.104) and (3.105) it implies that there exist the connections between initial
conditions

β (0) = κ
T (−r) κ(0) = β

T (−r) ϑ(0) = η
T (−r) η(0) = ϑ

T (−r) (3.113)

We calculate a value of a formula (3.106) for θ = 0. Taking into account the relationships
(3.113) after transposition we obtain

η(−r)C−ϑ(−r)+κ(−r)B+AT
β (−r)−2GT

αC+2αG = 0 (3.114)

Taking into consideration the conditions (3.113) we rewrite equations (3.86) and (3.87)
into a form

AT
α +αA+

κ(−r)+κT (−r)
2

=−W (3.115)

2α (AC+B)+κ
T (−r)C−β (−r) = 0 (3.116)

The set of equations (3.114) - (3.116) and the terms (3.111) and (3.112) enable us to compute
the initial conditions of the differential equations (3.110) and the matrix α . This equations
composition constitutes the algebraic equations set with unknown β (−r), κ(−r), ϑ(−r),
η(−r), α .
Taking into account a term (3.99) we can write a formula (3.96) in a form

f (θ)+ f T (−θ) =
1
2

ϑ
T (θ)− 1

2
β

T (θ)A−GT
α− 1

2

θ∫
0

β
T (ξ )Gdξ (3.117)

According to a formula (3.91) and (3.117) we attain a term

δ (θ ,σ) =
1
2

ϑ
T (θ −σ)− 1

2
β

T (θ −σ)A+

−1
2

θ−σ∫
0

β
T (ξ )Gdξ +

σ∫
0

GT
β (ξ )dξ −GT

α (3.118)

In this way we obtained all the Lyapunov functional coefficients.
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3.3.3 The example

Let us consider a system described by the equation [21]
dx(t)

dt
− c

dx(t− r)
dt

= ax(t)+bx(t− r)+
0∫
−r

gx(t +θ)dθ

x(t0) = x0

x(t0 +θ) = ϕ(θ)

(3.119)

for t ≥ t0, θ ∈ [−r,0), x(t) ∈ R, ϕ ∈W 1,2([−r,0),R), a, b, c, g ∈ R, c 6= 0, | c |< 1, r ≥ 0.
We introduce a new variable

y(t) = x(t)− cx(t− r) (3.120)

for t ≥ t0.
Formula (3.119) takes a form

dy(t)
dt

= ay(t)+(ac+b)x(t− r)+
0∫
−r

gx(t +θ)dθ

y(t) = x(t)− cx(t− r)

y(t0) = x0− cϕ(−r)

x(t0 +θ) = ϕ(θ)

(3.121)

for t ≥ t0, θ ∈ [−r,0), y(t) ∈ R, ϕ ∈W 1,2([−r,0),R), a, b, c, g ∈ R, c 6= 0, | c |< 1, r ≥ 0.
The Lyapunov functional is defined by the formula

V (y(t),x(t + ·) = αy2(t)+
0∫
−r

y(t)β (θ)x(t +θ)dθ+

+

0∫
−r

0∫
−r

δ (θ ,σ)x(t +θ)x(t +σ)dσdθ (3.122)

We write the set of differential equations (3.110) for system (3.121)

dβ (θ)

dθ

dκ(θ)

dθ

dϑ(θ)

dθ

dη(θ)

dθ


=



0 0 1 0

0 0 0 −1

g
1+ c

g
1+ c

a+bc
1− c2 −b+ac

1− c2

− g
1+ c

− g
1+ c

b+ac
1− c2 −a+bc

1− c2




β (θ)

κ(θ)

ϑ(θ)

η(θ)

 (3.123)

for θ ∈ [−r,0].
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The solution of the differential equations (3.123) system is given by a term
β (θ)

κ(θ)

ϑ(θ)

η(θ)

=Ψ(θ + r)


β (−r)
κ(−r)
ϑ(−r)
η(−r)

 (3.124)

for θ ∈ [−r,0], where Ψ(θ) is a fundamental matrix of system (3.123). The coefficient α and
initial conditions of system (3.123) one obtains by solving the algebraic equations set

2aα +κ(−r) =−w

2(ac+b)α−β (−r)+ cκ(−r) = 0

2g(1− c)α +aβ (−r)+bκ(−r)−ϑ(−r)+ cη(−r) = 0

β (θ) |θ=− r
2
= κ(θ) |θ=− r

2

ϑ(θ) |θ=− r
2
= η(θ) |θ=− r

2

(3.125)

where w is a positive real number.
Having solution of equation (3.123) we can obtain a coefficient δ (θ ,σ)

δ (θ ,σ) =
1
2

ϑ(θ −σ)− 1
2

aβ (θ −σ)−gα− 1
2

θ−σ∫
0

gβ (ξ )dξ +

σ∫
0

gβ (ξ )dξ (3.126)

Figure 3.1 shows the functions β (θ),κ(θ),ϑ(θ),η(θ) graphs and the α value attained by
means of the Matlab code for given parameters a, b, c, g, w of system (3.119).

−1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

 −r ≤ θ ≤ 0

 

 
β(θ)
κ(θ)
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alfa=0.3365

Fig. 3.1. Functions β (θ), κ(θ), ϑ(θ), η(θ)
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3.4 A linear neutral system with a time-varying delay

3.4.1 Mathematical model of a linear neutral system
with a time-varying delay

Let us consider a linear neutral system with a time-varying delay, whose dynamics is described
by the functional-differential equation [18]

dx(t)
dt
−C

dx(t− τ(t))
dt

= Ax(t)+Bx(t− τ(t))

x(t0) = x0 ∈ Rn

x(t0 +θ) = ϕ(θ)

(3.127)

where t ≥ t0, θ ∈ [−r,0), τ(t) is a time-varying delay satisfying the condition 0≤ τ(t)≤ r,
dτ(t)/dt 6= 1 where r is a positive constant A, B, C ∈ Rn×n and C is non-singular, x(t) ∈ Rn,
ϕ ∈W 1,2 ([−r,0),Rn). W 1,2 ([−r,0),Rn) is a space of all absolutely continuous functions
[−r,0) → Rn with derivatives in L2([−r,0),Rn) a space of Lebesgue square integrable
functions on an interval [−r,0) with values in Rn.
The space of initial data is given by the Cartesian product Rn×W 1,2([−r,0),Rn).
One can obtain a solution of FDE (3.127) using a step method. The step method is a basic
method for solving FDE with a lumped delay. A solution is found on successive intervals, one
after another, by solving an ordinary equation without delay in each interval.
The solution of equation (3.127) with initial value (x0,ϕ) is an absolutely continuous function
defined for t ≥ t0 with values in Rn and is denoted as x(·, t0,(x0,ϕ)).

Definition 3.9. The difference equation associated with (3.127) is given by

x(t) =Cx(t− τ(t)) (3.128)

for t ≥ t0.

The eigenvalues of the difference equation (3.128) play a fundamental role in the asymptotic
behavior of the solutions of neutral equation (3.127). The difference equation (3.128) is stable
when the spectral radius γ(C) of the matrix C fulfills the condition γ (C) < 1.
A new function y is introduced and defined by a term

y(t) = x(t)−Cx(t− τ(t)) (3.129)

for t ≥ t0.
Thus the equation (3.127) takes a form

dy(t)
dt

= Ay(t)+(AC+B)x(t− τ(t))

y(t) = x(t)−Cx(t− τ(t))

y(t0) = x0−Cϕ(−τ(t))

x(t0 +θ) = ϕ(θ)

(3.130)
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It is assumed that γ (C) < 1. Equation (3.130) can be written in the form

dy(t)
dt

= Ay(t)+(AC+B)xt(−τ(t))

y(t) = x(t)−Cx(t− τ(t))

y(t0) = x0−Cϕ(−τ(t))

xt0 = Φ

(3.131)

where xt ∈ W 1,2 ([−r,0),Rn) is a shifted restriction of the function x(·, t0,(x0,ϕ)) to the
interval [−r,0). The state of system (3.131) is a vector

S(t) =
[

y(t)
xt

]
(3.132)

for t ≥ t0, where y(t) ∈ Rn, xt ∈W 1,2([−r,0),Rn).
The state space is defined by the formula

X = Rn×W 1,2([−r,0),Rn) (3.133)

The norm in the state space X is defined by the formula

‖ S(t) ‖X=
√
‖ y(t) ‖2

Rn + ‖ xt ‖2
W 1,2 (3.134)

for t ≥ t0.
In a parametric optimization problem is used an integral quadratic performance index of
quality, which value is given by the term

J =

∞∫
t0

yT (t)Wy(t)dt =V (y0,ϕ) (3.135)

where V is the Lyapunov functional defined on the state space X and W ∈ Rn×n is a positive
definite matrix.

3.4.2 Determination of the Lyapunov functional

Let us consider a quadratic functional on X × [t0,∞), where X is defined by (3.133), given
by the formula [18]

V (y(t),xt , t) = yT (t)α(t)y(t)+
0∫

−τ(t)

yT (t)β (θ + τ(t))xt(θ)dθ+

+

0∫
−τ(t)

0∫
θ

xT
t (θ)δ (θ + τ(t),σ + τ(t))xt(σ)dσdθ (3.136)

for t ≥ t0 where α ∈C1 ([t0,∞),Rn×n), β ∈C1([0,τ(t)],Rn×n), δ ∈C1(Ω ,Rn×n),
Ω = {(θ ,σ) : θ ∈ [0,τ(t)], σ ∈ [θ ,0]}, 0≤ τ(t)≤ r, where C1 is a space of all continuous
functions with continuous derivative.
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In this paragraph will be given a procedure of determination of the functional (3.136)
coefficients to obtain the Lyapunov functional.
The time derivative of the functional (3.136) on the trajectory of system (3.131) is computed.
This time derivative is defined by the formula (2.10) which for system (3.131) takes a form

dV (y(t0),ϕ, t0)
dt

= limsup
h→0

1
h

[
V
(
y(t0 +h) ,xt0+h, t0 +h

)
−V (y(t0),ϕ, t0)

]
(3.137)

It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (3.136) and one substitutes in place of dy(t)/dt and ∂xt(θ)/∂ t
the following terms

dy(t)
dt

= Ay(t)+(AC+B)xt(−τ(t)) (3.138)

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(3.139)

In such a manner one attains

dV (y(t),xt , t)
dt

= yT (t)
[
AT

α(t)+α(t)A+
dα(t)

dt
+β

(
τ(t)

)]
y(t)+

+yT (t)
[(

α(t)+α
T (t)

)
(AC+B)+β (τ(t))C+β (0)

(dτ(t)
dt
−1
)]

xt (−τ(t))+

+

0∫
−τ(t)

yT (t)[AT
β (θ + τ(t))+

dβ (θ + τ(t))
dt

− dβ (θ + τ(t))
dθ

+

+δ
T (θ + τ(t),τ(t))]xt(θ)dθ +

0∫
−τ(t)

xT
t (−τ(t))

[
(AC+B)T

β (θ + τ(t))+

+CT
δ

T (θ + τ(t),τ(t))+δ (0,θ + τ(t))
(dτ(t)

dt
−1
)]

xt(θ)dθ+

+

0∫
−τ(t)

0∫
θ

xT
t (θ)

[
dδ (θ + τ(t),σ + τ(t))

dt
− ∂δ (θ + τ(t),σ + τ(t))

∂θ
+

−∂δ (θ + τ(t),σ + τ(t))
∂σ

]
xt(σ)dσdθ (3.140)

for t ≥ t0 where α ∈C1 ([t0,∞),Rn×n), β ∈C1([0,τ(t)],Rn×n), δ ∈C1(Ω ,Rn×n),
Ω = {(θ ,σ) : θ ∈ [0,τ(t)], σ ∈ [θ ,0]}, 0 ≤ τ(t) ≤ r.
To achieve negative definiteness of that derivative we assume that

dV (y(t),xt , t)
dt

≡−yT (t)Wy(t) (3.141)

From relations (3.141) and (3.140) one attains the set of equations

AT
α(t)+α(t)A+

dα(t)
dt

+β (τ(t)) =−W (3.142)
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(
α(t)+α

T (t)
)
(AC+B)+β (τ(t))C+β (0)

(
dτ(t)

dt
−1
)
= 0 (3.143)

AT
β (θ + τ(t))+

dβ (θ + τ(t))
dt

− dβ (θ + τ(t))
dθ

+δ
T (θ + τ(t),τ(t)) = 0 (3.144)

(AC+B)T
β (θ + τ(t))+CT

δ
T (θ + τ(t),τ(t))+δ (0,θ + τ(t))

(
dτ(t)

dt
−1
)
= 0 (3.145)

dδ (θ + τ(t),σ + τ(t))
dt

− ∂δ (θ + τ(t),σ + τ(t))
∂θ

− ∂δ (θ + τ(t),σ + τ(t))
∂σ

= 0 (3.146)

for t ≥ t0; θ ∈ [−τ(t),0]; σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.
The new variables are introduced

ξ = θ + τ(t) (3.147)

η = σ + τ(t) (3.148)

The derivatives are calculated

dδ (θ + τ(t),σ + τ(t))
dt

=
dδ (ξ ,η)

dt
=

∂δ (ξ ,η)

∂ξ

dτ(t)
dt

+
∂δ (ξ ,η)

∂η

dτ(t)
dt

(3.149)

∂δ (θ + τ(t),σ + τ(t))
∂θ

=
∂δ (ξ ,η)

∂θ
=

∂δ (ξ ,η)

∂ξ
(3.150)

∂δ (θ + τ(t),σ + τ(t))
∂σ

=
∂δ (ξ ,η)

∂σ
=

∂δ (ξ ,η)

∂η
(3.151)

dβ (θ + τ(t))
dt

=
dβ (ξ )

dξ

∂ξ

∂ t
=

dβ (ξ )

dξ

dτ(t)
dt

(3.152)

dβ (θ + τ(t))
dθ

=
dβ (ξ )

dξ

∂ξ

∂θ
=

dβ (ξ )

dξ
(3.153)

The formula (3.146) takes a form

∂δ (ξ ,η)

∂ξ
+

∂δ (ξ ,η)

∂η
= 0 (3.154)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0], ξ ∈ [0,τ(t)] ,η ∈ [ξ ,τ(t)] where 0≤ τ(t)≤ r.
The formula (3.144) takes a form(

dτ(t)
dt
−1
)

dβ (ξ )

dξ
+AT

β (ξ )+δ
T (ξ ,τ(t)) = 0 (3.155)
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The formula (3.145) takes a form

(AC+B)T
β (ξ )+CT

δ
T (ξ ,τ(t))+δ (0,ξ )

(
dτ(t)

dt
−1
)
= 0 (3.156)

The solution of equation (3.146) is given by the formula

δ (θ + τ(t),σ + τ(t)) = δ (ξ ,η) = f (ξ −η) = f (θ −σ) (3.157)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0], 0 ≤ τ(t) ≤ r where f ∈C1 ([−r,r],Rn×n)

The formula (3.155) implies

δ
T (ξ ,τ(t)) = f T (ξ − τ(t)) =−

(
dτ(t)

dt
−1
)

dβ (ξ )

dξ
−AT

β (ξ ) (3.158)

One puts the term (3.158) into (3.156). After calculations one obtains

CT dβ (ξ )

dξ
=

(
dτ(t)

dt
−1
)−1

BT
β (ξ )+δ (0,ξ ) (3.159)

From the relation (3.158) one can determine the term δ (0,ξ ) = f (−ξ )

f (−ξ ) =

(
dτ(t)

dt
−1
)

dβ T (−ξ + τ(t))
dξ

−β
T (−ξ + τ(t))A (3.160)

and put it into (3.159). In this way the relation is obtained

CT dβ (ξ )

dξ
−
(

dτ(t)
dt
−1
)

dβ T (−ξ + τ(t))
dξ

=

=

(
dτ(t)

dt
−1
)−1

BT
β (ξ )−β

T (−ξ + τ(t))A (3.161)

for ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r
Into the formula (3.161) instead of ξ one substitutes the new variable −ξ + τ(t). After
calculations the formula is attained

(
dτ(t)

dt
−1
)

dβ (ξ )

dξ
− dβ T (−ξ + τ(t))

dξ
C =

=

(
dτ(t)

dt
−1
)−1

β
T (−ξ + τ(t))B−AT

β (ξ ) (3.162)
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In this way one obtained the set of differential equations

CT dβ (ξ )

dξ
−
(

dτ(t)
dt
−1
)

dβ T (−ξ + τ(t))
dξ

=

=

(
dτ(t)

dt
−1
)−1

BT β (ξ )−β T (−ξ + τ(t))A

(
dτ(t)

dt
−1
)

dβ (ξ )

dξ
− dβ T (−ξ + τ(t))

dξ
C =

=

(
dτ(t)

dt
−1
)−1

β T (−ξ + τ(t))B−AT β (ξ )

(3.163)

for t ≥ t0, ξ ∈ [0,τ(t)] where 0≤ τ(t)≤ r with the initial conditions β (0) and β (τ (t)).
One can reshape the set of equations (3.163) to the form

CT dβ (ξ )

dξ
C−

(
dτ(t)

dt
−1
)2 dβ (ξ )

dξ
=

(
dτ(t)

dt
−1
)

AT β (ξ )+

+

(
dτ(t)

dt
−1
)−1

BT β (ξ )C−β T (−ξ + τ(t))(AC+B)

CT dβ (−ξ + τ(t))
dξ

C−
(

dτ(t)
dt
−1
)2 dβ (−ξ + τ(t))

dξ
= β T (ξ )(AC+B)+

−
(

dτ(t)
dt
−1
)

AT β (−ξ + τ(t))−
(

dτ(t)
dt
−1
)−1

BT β (−ξ + τ(t))C

(3.164)

for t ≥ t0, ξ ∈ [0,τ(t)] where 0≤ τ(t)≤ r with the initial conditions β (0) and β (τ (t))
There holds the relationship between β (ξ ) and β (−ξ + τ(t))

β (ξ ) |
ξ=

τ(t)
2
= β (−ξ + τ (t)) |

ξ=
τ(t)

2
(3.165)

The derivative of the equation (3.143) with respect to t is calculated(
dα(t)

dt
+

dαT (t)
dt

)
(AC+B)+

dβ (τ(t))
dt

C+
dβ (0)

dt

(
dτ(t)

dt
−1
)
+

d2τ(t)
dt2 β (0) = 0

(3.166)
where

dβ (0)
dt

=
dβ (ξ )

dξ

dτ(t)
dt
|ξ=0 (3.167)

dβ (τ(t))
dt

=
dβ (ξ )

dξ

dτ(t)
dt
|ξ=τ(t) (3.168)

Equation (3.164) implies

CT dβ (0)
dt

C−
(

dτ(t)
dt
−1
)2 dβ (0)

dt
=

dτ(t)
dt

(
dτ(t)

dt
−1
)

AT
β (0)+

+
dτ(t)

dt

(
dτ(t)

dt
−1
)−1

BT
β (0)C− dτ(t)

dt
β

T (τ(t))(AC+B) (3.169)
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CT dβ (τ(t))
dt

C−
(

dτ(t)
dt
−1
)2 dβ (τ(t))

dt
=

dτ(t)
dt

β
T (0)(AC+B)+

−dτ(t)
dt

(
dτ(t)

dt
−1
)

AT
β (τ(t))− dτ(t)

dt

(
dτ(t)

dt
−1
)−1

BT
β (τ(t))C (3.170)

From equation (3.142) one obtains

dα(t)
dt

=−AT
α(t)−α(t)A−β (τ(t))−G (3.171)

One puts the term (3.171) into the equation (3.166). After calculations one gets[
AT (

α(t)+α
T (t)

)
+
(
α(t)+α

T (t)
)

A
]
(AC+B)+

(
β (τ(t))+β

T (τ(t))
)
(AC+B)+

−d2τ(t)
dt2 β (0)− dβ (τ(t))

dt
C− dβ (0)

dt

(
dτ(t)

dt
−1
)
=−

(
G+GT )(AC+B) (3.172)

The matrix α(t), the initial conditions of system (3.164) and dβ (0)/dt, dβ (τ(t))/dt are
obtained by solving the set of algebraic equations (3.172), (3.143), (3.169), (3.176) and
(3.165). That set of equations is written below[

AT (
α(t)+α

T (t)
)
+
(
α(t)+α

T (t)
)

A
]
(AC+B)+

(
β (τ(t))+β

T (τ(t))
)
(AC+B)+

−d2τ(t)
dt2 β (0)− dβ (τ(t))

dt
C− dβ (0)

dt

(
dτ(t)

dt
−1
)
=−

(
G+GT )(AC+B) (3.173)

(
α(t)+α

T (t)
)
(AC+B)+β (τ(t))C+β (0)

(
dτ(t)

dt
−1
)
= 0 (3.174)

CT dβ (0)
dt

C−
(

dτ(t)
dt
−1
)2 dβ (0)

dt
=

dτ(t)
dt

(
dτ(t)

dt
−1
)

AT
β (0)+

+
dτ(t)

dt

(
dτ(t)

dt
−1
)−1

BT
β (0)C− dτ(t)

dt
β

T (τ(t))(AC+B) (3.175)

CT dβ (τ(t))
dt

C−
(

dτ(t)
dt
−1
)2 dβ (τ(t))

dt
=

dτ(t)
dt

β
T (0)(AC+B)+

−dτ(t)
dt

(
dτ(t)

dt
−1
)

AT
β (τ(t))− dτ(t)

dt

(
dτ(t)

dt
−1
)−1

BT
β (τ(t))C (3.176)

β (ξ ) |
ξ=

τ(t)
2
= β (−ξ + τ (t)) |

ξ=
τ(t)

2
(3.177)
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Having the solution of the set of differential equations (3.164) and taking into account the
formulas (3.147), (3.157) and (3.160) one can get the matrices

β (θ + τ(t)) = β (ξ ) |ξ=θ+τ(t) (3.178)

δ (θ + τ(t),σ + τ(t)) = f (σ −θ) (3.179)

where

f (ρ) =−
(

dτ(t)
dt
−1
)

dβ T (ρ + τ(t))
dρ

−β
T (ρ + τ(t))A (3.180)

for t ≥ t0; θ ∈ [−τ(t),0]; σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.
In this way one obtained all coefficients of the functional (3.136). This coefficients depend
on the matrices A, B and C of system (3.131). The time derivative of the functional (3.136)
is negative definite.

3.4.3 The example. Inertial system with delay and a PD controller

Let us consider a first order inertial system with delay described by the equation [19]

dx(t)
dt

=− q
T

x(t)+
k0

T
u(t− τ(t))

x(t0) = xo

x(t0 +θ) = 0

u(t) =−px(t)−Td
dx(t)

dt

(3.181)

t ≥ t0, x(t) ∈R, θ ∈ [−r,0), p, k0, T, Td , q, x0 ∈R, τ(t) is a time-varying delay satisfying the
condition 0≤ τ(t)≤ r, dτ(t)/dt 6= 1 where r is positive constant. The parameter k0 is a gain
of a plant, p is a proportional gain, Td is a derivative gain, T is a system time constant, x0 is
an initial state of system. In the case q = 1 the equation (3.181) describes a static object and
in the case q = 0 the equation (3.181) describes an astatic object.
One can reshape equation (3.181) to a form

dx(t)
dt

+
k0Td

T
dx(t− τ(t))

dt
=− q

T
x(t)− k0 p

T
x(t− τ(t))

x(t0) = xo

x(θ) = 0

(3.182)

for t ≥ t0 and θ ∈ [−r,0).
It is assumed that the element k0Td/T satisfies the condition (3.14), whose takes a form∣∣∣∣ k0Td

T

∣∣∣∣< 1 (3.183)
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A new function y is introduced and defined by the term

y(t) = x(t)−Cx(t− τ(t)) (3.184)

for t ≥ t0.
One can reshape equation (3.182) to the form

dy(t)
dt

=− q
T

y(t)+
(

qk0Td

T 2 −
k0 p
T

)
x(t− τ(t))

y(t) = x(t)+
k0Td

T
x(t− τ(t))

y(t0) = x0

x(t0 +θ) = 0

(3.185)

Performance index of quality has a form

J =

∞∫
t0

y2(t)dt =V (y(t0),ϕ, t0) (3.186)

The Lyapunov functional is given by the formula

V (y(t) ,xt , t) = α(t)y2 (t)+
0∫

−τ(t)

β (θ + τ(t))y(t)xt (θ)dθ+

+

0∫
−τ(t)

0∫
θ

δ (θ + τ(t),σ + τ(t))xt (θ)xt (σ)dσdθ (3.187)

where
xt(θ) = x(t +θ)

for θ ∈ [−r,0), xt ∈W 1,2([−r,0),R)
The coefficients of the functional (3.187) will be obtained.
Equation (3.164) takes the form

dβ (ξ )

dξ

dβ (−ξ + τ(t))
dξ

=

[
p1 −p2

p2 −p1

][
β (ξ )

β (−ξ + τ(t))

]
(3.188)

for t ≥ t0, ξ ∈ [0,τ(t)], where 0 ≤ τ(t) ≤ r

p1 =

−
q
T

(
dτ(t)

dt
−1

)
+

k2
0 pTd

T 2

(
dτ(t)

dt
−1

)
k2

0T 2
d

T 2 −

(
dτ(t)

dt
−1

)2 (3.189)
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p2 =

qk0Td

T 2 −
k0 p
T

k2
0T 2

d

T 2 −

(
dτ(t)

dt
−1

)2 (3.190)

The fundamental matrix of the differential equation (3.188) is given by the formula

R(ξ ) =


chλξ + p1

λ
shλξ −

p2

λ
shλξ

p2

λ
shλξ chλξ −

p1

λ
shλξ

 (3.191)

where

λ =

√√√√√√√√
k2

0 p2−q2
(

dτ(t)
dt −1

)2

k2
0T 2

d

T 2 −

(
dτ(t)

dt
−1

)2

T

(
dτ(t)

dt
−1

) (3.192)

Hence [
β (ξ )

β (−ξ + τ(t))

]
= R(ξ )

[
β (0)

β (τ(t))

]
(3.193)

for t ≥ t0, ξ ∈ [0,τ(t)] where 0 ≤ τ(t) ≤ r.
One needs the initial conditions of the set of differential equations (3.188) to obtain

β (θ + τ(t)) = β (ξ ) |ξ=θ+τ(t) (3.194)

δ (θ + τ(t),σ + τ(t)) = f (σ −θ) (3.195)

f (ρ) =−
(

dτ(t)
dt
−1
)

dβ (ρ + τ(t))
dρ

−aβ (ρ + τ(t)) (3.196)

for t ≥ t0, θ ∈ [−τ(t),0], σ ∈ [θ ,0] where 0 ≤ τ(t) ≤ r.
The initial conditions of the differential equation (3.188) and the coefficient α(t) are attained
by solving of the set of equations (3.173) to (3.177) which take the form as below

4a
(

qk0Td

T 2 −
k0 p
T

)
α(t)+

(
k0Td

T
p2

dτ(t)
dt
− d2τ(t)

dt2 − p1
dτ(t)

dt

(
dτ(t)

dt
−1
))

β (0)+

+

(
2
(

qk0Td

T 2 −
k0 p
T

)
− k0Td

T
p1

dτ(t)
dt

+ p2
dτ(t)

dt

(
dτ(t)

dt
−1
))

β (τ(t)) =

=−2w
(

qk0Td

T 2 −
k0 p
T

)
(3.197)
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2
(

qk0Td

T 2 −
k0 p
T

)
α(t)+

(
dτ(t)

dt
−1
)

β (0)− k0Td

T
β (τ(t)) = 0 (3.198)

(
ch

λτ(t)
2

+
p1− p2

λ
sh

λτ(t)
2

)
β (0)+

+

(
p1− p2

λ
sh

λτ(t)
2
− ch

λτ(t)
2

)
β (τ(t)) = 0 (3.199)

We compute the value of the performance index (3.186) for initial conditions given belowy(0) = x0

ϕ(θ) = 0

for θ ∈ [−r,0)

J(t) = x2
0α(t)

for t ≥ 0.
Figures show the graphs of functions J(t), β (ξ ) and β (−ξ + τ(t)) obtained with the Matlab
code, for given values of parameters q = 1, T = 5, k0 = 1, x0 = 1 and τ(t) = r(1− exp(− t

3 )),
r = 0.5 of system (3.185). Figure 3.2 presents the index value graph for p = 6.9003 and
Td =−4.6802. These values are called the critical values of p and Td . For p and Td greater
then critical ones system (3.185) becomes unstable.
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Fig. 3.2. Value of the index J(t) for p = 6.9003 and Td =−4.6802
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Figures 3.3–3.5 show the functions J(t), β (ξ ) and β (−ξ + τ(t)) for p = 5 and Td =−2.

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time in sec

 

 
J(t)

p=5

Td=−2

Fig. 3.3. Value of the index J(t) for p = 5 and Td =−2
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4 The Lyapunov matrix
for a retarded type time delay system

4.1 Mathematical model
of a retarded type time delay system

Let us consider a time-delay system
dx(t)

dt
=

m

∑
j=0

A jx(t−h j)

x(t0 +θ) = ϕ(θ)

(4.1)

for t ≥ t0, θ ∈ [−h,0]
Where x(t) ∈ Rn, A j ∈ Rn×n, 0 = h0 < h1 < ... < hm = h, function ϕ ∈ PC([−h,0],Rn) – the
space of piece-wise continuous vector valued functions defined on the segment [−h,0] with
the uniform norm ‖ ϕ ‖PC= sup

θ∈[−h,0]
‖ ϕ(θ) ‖

Let x(t, t0,ϕ) be the solution of system (4.1) with the initial function ϕ .

Definition 4.1. [2] K(t) is the fundamental matrix of system (4.1) if it satisfies the matrix
equation

d
dt

K(t) =
m

∑
j=0

A jK(t−h j)

for t ≥ 0 and the following initial condition K(0) = In×n and K(t) = 0n×n for t < 0 where In×n

is the identity n×n matrix and 0n×n is the zero n×n matrix.

Theorem 4.1. [2] Let K(t) be the fundamental matrix of system (4.1), then for t ≥ t0

x(t, t0,ϕ) = K(t− t0)ϕ(0)+
m

∑
j=1

0∫
−h j

K(t− t0−h j−θ)A jϕ(θ)dθ (4.2)
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The initial condition holds

xt0(t0,ϕ) = ϕ (4.3)

for θ ∈ [−h,0], where xt(t0,ϕ) ∈ PC([−h,0],Rn) is a shifted restriction of the function
x(·, t0,ϕ) to the segment [−h,0].

4.2 The Lyapunov–Krasovskii functional
for a retarded type time delay system

Given a symmetric positive definite matrix W ∈ Rn×n. We are looking for a functional

v : PC([−h,0],Rn)→ R

such that along the solutions of system (4.1) the following equality holds

d
dt

v(xt(t0,ϕ)) =−xT (t, t0,ϕ)Wx(t, t0,ϕ) (4.4)

for t ≥ t0, where x(t, t0,ϕ) is a solution of system (4.1), with the initial function ϕ ∈
PC([−h,0],Rn), given by (4.2).
We assume that system (4.1) is asymptotically stable and integrate both side of equation (4.4)
from t0 to infinity. We obtain

v(xt0(t0,ϕ)) = v(ϕ) =
∞∫

t0

xT (t, t0,ϕ)Wx(t, t0,ϕ)dt (4.5)

Taking into account (4.2) we calculate the integral of the right-hand side of equation (4.5)

∞∫
t0

xT (t, t0,ϕ)Wx(t, t0,ϕ)dt = ϕ
T (0)

∞∫
0

KT (t)WK(t)dtϕ(0)+

+
m

∑
j=1

0∫
−h j

2ϕ
T (0)

∞∫
0

KT (t)WK(t−h j−θ)dtA jϕ(θ)dθ+

+
m

∑
j=1

m

∑
k=1

0∫
−h j

ϕ
T (θ)AT

j

0∫
−hk

∞∫
0

KT (t−h j−θ)WK(t−hk−η)dtAkϕ(η)dηdθ (4.6)
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The relations hold
∞∫

0

KT (t−h j−θ)WK(t−hk−η)dt =
∞∫

−h j−θ

KT (ς)WK(ς +h j−hk +θ −η)dς =

=

0∫
−h j−θ

KT (ς)WK(ς +h j−hk +θ −η)dς +

∞∫
0

KT (ς)WK(ς +h j−hk +θ −η)dς =

=

∞∫
0

KT (ς)WK(ς +h j−hk +θ −η)dς

The term 0∫
−h j−θ

KT (ς)WK(ς +h j−hk +θ −η)dς = 0

because K(ς) = 0 for ς < 0. Formula (4.6) takes a form
∞∫

t0

xT (t, t0,ϕ)Wx(t, t0,ϕ)dt = ϕ
T (0)

∞∫
0

KT (t)WK(t)dtϕ(0)+

+
m

∑
j=1

0∫
−h j

2ϕ
T (0)

∞∫
0

KT (t)WK(t−h j−θ)dtA jϕ(θ)dθ+

+
m

∑
j=1

m

∑
k=1

0∫
−h j

ϕ
T (θ)AT

j

0∫
−hk

∞∫
0

KT (ς)WK(ς +h j−hk +θ −η)dςAkϕ(η)dηdθ (4.7)

Definition 4.2. [81] We introduce a Lyapunov matrix

U(ξ ) =

∞∫
0

KT (t)WK(t +ξ )dt (4.8)

for ξ ≥ 0.

Using the Lyapunov matrix (4.8) and taking into account equation (4.5) we obtain the formula
for the functional v(ϕ)

v(ϕ) =
∞∫

t0

xT (t, t0,ϕ)Wx(t, t0,ϕ)dt = ϕ
T (0)U(0)ϕ(0)+

+2ϕ
T (0)

m

∑
j=1

0∫
−h j

U(−θ −h j)A jϕ(θ)dθ+

+
m

∑
j=1

m

∑
k=1

0∫
−h j

0∫
−hk

ϕ
T (θ)AT

j U(h j−hk +θ −η)Akϕ(η)dηdθ (4.9)
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Corollary 4.1. The Lyapunov matrix (4.8) satisfies the following properties [81]:
Dynamic property

d
dξ

U(ξ ) =
m

∑
j=0

U(ξ −h j)A j (4.10)

for ξ ≥ 0
Symmetry property

U(−ξ ) =UT (ξ ) (4.11)

for ξ ≥ 0
Algebraic property

m

∑
j=0

[U(−h j)A j +AT
j U(h j)] =−W (4.12)

Formulas (4.10), (4.11), (4.12) enable us to calculate the Lyapunov matrix U(ξ ) for ξ ≥ 0.

4.3 The Lyapunov matrix for a system with one delay

Let us consider a system [20]
dx(t)

dt
= A0x(t)+A1x(t−h)

x(θ) = ϕ(θ)

(4.13)

for t ≥ 0 and θ ∈ [−h,0]. Where A0,A1 ∈ Rn×n and ϕ ∈ PC([−h,0],Rn), 0 < h ∈ R.
System of equations (4.10), (4.11), (4.12) takes a form

d
dξ

U(ξ ) =U(ξ )A0 +U(ξ −h)A1 (4.14)

U(−ξ ) =UT (ξ ) (4.15)

U(0)A0 +U(−h)A1 +AT
0 U(0)+AT

1 U(h) =−W (4.16)

for ξ ∈ [0,h].
Formula (4.15) implies

U(ξ −h) =UT (h−ξ ) = Z(ξ ) (4.17)

We compute the derivative of Z(ξ )

d
dξ

Z(ξ ) =
d

dξ
UT (h−ξ ) =−AT

0 UT (h−ξ )−AT
1 UT (−ξ ) =−AT

0 Z(ξ )−AT
1 U(ξ ) (4.18)
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We have received the set of ordinary differential equations
d

dξ
U(ξ ) =U(ξ )A0 +Z(ξ )A1

d
dξ

Z(ξ ) =−AT
0 Z(ξ )−AT

1 U(ξ )

(4.19)

for ξ ∈ [0,h] with initial condition U(0), Z(0).
Formula (4.17) implies

U(−h) =UT (h) = Z(0) (4.20)

Taking (4.20) into account equation (4.16) takes a form

U(0)A0 +Z(0)A1 +AT
0 U(0)+AT

1 ZT (0) =−W (4.21)

Using the Kronecker product we can express (4.19) in a form
d

dξ
colU(ξ )

d
dξ

colZ(ξ )

=

 AT
0 ⊗ I AT

1 ⊗ I

−I⊗AT
1 −I⊗AT

0

 colU(ξ )

colZ(ξ )

 (4.22)

for ξ ∈ [0,h] with initial condition colU(0), colZ(0).
Formula (4.21) can be expressed

(AT
0 ⊗ I + I⊗AT

0 )colU(0)+(AT
1 ⊗ I)colZ(0)+(I⊗AT

1 )colZT (0) =−colW (4.23)

Solution of equation (4.32) is given by a term colU(ξ )

colZ(ξ )

=

 Φ11(ξ ) Φ12(ξ )

Φ21(ξ ) Φ22(ξ )


 colU(0)

colZ(0)

 (4.24)

where a matrix Φ(ξ ) =

[
Φ11(ξ ) Φ12(ξ )

Φ21(ξ ) Φ22(ξ )

]
is a fundamental matrix of system (4.22).

We determine the initial conditions colU(0), colZ(0).
The term (4.17) implies Z(h) = UT (0) = U(0).
From (4.24) we obtain

colU(h) = colZT (0) = Φ11(h)colU(0)+Φ12(h)colZ(0) (4.25)

colZ(h) = colU(0) = Φ21(h)colU(0)+Φ22(h)colZ(0) (4.26)
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We put (4.25) into (4.23) and reshape (4.26). In this way we attain the set of algebraic equations
which enables us to calculate the initial conditions of (4.24).[

AT
0 ⊗ I + I⊗AT

0 +(I⊗AT
1 )Φ11(h)

]
colU(0)+

+
[
AT

1 ⊗ I +(I⊗AT
1 )Φ12(h)

]
colZ(0) =−colW (4.27)

[
I−Φ21(h)

]
colU(0)−Φ22(h)colZ(0) = 0 (4.28)

4.4 Formulation of the parametric optimization problem
for a system with one delay

Let us consider a time-delay system with a P-controller
dx(t)

dt
= Ax(t)+Bu(t−h)

u(t) =−Px(t)

x(θ) = ϕ(θ)

(4.29)

for t ≥ 0 and θ ∈ [−h,0]. Where A ∈ Rn×n, B ∈ Rn×p, P ∈ Rp×n is a P-controller gain and
ϕ ∈ PC([−h,0],Rn), 0 < h ∈ R.
System (4.29) can be written in the equivalent form

dx(t)
dt

= Ax(t)−BPx(t−h)

x(θ) = ϕ(θ)

(4.30)

In parametric optimization problem will be used the performance index of quality

J =

∞∫
0

xT (t;ϕ)Wx(t;ϕ)dt (4.31)

where W ∈ Rn×n is a symmetric positive definite matrix and x(t;ϕ) is a solution of (4.30)
for initial function ϕ .

Problem 4.1. Determine the matrix P ∈ Rp×n whose minimize an integral quadratic
performance index of quality (4.31)

According to (4.4) the value of the performance index of quality (4.31) is equal to the value
of the functional (4.9) for initial function ϕ . To calculate the value of the functional (4.9)
we need a Lyapunov matrix U(ξ ).
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To obtain a Lyapunov matrix U(ξ ) we solve a system of differential equations (4.22) and
a set of algebraic equations (4.27) and (4.28) whose take a form

d
dξ

colU(ξ )

d
dξ

colZ(ξ )

=

 AT ⊗ I −PT BT ⊗ I

I⊗PT BT −I⊗AT

 colU(ξ )

colZ(ξ )

 (4.32)

[
AT ⊗ I + I⊗AT − (I⊗PT BT )Ψ11(h)

]
colU(0)+

−
[
PT BT ⊗ I +(I⊗PT BT )Ψ12(h)

]
colZ(0) =−colW (4.33)

[
I−Ψ21(h)

]
colU(0)−Ψ22(h)colZ(0) = 0 (4.34)

where Ψ(ξ ) =

[
Ψ11(ξ ) Ψ12(ξ )

Ψ21(ξ ) Ψ22(ξ )

]
is the fundamental matrix of system (4.32).

4.5 The examples

4.5.1 Inertial system with delay and a P-controller

Let us consider inertial system with delay and a P-controller [20]

dx(t)
dt

=− 1
T

x(t)+
k0

T
u(t−h)

u(t) =−px(t)

x(0) = x0

x(θ) = 0

(4.35)

t ≥ 0, x(t) ∈ R, θ ∈ [−h,0), p, k0, T, x0 ∈ R, h≥ 0. The parameter k0 is a gain of a plant, p
is a gain of a P-controller, T is a system time constant, x0 is an initial state of system.
One can reshape equation (4.35) to a form

dx(t)
dt

=− 1
T

x(t)− k0 p
T

x(t− r)

x(0) = xo

x(θ) = 0

(4.36)

for t ≥ 0 and θ ∈ [−h,0).
The initial function ϕ has a form

ϕ(θ) =


x0 for θ = 0

0 for θ ∈ [−h,0)
(4.37)
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In parametric optimization problem we use the performance index

J =

∞∫
0

wx2(t;ϕ)dt (4.38)

where w > 0 and x(t;ϕ) is a solution of (4.36) for initial function (4.37).
The differential equation (4.32) takes a form

d
dξ

U(ξ )

d
dξ

Z(ξ )

=

 −
1
T
−k0 p

T
k0 p
T

1
T

[ U(ξ )

Z(ξ )

]
(4.39)

The fundamental matrix of (4.39) is given

Φ(ξ ) =

 coshλξ − 1
λT

sinhλξ −k0 p
λT

sinhλξ

k0 p
λT

sinhλξ coshλξ +
1

λT
sinhλξ

 (4.40)

for ξ ∈ [0,h], where

λ =
1
T

√
1− k2

0 p2 (4.41)

The initial conditions for (4.39) are obtained from equations (4.33) and (4.34) which take a form

 2+ k0 p(coshλh− 1
λT

sinhλh) k0 p(1− k0 p
λT

sinhλh)

1− k0 p
λT

sinhλh −coshλh− 1
λT

sinhλh

[U(0)
Z(0)

]
=

[
Tw
0

]
(4.42)

Solving (4.42) we obtain

U(0) =

Tw
2

(
coshλh+

1
λT

sinhλh
)

k0 p+ coshλh+λT sinhλh
(4.43)

Z(0) =

Tw
2

(
1− k0 p

λT
sinhλh

)
k0 p+ coshλh+λT sinhλh

(4.44)

The solution of (4.39) is given

U(ξ ) =
w
2

 T coshλh+
1
λ

sinhλh

k0 p+ coshλh+λT sinhλh
coshλξ − 1

λ
sinhλξ

 (4.45)
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Z(ξ ) =

Tw
2

k0 p+ coshλh+λT sinhλh

((
1− k0 p

λT
sinhλh

)
coshλξ+

+
1

λT

(
1+ k0 pcoshλh

)
sinhλξ

)
(4.46)

The value of the performance index (4.38) is equal to the value of functional (4.9) for U(ξ )

given by (4.45 ) and initial function given by (4.37)

J =

Tw
2

(
coshλh+

1
λT

sinhλh
)

k0 p+ coshλh+λT sinhλh
x2

0 (4.47)

Figure 4.1 shows the value of the index J(p) for x0 = 1, k0 = 1, w = 1, T = 1 and h = 1. You
can see that there exists a critical value of the gain pcrit . The system (4.36) is stable for gains
less then critical one and unstable for gains greater then critical.
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Fig. 4.1. Value of the index J(p) for p greater then pcrit

Figure 4.2 shows the value of the index J(p) for p less then critical gain. You can see that
the function J(p) is convex and has a minimum.

132



0 0.5 1 1.5
0.45

0.5

0.55

0.6

0.65

0.7
x0=1, k0=1, T=1, h=1

J(p)

Fig. 4.2. Value of the index J(p) for p less then pcrit

We search for an optimal gain which minimize the index (4.47) for a given x0 = 1, k0 = 1,
w = 1 and T = 1. Optimization results, obtained by means of Matlab function fminsearch,
are given in Table 4.1.

Table 4.1
Optimization results

Delay h Optimal gain Index value Critical gain

0.1 7.10 0.13 16.350

0.2 3.50 0.22 8.502

0.5 1.25 0.37 3.806

1.0 0.50 0.46 2.261

2.0 0.14 0.495 1.519

3.0 0.05 0.499 1.292
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4.5.2 Inertial system with delay and a PI-controller

Let us consider inertial system with time delay and a PI-controller [24]

dx(t)
dt

=− 1
T

x(t)+
k0

T
u(t−h)

u(t) =−px(t)− 1
Ti

t∫
0

x(ξ )dξ

x(0) = x0

x(θ) = 0

(4.48)

t ≥ 0, x(t) ∈ R, θ ∈ [−h,0), k0, T , Ti, p ∈ R, h≥ 0. The parameter k0 is a gain of a plant, p is
a gain and Ti is a time of isodrome of a PI controller, T is a system time constant, x0 – is the
initial state. One introduces the state variables x1(t) and x2(t) as follows

x1(t) = x(t)

x2(t) =
1
Ti

t∫
0

x(ξ )dξ
(4.49)

The set of equations (4.48) takes a form

dx1(t)
dt

=− 1
T

x1(t)+
k0

T
u(t− r)

dx2(t)
dt

=
1
Ti

x1(t)

x1(0) = x0

x2(0) = x20

x1(θ) = 0

x2(θ) = 0

u(t) =−px1(t)− x2(t)

(4.50)

for t ≥ 0, θ ∈ [−r,0). One can reshape equation (4.50) to a form

dx1(t)
dt

=− 1
T

x1(t)−
k0 p
T

x1(t−h)− k0

T
x2(t−h)

dx2(t)
dt

=
1
Ti

x1(t)

x1(0) = xo

x2(0) = x20

x1(θ) = 0

x2(θ) = 0

(4.51)

for t ≥ 0, θ ∈ [−r,0).

134



Matrices

A0 =

 −
1
T

0

1
Ti

0

 (4.52)

A1 =

 −k0 p
T

−k0

T

0 0

 (4.53)

In parametric optimization problem will be used the performance index of quality

J =

∞∫
0

[
x1(t) x2(t)

][ w 0
0 w

][
x1(t)
x2(t)

]
dt (4.54)

where w > 0.
The value of the performance index of quality (4.54) is equal to the value of the Lyapunov
functional for initial function of system (4.51).

J =
[

x0 x20
][ U11(0) U12(0)

U21(0) U22(0)

][
x0

x20

]
(4.55)

Where U(ξ ) for ξ ∈ [0,h] is obtained by solving the set of equations (4.32), (4.27) and (4.28)
which takes a form

d
dξ



U11(ξ )

U21(ξ )

U12(ξ )

U22(ξ )

Z11(ξ )

Z21(ξ )

Z12(ξ )

Z22(ξ )


=

 Q11 Q12

Q21 Q22





U11(ξ )

U21(ξ )

U12(ξ )

U22(ξ )

Z11(ξ )

Z21(ξ )

Z12(ξ )

Z22(ξ )


(4.56)

[I−Φ21(h)]


U11(0)
U21(0)
U12(0)
U22(0)

−Φ22(h)


Z11(0)
Z21(0)
Z12(0)
Z22(0)

= 0 (4.57)

[
Q11−Q22−Q21Φ11(h)

]
U11(0)
U21(0)
U12(0)
U22(0)

+[Q12−Q21Φ12(h)
]

Z11(0)
Z21(0)
Z12(0)
Z22(0)

=


−w
0
0
−w

 (4.58)
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where

Q11 =


− 1

T
0

1
Ti

0

0 − 1
T

0
1
Ti

0 0 0 0
0 0 0 0

 (4.59)

Q12 =



−k0 p
T

0 0 0

0 −k0 p
T

0 0

−k0

T
0 0 0

0 −k0

T
0 0


(4.60)

Q21 =



k0 p
T

0 0 0

k0

T
0 0 0

0 0
k0 p
T

0

0 0
k0

T
0


(4.61)

Q22 =


1
T
− 1

Ti
0 0

0 0 0 0

0 0
1
T
− 1

Ti
0 0 0 0

 (4.62)

Φ(ξ ) =

[
Φ11(ξ ) Φ12(ξ )

Φ21(ξ ) Φ22(ξ )

]
(4.63)

Φ(ξ ) is a fundamental matrix of system (4.56).

Problem 4.2. Determine the parameters p and Ti whose minimize an integral quadratic
performance index of quality (4.54).

We search for an optimal parameters of a PI-controller which minimize the index (4.55).
Optimization results, obtained by means of Matlab function fminsearch, are given in Table 4.2.
These results are obtained for x0 = 1, x20 = 0.5 w = 1, T = 5, and k0 = 1.
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Table 4.2
Optimization results

Delay h Optimal p Optimal 1/Ti Index value

1.0 3.7175 0.3693 7.0684

1.5 2.5023 0.2478 8.0224

2.0 1.9008 0.1877 8.9227

2.5 1.5442 0.1521 9.7723

3.0 1.3094 0.1287 10.5749

3.5 1.1442 0.1121 11.3346

4.0 1.0222 0.0997 12.0554

Figure 4.3 shows the value of the index J(p) for fixed 1/Ti = 0.1877 and h = 2. You can see
that there exists a critical value of the gain pcrit . The system (4.51) is stable for gains less
then critical one and unstable for gains greater then critical.
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Fig. 4.3. Value of the index J(p) for fixed 1/Ti = 0.1877

Figure 4.4 shows the value of the index J(p) for fixed 1/Ti = 0.1877, h = 2 and gains less
the critical one. You can see that the function J(p) is convex and has a minimum. Figure 4.5
shows the value of the index J(1/Ti) for fixed p = 1.9008 and h = 2. You can see that there
exists a critical value of the parameter 1/Ticrit . The system (4.51) is stable for 1/Ti less then
critical one and unstable for 1/Ti greater then critical.
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Fig. 4.5. Value of the index J(1/Ti) for fixed p = 1.9008

Figure 4.6 shows the value of the index J(1/Ti) for fixed p = 1.9008, h = 2 and 1/Ti less the
critical one. You can see that the function J(1/Ti) is convex and has a minimum.
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Figure 4.7 shows elements of matrix U(ξ ) for optimal values of the PI controller parameters
p = 1.9008 and 1/Ti = 0.1877 for h = 2.
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Fig. 4.7. Elements of matrix U(ξ )
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4.6 The Lyapunov matrix for a system
with two commensurate delays

Let us consider a system [25]
dx(t)

dt
= A0x(t)+A1x(t−h)+A2x(t−2h)

x(θ) = ϕ(θ)

(4.64)

for t ≥ 0 and θ ∈ [−2h,0]. Where A0,A1,A2 ∈ Rn×n and ϕ ∈ PC([−h,0],Rn), 0 < h ∈ R.
The set of equations (4.10), (4.11), (4.12) for system (4.64) takes a form

d
dξ

U(ξ ) =U(ξ )A0 +U(ξ −h)A1 +U(ξ −2h)A2 (4.65)

U(−ξ ) =UT (ξ ) (4.66)

U(0)A0 +U(−h)A1 +U(−2h)A2 +AT
0 U(0)+AT

1 U(h)+AT
2 U(2h) =−W (4.67)

for ξ ∈ [0,2h].
The relation (4.66) implies

U(−h) =UT (h) and U(−2h) =UT (2h)

so we can write equation (4.67) in a form

U(0)A0 +UT (h)A1 +UT (2h)A2 +AT
0 U(0)+AT

1 U(h)+AT
2 U(2h) =−W (4.68)

Formula (4.66) extends the function U defined on the segment [0,2h] to the segment [−2h,0].
Indeed for ξ ∈ [0,2h], U(−ξ ) =UT (ξ ). For τ =−ξ , U(τ) =UT (−τ) and τ ∈ [−2h,0].
We define the functions U1(ξ ), U2(ξ ), Z1(ξ ), Z2(ξ ) for ξ ∈ [0,h]

U1(ξ ) =U(ξ ) (4.69)

U2(ξ ) =U(h+ξ ) (4.70)

Z1(ξ ) =U(ξ −h) =UT (−ξ +h) (4.71)

Z2(ξ ) =U(ξ −2h) =UT (−ξ +2h) (4.72)
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For ξ ∈ [0,h] equation (4.65) can be written in a form

d
dξ

U1(ξ ) =U1(ξ )A0 +Z1(ξ )A1 +Z2(ξ )A2 (4.73)

For ξ + h = ς ∈ [h,2h]
U(ς) =U(ξ +h) =U2(ξ ), U(ς −h) =U(ξ ) =U1(ξ ), U(ς −2h) =U(ξ −h) = Z1(ξ )

and equation (4.65) can be written in a form

d
dξ

U2(ξ ) =U2(ξ )A0 +U1(ξ )A1 +Z1(ξ )A2 (4.74)

We compute the derivative of Z1(ξ )

d
dξ

Z1(ξ ) =
d

dξ
UT (−ξ +h) =

d
dτ

UT (τ)
dτ

dξ
=− d

dτ
UT (τ) =

=−AT
0 UT (τ)−AT

1 UT (τ−h)−AT
2 UT (τ−2h) =

=−AT
0 UT (−ξ +h)−AT

1 UT (−ξ )−AT
2 UT (−ξ −h) =

=−AT
0 Z1(ξ )−AT

1 U1(ξ )−AT
2 U2(ξ ) (4.75)

where τ = −ξ + h and the derivative of Z2(ξ )

d
dξ

Z2(ξ ) =
d

dξ
UT (−ξ +2h) =

d
dτ

UT (τ)
dτ

dξ
=− d

dτ
UT (τ) =

=−AT
0 UT (τ)−AT

1 UT (τ−h)−AT
2 UT (τ−2h) =

=−AT
0 UT (−ξ +2h)−AT

1 UT (−ξ +h)−AT
2 UT (−ξ ) =

=−AT
2 U1(ξ )−AT

1 Z1(ξ )−AT
0 Z2(ξ ) (4.76)

where τ = −ξ + 2h.
We have received the set of ordinary differential equations

d
dξ

U1(ξ ) =U1(ξ )A0 +Z1(ξ )A1 +Z2(ξ )A2

d
dξ

U2(ξ ) =U1(ξ )A1 +U2(ξ )A0 +Z1(ξ )A2

d
dξ

Z1(ξ ) =−AT
1 U1(ξ )−AT

2 U2(ξ )−AT
0 Z1(ξ )

d
dξ

Z2(ξ ) =−AT
2 U1(ξ )−AT

1 Z1(ξ )−AT
0 Z2(ξ )

(4.77)

for ξ ∈ [0,h] with initial conditions

U1(0),U2(0),Z1(0),Z2(0)
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There hold relations

U(0) =U1(0),U(h) =U2(0),U(2h) =U2(h)

and therefore equation (4.68) takes a form

U1(0)A0 +UT
2 (0)A1 +UT

2 (h)A2 +AT
0 U1(0)+AT

1 U2(0)+AT
2 U2(h) =−W (4.78)

Using the Kronecker product we can express equation (4.77) in a form

d
dξ

colU1(ξ )

d
dξ

colU2(ξ )

d
dξ

colZ1(ξ )

d
dξ

colZ2(ξ )


= H


colU1(ξ )

colU2(ξ )

colZ1(ξ )

colZ2(ξ )

 (4.79)

for ξ ∈ [0,h] with initial conditions

colU1(0),colU2(0),colZ1(0),colZ2(0)

where

H =


AT

0 ⊗ I 0 AT
1 ⊗ I AT

2 ⊗ I

AT
1 ⊗ I AT

0 ⊗ I AT
2 ⊗ I 0

−I⊗AT
1 −I⊗AT

2 −I⊗AT
0 0

−I⊗AT
2 0 −I⊗AT

1 −I⊗AT
0


Formula (4.78) can be expressed in a form

(AT
0 ⊗ I + I⊗AT

0 )colU1(0)+(I⊗AT
1 )colU2(0)+

+(AT
1 ⊗ I)colUT

2 (0)+(I⊗AT
2 )colU2(h)+(AT

2 ⊗ I)colUT
2 (h) =−colW (4.80)

Solution of equation (4.79) is given in a form
colU1(ξ )

colU2(ξ )

colZ1(ξ )

colZ2(ξ )

= Φ(ξ )


colU1(0)

colU2(0)

colZ1(0)

colZ2(0)

 (4.81)
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where a matrix

Φ(ξ ) =


Φ11(ξ ) Φ12(ξ ) Φ13(ξ ) Φ14(ξ )

Φ21(ξ ) Φ22(ξ ) Φ23(ξ ) Φ24(ξ )

Φ31(ξ ) Φ32(ξ ) Φ33(ξ ) Φ34(ξ )

Φ41(ξ ) Φ42(ξ ) Φ43(ξ ) Φ44(ξ )

 (4.82)

is a fundamental matrix of system (4.79).
We determine the initial conditions

colU1(0),colU2(0),colZ1(0),colZ2(0)

From equation (4.81) we obtain

colU1(h) = colU2(0) = Φ11(h)colU1(0)+Φ12(h)colU2(0)+

+Φ13(h)colZ1(0)+Φ14(h)colZ2(0) (4.83)

colZ1(h) = colU1(0) = Φ31(h)colU1(0)+Φ32(h)colU2(0)+

+Φ33(h)colZ1(0)+Φ34(h)colZ2(0) (4.84)

colZ2(h) = colZ1(0) = Φ41(h)colU1(0)+Φ42(h)colU2(0)+

+Φ43(h)colZ1(0)+Φ44(h)colZ2(0) (4.85)

colU2(h) = Φ21(h)colU1(0)+Φ22(h)colU2(0)+Φ23(h)colZ1(0)+

+Φ24(h)colZ2(0) (4.86)

We reshape equations (4.83), (4.84) and (4.85). In this way we attain a set of algebraic
equations which enables us to calculate the initial conditions of system (4.79).

Φ11(h)colU1(0)+(Φ12(h)−1)colU2(0)+Φ13(h)colZ1(0)+Φ14(h)colZ2(0) = 0 (4.87)

(Φ31(h)−1)colU1(0)+Φ32(h)colU2(0)+Φ33(h)colZ1(0)+Φ34(h)colZ2(0) = 0 (4.88)

Φ41(h)colU1(0)+Φ42(h)colU2(0)+(Φ43(h)−1)colZ1(0)+Φ44(h)colZ2(0) = 0 (4.89)

colU2(h) = Φ21(h)colU1(0)+Φ22(h)colU2(0)+Φ23(h)colZ1(0)+Φ24(h)colZ2(0) (4.90)

(AT
0 ⊗ I + I⊗AT

0 )colU1(0)+(I⊗AT
1 )colU2(0)+(AT

1 ⊗ I)colUT
2 (0)+

+(I⊗AT
2 )colU2(h)+(AT

2 ⊗ I)colUT
2 (h) =−colW (4.91)
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4.7 Formulation of the parametric optimization problem

Let us consider a time-delay system with a P-controller



dx(t)
dt

=
m

∑
j=0

A jx(t−h j)+Bu(t−h)

u(t) =−Px(t)

x(t0 +θ) = ϕ(θ)

(4.92)

for t ≥ t0, θ ∈ [−h,0]

Where x(t) ∈ Rn is the state of system (4.92), u(t) ∈ Rp is the control, A j ∈ Rn×n, B ∈ Rn×p,
P ∈ Rp×n is a P-controller gain, ϕ ∈ PC([−h,0],Rn) is the initial function, 0 = h0 < h1 <

... < hm = h are delays.

System (4.92) can be written in an equivalent form


dx(t)

dt
=

m

∑
j=0

A jx(t−h j)−BPx(t−h)

x(t0 +θ) = ϕ(θ)

(4.93)

for t ≥ t0, θ ∈ [−h,0].

In parametric optimization problem will be used the performance index of quality

J =

∞∫
t0

xT (t, t0,ϕ)Wx(t, t0,ϕ)dt (4.94)

where W ∈Rn×n is a symmetric positive definite matrix and x(t, t0,ϕ) is a solution of equation
(4.93) for initial function ϕ .

Problem 4.3. Determine the matrix P ∈ Rp×n whose minimize an integral quadratic
performance index of quality (4.94)

According to equation (4.5) the value of the performance index of quality (4.94) is equal to the
value of the functional (4.9) for initial function ϕ . To calculate the value of the functional (4.9)
we need a Lyapunov matrix U(ξ ).
To obtain a Lyapunov matrix U(ξ ) we have to solve a system of equations (4.10), (4.11)
and (4.12).
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4.8 The example. Parametric optimization problem
for a scalar system with two delays

Let us consider a system with two delays and a P-controller [25]
dx(t)

dt
= ax(t)+bx(t−h)+ cx(t−2h)+u(t−2h)

u(t) =−px(t)

x(θ) = ϕ(θ)

(4.95)

t ≥ 0, x(t) ∈ R is the state of system (4.95), u(t) ∈ R is the control, ϕ(θ) for θ ∈ [−2h,0] is
the initial function, 0≤ h, 2h are time delays, the parameter p is a gain of a P-controller.
One can reshape equation (4.95) to a form

dx(t)
dt

= ax(t)+bx(t−h)+(c− p)x(t−2h)

x(θ) = ϕ(θ)

(4.96)

for t ≥ 0 and θ ∈ [−2h,0].
In parametric optimization problem we use the performance index of quality

J =

∞∫
0

wx2(t,ϕ)dt (4.97)

where w > 0 and x(t,ϕ) is a solution of equation (4.96) for initial function ϕ .
The Lyapunov functional for system (4.96) has a form, see formula (4.9)

v(ϕ) =U(0)ϕ2(0)+2bϕ(0)
0∫
−h

U(−θ −h)ϕ(θ)dθ+

+2(c− p)ϕ(0)
0∫
−h

U(−θ −2h)ϕ(θ)dθ +b2
0∫
−h

0∫
−h

U(θ −η)ϕ(θ)ϕ(η)dηdθ+

+2b(c− p)
0∫
−h

0∫
−2h

U(−h+θ −η)ϕ(θ)ϕ(η)dηdθ+

+(c− p)2
0∫

−2h

0∫
−2h

U(θ −η)ϕ(θ)ϕ(η)dηdθ (4.98)

The value of the performance index of quality (4.97) is equal to the value of the functional
(4.98) for initial function ϕ

J = v(ϕ) (4.99)
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To obtain the value of the performance index of quality one needs a Lyapunov matrix U(ξ )

for ξ ∈ [0,2h]. In Chapter 3.6 was presented a method of determination of the Lyapunov
matrix for a system with two delays.
System of equations (4.77) takes a form

d
dξ

U1(ξ )

d
dξ

U2(ξ )

d
dξ

Z1(ξ )

d
dξ

Z2(ξ )


= G


U1(ξ )

U2(ξ )

Z1(ξ )

Z2(ξ )

 (4.100)

where

G =


a 0 b c− p
b a c− p 0
−b −c+ p −a 0
−c+ p 0 −b −a


Initial conditions of system (4.100) one obtains solving the algebraic equation

Q


U1(0)
U2(0)
Z1(0)
Z2(0)

=


0
0
0
−w

 (4.101)

where

Q =


Φ11(h) Φ12(h)−1 Φ13(h) Φ14(h)

Φ31(h)−1 Φ32(h) Φ33(h) Φ34(h)

Φ41(h) Φ42(h) Φ43(h)−1 Φ44(h)

p41 p42 p43 p44

 (4.102)

p41 = 2a+2(c− k)Φ21(h), p42 = 2b+2(c− k)Φ22(h), p43 = 2(c− k)Φ23(h),
p44 = 2(c− k)Φ24(h), Φ(ξ ) is a fundamental matrix of solutions of equation (4.100).

We search for an optimal gain which minimizes the index (4.97) for the initial function ϕ

given by the formula

ϕ(θ) =

{
x0 for θ = 0

0 for θ ∈ [−2h,0)
(4.103)

The value of functional (4.98) for ϕ given by formula (4.103) is equal to

J(p) = v(ϕ) =U(0)x2
0 (4.104)
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Figure 4.8 shows the value of the index J(p) for a =−1, b =−0.5, c = 1 and h = 1. You can
see that there exists a critical value of the gain pcrit . The system (4.96) is stable for gains less
then critical one and unstable for gains greater then critical.
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Fig. 4.8. Value of the index J(p)

Figure 4.9 shows the value of the index J(p) for a = −1, b = −0.5, c = 1, h = 1 and for p
less then critical gain. You can see that the function J(p) is convex and has a minimum.
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Fig. 4.9. Value of the index J(p)
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Optimization results, obtained by means of Matlab function fminsearch for a =−1, b =−0.5,
c = 1, x0 = 1, are given in Table 4.3.

Table 4.3
Optimization results

Delay h Optimal gain Critical gain Index value

0.5 1.15 3.13 0.4043

1.0 0.87 2.39 0.4578

1.5 0.90 2.17 0.4964

2.0 0.96 2.08 0.5252

2.5 1.02 2.03 0.5428

Figure 4.10 shows graphs of functions U1(ξ ), U2(ξ ), Z1(ξ ) and Z2(ξ ) obtained with the
Matlab code, for parameters of system (4.96) used in optimization process with h = 1 and
for optimal gain p = 0.87.
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5 The Lyapunov matrix for a neutral system

5.1 The Lyapunov matrix for a neutral system
with one delay

5.1.1 Mathematical model of a neutral system with one delay

Let us consider a neutral system
dx(t)

dt
−C

dx(t− r)
dt

= Ax(t)+Bx(t− r)

x(t0 +θ) = ϕ(θ)

(5.1)

for t ≥ t0, θ ∈ [−r,0], r > 0
Where x(t) ∈ Rn, A, B, C ∈ Rn×n, function ϕ ∈ PC1([−r,0],Rn) - is a space of piece-wise
continuously differentiable vector valued functions defined on the segment [−r,0] with the
uniform norm ‖ ϕ ‖PC1= sup

θ∈[−r,0]
‖ ϕ(θ) ‖

Let x(t, t0,ϕ) be the solution of system (5.1) with the initial function ϕ for t ≥ t0.

Definition 5.1. The difference equation associated with (5.1) is given by a term

x(t)−Cx(t− r) = 0 (5.2)

for t ≥ t0

We assume that the difference x(t)−Cx(t − r) is continuous and differentiable for t ≥ t0,
except possibly a countable number of points.
Let x(t,ϕ) be the solution of system (5.1) with the initial function ϕ for t ≥ t0.
The initial condition for equation (5.1) can be written in a form

xt0(ϕ) = ϕ (5.3)

where xt(ϕ) ∈ PC1([−r,0],Rn) is a shifted restriction of the function x(·, t0,ϕ) to the segment
[−r,0].
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The eigenvalues of the neutral equation (5.1) for large modulus are asymptotically equal to
the eigenvalues of the difference equation (5.2).
According to the Theorem 9.6.1 [40] the difference equation (5.2) is stable when the matrix
C is Schur stable.
When the matrix C is Schur stable, then the asymptotic stability of system (5.1) is equivalent
to the exponential stability of the system (5.1). We assume that C is not singular and a Schur
stable matrix.

Definition 5.2. [2] K(t) is the fundamental matrix of system (5.1) if it satisfies the matrix
equation

d
dt

K(t)−C
d
dt

K(t− r) = AK(t)+BK(t− r)

for t ≥ 0 and the following conditions

– initial condition: K(0) = In×n and K(t) = 0n×n for t < 0 where In×n is the identity n×n
matrix and 0n×n is the zero n×n matrix,

– sewing condition: K(t)−CK(t− r) is continuous for t > 0.

It follows from the definition that the fundamental matrix K(t) has discontinuity points.
The sewing condition implies the jump equation

4K(t)−C4K(t− r) = 0 (5.4)

for t ≥ 0, where 4K(t) = K(t + 0)−K(t − 0)
To compute the size of the jumps one needs to solve the jump equation (5.4) at t j = jr,
j = 0,1,2, ..., with the initial condition 4K(0) = I.

Lemma 5.1. [2] The fundamental matrix K(t) has jumps at points t j = jr, j = 0,1,2, ...

4K(t) |t=t j= K( jr+0)−K( jr−0) =C j (5.5)

and K(t) = K(t +0) at the jump points.

Theorem 5.1. [2] Let K(t) be the fundamental matrix of system (5.1), then for t ≥ t0

x(t,ϕ) = [K(t− t0)−K(t− t0− r)]ϕ(0)+

+

0∫
−r

K(t− t0− r−θ)

[
Bϕ(θ)+C

d
dθ

ϕ(θ)

]
dθ (5.6)

This expression is called the Cauchy formula for system (5.1).

Theorem 5.2. [2] The fundamental matrix K(t) of system (5.1) satisfies also the equation

d
dt

K(t)− d
dt

K(t− r)C = K(t)A+K(t− r)B (5.7)

for t > 0 and t 6= jr, j = 1,2, ...
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5.1.2 The Lyapunov–Krasovskii functional for a neutral system
with one delay

Given a symmetric positive definite matrix W ∈ Rn×n. We are looking for a functional

v : PC1([−r,0],Rn)→ R

such that along the solutions of system (5.1) the following equality holds

d
dt

v(xt(ϕ)) =−xT (t,ϕ)Wx(t,ϕ) (5.8)

for t ≥ t0, where x(t,ϕ) is a solution of system (5.1), with the initial function ϕ ∈
PC1([−r,0],Rn), given by (5.6) and xt(ϕ) is a shifted restriction of x(·,ϕ) to an inter-
val [t− r, t].
We assume that system (5.1) is asymptotically stable and integrate both sides of equation
(5.8) from t0 to infinity. We obtain

v(xt0(ϕ)) =

∞∫
t0

xT (t,ϕ)Wx(t,ϕ)dt (5.9)

Taking into account (5.6) we calculate the integral of the right-hand side of equation (5.9)

∞∫
t0

xT (t, t0,ϕ)Wx(t, t0,ϕ)dt = ϕ
T (0)

∞∫
0

KT (t)WK(t)dtϕ(0)+

−ϕ
T (0)

∞∫
0

KT (t)WK(t− r)dtCϕ(0)+

−ϕ
T (0)CT

∞∫
0

KT (t− r)WK(t)dtϕ(0)+ϕ
T (0)CT

∞∫
0

KT (t− r)WK(t− r)dtCϕ(0)+

+2ϕ
T (0)

0∫
−r

[ ∞∫
0

KT (t)WK(t− r−θ)dt
][

Bϕ(θ)+C
d

dθ
ϕ(θ)

]
dθ+

−2ϕ
T (0)CT

0∫
−r

[ ∞∫
0

KT (t− r)WK(t− r−θ)dt
][

Bϕ(θ)+C
d

dθ
ϕ(θ)

]
dθ+

+

0∫
−r

0∫
−r

[
ϕ

T (θ)BT +
d

dθ
ϕ

T (θ)CT
][ ∞∫

0

KT (t− r−θ)WK(t− r−ξ )dt
]
×

×
[

Bϕ(ξ )+C
d

dξ
ϕ(ξ )

]
dθdξ (5.10)
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Using the Lyapunov matrix U(ξ ) (4.8) we attain a formula for the functional v(xt0(ϕ))

v(xt0(ϕ)) = ϕ
T (0)[U(0)−U(−r)C−CTUT (−r)+CTU(0)C]ϕ(0)+

+2ϕ
T (0)

0∫
−r

[
U(−θ − r)−CTU(−θ)

][
Bϕ(θ)+C

d
dθ

ϕ(θ)

]
dθ+

+

0∫
−r

0∫
−r

[
Bϕ(θ)+C

d
dθ

ϕ(θ)

]T

U(θ −ξ )

[
Bϕ(ξ )+C

d
dξ

ϕ(ξ )

]
dθdξ (5.11)

Lemma 5.2. [81] Let system (5.1) be exponentially stable. Then for every symmetric matrix
W ∈ Rn×n, matrix U(ξ ) is well defined and satisfies the following properties:
Dynamic property

d
dξ

U(ξ )− d
dξ

U(ξ − r)C =U(ξ )A+U(ξ − r)B (5.12)

for ξ ≥ 0 and ξ 6= jr, j = 0,1,2, ...
Symmetry property

U(−ξ ) =UT (ξ ) (5.13)

for ξ ≥ 0
Algebraic property

−W = ATU(0)+U(0)A−ATU(−r)C−CTUT (−r)A+

+BTUT (−r)+U(−r)B−BTU(0)C−CTU(0)B (5.14)

Using the symmetry property one can express the formula (5.11) in a form

v(xt0(ϕ)) = ϕ
T (0)[U(0)−UT (r)C−CTU(r)+CTU(0)C]ϕ(0)+

+2ϕ
T (0)

0∫
−r

[
U(θ + r)−U(θ)C

]T[
Bϕ(θ)+C

d
dθ

ϕ(θ)

]
dθ+

+

0∫
−r

0∫
−r

[
Bϕ(θ)+C

d
dθ

ϕ(θ)

]T

U(θ −ξ )

[
Bϕ(ξ )+C

d
dξ

ϕ(ξ )

]
dθdξ (5.15)

Using equation (5.3) one can express a relation (5.15) more general in a form

v(xt0(ϕ)) = xt0(ϕ)
T (0)[U(0)−UT (r)C−CTU(r)+CTU(0)C]xt0(ϕ)(0)+

+2xT
t0(ϕ)(0)

0∫
−r

[
U(θ + r)−U(θ)C

]T[
Bxt0(ϕ)(θ)+C

d
dθ

xt0(ϕ)(θ)

]
dθ+

+

0∫
−r

0∫
−r

[
Bxt0(ϕ)(θ)+C

d
dθ

xt0(ϕ)(θ)

]T

U(θ −ξ )

[
Bxt0(ϕ)(ξ )+C

d
dξ

xt0(ϕ)(ξ )

]
dθdξ

(5.16)
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Lemma 5.3. [81] The Lyapunov matrix U(ξ ) for system (5.1) is continuously differentiable
at ξ 6= jr, j = 0,1,2, ..., and at ξ = jr matrix dU(ξ )/dξ has the jump

d
dξ

U( jr+0)− d
dξ

U( jr−0) =−(Q−W )C j (5.17)

Here Q is the solution of the matrix equation

Q−CT QC =W (5.18)

5.1.3 The Lyapunov matrix for a neutral system with one delay

To obtain a Lyapunov matrix for a neutral system one needs to solve the set of equations [22]

d
dξ

U(ξ )− d
dξ

U(ξ − r)C =U(ξ )A+U(ξ − r)B (5.19)

U(−ξ ) =UT (ξ ) (5.20)

−W = ATU(0)+U(0)A−ATU(−r)C−CTUT (−r)A+

+BTUT (−r)+U(−r)B−BTU(0)C−CTU(0)B (5.21)

Formula (5.20) implies

U(ξ − r) =UT (−ξ + r) (5.22)

and equation (5.19) takes a form

d
dξ

U(ξ )− d
dξ

UT (−ξ + r)C =U(ξ )A+UT (−ξ + r)B (5.23)

We introduce a new variable τ =−ξ + r . The term (5.23) for a new variable has a form

d
dτ

UT (−τ + r)−CT d
dτ

U(τ) =−ATUT (−τ + r)−BTU(τ) (5.24)

One obtains the set of equations
d

dξ
U(ξ )− d

dξ
UT (−ξ + r)C =U(ξ )A+UT (−ξ + r)B

d
dξ

UT (−ξ + r)−CT d
dξ

U(ξ ) =−ATUT (−ξ + r)−BTU(ξ )

(5.25)

We introduce a new function

Z(ξ ) =UT (−ξ + r) (5.26)
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The set of equations (5.25) can be written in a form
d

dξ
U(ξ )− d

dξ
Z(ξ )C =U(ξ )A+Z(ξ )B

d
dξ

Z(ξ )−CT d
dξ

U(ξ ) =−AT Z(ξ )−BTU(ξ )

(5.27)

or in a equivalent form


d

dξ
U(ξ )−CT d

dξ
U(ξ )C =U(ξ )A−BTU(ξ )C+Z(ξ )B−AT Z(ξ )C

d
dξ

Z(ξ )−CT d
dξ

Z(ξ )C =−BTU(ξ )+CTU(ξ )A−AT Z(ξ )+CT Z(ξ )B
(5.28)

for ξ ∈ [0,r] with the initial conditions U(0) and Z(0).
The formulas (5.20) and (5.26) imply

U(−r) =UT (r) = Z(0) (5.29)

Taking into account (5.29) one can write the algebraic property (5.21) in a form

−W = ATU(0)+U(0)A−AT Z(0)C−CT ZT (0)A+

+BT ZT (0)+Z(0)B−BTU(0)C−CTU(0)B (5.30)

Equation (5.28) can be written in a form
d

dξ
colU(ξ )

d
dξ

colZ(ξ )

= H

[
colU(ξ )

colZ(ξ )

]
(5.31)

Solution of equation (5.31) is given by the formula colU(ξ )

colZ(ξ )

=

 Φ11(ξ ) Φ12(ξ )

Φ21(ξ ) Φ22(ξ )

 colU(0)

colZ(0)

 (5.32)

where a matrix Φ(ξ ) =

[
Φ11(ξ ) Φ12(ξ )

Φ21(ξ ) Φ22(ξ )

]
is a fundamental matrix of system (5.31).

We determine the initial conditions colU(0), colZ(0).
The term (5.26) implies Z(r) = UT (0) = U(0).
From equation (5.32) we obtain

colZ(r) = colU(0) = Φ21(r)colU(0)+Φ22(r)colZ(0) (5.33)
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In this way we attain the set of algebraic equations which enables us to calculate the initial
conditions of equation (5.32).

ATU(0)+U(0)A−AT Z(0)C−CT ZT (0)A+BT ZT (0)+

+Z(0)B−BTU(0)C−CTU(0)B =−W (5.34)

[Φ21(r)− I]colU(0)+Φ22(r)colZ(0) = 0 (5.35)

5.1.4 Formulation of the parametric optimization problem
for a neutral system with one delay

Let us consider a neutral system with a P-controller [22]
dx(t)

dt
−C

dx(t− r)
dt

= Ax(t)+Bu(t− r)

u(t) =−Px(t)

x(t0 +θ) = ϕ(θ)

(5.36)

for t ≥ t0, θ ∈ [−r,0]
Where x(t) ∈ Rn, u(t) ∈ Rp, A,C ∈ Rn×n, B ∈ Rn×p, P ∈ Rp×n is a P-controller gain,
ϕ ∈ PC([−r,0],Rn).
System (5.36) can be written in an equivalent form

dx(t)
dt
−C

dx(t− r)
dt

= Ax(t)−BPx(t− r)

x(t0 +θ) = ϕ(θ)

(5.37)

In parametric optimization problem will be used the performance index of quality

J =

∞∫
t0

xT (t,ϕ)Wx(t,ϕ)dt (5.38)

where W ∈ Rn×n is a symmetric positive definite matrix and x(t,ϕ) is a solution of equation
(5.37) for initial function ϕ .

Problem 5.1. Determine the matrix P ∈ Rp×n whose minimize an integral quadratic
performance index of quality (5.38).

According to equation (5.9) the value of the performance index of quality (5.38) is equal to
the value of the functional (5.16) for initial function ϕ . To calculate the value of the functional
(5.16) we need a Lyapunov matrix U(ξ ). To obtain a Lyapunov matrix U(ξ ) we have to solve
a system of equations (5.12)–(5.14).
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5.1.5 The examples

5.1.5.1 A linear neutral system with a P-controller

Let us consider a neutral system with a P-controller [22]



dx(t)
dt
− c

dx(t− r)
dt

= ax(t)+bu(t− r)

u(t) =−px(t)

x(0) = x0

x(θ) = 0

(5.39)

t ≥ 0, x(t), u(t) ∈ R, θ ∈ [−r,0], r ≥ 0. The parameter p is a gain of a P-controller, x0 ∈ R
is an initial state of system.
One can reshape equation (5.39) to a form


dx(t)

dt
− c

dx(t− r)
dt

= ax(t)−bpx(t− r)

x(0) = x0

x(θ) = 0

(5.40)

for t ≥ 0 and θ ∈ [−r,0).
The initial function ϕ is given by a term

ϕ(θ) =


x0 for θ = 0

0 for θ ∈ [−r,0)

(5.41)

In parametric optimization problem we use the performance index

J =

∞∫
0

wx2(t,ϕ)dt (5.42)

where w > 0 and x(t,ϕ) is a solution of (5.40) for initial function (5.41).
System of equations (5.31) takes a form


d

dξ
U(ξ )

d
dξ

Z(ξ )

=


a+bcp
1− c2 −ac+bp

1− c2

ac+bp
1− c2 −a+bcp

1− c2




U(ξ )

Z(ξ )

 (5.43)

156



A fundamental matrix of solutions of equation (5.43) has a form

Φ(ξ ) =


coshλξ +

a+bcp
λ (1− c2)

sinhλξ − ac+bp
λ (1− c2)

sinhλξ

ac+bp
λ (1− c2)

sinhλξ coshλξ − a+bcp
λ (1− c2)

sinhλξ

 (5.44)

where

λ =

√
a2−b2 p2

1− c2 (5.45)

Initial conditions of system (5.43) one obtains solving of the algebraic equation q11 q12

q21 q22

 U(0)

Z(0)

=

 −w

0

 (5.46)

where
q11 = 2(a+ bcp)
q12 = −2(ac+ bp)

q21 =
ac+bp

λ (1− c2)
sinhλ r− 1

q22 = coshλ r−
a+bcp

λ (1− c2)
sinhλ r

Solving equation (5.46) we obtain

U(0) =
w
M

[
−coshλ r+

a+bcp
λ (1− c2)

sinhλ r
]

(5.47)

Z(0) =
w
M

[
ac+bp

λ (1− c2)
sinhλ r−1

]
(5.48)

where

M = 2(a+bcp)coshλ r−2λ (1− c2)sinhλ r−2(ac+bp) (5.49)

Solution of equation (5.43) has a form

U(ξ ) =
w
M

[
−coshλ r+

a+bcp
λ (1− c2)

sinhλ r
]

coshλξ − w
2λ (1− c2)

sinhλξ (5.50)

Z(ξ ) =
w
M

[
ac+bp

λ (1− c2)
sinhλ r−1

]
coshλξ+

+
w

Mλ (1− c2)

[
a+bcp− (ac+bp)coshλ r

]
sinhλξ (5.51)
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The value of the performance index (5.42) is equal to the value of the functional (5.16) for
initial function. In this example initial function is given by (5.41).

J = x2
0
[
(1+ c2)U(0)−2cZ(0)

]
(5.52)

After calculations one obtains

J =

wx2
0

2

(
2c− (1+ c2)coshλ r+

a−bcp
λ

sinhλ r
)

−ac−bp+(a+bcp)coshλ r−λ (1− c2)sinhλ r
(5.53)

Figure 5.1 shows the value of the index J(p) for x0 = 1, w = 1, a = −1, b = 0.5, c = −0.6
and r = 1. You can see that there exists a critical value of the gain pcrit . The system (5.40) is
stable for gains less then critical one and unstable for gains greater then critical.
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J(p)

Fig. 5.1. Value of the index J(p)

Figure 5.2 shows the value of the index J(p) for p less then critical gain. You can see that
the function J(p) is convex and has a minimum.
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Fig. 5.2. Value of the index J(p)

We search for an optimal gain which minimize the index (5.53). Optimization results, obtained
by means of the Matlab function fminsearch, are given in Table 5.1. These results are obtained
for x0 = 1, w = 1, a = −1, b = 0.5, and c = −0.6.

Table 5.1
Optimization results

Delay r Optimal gain Index value Critical gain

1 2.2674 0.4598 4.51

2 1.4503 0.4959 2.95

3 1.2758 0.4995 2.50

4 1.2254 0.4999 2.32

5 1.2089 0.5000 2.20
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5.1.5.2 Inertial system with delay and a PD-controller

Let us consider inertial system with delay and a PD-controller [23]
dx(t)

dt
=− q

T
x(t)+ k0u(t− r)

u(t) =−px(t)−Td
dx(t)

dt
x(θ) = ϕ(θ)

(5.54)

t ≥ 0, x(t), u(t)∈R, θ ∈ [−r,0], r≥ 0, p and Td are parameters of a PD-controller, k0 is a gain
of a plant, T is a system time constant,ϕ is an initial function. In the case q = 1 equation (5.54)
describes a static object and in the case q = 0 an astatic object.
One can reshape equation (5.54) to a form

dx(t)
dt

+Tdk0
dx(t− r)

dt
=− q

T
x(t)− k0 px(t− r)

x(θ) = ϕ(θ)

(5.55)

for t ≥ 0 and θ ∈ [−r,0].
In parametric optimization problem we use the performance index

J =

∞∫
0

wx2(t,ϕ)dt (5.56)

where w > 0 and x(t,ϕ) is a solution of (5.55) for initial function ϕ .
System of equations (4.20) takes a form


d

dξ
U(ξ )

d
dξ

Z(ξ )

=


−

q
T
+ k2

0Td p

1− k2
0T 2

d
−

k0 p+
qk0Td

T
1− k2

0T 2
d

k0 p+
qk0Td

T
1− k2

0T 2
d

q
T
+ k2

0Td p

1− k2
0T 2

d


 U(ξ )

Z(ξ )

 (5.57)

A fundamental matrix of solutions of equation (5.57) has a form

Φ(ξ ) =

 coshλξ −a2 sinhλξ −a1 sinhλξ

a1 sinhλξ coshλξ +a2 sinhλξ

 (5.58)

where

λ =

√√√√√ q2

T 2− k2
0 p2

1− k2
0T 2

d
, a1 =

k0 p+
qk0Td

T
λ (1− k2

0T 2
d )

, a2 =

q
T
+ k2

0Td p

λ (1− k2
0T 2

d )
(5.59)
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Initial conditions of system (5.57) one obtains solving of the algebraic equation q11 q12

q21 q22

 U(0)

Z(0)

=

 −w

0

 (5.60)

where
q11 = −2

( q
T
+ k2

0Td p
)

q12 = −2
(

k0 p+
qk0Td

T

)
q21 =

k0 p+
qk0Td

T
λ (1− k2

0T 2
d )

sinhλ r− 1

q22 = coshλ r +

q
T
+ k2

0Td p

λ (1− k2
0T 2

d )
sinhλ r

Solving equation (5.60) we obtain

U(0) =
w
M

[
coshλ r+

q
T + k2

0Td p
λ (1− k2

0T 2
d )

sinhλ r

]
(5.61)

Z(0) =
w
M

[
1−

k0 p+ qk0Td
T

λ (1− k2
0T 2

d )
sinhλ r

]
(5.62)

where

M = 2
[
(

q
T
+ k2

0Td p)coshλ r+λ (1− k2
0T 2

d )sinhλ r+ k0 p+
qk0Td

T

]
(5.63)

Solution of equation (5.57) has a form

U(ξ ) =
w
M

coshλ r+

q
T
+ k2

0Td p

λ (1− k2
0T 2

d )
sinhλ r

coshλξ − w
2λ (1− k2

0T 2
d )

sinhλξ (5.64)

Z(ξ ) =
w
M

1−
k0 p+

qk0Td

T
λ (1− k2

0T 2
d )

sinhλ r

coshλξ+

+
w

Mλ (1− k2
0T 2

d )

[
q
T
+ k2

0Td p+(k0 p+
qk0Td

T
)coshλ r

]
sinhλξ (5.65)

We compute the value of the performance index (5.56) for initial function ϕ given by a term

ϕ(θ) =


x0 for θ = 0

0 for θ ∈ [−r,0)
(5.66)
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The value of functional (5.11) for ϕ given by formula (5.66) is equal to

J = x2
0
[
(1+ k2

0T 2
d )U(0)+2k0TdZ(0)

]
(5.67)

After calculations one obtains

J =

wx2
0

2

(
2k0Td +(1+ k2

0T 2
d )coshλ r+

q
T
− k2

0Td p

λ
sinhλ r

)
k0 p+

qk0Td

T
+

(
q
T
+ k2

0Td p
)

coshλ r+λ (1− k2
0T 2

d )sinhλ r

(5.68)

Figure 5.3 shows the value of the index J(p) for fixed Td = 0.4733 and r = 1. You can see
that there exists a critical value of the gain pcrit . The system (5.55) is stable for gains less
then critical one and unstable for gains grater then critical.
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Fig. 5.3. Value of the index J(p) for fixed Td = 0.4733 and r = 1

Figure 5.4 shows the value of the index J(p) for fixed Td = 0.4733, r = 1 and gains less the
critical one. You can see that the function J(p) is convex and has a minimum.
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Fig. 5.4. Value of the index J(p) for fixed Td = 0.4733 and r = 1

Figure 5.5 shows the value of the index J(Td) for fixed p = 1.0168 and r = 1. There exists
a critical value of the differential time Td crit too, which determines the interval of stability.
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Fig. 5.5. Value of the index J(Td) for fixed p = 1.0168 and r = 1
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Figure 5.6 shows the value of the index J(Td) for fixed p = 1.0168, r = 1 and Td less the
critical one. You can see that the function J(Td) is convex and has a minimum.
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Fig. 5.6. Value of the index J(Td) for fixed p = 1.0168 and r = 1

We search for an optimal parameters of a PD-controller which minimize the index (5.68).
Optimization results, obtained by means of Matlab function fminsearch, are given in Table 5.2.
These results are obtained for x0 = 1, w = 1, q = 1, T = 5, and k0 = 1.

Table 5.2
Optimization results

Delay r Optimal p Optimal Td Index value

1.0 1.0168 0.4733 1.0245

1.5 0.6687 0.4559 1.3567

2.0 0.4949 0.4389 1.6096

2.5 0.3907 0.4222 1.8035

3.0 0.3211 0.4058 1.9528

3.5 0.2714 0.3897 2.0685

4.0 0.2340 0.3739 2.1586
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Critical values pcrit and Td crit depend on the value of time delay. This dependence is presented
in Table 5.3. Critical gain is obtained for fixed Td = 0.4733 and critical differential time is
obtained for fixed p = 0.45.

Table 5.3
Critical gain and differential time

Delay r pcrit Td crit

1.0 1.86 0.98

1.5 1.25 0.97

2.0 0.95 0.95

2.5 0.77 0.92

3.0 0.65 0.87

3.5 0.56 0.81

4.0 0.50 0.71

5.2 Neutral system with two delays

5.2.1 Mathematical model of neutral system with two delays

Let us consider a neutral system with two delays
dx(t)

dt
−D

dx(t−h)
dt

= Ax(t)+Bx(t−h)+Cx(t− r)

x(θ) = ϕ(θ)

(5.69)

for t ≥ 0, θ ∈ [−r,0].
The state x(t) ∈ Rn, matrices A, B, C, D ∈ Rn×n, initial function ϕ ∈ PC1([−r,0],Rn) – the
space of piece-wise continuous vector valued functions defined on the segment [−r,0] with
the uniform norm ‖ ϕ ‖PC1= sup

θ∈[−r,0]
‖ ϕ(θ) ‖, delays r > h > 0.

We assume that the difference x(t)−Dx(t − h) is continuous and differentiable for t ≥ 0,
except possibly a countable number of points, t j = jh, j = 0,1,2, ...

Definition 5.3. The difference equation associated with (5.69) is given by a term

x(t)−Dx(t−h) = 0 (5.70)

for t ≥ 0.

Let x(t,ϕ) be the solution of system (5.69) with the initial function ϕ for t ≥ 0.
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Definition 5.4. [2] K(t) is the fundamental matrix of system (5.69) if it satisfies the matrix
equation

d
dt

K(t)−D
d
dt

K(t−h) = AK(t)+BK(t−h)+CK(t− r) (5.71)

for t ≥ 0 and the following conditions

– initial condition: K(0) = In×n and K(t) = 0n×n for t < 0 where In×n is the identity n×n
matrix and 0n×n is the zero n×n matrix,

– sewing condition: K(t)−DK(t−h) is continuous for t > 0.

Theorem 5.3. [2] Let K(t) be the fundamental matrix of system (5.69), then for t ≥ 0

x(t,ϕ) = [K(t)−K(t−h)D]ϕ(0)+
0∫
−h

K(t−h−θ)

[
Bϕ(θ)+D

d
dθ

ϕ(θ)

]
dθ+

+

0∫
−r

K(t− r−θ)Cϕ(θ)dθ (5.72)

This expression is called the Cauchy formula for system (5.69).
It follows from the definition that the fundamental matrix K(t) has discontinuity points.
The sewing condition can be written in a form

K(t +0)−DK(t +0−h) = K(t−0)−DK(t−0−h) (5.73)

for t > 0.
Formula (5.73) gives the jump equation

4K(t)−D4K(t−h) = 0 (5.74)

for t ≥ 0, where 4K(t) = K(t + 0)−K(t − 0)

Theorem 5.4. The fundamental matrix K(t) has jumps at points t j = jh, j = 0,1,2, ...

4K(t) |t=t j= K( jh+0)−K( jh−0) = D j (5.75)

and K(t) = K(t +0) at the jump points.

Proof. We solve the jump equation (5.74) at t j = jh, j = 0,1,2, .., with the initial condition
4K(0)

∆K(0) = K(0+0)−K(0−0) = I−0 = I

∆K(h) = D∆K(0) = D

∆K(2h) = D∆K(h) = D2

∆K( jh) = D∆K( jh−h) = D j
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Theorem 5.5. [2] The fundamental matrix K(t) of system (5.69) satisfies also the equation

d
dt

K(t)− d
dt

K(t−h)D = K(t)A+K(t−h)B+K(t− r)C (5.76)

for t > 0 and t 6= jh, j = 1,2, ...
The initial condition for equation (5.69) can be written in a form

xt(ϕ) |t=0= ϕ (5.77)

where xt ∈ PC1([−r,0],Rn) is a shifted restriction of the function x(·,ϕ) to the segment [−r,0].
The eigenvalues of neutral equation (5.69) for large modulus are asymptotically equal to the
eigenvalues of the difference equation (5.70).
According to the Theorem 9.6.1 [40] the difference equation (5.70) is stable when the
matrix D is Schur stable. When the matrix D is Schur stable, then the asymptotic stability
of system (5.69) is equivalent to the exponential stability of system (5.69). We assume that
D is not singular and a Schur stable matrix.

5.2.2 The Lyapunov–Krasovskii functional
for a neutral system with two delays

Problem 5.2. Given a symmetric positive definite matrix W ∈ Rn×n. We are looking for
a functional v : PC1([−r,0],Rn)→ R such that along the solutions of system (5.69) the
following equality holds

d
dt

v(xt(ϕ)) =−xT (t,ϕ)Wx(t,ϕ) (5.78)

for t ≥ 0, where x(t,ϕ) is a solution of system (5.69), with the initial function ϕ ∈
PC1([−r,0],Rn), given by (5.72) and xt(ϕ) is a shifted restriction of x(·,ϕ) to an interval
[t− r, t].

We assume that system (5.69) is exponentially stable and integrate both sides of equation
(5.78) from 0 to infinity. We obtain

v(ϕ) = v(xt(ϕ) |t=0) =

∞∫
0

xT (t,ϕ)Wx(t,ϕ)dt (5.79)

Taking into account (5.72) we calculate the integral of the right-hand side of equation (5.79)
∞∫

0

xT (t,ϕ)Wx(t,ϕ)dt = ϕ
T (0)

∞∫
0

KT (t)WK(t)dtϕ(0)−ϕ
T (0)

∞∫
0

KT (t)WK(t−h)dtDϕ(0)+

−ϕ
T (0)DT

∞∫
0

KT (t−h)WK(t)dtϕ(0)+ϕ
T (0)DT

∞∫
0

KT (t−h)WK(t−h)dtDϕ(0)+

+2ϕ
T (0)

0∫
−h

[ ∞∫
0

KT (t)WK(t−h−θ)dt
][

Bϕ(θ)+D
d

dθ
ϕ(θ)

]
dθ+
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−2ϕ
T (0)DT

0∫
−h

[ ∞∫
0

KT (t−h)WK(t−h−θ)dt
][

Bϕ(θ)+D
d

dθ
ϕ(θ)

]
dθ+

+2ϕ
T (0)

0∫
−r

[ ∞∫
0

KT (t)WK(t− r−θ)dt
]
Cϕ(θ)dθ+

−2ϕ
T (0)DT

0∫
−r

[ ∞∫
0

KT (t−h)WK(t− r−θ)dt
]
Cϕ(θ)dθ+

+

0∫
−h

0∫
−h

[
ϕ

T (θ)BT +
d

dθ
ϕ

T (θ)DT
][ ∞∫

0

KT (t−h−θ)WK(t−h−ξ )dt
]
×

×
[

Bϕ(ξ )D
d

dξ
ϕ(ξ )

]
dθdξ+

+2
0∫
−h

0∫
−r

[
ϕ

T (θ)BT +
d

dθ
ϕ

T (θ)DT
][ ∞∫

0

KT (t−h−θ)WK(t− r−ξ )dt
]
Cϕ(ξ )dθdξ+

+

0∫
−r

0∫
−r

ϕ
T (θ)CT

[ ∞∫
0

KT (t− r−θ)WK(t− r−ξ )dt
]
Cϕ(ξ )dθdξ (5.80)

Using a Lyapunov matrix U(ξ ) (4.8) we attain a formula for the functional v(ϕ)

v(ϕ) =
∞∫

0

xT (t,ϕ)Wx(t,ϕ)dt =

= ϕ
T (0)

[
U(0)−U(−h)D−DTUT (−h)+DTU(0)D

]
ϕ(0)+

+2ϕ
T (0)

0∫
−h

[
U(−θ −h)−DTU(−θ)

][
Bϕ(θ)+D

d
dθ

ϕ(θ)

]
dθ+

+2ϕ
T (0)

0∫
−r

[
U(−θ − r)−DTU(h− r−θ)

]
Cϕ(θ)dθ+

+

0∫
−h

0∫
−h

[
Bϕ(θ)+D

d
dθ

ϕ(θ)

]T

U(θ −ξ )

[
Bϕ(ξ )+D

d
dξ

ϕ(ξ )

]
dθdξ+

+2
0∫
−h

0∫
−r

[
Bϕ(θ)+D

d
dθ

ϕ(θ)

]T

U(θ −ξ +h− r)Cϕ(ξ )dθdξ+

+

0∫
−r

0∫
−r

ϕ
T (θ)CTU(θ −ξ )Cϕ(ξ )dθdξ (5.81)
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Theorem 5.6. Let system (5.69) be exponentially stable, U(ξ ) be a Lyapunov matrix
associated with a symmetric matrix W. The functional (5.81) solves Problem 40.

5.2.3 Formulation of the parametric optimization problem
for a neutral system with two delays

Let us consider a neutral system with two delays and a P-controller
dx(t)

dt
−D

dx(t−h)
dt

= Ax(t)+Bx(t−h)+C1u(t− r)

u(t) =−Px(t)

x(θ) = ϕ(θ)

(5.82)

for t ≥ 0, θ ∈ [−r,0]
Where x(t) ∈ Rn, u(t) ∈ Rp, A,B,D ∈ Rn×n, C1 ∈ Rn×p, P ∈ Rp×n is a P-controller gain,
ϕ ∈ PC1([−r,0],Rn)

System (5.82) can be written in the equivalent form
dx(t)

dt
−D

dx(t−h)
dt

= Ax(t)+Bx(t−h)−C1Px(t− r)

x(θ) = ϕ(θ)

(5.83)

In parametric optimization problem will be used the performance index of quality

J =

∞∫
0

xT (t,ϕ)Wx(t,ϕ)dt (5.84)

where W ∈ Rn×n is a symmetric positive definite matrix and x(t,ϕ) is a solution of equation
(5.83) for initial function ϕ .

Problem 5.3. Determine the matrix P ∈ Rp×n whose minimize the integral quadratic
performance index of quality (5.84).

The value of the performance index of quality (5.84) is equal to the value of the functional
(5.81) for initial function ϕ , in which a matrix C should be replaced by a matrix −C1P. To
calculate the value of the functional (5.81) we need a Lyapunov matrix U(ξ ).

5.2.4 The Lyapunov matrix for a neutral system with two delays

Let system (5.69) be exponentially stable. The Lyapunov matrix U(ξ ) is given by equation
(4.8). We will compute the derivative of U(ξ ) with respect to ξ . According to Theorem 5.4
the matrix K(t) has jumps at points t j = jh, j = 0,1,2, ... We take a positive value ξ 6= jh
for j = 0,1,2, ... It can be written in a form ξ = lh+η , where η ∈ (0,h) , and l = 1,2, ...
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For t ≥ 0 the matrix K(t + ξ ) has jumps at points t j = jh−η for j = 1,2, ... On the set
G = [0,∞) \ {t j}∞

j=1 the matrix K(t + ξ ) has no jumps.
We can compute the derivative

d
dξ

U(ξ ) |ξ=lh+η=
∫
G

KT (t)W
∂

∂ξ
K(t +ξ )dt+

+
∞

∑
j=1

KT (t j)W [K(t j +ξ +0)−K(t j +ξ −0)] (5.85)

Using equation (5.75) from Theorem 38 we calculate

K(t j +ξ +0)−K(t j +ξ −0) = K(( j+ l)h+0)−K(( j+ l)h−0) = Dl+ j (5.86)

Taking into account equation (5.86) we obtain

d
dξ

U(ξ ) =
∫
G

KT (t)W
∂

∂ξ
K(t +ξ )dt +

∞

∑
j=1

KT (t j)WDl+ j (5.87)

d
dξ

U(ξ −h) =
∫
G

KT (t)W
∂

∂ξ
K(t +ξ −h)dt +

∞

∑
j=1

KT (t j)WDl−1+ j (5.88)

d
dξ

U(ξ )− d
dξ

U(ξ −h)D =
∫
G

KT (t)W
[

∂

∂ξ
K(t +ξ )− ∂

∂ξ
K(t +ξ −h)D

]
dt (5.89)

Equation (5.76) for t + ξ takes a form

d
dt

K(t +ξ )− d
dt

K(t +ξ −h)D = K(t +ξ )A+K(t +ξ −h)B+K(t +ξ − r)C (5.90)

We substitute the right-hand side of (5.90) into equation (5.89) and obtain

d
dξ

U(ξ )− d
dξ

U(ξ −h)D =
∫
G

KT (t)WK(t +ξ )dtA+
∫
G

KT (t)WK(t +ξ −h)dtB+

+
∫
G

KT (t)WK(t +ξ − r)dtC =U(ξ )A+U(ξ −h)B+U(ξ − r)C (5.91)

We have obtained the dynamic property of Lyapunov matrix

d
dξ

U(ξ )− d
dξ

U(ξ −h)D =U(ξ )A+U(ξ −h)B+U(ξ − r)C (5.92)

for ξ ≥ 0 and ξ 6= jh, j = 0,1,2, ...
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Now we introduce the algebraic property of Lyapunov matrix

d
dt

[
K(t)−K(t−h)D

]T
W [K(t)−K(t−h)D] =

=
[ d

dt
K(t)− d

dt
K(t−h)D

]T
W [K(t)−K(t−h)D]+

+[K(t)−K(t−h)D]TW
[ d

dt
K(t)− d

dt
K(t−h)D

]
(5.93)

We substitute the right-hand side of equation (5.76) into equation (5.93) and integrate both
sides with respect to t from zero to infinity taking into account the definition of Lyapunov
matrix (4.8). After calculation we obtain the algebraic property of Lyapunov matrix

−W = ATU(0)+U(0)A−ATU(−h)D−DTUT (−h)A+BTUT (−h)+U(−h)B+

−BTU(0)D−DTU(0)B+CTUT (−r)+U(−r)C−CTU(r−h)D−DTU(h− r)C (5.94)

We calculate U(−ξ )

U(−ξ ) =

∞∫
0

KT (t)WK(t−ξ )dt =
∞∫
−ξ

KT (η +ξ )WK(η)dη =

0∫
−ξ

KT (η +ξ )WK(η)dη+

+

∞∫
0

KT (η +ξ )WK(η)dη =

∞∫
0

KT (η +ξ )WK(η)dη =

=

[ ∞∫
0

KT (η)WK(η +ξ )dη

]T

=UT (ξ ) (5.95)

The integral
∫ 0
−ξ

KT (η + ξ )WK(η)dη = 0 because K(η) = 0 for η < 0.
We have obtained the symmetry property of Lyapunov matrix

U(−ξ ) =UT (ξ ) (5.96)

for ξ ≥ 0.
We had obtained the following theorem.

Theorem 5.7. Let system (5.69) be exponentially stable.The Lyapunov matrix for that system
fulfills the conditions:

d
dξ

U(ξ )− d
dξ

U(ξ −h)D =U(ξ )A+U(ξ −h)B+U(ξ − r)C (5.97)

for ξ ≥ 0 and ξ 6= jh, j = 0,1,2, ...

U(−ξ ) =UT (ξ ) (5.98)

for ξ ≥ 0

−W = ATU(0)+U(0)A−ATU(−h)D−DTUT (−h)A+BTUT (−h)+U(−h)B+

−BTU(0)D−DTU(0)B+CTUT (−r)+U(−r)C−CTU(r−h)D−DTU(h− r)C (5.99)
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5.2.5 The Lyapunov matrix for a neutral system
with two commensurate delays

Let us consider a neutral system with two commensurate delays
dx(t)

dt
−D

dx(t−h)
dt

= Ax(t)+Bx(t−h)+Cx(t−2h)

x(θ) = ϕ(θ)

(5.100)

for t ≥ 0, θ ∈ [−2h,0].
The state x(t) ∈ Rn, matrices A, B, C, D ∈ Rn×n, initial function ϕ ∈ PC1([−2h,0],Rn) – the
space of piece-wise continuous vector valued functions defined on the segment [−2h,0] with
the uniform norm ‖ ϕ ‖PC1= sup

θ∈[−2h,0]
‖ ϕ(θ) ‖, delays h, 2h > 0.

The set of equations (5.97), (5.98), (5.99) for system (5.100) takes a form

d
dτ

U(τ)− d
dτ

U(τ−h)D =U(τ)A+U(τ−h)B+U(τ−2h)C (5.101)

U(−τ) =UT (τ) (5.102)

for τ ∈ [0,2h]

−W = ATU(0)+U(0)A−ATU(−h)D−DTUT (−h)A+BTUT (−h)+U(−h)B+

−BTU(0)D−DTU(0)B+CTUT (−2h)+U(−2h)C−CTU(h)D−DTU(−h)C (5.103)

Formula (5.102) extends the function U defined on the segment [0,2h] to the segment [−2h,0].
Indeed for τ ∈ [0,2h], U(−τ) =UT (τ). For ς =−τ , U(ς) =UT (−ς) and ς ∈ [−2h,0].
We define the functions U1(ξ ), U2(ξ ), Z1(ξ ), Z2(ξ ) for ξ ∈ [0,h]

U1(ξ ) =U(ξ ) (5.104)

U2(ξ ) =U(h+ξ ) (5.105)

Z1(ξ ) =U(ξ −h) =UT (−ξ +h) (5.106)

Z2(ξ ) =U(ξ −2h) =UT (−ξ +2h) (5.107)

Relations (5.104)–(5.107) imply

U(0) =U1(0), U(−h) = Z1(0)

U(−2h) = Z2(0), U(h) =U2(0) (5.108)
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Taking into account (5.108) the algebraic property (5.103) can be written in a form

−W = ATU1(0)+U1(0)A−AT Z1(0)D−DT ZT
1 (0)A+BT ZT

1 (0)+Z1(0)B+

−BTU1(0)D−DTU1(0)B+CT ZT
2 (0)+Z2(0)C−CTU2(0)D−DT Z1(0)C (5.109)

We will use the relations

U(−ξ ) =UT (ξ ) =UT
1 (ξ ) (5.110)

U(−ξ −h) =UT (ξ +h) =UT
2 (ξ ) (5.111)

U(2h−ξ ) =UT (ξ −2h) = ZT
2 (ξ ) (5.112)

for ξ ∈ [0,h].
Taking into account relations (5.104)–(5.107), equation (5.101) for τ = ξ , dτ = dξ , ξ ∈ [0,h]
can be written in a form

d
dξ

U1(ξ )−
d

dξ
Z1(ξ )D =U1(ξ )A+Z1(ξ )B+Z2(ξ )C (5.113)

Taking into account relations (5.104)–(5.107), equation (5.101) for τ = ξ + h, dτ = dξ ,
ξ ∈ [0,h] can be written in a form

d
dξ

U2(ξ )−
d

dξ
U1(ξ )D =U2(ξ )A+U1(ξ )B+Z1(ξ )C (5.114)

Equation (5.101) for τ =−ξ +h, dτ =−dξ , ξ ∈ [0,h] can be written in a form

d
dξ

U(−ξ +h)− d
dξ

U(−ξ )D =−U(−ξ +h)A−U(−ξ )B−U(−ξ −h)C (5.115)

We transpose doth sides of equation (5.115) and taking into account relations (5.104)–(5.107),
(5.110) and (5.111) we obtain

d
dξ

Z1(ξ )−DT d
dξ

U1(ξ ) =−AT Z1(ξ )−BTU1(ξ )−CTU2(ξ ) (5.116)

Equation (5.101) for τ =−ξ +2h, dτ =−dξ , ξ ∈ [0,h] can be written in a form

d
dξ

U(−ξ +2h)− d
dξ

U(−ξ +h)D =−U(−ξ +2h)A−U(−ξ +h)B−U(−ξ )C (5.117)

We transpose both sides of equation (5.117) and taking into account relations (5.104)–(5.107),
(5.110) and (5.112) we obtain

d
dξ

Z2(ξ )−DT d
dξ

Z1(ξ ) =−AT Z2(ξ )−BT Z1(ξ )−CTU1(ξ ) (5.118)
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Equations (5.113) and (5.116) can be reshape to a form

d
dξ

U1(ξ )−DT d
dξ

U1(ξ )D =−AT Z1(ξ )D−BTU1(ξ )D+

−CTU2(ξ )D+U1(ξ )A+Z1(ξ )B+Z2(ξ )C (5.119)

d
dξ

Z1(ξ )−DT d
dξ

Z1(ξ )D = DTU1(ξ )A+DT Z1(ξ )B+

+DT Z2(ξ )C−AT Z1(ξ )−BTU1(ξ )−CTU2(ξ ) (5.120)

We have obtained the set of ordinary differential equations with unknown U1(ξ ), U2(ξ ),
Z1(ξ ), Z2(ξ ).

d
dξ

U1(ξ )−DT d
dξ

U1(ξ )D =−AT Z1(ξ )D−BTU1(ξ )D+

−CTU2(ξ )D+U1(ξ )A+Z1(ξ )B+Z2(ξ )C

d
dξ

U2(ξ )−
d

dξ
U1(ξ )D =U2(ξ )A+U1(ξ )B+Z1(ξ )C

d
dξ

Z1(ξ )−DT d
dξ

Z1(ξ )D = DTU1(ξ )A+DT Z1(ξ )B+

+DT Z2(ξ )C−AT Z1(ξ )−BTU1(ξ )−CTU2(ξ )

d
dξ

Z2(ξ )−DT d
dξ

Z1(ξ ) =−AT Z2(ξ )−BT Z1(ξ )−CTU1(ξ )

(5.121)

for ξ ∈ [0,h] with initial conditions

U1(0),U2(0),Z1(0),Z2(0)

Equation (5.121) can be written in a form

d
dξ


colU1(ξ )

colU2(ξ )

colZ1(ξ )

colZ2(ξ )

= H


colU1(ξ )

colU2(ξ )

colZ1(ξ )

colZ2(ξ )

 (5.122)

for ξ ∈ [0,h] with initial conditions

colU1(0),colU2(0),colZ1(0),colZ2(0)

Solution of the set of ordinary differential equations (5.122) is given in a form
colU1(ξ )

colU2(ξ )

colZ1(ξ )

colZ2(ξ )

= Φ(ξ )


colU1(0)
colU2(0)
colZ1(0)
colZ2(0)

 (5.123)
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where a matrix

Φ(ξ ) =


Φ11(ξ ) Φ12(ξ ) Φ13(ξ ) Φ14(ξ )

Φ21(ξ ) Φ22(ξ ) Φ23(ξ ) Φ24(ξ )

Φ31(ξ ) Φ32(ξ ) Φ33(ξ ) Φ34(ξ )

Φ41(ξ ) Φ42(ξ ) Φ43(ξ ) Φ44(ξ )

 (5.124)

is a fundamental matrix of system (5.122).
We determine the initial conditions colU1(0), colU2(0), colZ1(0), colZ2(0).
Relations (5.104)–(5.107) imply

U1(h) =U(h) =U2(0) (5.125)

Z1(h) =U(0) =U1(0) (5.126)

Z2(h) =U(−h) = Z1(0) (5.127)

Solution of the differential equations (5.122) for ξ = h is given

colU1(h) = colU2(0) = Φ11(h)colU1(0)+Φ12(h)colU2(0)+

+Φ13(h)colZ1(0)+Φ14(h)colZ2(0) (5.128)

colZ1(h) = colU1(0) = Φ31(h)colU1(0)+Φ32(h)colU2(0)+

+Φ33(h)colZ1(0)+Φ34(h)colZ2(0) (5.129)

colZ2(h) = colZ1(0) = Φ41(h)colU1(0)+Φ42(h)colU2(0)+

+Φ43(h)colZ1(0)+Φ44(h)colZ2(0) (5.130)

Equations (5.128) to (5.130) and (5.109) enables us to calculate the initial conditions of system
(5.122). We reshape them to a form

Φ11(h)colU1(0)+(Φ12(h)−1)colU2(0)+Φ13(h)colZ1(0)+Φ14(h)colZ2(0) = 0 (5.131)

(Φ31(h)−1)colU1(0)+Φ32(h)colU2(0)+Φ33(h)colZ1(0)+Φ34(h)colZ2(0) = 0 (5.132)

Φ41(h)colU1(0)+Φ42(h)colU2(0)+(Φ43(h)−1)colZ1(0)+Φ44(h)colZ2(0) = 0 (5.133)

ATU1(0)+U1(0)A−AT Z1(0)D−DT ZT
1 (0)A+BT ZT

1 (0)+Z1(0)B−BTU1(0)D+

−DTU1(0)B+CT ZT
2 (0)+Z2(0)C−CTU2(0)D−DT Z1(0)C =−W (5.134)
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5.2.6 The example

Let us consider a neutral system with a P-controller
dx(t)

dt
−d

dx(t−h)
dt

= ax(t)+bx(t−h)+ c1u(t−2h)

u(t) =−px(t)

x(θ) = ϕ(θ)

(5.135)

t ≥ 0, x(t), u(t) ∈ R, θ ∈ [−2h,0], h ≥ 0. The parameter p is a gain of a P-controller, ϕ is
an initial function of system.
One can reshape equation (5.135) to a form

dx(t)
dt
−d

dx(t−h)
dt

= ax(t)+bx(t−h)− c1 px(t−2h)

x(θ) = ϕ(θ)

(5.136)

for t ≥ 0 and θ ∈ [−2h,0].
In parametric optimization problem we use the performance index of quality

J =

∞∫
0

wx2(t,ϕ)dt (5.137)

where w > 0 and x(t,ϕ) is a solution of equation (5.136) for initial function ϕ .
The Lyapunov functional for system (5.136) has a form, see formula (5.81)

v(ϕ) = [(1+d2)U(0)−2dU(−h)]ϕ2(0)+

+2ϕ(0)
0∫
−h

[
U(−θ −h)−dU(−θ)

][
bϕ(θ)+d

dϕ(θ)

dθ

]
dθ+

−2ϕ(0)c1 p
0∫

−2h

[
U(−θ −2h)−dU(−h−θ)

]
ϕ(θ)dθ+

+

0∫
−h

0∫
−h

U(θ −η)

[
bϕ(θ)+d

dϕ(θ)

dθ

][
bϕ(η)+d

dϕ(η)

dη

]
dηdθ+

−2c1 p
0∫
−h

0∫
−2h

U(−h+θ −η)

[
bϕ(θ)+d

dϕ(θ)

dθ

]
ϕ(η)dθdη+

+c2
1 p2

0∫
−2h

0∫
−2h

U(θ −η)ϕ(θ)ϕ(η)dθdη (5.138)
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The value of the performance index of quality (5.137) is equal to the value of the functional
(5.138) for initial function ϕ

J = v(ϕ) (5.139)

To obtain the value of the performance index of quality one needs a Lyapunov matrix U(ξ )

for ξ ∈ [0,2h]. In Chapter 5.2.5 was presented a method of determination of the Lyapunov
matrix for a system with two delays.
System of equations (5.122) takes a form

d
dξ

U1(ξ )

d
dξ

U2(ξ )

d
dξ

Z1(ξ )

d
dξ

Z2(ξ )


= H



U1(ξ )

U2(ξ )

Z1(ξ )

Z2(ξ )


(5.140)

where

H =



h1 −h2d h3 h2

h4 h5 h6 h2d

−h3 −h2 −h1 h2d

−h6 −h2d −h4 −h5


where

h1 =
a−bd
1−d2 ,

h2 =
c1 p

1−d2 ,

h3 =
b−ad
1−d2 ,

h4 =
b+ad−2bd2

1−d2 ,

h5 =
a−ad2− c1 pd2

1−d2 ,

h6 =
bd−ad2 + c1 p− c1 pd2

1−d2
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Initial conditions of system (5.140) one obtains solving the algebraic equation

Q


U1(0)
U2(0)
Z1(0)
Z2(0)

=


0
0
0
−w

 (5.141)

where

Q =


Φ11(h) Φ12(h)−1 Φ13(h) Φ14(h)

Φ31(h)−1 Φ32(h) Φ33(h) Φ34(h)
Φ41(h) Φ42(h) Φ43(h)−1 Φ44(h)

2(a−bd) −c1 pd 2(b−ad)+ c1 pd 2c1 p

 (5.142)

Where Φ(ξ ) is a fundamental matrix of solutions of equation (5.140).
We search for an optimal gain which minimize the index (5.137) for the initial function ϕ

given by a formula

ϕ(θ) =

{
x0 f or θ = 0

0 f or θ ∈ [−2h,0)
(5.143)

For the initial function ϕ given by the formula (5.143) the performance index of quality
has a form

J = v(ϕ) = [(1+d2)U1(0)−2dZ1(0)]x2
0 (5.144)

Figure 5.7 shows the value of the index J(p) for x0 = 1, w = 1, a =−1, b =−0.5, c1 =−0.4,
d =−0.6 and h = 1. You can see that there exists a critical value of the gain pcrit . The system
(5.136) is stable for gains less then critical one and unstable for gains greater then critical.
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Fig. 5.7. Value of the index J(p)
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Figure 5.8 shows the value of the index J(p) for x0 = 1, w = 1, a =−1, b =−0.5, c1 =−0.4,
d =−0.6 h = 1 and for p less then critical gain. You can see that the function J(p) is convex
and has a minimum.
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Fig. 5.8. Value of the index J(p)

Figure 5.9 shows graphs of functions U1(ξ ), U2(ξ ), Z1(ξ ) and Z2(ξ ) obtained with the
Matlab code, for parameters of system (5.136) used in optimization process with h = 1 and
for optimal gain.

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0≤ξ≤h

 

U1(ξ)
U2(ξ)
Z1(ξ)
Z2(ξ)

x0=1, w=1, a=−1, b=−0.5, c1=−0.4, d=−0.6, h=1

p=1.3083

Fig. 5.9. Functions U1(ξ ), U2(ξ ), Z1(ξ ) and Z2(ξ ) for optimal gain
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We search for an optimal gain of a P-controller which minimizes the index (5.144).
Optimization results, obtained by means of Matlab function fminsearch, are given in Table 5.4.
These results are obtained for x0 = 1, w = 1, a =−1, b =−0.5, c1 =−0.4 and d =−0.6.

Table 5.4
Optimization results

Delay h Optimal gain Index value Critical gain

0.5 2.4291 0.4579 8.0

1.0 1.3083 0.4799 5.2

1.5 1.0145 0.4804 4.2

2.0 0.8803 0.4791 3.2

2.5 0.7986 0.4784 2.9

3.0 0.7433 0.4784 2.7



6 Conclusion

In the monograph was presented the method of determination of the Lyapunov functional
for varies time delay systems and its applications to the parametric optimization problem to
calculation of the quadratic performance index of quality, Integral of Squared Error (ISE).
In the monograph were presented examples of parametric optimization problems for varies
controllers i.e. P, I, PI, PD and for varies plants i.e. inertial system with one and two delays.
An inertial system with delay (Küpfmüller model) is often used in practical applications so the
obtained results can be useful. Interesting illustration of application of presented method to
parametric optimization problem for separately excited D.C. motor angular velocity control
system is presented in [10].
In monograph equations describing dynamics of time delay systems are given in a form of
differential equations with time delay with respect to momentary state x(t). We can reshape
them to the state equation using the relation

∂xt(θ)

∂ t
=

∂xt(θ)

∂θ
(6.1)

The procedure to obtain the state equation is presented below.
Let us consider a system with time delay whose dynamics is described by a functional-
differential equation 

dx(t)
dt

= Ax(t)+Bxt(−r)

x(t0) = x0

xt0 = Φ

(6.2)

for t ≥ t0, where x(t) ∈ Rn is a momentary state, Φ ∈ L2([−r,0),Rn) is an initial function,
xt is a shifted restriction of x(·) to an interval [t− r, t) and is given by a formula

xt(θ) := x(t +θ) (6.3)

for t ≥ t0, θ ∈ [−r,0)

181



The state of system (6.2) is a vector

S(t) =
[

x(t)
xt

]
(6.4)

for t ≥ t0, where x(t) ∈ Rn is a momentary state, xt ∈ L2([−r,0),Rn).
The state space is defined by a formula

X = Rn×L2([−r,0),Rn) (6.5)

We compute the time derivative of (6.4)

dS(t)
dt

=


dx(t)

dt
∂xt

∂ t

=

 Ax(t)+Bxt(−r)

∂xt

∂θ

= A S(t)

for t ≥ t0, θ ∈ [−r,0).

S(t0) =
[

x0

Φ

]
= S0 (6.6)

In such a way we obtained an abstract initial-value problem
dS(t)

dt
= A S(t)

S(t0) = S0 ∈D(A )

(6.7)

for t ≥ t0, where D(A ) is a domain of operator A

D(A ) =

{
S(t) ∈ X :

dS(t)
dt
∈ X f or t ≥ t0,θ ∈ [−r,0)

}
(6.8)

The state space X is a Hilbert space with an inner product

< S1,S2 >= xT
1 x2 +

0∫
−r

Φ
T
1 (θ)Φ2(θ)dθ (6.9)

where Si =

[
xi

Φi

]
∈ X for i = 1,2.

Now will be presented the third method of determination of the Lyapunov functional.

Proposition 6.1. [32] The solution of (6.7) is exponentially stable if and only if there exists
a linear operator H = H ?, defined on X, non-negatively definite i.e.

< S(t),H S(t)>≥ 0

for every S(t) ∈ X, t ≥ t0 is fixed
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such that
< A S(t),H S(t)>+< S(t),H A S(t)>=−xT (t)Wx(t) (6.10)

for S(t) =
[

x(t)
xt

]
∈D(A )⊂ X, t ≥ t0 is fixed, where W =W T > 0, W ∈Rn×n is symmetric

positively definite real matrix.

The formula (6.10) is called The Lyapunov operator equation and enables us to determine
a linear operator H .
The formula

V (S(t)) =< S(t),H S(t)> (6.11)

for t ≥ t0, defines the quadratic Lyapunov functional.
There holds the relationship

J =

∞∫
t0

xT (t)Wx(t)dt =< S0,H S0 > (6.12)

for S0 =

[
x0

Φ

]
.

This method gives the same results for system (6.2), as methods presented in the monograph,
see [32] pages 146–148.
The Lyapunov matrices are also used in LQ problem for time delay systems to find the
suboptimal control [82]. The optimal control is the solution of the Bellman type equation.
In the monograph [68] the LQ problem for time delay systems is solved by means of variational
method.
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