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JOZEF DUDA

The Lyapunov functionals for time delay systems

Summary

In this monograph are presented results of the author’s research on the determination of the
Lyapunov functionals for linear systems with time delay and its applications in the parametric
optimization problem. The Lyapunov quadratic functionals are used to calculation of a value
of a quadratic performance index of quality in the process of parametric optimization for
time delay systems. The value of that functional at the initial state of the time delay system
is equal to the value of a quadratic performance index of quality. To calculate the value of
a performance index of quality one needs the formulas for the Lyapunov functional coefficients.
In this monograph the method proposed by Repin [79] is applied to obtain the Lyapunov
functionals, with coefficients given by analytical formulas. In Chapter 2. are considered
systems with the retarded type time delay. This method is applied to the system with one delay
(Chapter 2.2), to the system with two delays (Chapter 2.3), to the retarded type time delay
system with both lumped and distributed delay (Chapter 2.4), to the system with a retarded
type time-varying delay (Chapter 2.5). In Chapter 3. are considered neutral systems. Repin’s
method is applied to the neutral system with lumped delay (Chapter 3.2), to the neutral
system with both lumped and distributed delay (Chapter 3.3) and to the neutral system with
a time-varying delay (Chapter 3.4). In last years a method of determination of a Lyapunov
functional by means of Lyapunov matrices is very popular, see for example [50-66, 72, 73, 76,
81-83]. This method is applied to the parametric optimization problem of retarded type time
delay system both with one and two delays (Chapter 4) and to the parametric optimization
problem of neutral type time delay system for system with one and two delays (Chapter 5).
The examples of using of the Lyapunov functionals to calculation of the performance index
value in the parametric optimization problem for linear systems with time delay are given.



JOZEF DUDA

Funkcjonaly Lapunowa dla ukladéw z opdéZnieniem

Streszczenie

W monografii przedstawiono wyniki badan autora nad okres§leniem funkcjonatéw Lapunowa
dla liniowych uktadéw z opdznieniem i ich zastosowaniem w procesie optymalizacji parame-
trycznej. Kwadratowe funkcjonaty Lapunowa sa stosowane do wyznaczenia warto$ci kwadra-
towego wskaznika jakosci w procesie optymalizacji parametrycznej uktadéw z op6Znieniem.
Warto$¢ funkcjonatu dla stanu poczatkowego uktadu z opdznieniem jest rdwna wartoSci
kwadratowego wskaznika jako$ci. Do wyznaczenia warto$ci wskaznika jakoSci konieczna jest
znajomo$¢ wzoréw na wspotczynniki funkcjonatu Lapunowa. W monografii zostata zasto-
sowana metoda, zaproponowana przez Repina [79], wyznaczenia wzoréw na wspétczynniki
funkcjonatu Lapunowa. W rozdziale 2. dla uktadu z opéZnieniem. W kolejnych podrozdzia-
fach zostata zastosowana metoda Repina do wyznaczania wspétczynnikéw funkcjonatu La-
punowa dla uktadu z jednym opéZnieniem skupionym (rozdziat 2.2), dla uktadu z dwoma
skupionymi opdznieniami (rozdziat 2.3), dla uktadu z op6Znieniem skupionym i roztozonym
(rozdziat 2.4), dla uktadu z opéZnieniem zmiennym w czasie (rozdziat 2.5). W rozdziale 3.
zastosowano metod¢ Repina dla uktadu neutralnego. Kolejno dla uktadu neutralnego z opdZnie-
niem skupionym (rozdziat 3.2), dla uktadu neutralnego z opéZnieniem skupionym i roztozonym
(rozdziat 3.3) oraz dla uktadu neutralnego z opdéznieniem zmiennym w czasie (rozdziat 3.4).
W ostatnich latach jest bardzo popularna metoda wyznaczania funkcjonalu Lapunowa za
pomoca macierzy Lapunowa, patrz np. [S0-66, 72, 73, 76, 81-83]. Ta metoda zostata zasto-
sowana w procesie optymalizacji parametrycznej dla uktadu z jednym i dwoma opéZnieniami
(rozdziat 4) i w procesie optymalizacji parametrycznej dla uktadu neutralnego z jednym
iz dwoma opdZnieniami (rozdziat 5). W monografii zostaty réwniez przedstawione przyktady
zastosowania funkcjonaléw Lapunowa do obliczania wartoSci wskaZnika jakoSci w procesie
optymalizacji parametrycznej ukladéw z opdznieniem.
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Notations and symbols

R —is the set of all real numbers
C - is the set of all complex numbers
R" —is a space of all n-vectors with entries n R
R™™ _ ig a space of all n x m real-valued matrices
I, I« — is an identity matrix, identity n X n matrix
0,5, — 18 @ Zzero n X m matrix
0, — is the R"-valued trivial function, 0,(6) =0 € R", 6 € [—r,0]
AT — transpose of a matrix A
A > 0 — symmetric matrix A is positive definite

A ® B —1is a Kronecker product of matrices A and B
col A —is a column vector which consists of columns of matrix A

A(C) — is the eigenvalue of the matrix C
o (C) — is a spectrum of matrix C and is defined as
c(C)={AeC:det(AI-C) =0}
¥(C) — is the spectral radius of a matrix C and is defined as
Y(C) =sup{| A |- A € a(C)}

| - ||gn — is an Euclidean norm in R”
C([-r,0],R") —is a space of all continuous R” valued functions defined on the segment

I o(6) |l

[—r,0] with the uniform norm || @ |[c= sup
0€[—r0]

C!'([~r,0],R") —is a space of all continuous R" valued functions with continuous

derivative defined on the segment [—r, 0]
L?([~r,0),R") —is a space of all Lebesgue square integrable functions defined on the

segment [—r,0) with values in R”
I'¢ ll2 —is anorm in L2([—1,0), R"): (|| ¢ || 2= \/fi)r (o) 1) dn)

W!2([~r,0),R") —is a space of all absolutely continuous functions with derivatives in
a space of Lebesgue square integrable functions on interval [—r,0) with

values in R”
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| @ [lwi2 —is anorm in W!2 ([—r,0),R");

0 d
(10 lwra= 22 (1000 1B + 1 252 ) o
PC(]—r,0],R") —is a space of all piece-wise continuous vector valued functions
defined on the segment [—r, 0] with the uniform norm

| @llrc= sup [l @(6) |

0e[—r0]
PC'([—r,0],R") —is a space of all piece-wise continuously differentiable vector
valued functions defined on the segment [—r,0] with the uniform

norm || @ [[pc1="sup } le(6) |l

o[-0
X (t0, @) : [—h,0] — R" —is a shifted restriction of the function x(-,#p, ) to an interval
[t — h,t] and is defined by a formula x, (79, ©)(0) := x(t + 0,10, ¢)
forz > 1y and 0 € [—h,0]
X (@) : [~h,0] — R" —is a shifted restriction of the function x(-, @) to an interval [t — h,t]
and is defined by a formula x;(¢)(0) :=x(t 4+ 0, ¢) for > 0 and
0 c [~h,0]
X : [—h,0] — R" — is a shifted restriction of the function x(-, @) to an interval [t — h,¢]
and is defined by a formula x;(0) := x(r + 0) for t > 0 and
0 € [—h,0], when the function ¢ is known
f(t+0) — is the right-hand-side limit of f(¢) at a point ¢,
F(1+0) = limgso f(14 | £ |
f(t—0) —is the left-hand-side limit of f(z) at a point 7,
f(t+0)=limgo f(r— | €])
U(&) - is the Lyapunov matrix; (U (&) = [ KT (t)WK(t + &)dt)




1 Introduction

This monograph is a summary of the author’s research on the determination of the Lyapunov
functionals for linear systems with time delay and its applications in the parametric
optimization problem.

Lyapunov quadratic functionals are used to test the stability of time delay systems, in
computation of critical delay values for time delay systems, in computation of exponential
estimates for solutions of time delay systems, in calculation of robustness bounds for uncertain
time delay systems, in calculation of a quadratic performance index of quality in the process
of parametric optimization for time delay systems.

The stability criteria for time delay systems are formulated in the form of Linear Matrix
Inequalities (LMIs). A numerical scheme for construction of Lyapunov functionals was
proposed by K. Gu [37]. This method starts with discretization of the Lyapunov functional.
The scheme is based on Linear Matrix Inequality (LMI) technique. E. Fridman [30] introduced
Lyapunov—Krasovskii functionals for investigation of the stability of linear retarded and
neutral type systems with discrete and distributed delays. Method was based on an equivalent
descriptor form of the original system and obtained delay-dependent and delay-independent
conditions in terms of LMIs. D. Ivanescu et al. [48] proceeded with delay depended stability
analysis for linear neutral systems, constructed the Lyapunov functional and derived sufficient
delay-dependent conditions in terms of LMIs. Q.L. Han [41] obtained a delay-dependent
stability criterion for neutral systems with a time-varying discrete delay. This criterion was
expressed in the form of LMI and was obtained using the Lyapunov direct method. Q.L. Han
[42] investigated robust stability of uncertain neutral systems with discrete and distributed
delays, which was based on descriptor model transformation and the decomposition technique,
and formulated stability criteria in the form of LMIs. Q.L. Han [43] considered the stability
for linear neutral systems with norm-bounded uncertainties in all system matrices and derived
a delay-dependent stability criterion. Neither model transformation, nor the bounding technique
for cross terms is involved in derivation of the stability criterion. Q.L. Han [44] developed
the discretized Lyapunov functional approach to investigation of the stability of linear neutral
systems with mixed neutral and discrete delays. Stability criteria, which are applicable to
linear neutral systems with both small and no small discrete delays, are formulated in the form
of LMIs. Q.L. Han [45] studied the problem of stability of linear time delay systems, both
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retarded and neutral types, using the discrete delay N-decomposition approach to derive some
more general new discrete delay dependent stability criteria. Q.L. Han [46] employed the delay
decomposition approach to derive some improved stability criteria for linear neutral systems
and to deduce some sufficient conditions for the existence of the Lyapunov functional for
a system with k-non-commensurate neutral time delays of a delayed state feedback controller,
which ensure asymptotic stability and a prescribed H1 performance level of the corresponding
closed-loop system. K. Gu and Y. Liu [38] investigated the stability of coupled differential
functional equations using the discretized Lyapunov functional method and set forth the
stability condition in the form of LMlIs, suitable for numerical computation.

E.F. Infante and W.B. Castelan [47] based the construction of the Lyapunov functional on
solution of a matrix differential-difference equation on a finite time interval. V.L. Kharitonov
and A.P. Zhabko [66] extended the results of E.F. Infante and W.B. Castelan and proposed
a procedure of construction of the quadratic functional for linear retarded type delay systems
which could be used for robust stability analysis of time delay systems. This functional was
expressed by means of a Lyapunov matrix, which depended on the fundamental matrix of
a time delay system. V.L. Kharitonov [50] extended some basic results obtained for the case
of retarded type time delay systems to the case of neutral type time delay systems, and to
neutral type time delay systems with a discrete and distributed delay [52]. V.L. Kharitonov
and D. Hinrichsen [62] used the Lyapunov matrix to derive exponential estimates for solutions
of exponentially stable time delay systems. V.L. Kharitonov and E. Plischke [65] formulated
necessary and sufficient conditions for the existence and uniqueness of the delay Lyapunov
matrix for the case of a retarded system with one delay.

The Lyapunov quadratic functionals are also used to calculation of a value of a quadratic
performance index of quality in the process of parametric optimization for time delay systems.
The value of that functional at the initial state of the time delay system is equal to the value
of a quadratic performance index of quality. To calculate the value of a performance index
of quality one needs the formulas for the Lyapunov functional coefficients. For the first time
a Lyapunov functional for time delay system was introduced by Yu.M. Repin [79] for the case
of a linear system with one retarded-type delay. Yu.M. Repin delivered also the procedure for
determination of the functional coefficients. The procedure is as follows. At first it is assumed
the form of the functional, afterwords its time derivative on the trajectory of system with
a time delay is computed and equated with the negatively definite quadratic form of a system
state. In this way we obtain the set of differential and algebraic equations, which enables us to
determine the formulas of the functional coefficients. The presented method gives analytical
formulas for the coefficients of the Lyapunov functional.

In this monograph the method proposed by Repin [79] is applied to obtain the Lyapunov
functionals, with coefficients given by analytical formulas. In Chapter 2. are considered
systems with the retarded type time delay. This method is applied to the system with one
delay (Chapter 2.2), to the system with two delays (Chapter 2.3), to the retarded type time
delay system with both lumped and distributed delay (Chapter 2.4), to the system with
a retarded type time-varying delay (Chapter 2.5). In Chapter 3. are considered neutral systems.
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Repin’s method is applied to the neutral system with lumped delay (Chapter 3.2), to the neutral
system with both lumped and distributed delay (Chapter 3.3) and to the neutral system with
a time-varying delay (Chapter 3.4). In last years a method of determination of a Lyapunov
functional by means of Lyapunov matrices is very popular, see for example [50-66, 72, 73,
76, 81-83]. This method is applied to the parametric optimization problem of retarded type
time delay system both with one and two delays (Chapter 4), to the parametric optimization
problem of neutral type time delay system for system with one and two delays (Chapter 5).
The examples of using of the Lyapunov functionals to calculation of the performance index
value in the parametric optimization problem for linear systems with a time delay are given.



2 A linear retarded type time delay system

2.1 Preliminaries

Let us consider a linear system with a retarded type time delay, whose dynamics is described
by the equation

dx(t)

e L(t,x(1),x;)
x(l‘o) =xp€R” 2.1)
xl() = (p

for t > to, where x(t) € R, ¢, x, € L*([~r,0),R"), L*>([—7,0),R") —is a space of all R"-valued
Lebesgue square integrable functions defined on interval [—r,0) with norm

0

lola= | [ (o) ) ds

—r

The function .Z is a linear and continuous and defined on the space

[0,00) x R" x L2([—r,0),R")

Z:]0,00) x R" x L*([-1,0),R") — R" (2.2)
The space of initial values of system (2.1) is given by the Cartesian product
R" x Lz([_rv O)an)

The norm of an initial value (xo, @) is given by

| G0, @) iz = /150 o + 1 9 112 23)
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The solution of the functional-differential equation (2.1) with initial value (xo, ¢) or simply
a solution through (xp,®) is an absolutely continuous function defined for ¢t > 1y with
values in R”".

x(-, 10, (x0,9)) € W2 ([t0,0), R") 2.4)

Definition 2.1. The function x;(ty, (xo0,®)) : [-r,0) — R" is called a shifted restriction of
x(+,t0, (x0, @)) to an interval [t — r,t) and is defined by a formula

xl(th(XOa(p))(e) ::x(t+97t07(x0a(p)) (2.5
fort>1tyand 6 € [—r,0).
When 7y = 0, the shifted restriction is denoted as x; (xo, ). When initial condition is established,

the shifted restriction is denoted by x;.
The state of system (2.1) is a vector

S(t) = [ x(1) } 2.6)
Xt
for t > 1.
The state space is defined by the formula
X =R" x L*([-r,0),R") (2.7)
with norm given by the term
I G0, gnzz = /10 B + I 122 28)

We assume that system (2.1) admits the trivial solution, i.e., the following identity holds:
g(l,ORn,OLZ) =0

for ¢t > 0.
Let x(¢,9, (x0, @)) be the solution of system (2.1) with initial condition (xo, ¢) for t > f.

Definition 2.2. [56] The trivial solution of system (2.1) is said to be stable if for any € > 0
and to > 0 there exists 8(&,ty) > 0 such that for every (xo, @) € R" x L*([—r,0),R")

I (x0; @) [l 2 < 8(&:20) = | x(2,10, (x0, 9)) [ < €

for every t > ty.
If 8(g,19) can be chosen independently of 1y, then the trivial solution is said to be
uniformly stable.

Definition 2.3. [56] The trivial solution of system (2.1) is said to be asymptotically stable if
it is stable and || x(t,t9, (x0, @)) ||gn— 0 as t — 19 — oo.
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Definition 2.4. [56] The trivial solution of system (2.1) is said to be exponentially stable
if there exist 6 > 0, M > 1 and 6 > 0 such that for every ty > 0 and initial condition
(x0, @) € R" x L2([—1,0),R"), with || (x0,®) ||gny2< & the following inequality holds

(2,70, (x0, 9)) [lrn < Me™ ) | (x0, @) llpun2

for everyt > 1.
In a parametric optimization problem will be used an integral quadratic performance index
of quality

J= / X" (H)Wx(t)dt (2.9)

1o

where W € R™ " is a positive definite matrix.
Definition 2.5. [16,18] The functional V : X X [ty,0) — R is positive definite if it is continuous

and there exists a positive definite functional H : X — R such that V(x,t) > H(x) and
V(0,t) =H(0) =0forx € X andt > 1.

Definition 2.6. [16, 18] A positive definite functional V : X X [tg,o0) — R is upper bounded
if there exists a positive definite functional H : X — R such that V (x,t) < H(x) for x € X and
t> 1.

Definition 2.7. [16, 18] A time derivative of the functional V (x(t),x;,t) at (x(to), @,to) on the
trajectory of system (2.1) is given by the formula

av(x(t),p,t0) .. 1
g =lmsup (¥(t0+h) xgssto+-1) =V (x(t0).9o0) | (2.10)

Definition 2.8. [16, 18] The functional V : X x [ty,o0) — R is called a Lyapunov functional if
1. V is a positive definite upper bounded functional
2.V is differentiable
3. A time derivative of V computed according to the formula (2.10) on the trajectory of
system (2.1) is negative definite

From the assumption that the Lyapunov functional is upper bounded results that there exists
a functional H such that

OSV(X([),)C,J) SH(X(I),X,) (211)

for t > .
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We had assumed that system (2.1) admits the trivial solution, i.e., the following identity holds:
Z (t,0rn,0;,2) =0

for t > 0.

When the system (2.1) is asymptotically stable lim, . H(x(¢),x;) = 0 implies
lim,_mV(x(t),xt,t) =0.

Hence

dt f—oo t—ty

/M(h = lim V (x(2),x,1) = im V (x(1), x;,1) =

= —V(lim(x(t),x,t)) = =V (x(t0), @,t0) (2.12)

11—ty

Assume that the time derivative of the Lyapunov functional V is given as a quadratic form

dV (x(t),x,1)

— T
o =—x (t)Wx(r) (2.13)

for t > tg, where W € R™" is a positive definite matrix.
It follows from (2.9) and (2.13) that

oo

J= / L (OWa(t)dt =V (x(t0), 9, 10) (2.14)

fo

Corollary 2.1. If one constructs a positive definite functional such that its time derivative
computed on the trajectory of system (2.1) is given as a negative definite quadratic form (2.13)
one can not only investigate the system (2.1) stability but also calculate a value of a square
indicator of quality (2.9) of the parametric optimization problem.

In derivation of the formula (2.14) we had assumed that system (2.1) was asymptotically
stable to achieve convergence of the integral (2.12). Existence of the Lyapunov functional
is the sufficient condition for asymptotically stability. When we construct a functional which is
positive definite, its time derivative on the trajectory of dynamical system is negative definite
and value of this functional depends on the value of the controller parameter , we can determine
the region of stability. The system is asymptotically stable for this controller parameters for
which the value of the functional is positive, when the value is negative system becomes
unstable. The value of the controller parameter for which the functional changes the sign of
value from positive to negative, is the critical value of the controller parameter. In the stability
region we can search for optimal value of controller parameter which minimizes the index of
quality. The optimization procedure will be made by means of Matlab fminsearch function.
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2.2 The Lyapunov functional for a linear system
with one delay

2.2.1 Mathematical model of a linear time delay system with one delay

Let us consider a linear system with a retarded type time delay whose dynamics is described
by a functional-differential equation (FDE)

dx(t)
e Ax(t) +Bx(t—r)
*{t0) =0 (2.15)

t>1,0€[-r0),r>0,A,BER xo e R", x(t) eR", @ € Lz([—r,O),R”). The space of
initial data is given by the Cartesian product R" x L?([—r,0),R").

The norm of an initial value (xg, @) is given by (2.3).

The solution of the functional-differential equation (2.15) with initial value (xo,¢) is an
absolutely continuous function defined for ¢ > 1y with values in R”".

x(-,10, (x0, @) € W2 ([t9,0), R") (2.16)

One can obtain a solution of FDE (2.15) using a step method. The step method is a basic
method for solving FDE with a lumped delay. A solution is found on successive intervals, one
after another, by solving an ordinary equation without delay in each interval.

For t € [ty, to + r] the equation (2.15) takes a form

dx(t)
A Bo(t —
a A +Beit—r) 2.17)
x(t()) = X0
The solution of equation (2.17) is given by a term
t
x(t) = A0 0 4 /eA(FT)B(p(T —r)dt (2.18)
fp
Y(r) = x(t) (2.19)
x(to+71) =x1 (2.20)
For t € [ty + r, to + 2r] the equation (2.15) takes a form
dx(t)
=A BY(t—
ar A +BEE-T) 2.21)
x(to+r) =x;

and so on. By means of this procedure one can construct the solution in any finite interval.
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One can write the equation (2.15) in the form

dx(t)
= Ax(t) 4+ Bx;(—r)
x(to) = xo (2.22)

Xty = (2 € Lz([7r70)7Rn)

for t > tg. Where x, € L*>([—r,0),R") is a shifted restriction of x(, #y, (xo, ¢)) to the segment
[t —nt).
There holds a relationship

xt()('at(h(x())(p)) =0 (223)

where x;, (-, 1, (xo0, ¢)) is a shifted restriction of x(-, 7, (xo, ¢)) to an interval [ty — r,7o).

The theorems of existence, continuous dependence and uniqueness of solutions of equation
(2.22) are given in [32]. The controllability of the systems with time delay is presented in [67].
The state of system (2.22) is a vector

S(t) = [ x(1) } (2.24)

Xt

for t >ty where x(t) € R", x, € L*([~r,0),R").
The state space is defined by a formula

X =R"x L*([-r,0),R") (2.25)

S = 0 is an equilibrium point of the system (2.22).
In a parametric optimization problem will be used an integral quadratic performance index
of quality

J= / X (£)x(t)dt (2.26)
io
The value of the performance index of quality (2.26) is given by the term (2.14), which for
system (2.22) takes a form

oo

J= / o (0)x(0)dt =V (x0, 9) 2.27)

T

To calculate the value of the performance index (2.27), which is equal to the value of the
Lyapunov functional at the initial state of system (2.22), one needs a mathematical formula
of that functional.
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2.2.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V positive definite, differentiable, given
by the formula [79]

0 00
V(x(t),x) = x" (1) oux(t) + / o (1)B(6)x(6)d6 + / / (0)5(6,0)x(0)dode (2.28)
—r —r 6

for t > ty, where @ € R, B € C!([—r,0],R™"), § € C}(Q,R™")
Q = {(6,0): 6 €[-r,0], 0 €[0,0]}, C' is a space of all continuous functions with
continuous derivative.
In this paragraph will be given a procedure of determination of the functional (2.28) coefficients
to obtain the Lyapunov functional.
In calculation of the time derivative of the functional (2.28) will be used the following Lemma.

Lemma 2.1. There holds the relationship
ax,(e) - (9)6,(9)

ot 20 2:29)
Proof.
x%(0) =x(t+0) for t >1, 6 € [—r,0)
dx(8) dx(t+6) Ix(§)dE  Ix(§) _
o T o T 9E o gE ore=ite
Ix(0) Ix(t+0) Ix(E)IE Ix(E)
26~ 96 9t 96 9 lore=i+0
hence
dx;(0)  Ix(0)
L
O

The time derivative of the functional (2.28) on the trajectory of system (2.22) is computed.
This time derivative is defined by the formula (2.10) which for system (2.22) takes a form

V)9 _ i qup LV (x (10 +5) o) — V (x0), 9) (2.30)
dt hso h

It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (2.28) and one substitutes in place of dx(¢)/dt and dx;(0)/dt
the following terms

dx(t)
dt

= Ax(t) + Bx,(—r) (2.31)

3)6,(9) - (9)6,(9)
ot 06

(2.32)
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In such a manner one attains [79]

dv (x(t),x)
dt

=x (1) {ATa +aA+ [5(0)—&—25T(0)] x(t)+

+xT (1) [20B = B(—r)]xi (—r)+

0

+/xT {AT/B dﬁ( )+6T(e 0)} (0)d0+

0
+/x,T ) [B"B(8) — 8(—r,0)] x(t +6)d6+

// [85 (9,0 +86((90(;G)}x,(0)d0'd9

—r e

To achieve negative definiteness of that derivative we assume that

dav(x(t),x) _
— = —xT (1)x(1)

From equations (2.2.2) and (2.34) we obtain the set of equations

B(0)+B7(0)

=1
2

ATo+ oA+
2aB—B(-r)=0
ATB(6) - dﬁ( )+6T(9 0) =

B'B(6 )— (-0)=0
25(0.0) , 35(6,0)

90 Jo Y

for 6 € [-r,0], 6 € [-n,0].

The solution of a differential equation (2.39) is given in the form
6(6,0)=f(6—-0)

where f € C! ([—r,r], R™™).
From equations (2.40) and (2.38) one obtains

8(~n.0)=f(-r—6)=B"p(6)

f(8)=B"B(~r—6)
87(6,0)=f"(6)=p"(-r—0)B

(2.33)

(2.34)

(2.35)

(2.36)
(2.37)
(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
(2.43)
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After putting (2.43) into (2.37) one attains a formula

dp(6) _
L ATB(0) BT (~r—0)8
for 6 € [—r,0].

The derivative of the function 8(—6 — r) with respect to 6 is calculated

dB(=r—0) _dp(5)ds _ _dB(¢)

de - dé de  dE
=—A"B(&) B (—r—&)B=—-A"B(-—r—6)—B"(6)B (2.44)
where
E=—r—9 (2.45)

The set of the differential equations is obtained

PO)_arp(0)+57(~r-0)8
JB 0) (2.46)
L
S = —ATB(—r—0)—B"(0)B
de
for 6 € [-1,0].
A new function is introduced
x(8)=B"(-6-r) (2.47)
for 6 € [—1,0].
The set of the differential equations (2.46) takes a form
PO) _ 4p(0) + x(0)8
(2.48)
dx(0)

5 = —K(0)A—BTB(6)

for 6 € [—r,0] with initial conditions B(—r) and k(—r).
Using the Kronecker product the set of differential equations (2.48) can be reshape to the form

d
—g<olB(9) I9AT  BT®I ][ colB(6)
d6 _ (2.49)
d —I®BT —AT®I colk(0)
—colx(0)
do
for 6 € [—r,0] with initial conditions colf(—r) and colx(—r).
The solution of initial value problem (2.49) has a form
[ colB3(0) } | Pu(0+r) Pia(6+7) [ colB(—r) } (2.50)
colk(6) Dy (0+r) Pp(0+7) | | colk(—r) '
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P1(6) Ppa(6

where a matrix ¢(0) = [ D,1(0) Dn(0)
21 22

] is a fundamental matrix of system (2.49).

Equation (2.50) implies

colf(8) [o=— 5= P11 (%) colB(—r)+ Py (%) colx(—r) (2.51)
colk (0) [g=— ;= P2 (%) colB(—r)+ Py (%) colx(—r) (2.52)

Equation (2.47) implies
BT () lo——5=x(6) lp——s (2.53)

Formula (2.53) presents the algebraic linear relationship between initial conditions colf3 (—r)
and colx(—r).
Equation (2.47) implies

k(—r) =B (0) (2.54)
Formula (2.35) takes a form
_ T(_
ATa+aA+ w — (2.55)

Formulas (2.55), (2.36) and (2.53) create the set of algebraic equations

_ T(_
ATa+(xA+—K( Nt r):_l

264B—B(=r) =0 (2.56)
BT (6) lo——5=x(6) [o—;

The set of algebraic equations (2.56) allows for determination of the matrix & and the initial
conditions of the set of differential equations (2.49).
From equations (2.42) and (2.47) one attains

f(0)=BTB(—r—6) =BTk’ (0) (2.57)

for 6 € [—1,0].
Taking into account (2.40) and (2.57) one obtains

5(0,0)=B"k"(6-0) (2.58)

In this way one obtained all coefficients of the functional (2.28). This coefficients depend
on the matrices A and B of system (2.15). The time derivative of the functional (2.28) is
negative definite.
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2.2.3 The examples

2.2.3.1 Inertial system with delay and a P controller

Let us consider a first order inertial system with delay described by equation [8]

dx(t) ¢ ko

ek —?x(t)—k T u(t—r)

x(0) = x, (2.59)
x(60)=0

u(t) = —px(r)

t>0,x(t) R, 6 € [-1,0), p, ko, T, q, xo € R, r > 0. The parameter ko is a gain of a plant,
p is a gain of a P controller, T is a system time constant, xy is an initial state of a system. In the
case g = 1 an equation (2.59) describes a static object and in the case ¢ = 0 an equation (2.59)
describes an astatic object.

One can reshape an equation (2.59) to the form

dx(t) g kop

= = —?x(t) Tx(t —r)
x(0) = x, (2.60)
x(0)=0

for ¢t > 0.
One searches for a parameter kK whose minimize an integral quadratic performance index

J= [ X(t)dt (2.61)
/

The Lyapunov functional V is defined by the formula

V(x(2),x(t+)) +/ x(t+0) d6+// (t+6)6(0,0)x(t+0)dodd
e

According to a term (2.27) a performance index value is given by the formula

J= /x2 (1), x(E+)) lrmo (2.62)
0

The set of a differential equation (2.48) takes a form

dp(6) q  kop
oo || F | e

o | _| T T 263
dx(6) kp 4 K(0)

de T T
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The fundamental matrix of system (2.63) takes a form

coshA8 — %sinhl@ —% sinhA 8
R(6) = o (2.64)
kop 4
A P inh A6 coshA6 + ) sinhA 60
where
2 12,2
\/ 4" —kop
2= - 0 (2.65)

The set of algebraic equations (2.56) takes a form

—2%05—&— k(—r)=-1

k
20!Lp +B(—-r)= (2.66)

Ar q+k0p Ar Ar q+kop Ar B
h— T h}ﬁ(—)—&-{ co h— ) h kK(-r)=0

From an equation (2.66) one obtains a parameter o and the initial conditions of the differential
equation (2.63).

o — T 2 (2.67)

2 A'hlr
sin| 74— T co 5

k;p < hﬂ atkop sinhM>
B =

TA 2

Ar  g+kop Ar
s
Asin 2—1— T co >

kop Ar q+kop . Ar
———|[ cosh—— sinh —
clor = T 2 T 2 269
~Ar g+kop Ar '
lsmh7+ cosh7

Having a fundamental matrix (2.64) and the initial conditions of the differential equation (2.63)
one obtains

(2.68)

k k A A
B(6)= 0P [(q+ O cosh 22— sinh r) sinh A 6+
(s hlr q+kop h),r TA 2 2
< sin 7+ T cos 2)
q+kop Ar Ar
+ ( 7 sinh 5 cosh 2> coshle} (2.70)

29



K(0) = _kop sinh A 6+

TA
k A ki Ar
— op (coshr 7+ Ops nh )coshl@ 2.71)
r(1s h?Lr q-+kop h?Lr 2 TA 2
sin 7—# T cos 5
5 K2 G
(6,0)= T2 sinhA (6 — o)+
Kip Ar q+k Ar
(osh TT20P Ginh )coshl(e—c) (2.72)
Ar  q+kop Ar 2 TA
lsmh— T cosh >

Now a performance index value is calculated

2
X0

(2.73)

ﬂ + q+kop sinh lzr]

( Ar g+kop ;Lr> [COS 2 "1

A h— h—
sin cosh —

Figure 2.1 shows the value of the index J(p) forxo =1, kg=1,g=1,and T =5 and r =2.
You can see that there exists a critical value of the gain p.,;;. The system (2.60) is stable for
gains less then critical one and unstable for gains grater then critical.

’ ko=1, =1, T=5, r=2 ‘
400

200 J b

-200 b

-400 b

-600 b

-800 I I I I I I I I I
0

Fig. 2.1. Value of the index J(p) for p greater then pe;

Figure 2.2 shows the value of the index J(p) for p less then critical gain. You can see that
the function J(p) is convex and has a minimum.
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451

351

25K

15 ;

Fig. 2.2. Value of the index J(p) for p less then peir

We search for an optimal gain which minimizes the index (2.73). Optimization results, obtained
by means of the Matlab function fininsearch, are given in Table 2.1. These results are obtained
forxo=1,kg=1,g=1,and T =5.

Table 2.1
Optimization results

Delay r | Optimal gain | Index value | Critical gain
1.0 3.4329 1.1014 8.50
1.5 2.2020 1.4331 5.89
2.0 1.5871 1.6778 4.58
2.5 1.2188 1.8610 3.80
3.0 0.9738 1.9997 3.28
35 0.7993 2.1060 291
4.0 0.6689 2.1880 2.64
4.5 0.5681 2.2518 243
5.0 0.4878 2.3019 2.26
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2.2.3.2 Inertial system with delay and an I controller

Let us consider a first order inertial system with delay described by the equation [9]

dx(t) 1 ko
ar O gul=r)

x(0) =x,

«(8) =0 (2.74)

u(t) = —%/(:x(é)dé 20

t>0,x(t) €R, 0 € [-1,0), T;, ko, T, x0, z0 € R, r > 0. The parameter k is a gain of a plant,
T; is a time of isodrome of an I controller, T is a system time constant, x( is an initial state
of a system, zp is an amplitude of a disturbance.

One introduces the state variables x; (¢) and x,(¢) as follows

xi(t) =x(1)
1 (2.75)
xa(t) =7 [ +(E)dg
iJ0
The set of equations (2.74) takes a form
dxy (l‘) . 1 ko
5 =T 1)+ —u(t—r)
d)CQ(t) . 1
a T ®)
#1(0) =% (2.76)
)Q(O) =0
x1(6) =0
)CZ(G) =0
u(t) = —x2(t) +20
fort >0, 6 € [—r,0).
One can reshape equation (2.76) to the form
dxi(t) 1 0 kozo
L8 = () = Pl +
d)C2(t) 1
= — t
I T,xl( )
X1 (()) =X, (277)
)C2(O) =0
x1(6) =0
XQ(G) =0

fort >0, 6 € [—r,0).
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The equilibrium point of system (2.77) is given by a term

xi=0
(2.78)
X5 =20
One introduces a new variable
yi(t) =xi(t)
2.79)
y2(t) = x2(t) — 20
Taking a term (2.79) into account a set of equations (2.77) takes a form
dy (1) 1 k
= —— — — vy (t —
2 = ()= (=)
dyz(t) 1
= — t
5 le1( )
y1(0) = x, (2.80)
¥2(0) = =29
y1(6)=0
¥2(0) = —z0
Equations (2.80) in a matrix form are as below
dy(t
D) _ py0)+ By 1)
dt
X0
0 =
¥(0) [ - 2.81)
0
ﬂ@[ ]
—20
where
1
-—= 0
a=| [T (2.82)
- 0
T;
ki
0o -2
B= T (2.83)
0 O

J= / Y (0)y(1)dt (2.84)
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The Lyapunov functional is given

0
V() y(t+-) =y" (1) oy (1) +/yT(t)ﬁ(9)y(t+ 6)d6+

00
+//yT(t+9)5(6,G)y(t+6)de9
S

where

o o
o — { 11 12 }
12 02

| Bu(6) Bia(6)
mm‘[ﬁmm mxm]

611(0,0) 812(0,0) ]

“&“_[&maw 51(6.0)

J= /yT(t)y(t)dt =V(3(0),5(8))
0

The set of differential equations (2.48) takes a form

% - _%[311(9)—&-%1321(9)
dpa(0)

a6 0
g%§a:—%&xw+%&ﬂm‘%“““
dﬁilze(e) _ _’%0,(12(9)
chlile(e) _ %K”(e) — %Kz](e)
di(0)

a0 0
dK;lze(G) _ %K12(9) _ %1@2(9)—1—%/311(9)
dKj;e(G) _ %ﬂlz(e)

for 6 € [—r,0], where

k(6) =B(—6—r)

for 6 € [—1,0].
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The two first equations of (2.56) takes a form

2a +2(x +x1(—r)=-1

Tt ot K(or) =

2oc —|—2(x +xp2(=r)+ K1 (—r)=0
—= — —r —r) =
T2 02+ KD 21
ng(—r):—l
Bui(=r)=0 (2.92)
Ba1(—=r)=0

2k

—700611—/312(—7)20

2k

*700612 —Ba(-r)=0

Equations (2.90), (2.91) and (2.92) implies 3,;(0) =0, x21(0) =0, B11(6) =0, x1,(0) =0
for 6 € [—1,0].
Formula (2.87) takes a form

B(6) = [ 8 gzgg; } (2.93)

and

0 x12(0) } (2.94)

K‘QQ(G)
The set of equations (2.90) takes a form

% = *%ﬁlz(e) + %Bzz(@)
i) ln, )
dK']z(G) 1 1
de T T;
dK‘zz(@) k()

40 T

(2.95)

>

r3(0) ri4(6
23(0

)

) r24(6)

(8) ru(6) (2.96)
) r4a(6)

~

=]
= = ==
<

N
(98]
D

where

i for i=1,2 (2.97)
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ri1(0) = s% coss10 — s?lsinsl 6 +s%coshsz9 - %2 sinhs, 0

(9) K L 0+ L hs,0
& = ——Sins — simns
21 A 1 5 2

k
r31(0) = T; (cossle coshS29)
1

N E

1 1
r41(0) = <s1 sins; 0 + ?cossl 0 + s, sinhs, 0 — TCOShS29>

1 1
rin(0) = (T coss10 +51sins; 0 — T coshs,0 + s sinh529>

NHl—

r22(0) = 5508510 + 57 cosh s, 60

k 1 . 1 .
rp(0) = T—;z <S1 sins; 0 — 5 s1nhsz6)
1

ki 1 1
rip(0) = TO ( coss10 + Tisl sins; 6 — Tisz sinhs, 0 +coshsz9>

k
ri3(0) = T;" (Cossle —coshS29>

i

r23(9) =

~|E

1 1
(—s1 sins; 0 + T c08s10 — s, sinh s, 0 — T coshsﬁ)

r33(0) = s% coss10 + %] sins; @ —|—s%coshsz9 + %2 sinhs, 0

K1 1.
ra3(0) = 2T Esmsle— gsmhsze

ki 1 . 1 .
ria(0) = T7722 (_S1 sins; 0 + stmhsze)
1

ko 1 . 1 .
r24(0) T ( coss10 Tor sins; 0 + Tos sinh s, 0 + cos sz9>

r2a(6) = -

1 1
= i (T coss10 —s1sins; 60 — T coshs;0 — 57 sinhsz9>

r44(0) = 53 coss1 0 + 53 coshs,0

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

2.111)

2.112)

(2.113)



The solution of the differential equations (2.95) is given by the terms

Br(6) = [m(e T Bra(—r) 4 r12(8 4 PP (—r)+
ST T8

—|—r13(6+r)1<12(—r)—r14(6+r)] (2.114)
B22(0) = ﬁ {rzl (6 +7)Bra(—r) +722(0 +71) o2 (—1)+
ST 183

+r23(6+r)1<12(—r)—rz4(6+r)] (2.115)

k12(0) {r31(9+r)312(r)+r32(9+r)322(r)+

"
+r33(9+r)1<12(r)r34(9+r)] (2.116)
1
K22(0) = ) {Ml(e +7)Bra(=r) +r42(0 +7) Ba(—r)+
152
—|—r43(9+r)1(12(—r)—r44(9+r)] (2.117)

The matrix o« and the initial conditions Bi2(—r), B (—7r), Ki2(—7) are obtained from the
set of algebraic equations

2 2
——o+ o =—1

T T;
—%0612+ %Oﬂzz—F Ki2(—r) =0
*?O‘“ ~hul=)=0 (2.118)
—?Oﬁz —Poa(-r)=0

guBr2(=r) +qi2Bo2(=r) +qi3ki2(—r) = q14

q21B12(=7) +q22B22(—r) + qakia(—r) = g4

where
k k
q11 = (S%— TOT,-> cos% —%Sin% + (s%—i— T0Ti> coshsizr - %sinh% (2.119)
1 s%— k—o 1 s%—i— il
sir TT; . sir Sr TT; . , sar
= _—C0S— Lsin — — h— Lsinh — 2.120
q12 T cos > + Ts, sin > T, cos > + Tss sin! > ( )
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k k
qlgz(o—s%)coss‘r—s]sins”—( °'+s§)coshszzr—sT2sinhs2r (2.121)

TT; 2 T 2 TT; 2
2 ko >, ko
spr Ol TT, slrJr 1 hszr+ 2—i_TTi o 52 (2.122)
——— 0S8 — sin — osh = sinh = .
D=7 % Tist 2 T 2 Tisy

ko kO
ko <S% + > ko <S% — >
k TT; k TT;
L ol LA N L VAN Ml LA P NP L %sinh% (2.123)

k k k k
qn = (s%—k 0 ) cos L __ %0 il (sz 0_) cosh%—k TZ%SZ sinh% (2.124)

§7+ ko s3— ko
ko cos s1r o\ TT; X sy ko h Sor 0\ "2 TT; sinh Sar (2.125)
—_—— in— — — - — inh — (2.
923 = 2% 5 Ts: 2 712 2 Ts 2
k s1r k s1r
2 0 1 0 . 51
q24 = — (sz—i— TTI-) C s7 — T°Ts, s1n7+
k SoF k Sor
2 0 2 0 ..,
+ (—sl + TT,) cosh7 + TTss s1nh7 (2.126)

The solution of the set of equations (2.118) has a form

1 T s1r sor  ko(T —koT;)(s2+535) . syr . . sor
o= — | ko+ = | | s?+53 | cos — cosh = + L ° "2/ ¢in = sinh —=— +
M [( ’ E)( ! 2) 2 2 TTss, 2 2

ko
<s§ - TT> [1 +2kg+k0TT,»(s§+s§)]

i s1r Sor

cos — sinh —+

Tis» 2 2
57+ il 14 2k% — koTT;(s7 + 53)
LT - S P LY. (2.127)
S —— cosn — .
Tisy 2 2

1 ko(sT + 3
o = — [(s%+s%) cos%coshg+msinﬂsinhy+

M 2 TTis157 2 2
ki ki
2V (1+262 2| (14212
TT; Sir . . Sor TT; . osr Sor
+ cos — sinh — + sin — cosh — | (2.128)
Ts> 2 2 Tsi 2 2
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0 = — cos — cosh —
22 M +

T 2 2

k2 ko K2
2 24 0 N2 "o
+T’S2(S2+T2) + T(Sl T2> ar s

K2 k k2
Tis2 2 0 0f o 0
ol (_SI " 72) " ](52 i 1 2) s1r

. Sor
sin — cosh —+
S1 2 2

Jrk()(—koT—i-k(%Ti—l-Ti)(s%4—s§) sin 51" szr]

1{(koT+k3Ti+T,»)(s%+s§) Sir L sor

hAA,
T2Tis15 - sinh =5

(2.129)

2ko T s1r SoF
Bi2(—r) = M [(k0+ T) (s%—ks%) 0057co h7+

ko
(S% TT) [1 +2k2 +kOTT(S] +S2)} s1r sor
cos — sinh —+

Tiso 2 2
s1r Sar

ko
2+ [1 242 — kOTT,»(ﬁHg)}
TT;
sin — cosh —+

Tos) 2 2
+ko(T*koTz)( +53) sin szr}

3 sinh —
Ti TS1S2 2 2

(2.130)

2ko [, 2 o sar ko(s?+53) Sor
) =0 217 cosh 22l 4 201 %) h22l
Boa(—1) T [(s1+ 53)cos L 5-cosh =~ + T, in 2 sinh -+

1+2k2> <s%+ ) <1 +2kg)
TT TT,
’ 217 sinh 2 ’ in 2 cosh 32 } 2.131)

2T inh 22
Ts, cos ) sin > + s, sin — >

Ki2(—r) = ™ cos— cosh —+

2 _ko(k()TZ‘JrT)( +53) sor
T; 2 2

ki
7?;: (T - koT,-)} sm% COSh%—I—

+ [(koT,-Jr T)ss5 —

Sor

kosa (koT; — T
+ {M (koT; + T)slsz} cos 7 ! sinh ——1—

TT;

+T(T — koT;) (s3 + 53)s152 sm%smh szzr} (2.132)
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where

2ko s1r Sor ko sar
M=-— —cos . cosh -2 " sinh 225 4
T (1“2)[ 08 O S T Tsis2 sin~ 2 2
ko ko
+(T52 >cos2 nh%+(Tls1 +Ts1)s1n%cosh% (2.133)

According to the formula (2.89) the value of index is given by a term
J=V(y(0),(8)) (2.134)

After calculations one obtains

X020 . 1 .
J= x%a“ — 2x0200(12 —&—z%oczz — m [(sl sins;r—+ T CoS s ¥+ spsinhsyr+
171752

1 1
(— sins|r — — sinhsyr — T cossyr+ TCOSthI") Boa(—r)+
852

1
-7 coshszr) Bia(—r) T

ko /1 | ko /1 1 I 1
T (—smslr—gsmhszr) Kio(—r) — TT2< cossir+ 2coshszr—s%—s%)%—
2
2kor ( 1 1 ) ko ( 1
Lok sinhs,r — —sinsr + = geossirt
Tz]_;(s%_'_s%) |: 0 5 2 51 1 ﬁlZ( ) T S% 1

1
+= coshszr> B2 (—r) 4+ Ti(coss ¥ — Tsy sinsr — coshsyr — T'sy sinhsar) k2 (—r)+
52

1 1
+—sins;r+ 7T cossir— sinhszr—Tcoshszr] (2.135)
S1 52

Figure 2.3 shows the value of the index J(1/T;) forxo =1,z0=1,kg =1, T =5and r = 1.
You can see that there exists a critical value of the 1/T;..;. The system (2.80) is stable for
1/T; less then critical one and unstable for 1/7; greater then critical.

Figure 2.4 shows the value of the index J(1/7;) for 1/T; less then critical one. You can see
that the function J(1/T;) is convex and has a minimum.

We search for an optimal time of isodrome which minimizes the index (2.135). Optimization
results, obtained by means of the Matlab function fininsearch, are given in Table 2.2. These
results are obtained for xo =1, zo = 1, kg = 1, and T = 5. Critical time of isodrome is
a maximal admissible time of isodrome for system (2.77). System (2.77) is unstable for time
of isodrome less then critical one.
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k0=1, x0=1, z0=1, T=5
12000 T T T

10000
JQUT
8000 | 1
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-2000{ ////"_ :

—4000 . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 14

Fig. 2.3. Value of the index J(1/7;) for 1/T; greater then critical one

k0=1, x0=1, z0=1, T=5, r=1

140

120
J(UT)

100
80
60

40

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 2.4. Value of the index J(1/T;) for 1/7; less then critical one
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Table 2.2
Optimization results

Delay r | Optimal 1/7; | Index value | Critical 1/T;
1.0 0.1879 10.5870 1.03
1.5 0.1602 12.3667 0.69
2.0 0.1396 14.1349 0.53
25 0.1237 15.8853 0.42
3.0 0.1112 17.6164 0.36
35 0.1010 19.3293 0.31
4.0 0.0926 21.0264 0.27
4.5 0.0856 22.7108 0.24
5.0 0.0796 4.3854 0.22

2.3 The Lyapunov functional for a linear system
with two delays

2.3.1 Mathematical model of a linear time delay system with two delays

Let us consider a linear system with two delays, whose dynamics is described by equation [12]

d);(tt) =Ax(t) +Bx(t —r2) + Cx(t — ry)
2.136
x(lo) = X0 ( )

x(to+60) = ¢(6)

t>1y, 0 €[-r,0), m>r >0, ABCcRY, xog€R", ¢cL*[-r,0),R"), where
L?([—r2,0),R") is a space of Lebesgue square integrable functions on interval [—r;,0) with
values in R".

The solution of the functional-differential equation (2.136) with initial value (xo,®) is
an absolutely continuous function defined for ¢ > 7y with values in R" and is denoted as
x('7t07 ()C(), (P))

The function x; is a shifted restriction of the function x(-, , (xo, @)) to the interval [t — rp,t).
x(t)

The state is a vector S = {
Xt

} . The state space is given by the Cartesian product

X =R" x L*([-r2,0),R") (2.137)
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2.3.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V, positive definite, differentiable,
given by the formula [12]

0
V(x(t), ) = 7 (1) ox(e) + / (0B (6)x,(6)d6 + / (0)do+

- -

\o

0 0 0
[ ©81(0.8m(E)agd0+ [ [+ (0)8(0.pn(c)dsdo+
0

+
—In —ry o
0 0
+/ /x,T(G)&;(G,G)x,(G)deG (2.138)
—r-n

for t > tg, where a = a’ € R™", B € C'([~r,0],R™"), k € C'([~ry,0], R™™),

8 € C'(Q1,R™™M), § € C'(Q,,R™M), & € C'(Q3,R™™),

Q ={(6,&): 6 €[—nr,0], & €[0,0]},

Q) = {(G,g) . 0c€ [*}’1,0], ceE [G,O}}, Q3 = {(G,G) 1 0¢e [*}’2,0], [oNS [*}’1,0}}

Clisa space of continuous functions with continuous derivative.

It is taken the following procedure of determination of the functional (2.138) coefficients. One
computes the time derivative of each term of the right-hand-side of the formula (2.138) and
one substitutes in place of dx(¢)/dt and dx;(0)/dt the following terms

dx(r)

7 =Ax(t) + Bx;(—r2) + Cx;(—11) (2.139)
ax,(e) - 8xt(6)
PR, (2.140)
In such a manner one attains
T T
W02 i (a7 aa s BT 5O O)

T( 1) 2B — B(=r2)]xi(—r2) +aT (1) [20C — e(=r1) o (—r1) +

+/ {ATﬁ dB( )+51 (6,0)+ 67 (8, 0)] x(0)dO+

—r

¥ /x,T(—rg) [BTB(6) — 81 (—r2.0)] x:(6)d0+

—r

0
+ / 3T (=) [CTB(6) — 87 (8, —r1)] x4(8)d6+

-r
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X' () [86‘52’5) + aala((;,é)} x(E)dEdO+

0
,/ )C[T(G) |:862(GaG) + (962(6,@)

P ac }x,(g)dgdcw

0
—/ (6) [85352’6)+8638(i’6)]xt(0')d0d6

To achieve negative definiteness of that derivative we assume that

v (x(t), %)

7 = —x"(t)x(r)
From equations (2.141) and (2.142) one obtains a system of equations
0 T0) x(0)+«T(0
Warars BOTEO) OO0

2aB—fB(—r) =0
20C—x(—r;) =0

ATB(6) - %+5{(9,0)+5{(9,0) =0

BTB(6)— 81(—r2,0) =0

CTB(6)— 8 (6,~r1)=0

dx(o)

AT -
k(o) o

48 (6,0) +8(0,0) =0
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(2.141)

(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)



CTk(0) =& (-r1,6)=0

BTK‘(G) —03(—=r,0)=0

08,(0,&) +361<9,§)

20 58 0
d&(o,6)  d&h(o,g)

R
d85(0,0)  98(0,0)

0 " os

for 6 € [—r,0], 6 € [-r1,0], & €[6,0], ¢ € [0,0].
The solutions of equations (2.152)-(2.154) are functions

5(6,0) = fi(6 —0)

where f; € C!([~rp,r]) for i = 1,2,3.
From equations (2.147) and (2.155) we obtain

81(—r2,0) = fi(—0—r,) =B"B(6)
Hence

& (6,0) = f{ (6) =B (-6 —r2)B
From equations (2.148) and (2.155) we obtain

85 (8,~r1)=f3 (0+r1)=C"B(6)

Hence

8{(6,0)=f{(6)=C"B(6—r)

When we put (2.157) and (2.159) into (2.146), we get the formula

dB(9)

= ATB(6)+ BT (=6 —r)B+CTB(6—11)

dae
for 6 € [—r,0].
From equation (2.150) we obtain

& (—r1,06) = fa(—o—r)) =Cl'k(0)

Hence
8 (0,0)=f; (6) =«" (-6 —ri)C

(2.150)

(2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)

(2.162)
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From equation (2.151) we obtain
8(—r2,0) = f3(—o —r) =B k(o) (2.163)

Hence
8(0,0) = f3(—0) =B k(0 — 1) (2.164)
When we put (2.30) and (2.164) into (2.149), we get the formula

dx(o)

= =ATx(0)+x"(—o—r)C+B k(o — 1) (2.165)

for o € [—ry,0].
We introduce two new functions

n(0)=p(—6—r) (2.166)

d(o)=«x(—0—r1) (2.167)

for 6 € [—r,0], € [—r1,0].
We calculate the derivatives of (2.34) and (2.167)

dn(6)

—g = BT(0)B-ATn(6)-CTn(6+n) (2.168)
PUO) — KT (0)C~AT0(0) BT 0(0+ 1) (2169

for 6 € [—}”2,0], O € [—rl,O].
We obtained the system of differential equations

9PLO) _ 4Tp(0) +n"(0)B+CT(0 )
MO) _ g7 (0)5-ATn(6) ~CTn(6-+ 1)
(2.170)
dx(o) _ ATx(0)+ 0T (6)C+B k(0 — 1)
do
PO _ xT(0)C~AT0(0) - BT0(0 + 1)
for 6 € [-r,0], o € [-r,0].
Relations (2.34) and (2.167) implies f(—r2) = n(0) and k(—r;) = ¥(0) and
B(0) [g—_=m(6) lg—_» (2.171)
k(o) |0=_%,: ¥(o) |c=—’71 (2.172)
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Equations (2.143), (2.144) and (2.145) take a form

B(0)+B"(0) , k(0)+«"(0)

ATo+ oA+ 5 + 5 =1 (2.173)
2aB—-1(0)=0 (2.174)
20C —9(0) =0 (2.175)

The set of algebraic equations (2.171)—(2.175) enables determination of the initial conditions
of the differential equations (2.170) and the matrix o.
Matrix 9)(60,0) we obtain from equations (2.155), (2.157) and (2.34)

81(6,6) =B"n(6-o0) (2.176)

Matrix &,(6,0) we obtain from equations (2.155), (2.30), (2.167)
8(0,0) =C"9(6—0) (2.177)

Matrix 03(6,0) we obtain from equations (2.155), (2.159), (2.164)
8(0,6)=B"k(6—0—r) (2.178)

In this way we obtained all parameters of the functional (3.6).

2.3.3 Solution of the set of differential equations (2.170)
for commensurate delays

Functions 3, 11, k, ¥ are not independent, 8 and 7 are linked by formula (2.34), k and ¥
by formula (2.167). The functions § and x are also combined. This is implied by formulas
(2.159) and (2.163). From (2.159) we obtain

f3(8)=B"(6—r)C (2.179)
and from (2.163) we have
f3(0)=B"k(—0—r) (2.180)

According to (2.155), function f3 is defined on the interval [—r,,7(]. Now we can write down
the following functional interdependences between the functions 3, 1, k, ¥

CT'B(O—r)=0T(0+r—r)B for0c|[—ry,—rr+r] (2.181)
C'n(0+r)=x"(0)B for6c[—r,0 (2.182)

BTK(O'—rz) = nT(G—r2+r1)C foro € [—}’1,—1"1 +r2—r1] (2.183)
B'9(c+r)=B"(c)C forcc[-r,0 (2.184)
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Let us consider a special case, in which the system of equations (2.170) will be transformed
into the set of ordinary differential equations.
We assume that the following relationships hold

rn=mh,rp=nhymneN;n>m;R>3h>0 (2.185)
We introduce the functions

Bi(S), mi(S). x;(&), 9;(5)

for & € [-h,0];i=1,2,....n; j = 1,2,...,m defined by formulas

Bi(6) = B(6) for 6 € [—ra+(i— 1)h,—ry+ih], i=1,...,n (2.186)
n:(8) =1(0) for 0 € [—ra+ (i—1)h,—ra+ih], i=1,...,n (2.187)
k;(0) = Kk(0) for o € [=ri + (j— Dh,—ri + jh], j=1,...m (2.188)
¥;(6) = ¥(0) for 6 € [—ri+(j— Dh,—ri + jh], j=1,..,m (2.189)

These functions satisfy the following set of conditions

Pr(=h) = B(=r2) =n(0)
ﬁ&*h) = ﬁi*l (0) fori: 2, )
Mm(=h) =n(=r2) = B(0)

T[,’(—/’l) = T]ifl(()) fori: 2,...,1/1
(2.190)
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We can write equations (2.170) with regard to dependencies (2.181)—(2.184) for functions
(2.186)—(2.189) in a form

dlzéé) =ATB(E)+n! (E)B+OT(E)B fori=1,...m
) ATBE) T OB+ CTBn(E) fori—m 1
dTZ?) — —,B,»T(é)BfATni(é) *Canm(é) fori=1,...n—m
M) BT (B ATE) KLy (E)B fori=n—m+Ln Q19)
T ATx(E) + 9] (§)C+ ] (E)C for j = 1,cm—m
D) A7)+ O (IC+ BN,y (8] for j=n—m-+1.om
dijéé) _ _K}]‘(é)c_ATﬂj(§> _ ]_7‘+n7m(§)Cf0rj: 1,....m
for & € [—h,0].

There are relationships between the initial conditions of system (2.191) as below

Bi(0) =n,—;(0) fori=1,...n—1

Ba(0) = B(0)

(2.192)
9;(0) =xn—j(0) forj=1,...m—1
9 (0) = B(0)

We obtain matrix & and the initial conditions of the system (2.191) by solving the set of
algebraic equations

B(0)+B"(0) , k(0)+«"(0)

T = —
Al o+ oA+ 2 + 7 =1
20B—1n(0)=0
20C — 9(0) =0 (2.193)
[31'(5)|§:,g=nn+1—i(§)|5:7% fori=1,...n
Ki(8) le—n=Oms1-j(6) [em_s  forj=1,..m

Having a solution of the set of equations (2.191) we can obtain the matrices $(0), 1(6),
k(0), ¥(o) from equations (2.186)—(2.189) and the matrices 6,(0,0), 6,(6,0), 5(0,0)
from equations (2.176)—(2.178).
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2.3.4 The example

Let us consider a system described by equation

d);(tt) = ax(t) + bx; (—2h) + cx; (—h)
£(0) = 50 (2.194)
Xi=0 = @
t>0,x(t) €R, x; € L*([-2h,0),R), x,(0) = x(t + 0), a,b,c € R, h > 0.
The Lyapunov functional is defined by the formula
9 9
V(x(0)3) = @)+ / B(8)x(1)x:(6)d0 + / k(6)x(1)x (0)do+
00 - 00 B
+ [ [ai6.0u(00(E)acd0+ [ [E(0.cm(0m(s)dsdo+
—2h @ o —ho
+ | [ 8(6,0)x(8)x(c)dcdd (2.195)
[
The set of equations (2.191) becomes
[ dBi(S) T
dg
d%éé) e 0 b 0 0 b 1T B(E)]
(&) c a 0 b 0 0 Ba(&)
dé -b 0 —a —c 0 O m(&)
_ (2.196)
dm(s) 0 b 0 —-a —b 0 mn2(S)
ds 0 0 ¢ 0 a ¢ k(&)
dz(;) L 0 —c 0 0 —c —al]l v |
dv(§)
L d& ]
for & € [—h,0].

Eigenvalues of the matrix of equation (2.196) are as follows

M=a,b=—-at3=Vgt+d, \s=—/g+d, As=g—d, A¢ = —/g—d

where g = a> — b* — /2, d = c\//a+2b2 —2ab
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Now we give the formulas for determination of the set of initial conditions of equation (2.196).

Relations (2.190) take the form as below

Bi(=h) =n(0)
Ba(—h) = Bi(0)

Among the initial conditions there are relations as below

{/31 (0) =m(0)
B2(0) = B(0)

Relations (2.193) become

2a0+ B(0)+x(0) = —1
2ba—n(0)=0

2ca—9(0) =0

K(E) | 1= D) o4

5 =

Having the solution of equations (2.196)

Bi(S): Ba(8). m(S). k(&) B(E)
for £ € [—h,0] and the matrix & we obtain
B(6), n(6), (o), ¥(0)
61(6,0) =0bn(0 —0)
5(0,0) =c(6 — o)
5:(0,0) =cB(0 —0c—r1).

M) le—_1=B2(8) [e—_s
Bi(&) ‘gz_%: () ‘.gz_g

(2.197)

(2.198)

(2.199)

Figure 2.5 shows the graphs of functions $(0), n1(0), k(c), ¥(o) and a, obtained with the

Matlab code, for given values of parameters a, b and ¢ of the system (2.194).
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a=-4 b=-2c=1

0.3
/|| T B(6)
- / - - -n@®
021 s k(o)
- = 3(0)

1 | alfa=0.1461

-2 -15 -1 -0.5 0
-2h<06<0 ;-h<o<0

Fig. 2.5. Coefficients of the Lyapunov functional for a system with two delays

2.4 A linear system with both lumped and distributed
retarded type time delay

2.4.1 Mathematical model of a linear system
with both lumped and distributed retarded type time delay

Let us consider the linear system with both lumped and distributed delay, whose dynamics
is described by equation [15]

0
d%(tt) :Ax(t)+th(_r)+/Gxt(9)de
Zr (2.200)

x(t()) =x9 € R"

Xig = @ € Lz([7r70)7Rn)
for t > 19, r > 0, where A, B, G € R, x(t) € R", x, € L*([-r,0),R") , L*([-1,0),R") is
a space of a Lebesgue square integrable functions on interval [—r,0) with values in R".

The solution of the functional-differential equation (2.200) with initial value (xg,¢) is an
absolutely continuous function defined for ¢ > 7y with values in R".

x(+10, (x0,9)) € W2 ([t9,0), R") (2.201)
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The function x, € L*>([~r,0),R") is a shifted restriction of x(-,f, (x0,9)) to the segment
[t —r1).
The state of system (2.200) is a vector

S(t) = [ x(1) } (2.202)

Xt

where x(t) € R" x, € L*([—r,0),R") for t >t
The state space is defined by the formula

X =R" x L*([-r,0),R") (2.203)

S = 0 is the equilibrium point of system (2.200).
In a parametric optimization problem is used an integral quadratic performance index of quality

J = / X" (H)Wx(t)dt (2.204)
fo

where W € R"™" is a positive definite matrix.

2.4.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V, positive definite, differentiable,
given by the formula [15]

0

0 0
V(x(t),x,):xT(t)Otx(t)+/xT(t)ﬁ(6)xt(6)d6+//xf(6)5(9,6)x[(6)d6d9 (2.205)
—r —r 0

for t > ty, where a € R B € C'([~r,0],R™"), § € C'(Q,R™")

Q=1{(0,0): 6 €[-r,0], o €[0,0]} C! is a space of continuous functions with continuous
derivative.

In this paragraph we present a procedure of determination of the functional (2.205) coefficients
to obtain the Lyapunov functional.

The time derivative of the functional (2.205) on the trajectory of system (2.200) is computed.
It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (2.205) and one substitutes in place of dx(r)/dt and dx,(0)/dt
the following terms

dx(t)
dt

— Ax(t) + Bx,(—r) + / G, (6)d6 (2.206)

= (2.207)
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In such a manner one attains

dv (x(1),x)

=) {ATa +aA+ 02} x(1)+

4! (=) [QBT(x — BT(—r)]x(t)+

+/ {ZocGJrAT[B( )— dg(e)JraT(e 0)+8(0, 9)] (0)d6+

+/x, {BTB (6) - 5T(97—r)—5(—r,9)}xt(6)d6+

// [35 (8,0) +88<(9(26) GTB(G)] w(0)dods (2.208)

To achieve negative definiteness of that derivative we assume that the time derivative of the
Lyapunov functional V is given as a quadratic form

dV (x(t),x)
dt
for t > g, where W € R™" is a positive definite matrix.
When is known the Lyapunov functional and the relationship (2.209) holds, one can easily
determine the value of a square indicator of quality of the parametric optimization, because

= —x (1)Wx(r) (2.209)

J= / L (OWx(t)dr =V (x(10), 9) (2.210)

From equations (2.208) and (2.209) one obtains the set of equations (2.211) to (2.215)

AToc—i—aA—i—w:—W (2.211)
Blo— BT (-r)=0 (2.212)
ATﬁ(G)—%(:)—FMO,G)A—ST(G,O)—&—Z&G:O (2.213)
B'B(6)—8(—r,0)—87(6,—r)=0 (2.214)
98(6,0) , 98(6.9) _rpg) (2.215)

0 Jdo
for 6 € [-r,0], 6 € [-n,0].
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Let us consider that the solution of equation (2.215) is as below
o2
5(0,6):f(GfG)JrfT(GfG)nL/GTB(é)dé (2.216)
0

where f € C! ([—r,r],R™").
From equation (2.216) one obtains

57(0,0)=f(—0)+f"(0) (2.217)
[Z]
6(0,6) = £(=0)+ f7(8)+ [ G"B(E)ac @218)
0
0
5(=r,0) = f(—6 —r)+fT(9+r)+/GTB(§)d§ (2.219)
0
57(6,—r) :fT(9+r)+f(—6—r)+/ﬁT(§)Gd§ (2.220)
0

One puts (2.217) and (2.218) into (2.213), and one gets the formula

0
PO ATBO) 27 (0) +27(-0) + [ GTBEME+206=0  @.21)
0
for 6 € [-1,0].

One substitutes (2.219) and (2.220) into (2.214). After some calculations one obtains

—0—r

27(6)+2/(~0) =BT (~0-r)B~ [ B'(E)Gat - [GTB(E)NME  222)
0

0

One puts (2.222) into (2.221). After some calculations one attains

0 0
dp(6) :Arﬁ(e)JrBT(iefr)BJr/ﬁT(,g ,r)Gd§+/GT[3(§)d§+2aG (2.223)

A new function is introduced
kK(0)=B(—0—r) (2.224)

for 6 € [—1,0].
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Now the formula (2.223) can be written in a form

o 0
dB(9) :ATﬁ(9)+KT(6)B+/KT(§)Gd§+/GTI3(§)d€+205G (2.225)

—r —r

One calculates the derivative of the function k given by the formula (2.224). The relation
(2.225) was taken into account

0

0
= -ATk(0) —ﬁT(G)B+/GTK(§)d§ +/ﬁT(<§)Gda§ —20G (2.226)
0

0

dx(0)
de

One introduces two new functions

6 [¢]

n(6) =ATB(6) + ﬂ(e)m/ﬂ(é)mxg +/GTﬁ(§)d§ 120G (2.227)
0 [°]

9(0) = —-ATk(0) —BT(G)B+/GT K(E)dE + /ﬁT(é)Gdé —20G (2.228)
0 0

Functions 11 and ¥ are not independent.It is easy to check that they are linked by the formula

n(=0—r)=-9(0) (2.229)
for 6 € [-1,0].
From equations (2.225) and (2.227) it results that
dp(6)
=n(0 2.230
70— N(0) (2.230)
From equations (2.226) and (2.228) it results that
dx(0)
= 2.231
S = 0(6) (2.231)

The derivatives of (2.227) and (2.228) are computed. Upon taking the relations (2.230) and
(2.231) into account, one gets the formulas

d’},—g‘” —ATn(0) + 07 (6)B+G"B(6) + k()G (2.232)
%9) =—A"9(8) - 1" (6)B+G"x(6)+p"(6)G (2.233)
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One obtains the system of differential equations

dp(e) _
19— 106)
in(e (2.234)
%) = AT1(0)+ 07 (8)B+GTB(6) + k7 (0)G
7‘“2(99) — —AT®(8)— 7 (6)B+GTK(6) + BT (8)G
for 6 € [—1,0].
The solution of the differential equations (2.234) satisfies the conditions
B(6) lo——5=x(6) lo-—3 (2.235)
n(6) |6:7%: —15(0) \9:,% (2.236)

Formula (2.235) was obtained from (2.224) and formula (2.236) from (2.229). Now will be
obtained the initial conditions of the differential equations (2.234). From equation (2.224)
it results that

k(—r)=pB(0) (2.237)
Equation (2.227) implies

n(—r)=ATB(—r)+«! (-r)B+2aG (2.238)

Upon taking the relation (2.237) into account, equations (2.211) and (2.212) take the form

(=) + KT (1)

K
ATa+aA+ 5 =-W (2.239)

2BT o — BT (—r)=0 (2.240)
One obtains the system of algebraic equations

T
k(—r)+ &7 (-
ATa+ocA+—( r) 3 (=)

2BTa— BT (—r)=0
—n(=r)+ATB(—r)+ kT (-r)B+20G =0 (2.241)

=-W

The set of algebraic equations (2.241) allows for determination of the matrix & and the initial
conditions of system of differential equations (2.234).
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From equations (2.221) and (2.230) one obtains

[°]
1(0)+ £(=0) = —aG— 3ATB(6) + 31(6)— 5 [ G B(&)a (224)
0

Putting (2.242) into (2.216), one gets the matrix 8(0,0)

8(6,0)= —%ﬁT(G —0)A+ %T]T(O —0)+
60—c

-5 / BT(é)Gd§+/GTﬁ(§)d§—GTa (2.243)
0

0

for 6 € [-r,0], o € [-r,0].

In this way one obtained all coefficients of the functional (2.205). This coefficients depend
on the matrices A, B and G of system (2.200). The time derivative of the functional (2.205)
is negative definite.

2.4.3 The examples

2.4.3.1 The example 1

Let us consider the system described by equation

L) a0y +bx (=) + 1%, g(0)0
x(to) = x0 € R (2.244)

Xtp = ¢ ELz([—I’,O),R)

t> 1, x(t) €ER, x,(0) =x(t+0), 6 € [-1,0), x, € L*([-1,0),R), a,b,g €R, r >0
The Lyapunov functional is defined by the formula

0 00
V(x(t),x) = o(t) + / X(1)B(0)x(8)d6 + / / %(0)5(8,0)x(c)dode  (2.245)
In a parametric optimization problem is used an integral quadratic performance index of quality

J= / wx?(t)dt =V (xo, ) (2.246)
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The set of equations (2.234) becomes

[ dB(6) 1 o _
do 0 1 0 0 B(6)
dn(e
% g a g b n(6)
= (2.247)
dx(0) 0 0 0 1 K(6)
do
dv(6) g b g —a || %6 |
L d6 |

The fundamental matrix of solutions of equation (2.88) is given by

ri(0) ri2(0) ri3(0) ra(0)
r21(9) r22(9) }’23(9) r24(9)
R(6) = (2.248)
r31(0) r3(0) r3(0) ru(6)

r41(0) r(0) ra3(0) raa(6) |

where
r(0)=1-— g + ; g(bseragfbg)GJr
s s2(b2—ab—g)
_%(g—&—bs)(s—&-a —b)exp(s6) — %(g —bs)(s—a+b) eXp(—sG)] (2.249)
1
r1(0) = S ab—g) [g(bseragbg) — %(g+bs)(s+afb) exp(s0)+

+§(g—bs)(s—a+b) exp(—se)} (2.250)

NTC) P S——— T

3 52 s2(b2—ab—g) & £

—%(sz—as—g)(s+a—b)exp(s9) - %

5 (s2+as—g)(s—a—|—b)exp(—s9)} (2.251)

1
r41 (9) = >

| —g(bs® +ag— b
g (b2—ab—g)[ g(bs™+ag—bg)+

—%(s2 —as—g)(s+a—b)exp(sf)+ g(s2 +as—g)(s—a+b) exp(—se)} (2.252)
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1
(g+bs)(a® +as—bs—ab +g)exp(s6)+

a g 1
20) =~ 5+ 50+ g | 5

1
—&-2—(g—bs)(a2 —as+bs—ab+g)exp(—s9)} (2.253)
s
g 1 1
}’22(9) = 372 + m [—Z(g—i—bs)(az +as—bs —ab+g) eXp(S6)+
1(g—bs)(a2 —as—i—bs—ab—i—g)exp(—s@)} (2.254)

2

b g 1 1 5, 2
r32(6)_s2s26+s2(b2—ab—g){23(s —as—g)(a“+as—bs—ab+g)exp(s0)+

1
+£ (s +as—g)(a®> —as+bs—ab+g) exp(—s@)] (2.255)
@) =-S5+ N L@ o) ras—bs—abtg)exp(s0)+
20) =G+ Ao 5 (5" —as—g)(a”+as—bs —ab+g)exp(s
(2.256)

1
—i(s2 +as—g)(a* —as+bs—ab+g) exp(—s@)]

r3(0) = —;% + S —ab—g) [g(bsz—&—ag—bg)e — %(g—i—bs)(s—f—a—b) exp(s0)+
—zgs(g—bs)(s—a-i—b)exp(—se)} (2.257)
1
r3(0) = S —ab—g) [g(bs2 +ag—bg)— %(g—i—bs)(s—i—a —b)exp(s0)+
+§(gfbs)(sfa+b) exp(s@)} (2.258)
r (9)717§+71 —g(bs®> +ag —bg)O+
33 - SZ sz(bz_ab_g) g g g
—%(52 —as—g)(s+a—Db)exp(s6) — %(s2 +as—g)(s— a+b)exp(—s9)} (2.259)
1
r5(0) = Sy |90 a8 —be) =57 —as—g)(s+a—b)exp(s0)+
(2.260)

8
+§( 2 tas—g)(s—a+b) exp(—s@)]
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b g 1 1
ria(6) = 2 S—ZG + 2—S3(g+bs) exp(s0) — ﬁ(g—bs) exp(—s0)
g 1 1
r4(0) = 2 + z—sz(ngbs) exp(s0) + 2—s2(g —bs)exp(—s0)
a g I, |
r34(0) 2 + 8—20 + E(s —as—g)exp(s6) — g(s +as—g)exp(—s0)

1 1
ry4(0) = ;% + j(sz —as—g)exp(s0) + = (s> +as — g)exp(—s0)

where

252

s=+/a*—b*42g

The solution of the set of equations (2.247) is given in a form

(2.261)

(2.262)

(2.263)

(2.264)

(2.265)

B(6)=ri1(6+r)B(—r)+ri2(0+r)n(—r)+r3(0+r)k(—r)+ra(0+r)0(—r) (2.266)

N(0)=ru(0+r)B(—r)+rn@+r)n(—r)+r3(0+r)x(—r)+ru(0+r)d(—r) (2.267)

K(0) =r31(0+r)B(—r)+r32(0+r)n(—r)+r33(0 +r)k(—r)+r34(6 +r)0(—r) (2.268)

B(0) =ra1(0+7)B(—1)+ra2(0+7)N(—r) +743(0 +1)K(—1) +144(0 +7)O(—7) (2.269)

Now will be given the formulas for determination of the set of the initial conditions of equation
(2.247) and the coefficient o

2a00+ Kk(—r) = —w
2bo—B(—r)=0

—n(=r)+af(—r) +bx(—r)+2g =0

The set of algebraic equations (2.270) can be written in the equivalent form

K(—r)=—w—2ac

B(~r) = 2bat

(2.270)

(2.271)

(2.272)
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n(—r) = (2g—bw)a (2.273)

2pna+ppd(—r) = piw (2.274)
2p210+ pp®(—r) = pnw (2.275)
where
Pl = (sz—g)(a+b—gr) — %(a2 —b? —as—bs) exp(—%)+
S (2 2 ) sr
+ (a b2 +as+bs exp( 2) (2.276)

1
P12 = —a—b+gr——<a2—b2—as—bs) exp<—¥>+
2s 2

1
F— <a2 P tas+ bs) exp (ﬂ) (2.277)
2s 2

1
p13 =—s>—ab—b* +agr+ 5 (bs2 +b2s+abs+2ag> exp(—%)—}-

)

—% (bs2 —b*s—abs+ Zag) exp (%) (2.278)
P21 Z%(s—a—i—b) exp(—%)+%(s+a—b)exp(%) (2.279)
=2 (s—a+b)exp(-3)+3 (s+a—b)exp(3) (2.280)

(- )on( )3 ) en(3)
P23 2(s a”+ab bs)exp 5 S5 —a +ab —bs | exp > (2.281)

The parameter  is given by a term

- [—aw(a—i—b)(bz —ab—g)+

V(2 ab—bs) ()4 Y _ _
2(s a”+ab bs)(a b))+ > (a—i—b)(s a+Db)exp(—sr)+

4 (fs3 —a® — b —2b%s — 2abs + a*b + ab® fgrs(sfafb)) exp<f%)+

s (—s3 +a® + b —2as* —a®b — ab® + grs(s+a— b)) exp (szr)] (2.282)

s
2
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where
M:s3(a—|—b—gr)(s—a—i—b)exp(—%)—i—

453 (a+b—gr)(s+a—b)exp (%) (2.283)

Having the solution of equations (2.247) and the coefficient ¢ one obtains §(0,0)

6(0,0)=—ga— %aﬁ(@ fG)Jr%T[(G —0)+

6—c c

—3 [ s+ [ eb&)as (2284)
0

0

Figure 2.6 shows graphs of functions 3(0), n(0), x(0), ¥(0) and o, obtained with the
Matlab code, for given values of parameters a, b, g, w, r of system (2.177).

a=-1b=2g=1w=1

25
—B(®)
2t ()
L // - — — k()
3(6)
0=0.3782

-3 -2.5 -2 -1.5 -1 -0.5 0
-r<0<0

Fig. 2.6. Coefficients of the Lyapunov functional with distributed delay
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2.4.3.2 The example 2

Let us consider the system described by the equation

dxl(t)
dt _ l ai;y an ] [xl(t) ]4_ [ by b2 ] lxl(l—r) n
dxz(l‘) a an»n )CQ(Z‘) by1 by XQ(l—r)
dt
+/ g1 & ] xi(t+0) 40
821 82 x(t+0)

(2.285)
[ x (to0) | @0
| x2(t) x20
[ X1 (t() —+ 9) _
| X2(t() + 9)

¢1(0)
¢(0)

The Lyapunov functional is defined by the formula

V(i (), () + )i +)) = [ x() ) ] [ o o2 } {x‘“) ]+

A 0 xa(t)

fto 1[0 30 [0 o

+// xi(t+0) x(t+6) | { gllge % gzgg:zi } [ﬂgiz) ]dcde (2.286)

—r—r

The set of equations (2.167) becomes

col B(0) col B(0)
In(o In(o
d | coln(6) _ol @ n(o) (2.287)
dé | colk(0) col x(0)
col¥(0) col¥(0)
for 6 € [—r,0], where
0=[01 @] (2.288)
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~~ ~~
o) S
& X
& A
N N
p—a p—
oo & o o o & o 8o 8o co & §
SERS! _ I = = I
co F go oS o s o fo o °o 3
_ o .
3 8c oo o o So 8o o § foo
SHRS _ | = = [
- « o w
T fc oo S o S o “o S o~ S S oo
SIS _ | = = [
co & 8o coco 8 o do 8o co & 8
S & 8o 8o 80 S0 S
co = 2o o Zo & o Zo So co = 8
&% & 8 & 5 8 &% &
S o oo 3 3 8o So 8o o 3 8o o
S & s & So 80 o S &
S focoo —o fo “o fo o - Soo
% & & 5 & 5 % &
I Il
— (el
Q Q

(2.291)

for 6 € [—1,0].
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We introduce

Q
Q
N~

P11
P21
P31
P41

P12
P22
P32
P42

P13
D23
D33
P43

P14
P24
D34
P44

(2.292)

Now we give the formulas for determination of the set of the initial conditions of equation

(2.287) and the matrix .

where

Zy =

66

o1
a2

(070)
col B
coln

—r

—r

colx

col ¥

—r

~

—r

Z

0(3.3)

[ 2a11

—Wi1
—Wi2
w2
O16,1)
Zin Zis
Zyy Zn3
2as1 0
an+axp ax
2a1, 2ay
by 0
by 0
bn b2
b1z by
281 0
282 0
2811 28
2812 2g»

(2.293)

(2.294)

(2.295)



(2.296)

(2.297)

0
0

azy

ar

azi

ary

az

a2

az

ar?

—

0

by

by

b

b1z

by

by

by

bz

(2.298)

(2.299)

P12 — P32

P11 — P31

P22+ pan

P21+ par

P14 — P34

P13 — P33

P24+ paa

P23+ P43

Zip =

Zi3 =

Zy =

Zy3 =
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Now we obtain the matrix 6(6,0)
1
11(6,0 ):**anﬁn(e 0) —5ap(6—-0)+> 7711(9 o)+

97
/ g1 (8 +g21521(§)}d§+/[g11/311(§)+821[321(§)]d§+
0 0

—811011 — 821Q12 (2.300)

(7 ):—falzﬁll(e G)—lazzﬁﬂ(e 0-)+ 7721(9 G)
o—o

/ g2Pui(§ +gzzﬁ21(<§)}d§+/[811ﬁ12(§)+821ﬁ22(§)]d5+
0

0
—811002 — 821022 (2.301)

81(9, )Z—*auﬁlz(e G)—l“ﬂﬁﬂ(e o)+ 7112(9 o)+

0—0c
*%/ g Pia(é +g21ﬁ22(§ d§+/ g12ﬁ11(§)+g22ﬁ21(§)]d§+
0

—812011 — 822012 (2.302)

522(9,6)2—7012ﬁ]2(9 G)—%azzﬁzz(e G)-‘rlnzz(e G)+

6—c
1/ g12B12(& +gzzﬁzz(§ dé—F/ g12ﬁ12 §)+g22ﬁ22(§)]d§+
0

—812012 — 822002 (2.303)

Figures 2.7-2.10 show graphs of functions 3(0), n(0), x(0), ¥(0) obtained with the Matlab
code, for given values of matrices A, B, G, W of system (2.285)

L[ -1 03 [ 1 04
“los 2 “lor 2

(2.304)
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0.8

B11(8)
| - — —B21(6)
0.6 B12(6)
——B22(6)
-0.8 : : : ! ;
-3 -25 -2 -1.5 -1 -0.5 0
-r<0s<0
Fig. 2.7. Elements of matrix 3(6)
15 T T T T T
——nli®)
- — —n21)
il i n12(6)
— —n22(6)
0.5} 2

-15 -1
-r<0<0

-0.5 0

Fig. 2.8. Elements of matrix 1(6)




70

0.8

K11(6)
— — —K21(8)
0.6 / K12(6)
y ——K22(0)

-0.8 : ' : ! ;

3 25 -2 -15 -1  -05
-r<8<0
Fig. 2.9. Elements of matrix k(0)

1.5 T T T T T
Il 911(6)
- - —9219)
/ 912(6)
A 14— = 9229

-0.5r/

-2 -1.5 -1 -0.5
-r<6<0

Fig. 2.10. Elements of matrix 9(0)




Matrix o obtained for the values (2.304) is given below

~ 1 0.1833 0.0281

%=1 00281 0.1600 (2.305)

2.5 A linear system with a retarded type time-varying delay

2.5.1 Mathematical model of a linear system
with a retarded type time-varying delay

Let us consider a linear system with a retarded type time-varying delay, whose dynamics
is described by the equation [16]

dx(t)
dt

x(to) =xp €R"?

x(to+0) =9(0)

= Ax(t) + Bx(t — ©(1))
(2.306)

fort > tg, 6 € [—r,0),where A, B € R™" x(t) € R",p € L*([~r,0),R"), 7(¢) is a time-varying
delay satisfying the condition 0 < 7(r) < r; dt(t)/dt # 1;t >ty where r is positive constant.
L?([-r,0),R") is a space of Lebesgue square integrable functions on interval [—7,0) with
values in R”.

Using the formula (2.5) one can write the equation (2.306) in a form

dx(t)
I = Ax(t) +Bx; (—1(t))
x(t()) =xp € R"

xt() = (p S Lz([7r70)7Rn)

(2.307)

The solution of the functional-differential equation (2.307) with initial value (xg, ) is an
absolutely continuous function defined for ¢ > ¢y with values in R”.

x(-510, (x0, @) € WH([t9,02), R") (2.308)
The function x; € L*([~r,0),R") is a shifted restriction of x(-,f, (xo,9)) to the segment

[t —nt).
The state of system (2.307) is a vector

S(t) = [ x(t) } (2.309)
for t > .
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The state space is defined by the formula
X =R"x L*([-r,0),R") (2.310)

In a parametric optimization problem is used an integral quadratic performance index of quality

J= / xT (1 )Wx(t)dt (2.311)

fo

where W € R™*" is a positive definite matrix.

2.5.2 Determination of the Lyapunov functional

On the state space X we define a quadratic functional V, positive definite, differentiable,
given by the formula [16]

0
V(x(t),x,1) = x" (t)a(t)x(t) + / x()B(8+1(t))x(0)do+
(1)
0 o
+ / 7 (0)8 (0 + (1), 0 + (1)) x(6)dcdd (2.312)
—1(t) 6
for t > to, where o € C! ([to, o), R"™"), e(¢) is positively defined,
B € C'([0,7(2)],R™™), § € CY(Q,R™"), Q ={(0,06): 6 €[0,7(t)], o €[6,0]},
0<t(r) <r.
C! is a space of continuous functions with continuous derivative.
In this paragraph is given a procedure of determination of the functional (2.312) coefficients
to obtain the Lyapunov functional.
The time derivative of the functional (2.312) on the trajectory of system (2.307) is computed.
It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (2.312) and one substitutes in place of dx(¢)/dt and dx,(0)/dt
the following terms

dx(t)
o = Ax(t) + Bx,(—7(2)) (2.313)
dx;(0)  dx(0)
%~ oo (2.314)
In such a manner one attains
WEO2:1) _ 1) [ ae) + a)a+ 240 4 e o)+

] (=2(0)) [ BT (a(0) + @ (1)) + BT (0) (d:l(;) — 1) |xt0)+
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0
+ [ X ATB (0+1(t))+

—1(t)

dp (6 +1(t)) dB(6+1()) n
dt do

+37(0+1(0),7(1)) | x (6)d6 + / o (=2(0)) [B7B (0 + (1)) +

—1()
0 0
+5(o,e+r(t))(d2(:) 0)do + / /x 9+Td)t O+1T(0)
—1(t) 6
_88(9+r(a)96+r( ) (G—I—T((sz,a—s—r( ))}xt(o)dode (2315)
for t >ty where & € C' ([tg,0), R™™"), B € C1([0,7(¢)],R™™"), § € C1(Q,R™™),

Q={(6,0): 60,7(r)],0€[0,0]},0< 1(r) <.

To achieve negative definiteness of that derivative we assume that the time derivative (2.315)
satisfies the relationship

dV (x(t),x,1)

_ T
r = —x" ()Wx(r) (2.316)

for t > tg, where W € R"*" is positive definite matrix.
From equations (2.315) and (2.316) the set of equations is obtained

AT a(t) + a(t)A + diﬁ’ )

+B(t(t) = —-W (2.317)
B" (a(t)+ o’ (1)) + BT (0) (dT — 1) = (2.318)
dt

dB(0+1(r) dB(O+7(r)

T T _
A'B(O+1(r))+ r 70 +6" (60+41(t),7(t)) =0 (2.319)
T dt(t)
B'B(6+1(t)+6(0,06+1(r)) - 1) = (2.320)
dé(0+1(t),0+1(t)) d6(0+7(t),c+7(t)) I&(O+7(t),0+1(t))

dt B 00 B Jo =0 (@321

fort > 19; 6 € [—1(¢),0]; o € [6,0] where 0 < 7(¢) < r.

The new variables are introduced

E=0+1(t) (2.322)
n=oc+1(t) (2.323)
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One calculates the derivatives

ds(0+1(t),c+1(r)) dd(&,mn) dd6(E,n)dt(t) d&(&,n)d(r)

dt dt 9& ar on dt 2.324)
96 (6+1(1),0+1()) _d8(5,n) _ 95(5,n)
26 =00 o¢ (2:32)
d6(0+1(t),c+1(t)) 98(&,m) 98(E,n)
9o =96 on (2326)
dB(6+1(t)) dB(§) IS _ dB(5)dr(r)
dr T OdE 9t dE  dr 2.327)
dB(6+1()) dB(E)dE _ dB(S)
de T dE 90 dE (2328)
The formula (2.321) takes a form
28(5,n) , 98(&.m) _
JE + an 0 (2.329)
forz >1, 0 € [—1(1),0], 6 € [0,0], & € [0,7(¢)], n € [§,7(r)] where 0 < T(r) <.
The solution of equation (2.321) is given by the formula
§(0+1(1),0+1())=6(&,n)=f(E—n)=f(6-0) (2.330)

for t > 19, 8 € [~1(¢),0], o € [8,0], 0 < 7(¢) < r where f € C! ([—r,r],R™")
Taking into account the formula (2.330) one gets from equation (2.320) the relationship

-1
5(0,0+1(t)) =f(—1(t)—0) = (1 - dz(t’)) B'B (6 +1(1)) (2.331)
Hence
-1
F(8)= (1 - d;ﬁ”) BB (=) (2332)
for £ € [0,7(¢)] where 0 < 7(r) < r
Formula (2.330) implies
—1
8T (6+1(1),7(1)) = f1(0) = <1 - d;f”) BT (~0)B (2.333)

After putting the term (2.333) into the formula (2.319) one obtains a relationship

dB (6 +1(1)) _dB(9+r(t))+<1_clr(t)

ATB(0+1(1))+

-1
T —
dt de dr ) B’ (-6)B=0 (2.334)
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Taking into account the formulas (2.322), (2.327) and (2.328) one obtains from equation
(2.334) the relationship

—1 -2
PE - (Z0 1) wp@+ (T2 1) B rrn e

for £ € [0,7(¢)] where 0 < 7(r) <r
Using the relationship (2.335) the derivative of the term §(—& + t(r)) with respect to & is
calculated. One obtains

_ -2 !
dp( 5;’5([)) _ (d:;) 1) ﬁ (&)B+ (dzg) 1) ATﬁ (—E+1(t) (2.336)

for & € [0,7(¢)] where 0 < 7(r) <r
In such a way one attains the set of differential equations

-1
L) - (d::) - 1) ATB(&)+

( 1) pT(=E+7(n)B
dp (=& +1()) €+r dz(t)

< 2 ) T(E)B
for each fixed t > to, & € [0,7(¢)] where 0

B (z(2)).
There holds the relationship between (&) and B(—& + 7(¢))

B,

(2.337)

1) ATB(—E+1(1))
<z

7(t) < r with the initial conditions 8 (0) and

B(=&+7(1) ;s (2.338)

=
2

The derivative of equation (2.318) with respect to ¢ is calculated

T 2
(500 D (s oo

From equation (2.335) it results that

T -1 -2

The equation (2.317) implies

da(r)

P —ATa(t) —a()A—B(z(t)) —W (2.341)
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One puts the terms (2.340) and (2.341) into equation (2.339). After calculations one attains

BT [AT (a(t)+ o™ (1)) + (au(t) + & (1)) A] + BT (0) <d:l(:)A— dzgt)l> +

) (0125” ) 1) BB (e(0) + 7B (e0) = —B" (W-+W) (2342

Solving the set of equations (2.342), (2.318) and (2.338) one obtains the matrix ¢ () and the
initial conditions of system (2.337). That set of equations is written below

BT [AT (ar) + T (1)) + ((t) + o (1)) A] + BT (0) (dr(r) 4T ,) .

dt dr?
— (dzy) — 1)13713(1@)) +B"BT(z(t)) =BT (W+wWT) (2.343)
B" (a(t)+a’ (1)) +B7(0) (d:l(;) — 1) =0 (2.344)
B (&) |5:@:ﬁ(f§+r(t)) le_= (2.345)

Having the solution of the set of differential equations (2.337) and taking into account the
formulas (2.322), (2.330) and (2.332) one can get the matrices

B(6+1(t) =B (&) le=otz() (2.346)
5(6+1(t),0+(t)) = (1 - d;gt)>1BTB (6—0) (2.347)

fort > 19, 0 € [—1(¢),0], © € [0,0] where 0 < 7(¢) < r.

In this way one obtained all coefficients of the functional (2.312). This coefficients depend
on the matrices A and B of system (2.307). The time derivative of the functional (2.312)
is negative definite.

2.5.3 The examples

2.5.3.1 Inertial system with delay and a P controller

Let us consider a first order inertial system with delay described by the equation

dx(t) g ko
e —?x(t) + ?u(t —1(1))
x(to) = xo (2.348)
x(to+6) = ()
u(t) = —px(t)

t > 19, x(t) €R, ¢ € W'2([-1,0),R), 8 € [-1,0), p, ko, T, ¢, x0 € R, r > 0, 7(¢) is a time-
varying delay satisfying the condition 0 < t(¢) < r; dt(t)/dt # 1;t > to where r is positive
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constant. The parameter kg is a gain of a plant, p is a gain of a P controller, T is a system
time constant, xg is an initial state of system. In the case ¢ = 1 an equation (2.348) describes
a static object and in the case ¢ = 0 an equation (2.348) describes an astatic object.

One can reshape an equation (2.348) to a form

dx(t) ¢

a —?x(t) T (t—7(t))
x(10) = x0 (2.349)
x(to+0) =9(0)
Using the formula (3.7) one can write the equation (2.349) in a form
dx(t) ¢ kop
5 = - (=)
x(f0) = xo (2.350)
-xt() = (p
The Lyapunov functional is given by the formula
9
V(0 0) = )20+ [ B(O+(0)x(0)x (6)d0+
~1(1)
0 0
+ / /5 (6417(1), 6+ 7(1))x: (8) x, () d5dB (2.351)
—1(r) 6
The coefficients of the functional (2.351) will be obtained.
Equation (2.337) takes a form
4B(&) [ —q —kop
EPS) dt(t) dt(r)\? B(E
de _ T(l m) (1—0”) (€)
k
dB (=E+7(1)) L 4 B(~E+1(1)
40 dt(r) dt(z)
T(1— T(1-—
L dt dt J
(2.352)
for r > 19, & € [0,7(¢)] where 0 < 7(¢r) <r.
The fundamental matrix of the differential equation (2.352) is given by the formula
_ L -
chA& — $shké —Lzshlé
dt(t) dt(r)
AT 1— y AT 1— y
R(E) = ! ! (2.353)
kop q
—Zsh/lé chA& + shA&
ar(1- 4T ar(1-4"
i Cdt Cdt |
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where

4 — (2.354)

(-5
r(1-450)

l B(E) ]R@[ B(O)] 0355

Hence

B(=&+1(1)) B(z(1))
for 1 > 19, & € [0,7(r)] where 0 < 7(r) < r. One needs the initial conditions of the set of
differential equations (2.352) to obtain

BO+1(t) =B (&) le=o+:() (2.356)
5(9+r(;),a+r(¢)):-’%p (1-"2@)15(0—9) (2357)

fortr > 19, 0 € [—1(¢),0], € [8,0] where 0 < 7(r) <r.
The initial conditions of the differential equation (2.352) and the coefficient (¢) are obtained
by solving the set of equations (2.343) to (2.345) which takes the form as below

d d?
Tdr
2o+ (50 1) B0y =0 (2.359)
p1B(0)+p2B(z(t)) =0 (2.360)
where
At(t) q kop At(t)
— ch22 — sh 2.361
2 +< A (1_@)) ”<ldr(t))2> 2 ( )
d dt
A B q B kop s At(t)
pr=—eh— =t ( . ar)y d() 2) "2 (2262
T <1 _ dt) T <1 _ dl)

We compute the value of the performance index for initial conditions given below
x(0)=x0o=1, ¢(6) =0for 6 € [—r,0)

J(t) = xgou(t) for t > 0.
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Figures show the graphs of function J(¢), obtained with the Matlab code, for given values
of parameters g = 1, T =5, kg = 1 and ©(t) = r(1 — exp(—t)), r = 0.5 of system (2.343).
Figure 2.11 presents the index value graph for p = 15.11 and Figure 2.12 for p = 15. The gain
p = 15.1129 is called the critical gain. For gain greater then critical gain system (2.348)
becomes unstable.

0.9

J(0)
0.8
0.6
0.5}
0.4r

0.3f

0.2r

0.1 : - : - :
0 0.5 1 15 2 25 3
time in sec

Fig. 2.11. Value of the index J(¢) for p = 15.11

0.25

30

0.2}
p=15

0.1t

0.05¢

0 1 2 3 4 5
time in sec

Fig. 2.12. Value of the index J(¢) for p =15
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Figure 2.13 shows the function B(§) for p = 5 and Figure 2.14 shows the function
B(—& +1(t)) for p =5.

14

—B®
1.2

p=5
0.8}
0.6}

0.4r

0 0.1 0.2 0.3 0.4 0.5
0<E<T()

Fig. 2.13. Function (&) for p=5

— )

p=5

0.1 0.2 0.3 0.4 0.5
0<E<1()

Fig. 2.14. Function B(—& +7(¢)) for p=5
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2.5.3.2 The example. Two dimensional system

Let us consider a system described by the equation

dxl(t)
dt _ | au a2 ] lxl(f) n
de(t) a); an JCQ(I
dt
[ b1 b2 ] lxrl(—f(t)) ]
by by x,z(—’l'(l‘)) (2.363)
o l-lo]
x2(10) X20
lxn(e) ] _ l ¢1(0) ]
xt2<9) (Pz(e)

The Lyapunov functional is defined by the formula

Vi) =La0) =0 1| g6 S ][ |+

0
Bu(6+1(1) PBra(0+7(1) ] x,(6)
+T/(,> [ x1(1) () ] [ B (6+7()) Pra(647(1) ] {xtz(e) }d9+

o9 311(6+1(t),0+1(t))
w [ [lxe) x6) ]
) 8521(0+ (1), 0+ (1)) 80(6+1(),0 +1(t))

—1(t

&ﬂ@+r@%c+r0»]
X

Xty (G)
X { 32, (0) ]dcde (2.364)
fort > 1y, 6 € [—1(¢),0], o € [6,0] where 0 < 7(f) <
The set of equations (2.337) becomes
S colB@ col B(E)
E =0 (2.365)
col B(—& + (1)) col B(—E+1(1))
for £ € [0,7(¢)], 0 < 7(¢r) < r where
(2.366)

0=1[010]
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0=

82

0 0
0 0
ar az
dt(t dr(t
-1 o
a an
dt(t) dt(r)
dt 1 dt 1
0 0
b11 by
dz(r) 2 d(r) 2
(-0 ()
0 0
b1z bxn
2 2
dt(t) dt(t)
dt 1) ( dt 71)
0 0
b1y by
dr(t 2 de(t 2
I R
0 0
b1z bxn
2 2
dt(t) dt(t)
dt 1) ( dt _1)
0 0
0 0
ar azl
dt(t) dt(r)
dt -1 dt -1
a an
dt(t) dt(t)
dt -1 dt -1




col B(&)
col B(=E+1(2))

for & € [0,7(¢)] where 0 < 7(z) < r.
We introduce

pit p12 p13

p21 P22 P23

P31t P32 P33

EQ@ _ P41 P42 P43
P51 P52 Ps3

P61 P62 P63

Pt pi2 P13

| P81 P82 P83

— 09
P14 Ppis
P24 P25
P34 p3s
Paa P4as
P54 P55
Pe4  Pes
P14 D75
P84 Dss

col B(0)
col B((t))
P16 P17
P26 P27
P36 P37
Pa6 P47
Ps6 P57
P66 Pe7
P16 P17
Ps6 P81

P13
P28
P33
P48
Pss
Pes
P78

P88

(2.367)

(2.368)

Now we give the formulas for determination of the set of initial conditions of equation (2.365)

and the matrix o.

D 212 Z13 COlOC(I)
Zn Zn Oy col B(0)
Ou4) Zn Zs col B(1(1))
where
di
da
D—
d3
da1

di2
dx
d31
dyz

=2b1 w11 — baywiz — baiway
—biiwia —biiwar —2bywa
—2b1awi1 —bnwia —bnway
—bpowiz —biawa1 —2bpnwr
08,1

di3
dy3
ds3
dy3

dis
do4
dz4
da

di1 = 4a11b11 +2a12by;

dip =d13 =2a1b11 +axnb +ai1by

dis =2a21by

dy1 = 2a12b1y

dyy = dyz = a11by1 +axnbi1 +2a12b2

(2.369)

(2.370)

(2.371)

(2.372)

(2.373)

(2.374)

(2.375)
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84

dry = 2a21b11 +4anb
d31 = 4ay1b1a +2a2bxn
d3p = d33 = 2a1b12 +anbxn +a11bn
d34 = 2a31b2)
dy1 =2a12b12
dyp = dy3 = ay1b12 + axnbiz +2a12b2
dys = 2a21b12 +4axnbyn

Ziy =21, Z7))

r dr(t)a _d*t(r) dr(t)a
dar 1 dr? dar !
dz(t) dt(t)  d*t(1)
dr dr 2 dr?
0 0
L 0 0
i 0 0
0 0
dz(t) d*z(t) dz(t)
dr M dr? dr
dt(t) dt(t)  d*t()
L dr 2 dr ? dr?
Zi3 = [Z15 Zi]
1 b
by 1= — I
dt(r) dt(r) |
dt dt
0 b1
1 b
b |1 ——— oz
dr(r) ) dt(t)
dr dr
0 bi»

(2.376)

(2.377)

(2.378)

(2.379)

(2.380)

(2.381)

(2.382)

(2.383)

(2.384)

(2.385)

(2.386)

(2.387)



2y =

Z3 =

Z33 =

Now we obtain the matrix 6(6 + 7(¢),0 + (1))

011 (0+1(t),0+1(t)) =

by 0
b 1
LN I
dr(t) . dt(t) .
dt dt
b 0
b 1
__ T2 by |1— ——
dz(t) dz(t)
L dt dt J
2byy by by O
0 bt b 2by
Zy =
2b1p b bn O
i 0 bip bip 2bxp |
- dtlr -
Z(t ) 4 0 0 0
drt(t
0 Z(t ) 4 0 0
dt(t
0 0 dg ) -1 0
dr(r)
0 0 0 ——1
dt J
P11 —Pps1t P12—pPs52 P13 — P53 Pl4a — P54
P21 — P61 P22 — P62 P23 — P63 D24 — Pe4
P31 —P11 P32—Pp12 P33 — P13 P34 — P4
P41 — P81 P42 P82 P43 P83 P44 — P84 |
P15 —P55 Ple — P56 P17 — P57 P18 — P58
P25 — P65 P26 — P66 P27 — P61 P28 — P68
P35 —P15 P36 — P16 P37 —P17 P38 — P78
P45-P8s  P46-P86 P47~ P87 P48~ P88 |
by by
—Bn@—0)+ —Phn(0—0
1 dm)ﬁ 1 ) 1 dm)ﬁ ( )
dt dt

(2.388)

(2.389)

(2.390)

(2.391)

(2.392)

(2.393)
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b

812(0+1(1),6+1(1)) = #@ﬁu(e — o)+ ;T(t)ﬁzz(e — o) (2.394)
| — [ ——
dt dt
S (04 7(1),0+1(1) = — 2 BL(O—0)+ — 2 B(6—0) (2.395)
dt dt
8 (0 +1(t),0+1(1)) = %ﬁlz(e—cw ;"‘T(I)ﬁzz(e—c) (2.396)
Cdr Cdr

fort >tg, 0 € [—1(t),0], 0 € [0,0] where 0 < 7(r) <r.
Figures 2.15-2.20 show graphs of functions a(r), B (&), n(&) obtained with the Matlab code,
for given values of matrices A, B, W of system (2.363)

-1 0.6 -1 04 1 0
R R R L A

and time delay given by the function

= (1o (1))

where r =0.5, T = 1.

0.2

all(t)
0.18

0.16

0.14}

0.12}

0.1f

0.08

0.06
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0
t

Fig. 2.15. Function ; (¢)
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x 10"

a21(t)

3.8 \ \ ‘ ‘

al2(t)

18 : : : :
0

Fig. 2.17. Function o;5(¢)
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0.26

a22(t)
0.24}

0.22}f

0.2r
0.181
0.16
0.14}
0.12}

0.1r

0.08
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Fig. 2.18. Function 05 (t)
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Fig. 2.19. Elements of matrix (&)
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2b { =~ —n21E®
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0 0.1 0.2 0.3 0.4 0.5
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Fig. 2.20. Elements of matrix 11 (&)



3 A linear neutral system

3.1 Preliminaries

Let us consider a neutral system whose dynamics is described by the functional-differential
equation [56]
dx(r) dx(t—r)

% —-C o = 2(t,x(t),x)

x(t()) =x9 € R" (3.1
Xy =@ € W12([-r,0),R")

fort >tg, r > 0, x(t) € R", x, € W'2([—r,0),R"), where W'2([—r,0),R") is a space of all
absolutely continuous R” - valued functions with derivatives in a space of Lebesgue square inte-

grable functions on interval [—r,0) with norm || @ ||yy12= \/ff, (H o) |3+ | d%[) ||]12Qn) dt

The norm of the initial value (xp, @) is given by the formula

| Gx0:0) llgesawrz = 4/ 150 1+ 11 @ 1312 (32)

The function . is linear, continuous and defined on the space [0,0) x R" x W12([—r,0),R")

£ :10,00) x R" x W2([—r,0),R") — R"

The solution of the functional-differential equation (3.1) with initial value (xq, @) for z > 1y is
an absolutely continuous function with values in R” and is denoted as x(-, 9, (xo, @)).

We say that x(z,1, (xo, @)), for t > ty is a solution of system (3.1) if it satisfies the system
equation (3.1) almost everywhere on [fy,).

The function x;(ty,(x0,¢)) € W'2([-r,0),R") is a shifted restriction of function
x(+, 19, (x0,)) to the interval [t — r,1).

The initial condition for equation (3.1) can be written in a form

R (t07 (X(), (P)) =0 3.3)

90



We assume that system (3.1) admits the trivial solution, i.e., the following identity holds:
g (t,ORn,OWLz) =0

for ¢t > 0.
Let x(t,t9, (xo, @)) for r > to be the solution of system (3.1) with initial condition (xo, ®).

Definition 3.1. [56] The trivial solution of system (2.1) is said to be stable if for any € > 0
and ty > 0 there exists 5(&,ty) > 0 such that for every (xo, @) € R" x W12([—r,0),R")

I (x0; @) [lrnscw12< 6(&:10) = || x(2,10, (x0,9)) [ < €

for every t > ty.

Definition 3.2. [56] The trivial solution of system (2.1) is said to be asymptotically stable if
it is stable and || x(t, 1y, (x0, @)) ||gn—> 0 as t — 19 — oo.

Definition 3.3. [56] The trivial solution of system (2.1) is said to be exponentially stable
if there exist 6 > 0, M > 1 and & > 0 such that for every ty > 0 and initial condition
(x0,9) € R" x WL2([—1,0),R"), with || (x0,®) ||gnxw12< 8 the following inequality holds

1 x(2, 10, (x0. ) llrn < Me™ =) || (x0, @) [|zneppr

for every t > ty.

Assumption 1. We assume that the difference x(z, 1, (xo, ¢)) — Cx(t — 1,10, (X0, ®))
is continuous and differentiable for > #(, except possibly a countable number of points.

Assumption 2. We assume that there exists the right-hand-side derivative of the difference
x(1,19, (x0, @) — Cx(t — 1,19, (x0, ®)) at the point t = 1.

Let x(¢,%o, (x0, ®)) be a solution of the initial value problem (3.1) then

(0,10, (30.0)) = Calt = o, (10,9) +9(0) = Co(=r)]+ [ Z(s.x()x)ds  (34)

for t > ty.
If 6, € [—r,0] is a discontinuity point of ¢ then according to Assumption 1 the function

2(t) = Cx(t = 1,10, (x0, @) +[9(0) — Cop(=7)]

has jump points of discontinuity at #, =ty + 01 + kr, for k > 1, and the size of the jump
at the points is such that Ax(f;) = CA@(60;) where Ax(t;) = x(t; + 0) — x(t; — 0) and
Ax(tk_H) = CAx(tk) for k > 1.
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We obtained the jump equation

Ax(lk+1) = CAx(tk) 3.5)
for k > 1.
The jump equation implies

Ax(fr1) = C*Ax(1y) (3.6)

for k> 1 and 1, =ty + 6 +kr.
For a given ¢ € [fy,o) we define an integer k such that ¢ € [to + (k— 1)r,tp + kr).
The solution (3.4) for ¢ € [ty + (k — 1)r,79 + kr) we can express in a form

k—1
x(tvt()v (Xo, (p)) = Ckx(t — nio, ()CU, (P)) + Z Cj[(p(o) _C(p(_r)}_F
j=0

-1 T
JrZ’Cj/.i”(s,x(s),xx)ds 3.7
=0

fo

Corollary 3.1. The system (3.1) cannot be stable if the matrix C admits an eigenvalue with
magnitude greater than one.

Indeed, if the matrix C has an eigenvalue with magnitude greater than one, then for any & > 0
there exists an initial function (xo, @) € R" x W12([—1,0),R"), with || (x0,®) ||gnypy12< S,
such that the corresponding solution x(¢,7y, (xo, )) has a sequence of jumps, and the size of
jumps tends to infinity, see (3.6) and (3.7).

The arbitrary eigenvalue of the matrix C will be denoted as A (C).

Definition 3.4. The spectrum o (C) is the set of eigenvalues of matrix C, i.e. the set of complex
numbers A for which a matrix Al — C is not invertible.

6(C)={A €C:det(AI—C) =0} (3.8)

Definition 3.5. The spectral radius of a matrix C is given by a form

Y(C) =sup{[A[: 1 € o (C)} 3.9)

Definition 3.6. The matrix C is called a Schur stable matrix if the eigenvalues of C lie in the
interior of the unit disk of the complex plane, i.e. if the spectral radius y(C) < 1.

The Corollary 3.1 motivate the following assumption.
Assumption 3. In that monograph we assume that matrix C is Schur stable.
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3.2 A linear neutral system with lumped delay
3.2.1 Mathematical model of a linear neutral system with lumped delay

Let us consider a linear neutral system, whose dynamics is described by the functional-
differential equation [13]
dx(r) k _dx(r—1) k
— VB — 7 = Ax(t Aix(t—;
a BN T4 X0+ L A=)
x(to) = X0
x(to+6) = ¢(6)

forr > 19,0 € [-r,0) x(r) eR", A A;, Bie R, i=1,.,k,0<7<.. <7, <..<m; =,
@ e W12([-r,0),R"), where W2 ([—r,0),R") is a space of all absolutely continuous functions
with derivatives in a space of Lebesgue square integrable functions on interval [—r,0) with
values in R”. The solution of the functional-differential equation (3.10) with initial value
(x0, @) for t > 1y is an absolutely continuous function with values in R” and is denoted as
x(+, 10, (x0,9)).

Equation (3.10) can be written in a form

(3.10)

dx(t) k&, dx(—7)
dt B ,‘51 B dt N Ax( ) + 121 AIXI( )
x(t()) = X0

= 9 eWI(=r0).R")

@3.11)

for ¢ > ty, where x, € W2 ([—r,0),R") is a shifted restriction of the function x(-,fy, (xo, ®))
to the interval [—r,0). The theorems of existence, continuous dependence and uniqueness of
solutions of equation (3.11) are given in [32].

Definition 3.7. The difference equation associated with (3.11) is given by a term
k
x(1) =Y Bix,(—7) (3.12)
i=1

fort > ty.

According to the Theorem 9.6.1 [40] a difference equation (3.12) for fixed rationally
independent
O0<n<.. <1 <..<1g

is stable if
k .
supsy | Y e®B; | :0;€(0,27],1<j<kp <1 (3.13)
j=1
where y (Z _,¢9B ) is the spectral radius of a matrix Z _,€"%B;.
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If each B is a scalar then a difference equation is stable if and only if
k
Y IB;I<1 (3.14)
j=1

A new variable y, is defined by the formula

k
y(1) = x(t) = Y Bixi(— 1) (3.15)
i=1
for t > 1y
Thus the equation (3.11) takes a form
dy(t k
% =Ay(t) + X (Ai+ABi)xi(—T)
i=1
k
1)=x(t)— ¥ Bx/(—7;
(1) = ()~ ¥ B (%) 16
k
Y(IO) =X0— ';lBl(p( Tz)
x,o = (p

Let us assume that the matrices B; for i = 1,..., k fulfill the condition (3.13).
The state of system (3.16) is a vector

S(t) = [ y(1) ] (3.17)

for t > 1y
The state space is defined by the formula

X =R"x W'2([~r,0),R") (3.18)

The norm in the state space X is defined by a term

15) llx= /150 o+ 11 112 (3.19)

for t > 1.
In the parametric optimization problem is used the performance index of quality, which value
is given by the formula

J= / Y (OWy(t)dt =V (y0, @) (3.20)
fo

where V is the Lyapunov functional defined on the state space X and W is a positive definite
matrix.
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3.2.2 Determination of the Lyapunov functional for a neutral system
with one delay

Let us consider a system [19]

di;—(tt) =Ay(t)+ (A1 +ABy)x;(—r)
y(t) = x(t) = Bix:(—r) (3.21)
y(to) =x0 —B19(—r)

xf():(p

The state of system (3.21) is a vector
S(t) = [ y(t) ] (3.22)

for t > 1.
The state space is defined by the formula

X =R"x W'?([-r,0),R") (3.23)

On the state space X we define a quadratic functional V positive definite, differentiable, given
by the formula

0

0 0
Vin).x) =y a0+ ¥ 0B(©)x(0)a8 + [ [ (0)5(6.0)x(0)dods (324
—r —r 6

for t > to, where o € R™" B € C'([~r,0],R™"), § € C'(Q,R"™")

Q={(0,0): 6 €[-r,0], 6 €[0,0]} C! is a space of continuous functions with continuous
derivative.

In this paragraph will be given a procedure of determination of the functional (3.24) coefficients
to obtain the Lyapunov functional.

The time derivative of the functional (3.24) on the trajectory of system (3.21) is computed.
This time derivative is defined by the formula (2.10) which for system (3.21) takes a form

dv (y(tp), . 1
M =limsup — |V (y (to+h) ,x,0+h) -V ((to), ) (3.25)
dt h—0 N
It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (3.24) and one substitutes in place of dy(t)/dt and dx,(0)/dt
the following terms
dy(t)

Ix(8)  x(0)
ar 06

(3.27)
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In such a manner one attains

W =y (1) [ATOH—OCA—Fﬁ(Oﬂ y(t)+
+y" (1) [(e+a”) (A1 +AB1) + B(0)B1 — B(—r)| xi(—r)+

0
+/ﬂaﬂ#ﬁ() Wﬂ)+5%em}(mﬂu
+ [ (=)l +AB))TB(6) + B 87 (6,0 6(~r.6)lx,(6)d6+

f [0 [228:2),990:9) oy

—re

for t > 1.
To achieve negative definiteness of that derivative we assume that

av(y(t),x)

I = T (W)

From relations (3.29) and (3.28) one attains the set of equations

Alo+oaA+B(0)=-W
(a+a’) (A1 +ABy)+B(0)B; — B(—r) =0
ATB(6) — dﬁ( )+6T(e 0)=0

(A1 +AB) B(6)+B57(6,0)-5(—r,0)=0

d6(6,0) n 26(6,0)

90 Jo Y

for 6 € [-1,0], o € [6,0].
The solution of equation (3.34) is as below

5(0,0) = f(6—0)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

for @ € [-r,0], o € [8,0], where f € C'([~r,r],R™"), C! is a space of continuous functions

with continuous derivative.
From equation (3.32) one determines the term

_dp(e) _
87(6,0) = T —ATB(6) = £7(0)
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and one puts it into relation (3.33). After some calculations one gets

B E G AT (6) - 6(-r0) =0 6.37)

It follows from equation (3.36) that

T —r—
8(—n0)=f(-r—0)= —W —BT(-r—0)A (3.38)

One puts the term (3.38) into (3.37) and one obtains

T(_,_
g PO AT apio) BT (o) (3.39)

After putting in the relation (3.39) a new variable —r — 0, instead of an independent variable
0, one attains the equation

e T
U0 47O

=ATB(-r—0)+B7(8)A (3.40)
The set of differential equations are obtained

(o)  dp’(-r—6)
BlZee * o

=—AlB(6)—B"(-r—0)A

; (3.41)
dB(—r—6)  dB”(6)
T _ATR( T
Bj T 8 =A|B(-r—0)+B"(6)A
The new function is given
k(0)=p(—r—0) (3.42)
The set of equations (3.41) takes a form
dp(e) , dx"(e)
T _ _AT _ T
B 70 + 70 A1 B(B)—x"(8)A
, (3.43)
dx(6)  dB(6)
T _ AT T
Bj P TIT Al x(0)+B"(6)A
The set of equations (3.43) can be written in the form
ap(e dpT(e
BIO) gy 2B O) g — ATB(0)5: +ATB(0) + 17 (0)(AB, +4)
’ (3.44)
d’;(:) —BleKde(e)Bl — —BT(0)(A| +AB;) —ATk(0) —ATk(8)B,

To obtain the solution of equations (3.44) one needs the initial values B(—r) and k(—r).
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Equation (3.42) implies that
k(—r) = B(0) (3.45)

B(6) lo——z=x(6) lo—— (3.46)

Equations (3.30) and (3.31) take a form
ATa+ oA+ x(—r)=-W (3.47)

(a+a’) (A +ABy) + k(—r)B; — B(—r) =0 (3.48)

The set of algebraic equations (3.46) to (3.48) enables to obtain the matrix & and the initial
conditions of the ordinary differential equations (3.44).

3.2.3 The example. Inertial system with delay and a PD controller

Let us consider a first order inertial system with delay described by the equation [19]

dx(t) g ko
P —?x(t) + ?u(t —r)
*(t0) = %o (3.49)
x(th+6)=0
ule) = —pr(0) - 7,20

t>1y, x(t) €R, 0 € [-1,0), p, ko, T, Ty, g, x0 €ER, r > 0.

The parameter kg is a gain of a plant, p is a proportional gain, 7, is a derivative gain, T is
a system time constant, xy is an initial state of system. In the case ¢ = 1 an equation (3.49)
describes a static object and in the case ¢ = 0 an equation (3.49) describes an astatic object.
One can reshape an equation (3.49) to a form

dx(t)  koTydx(t—r) ¢ kop

a v a - O
x(t0) = x, (3.50)
x(0) =

fort >ty and 6 € [—r,0).
It is assumed that the element ko7, /T satisfies the condition (3.14), whose takes a form

koTy

1 Sl
T < (3.51)
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The Lyapunov functional V is defined by the formula

0
V(5(e),x(1+) = () + [ BOI(e)x(e-+ 0)do-+

0 0
+ _/ e/ 5(8,0)x(t + 0)x(t + 6)dcdd

where

y() =x(t) + ko#x(t —r)

(3.52)

(3.53)

In a parametric optimization problem is used the integral quadratic performance index of

quality

J= /wyz(t)dt =V(y(t),0)

The set of equations (3.44) takes a form

dp(6)
de :|:P1 szﬁ(G)}
dx(0) P2 =D k(0)
do
where
_ kgpT —qT
Y= e
Dy = kopT — gkoTy
TRk
The fundamental matrix of solutions of equation (3.55) is given by the term
cosh(16) + 2L sinh(16) — P2 Ginh(10)
A A
R(0) = » »
TZ sinh(10) cosh(16) — 71 sinh(1.6)

where

2 252
R EE
T2 - IKT;

The solution of the set of equations (3.58) is given by the formula

B(6) = [cosh(10 +7) + LL sinh(16 + r)]B(~r) — % sinh(18 + r)k(—r)

A

k(0) = 22 sinh(A6 + r)B(—r) + [cosh(A0 + ) — % sinh(16 + r)]k(—r)

A

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
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The initial conditions of equation (3.58) and the coefficient & are obtained from the set of
algebraic equations (3.46)—(3.48) which takes a form

[cosh(ﬂ) L sinh(&)}ﬁ(—r)—f—

2 A 2
+[—cosh<%) +¥sinh(%>}x(—r) =0 (3.62)
_ %w (—r) = —w (3.63)

koTy — kopT koT,
ykola —kopT ~ kola
T2 T

From equation (3.63) one can determine a term k(—r) and substitute it into (3.64) and (3.62).

(=r)=B(-r)=0 (3.64)

Ke0:7w+%a (3.65)

From equation (3.64) one determines a term f3(—r)

kop koTy
— W

Bl=r)=-2—Fa+— (3.66)

One puts the terms (3.65) and (3.66) into (3.62) and one obtains a parameter o

(T—kon)(pl —pz) . Ar Ar
0 s1nh(7> — (T +koTy) cosh(j)

w
"2 (g—kop)(p1—p2) (A Ar
1 smh(7) —(g+kop) cosh(7>

o

(3.67)

The coefficient 6(6, o) is obtained from equations (3.35), (3.36) and (3.55)

5(6,0) = (p1+)B(6 — ) — p2x(6—0) (3.68)

We compute the value of the performance index (3.54) for initial function @ given by a term

xg for6=0
¢(0) = (3.69)
0 for6 e [—r0)

After calculations one obtains

(T — koTy) (p1 —msinh(%) T+ kon)cosh(E)

J v A 2 (3.70)

2 (C]*k()l’))fpl fpz)sinh(g) _ (q+k0p)cosh(%)
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We search for an optimal parameters of a PD-controller which minimize the index (3.70).
Optimization results are given in Table 3.1. These results are obtained for xo = 1, w = 1,
qg=1,T =5, and ky = 1.

Table 3.1
Optimization results
Delay r | Optimal p | Optimal 7; | Index value
1.0 5.0838 2.3664 1.0245
1.5 3.3438 2.2797 1.3567
2.0 2.4745 2.1945 1.6096
2.5 1.9532 2.1110 1.8035
3.0 1.6055 2.0290 1.9528
35 1.3569 1.9486 2.0685
4.0 1.1699 1.8698 2.1586

3.3 The Lyapunov functional for a neutral system
with both lumped and distributed time delay

3.3.1 Mathematical model of a linear neutral system
with both lumped and distributed time delay

Let us consider a linear neutral system with both lumped and distributed time delay, which
dynamics is described by the functional-differential equation [21]

0
dx(t) dx(t—r) B
I —C 7 = Ax(t) + Bx(t r)+/Gx(t+9)d9
-r (3.71)
x(t()) = X0

x(to+8) = 9(6)

for t > t9,r >0, A,B,C,G € R™", x(t) € R", 8 € [-r,0), ¢ € W' ([~r,0),R") where
W12([~r,0),R") is a space of all absolutely continuous functions [—7,0) — R" with
derivatives in L?([—r,0),R") a space of Lebesgue square integrable functions on an interval
[~r,0) with values in R".
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The solution of the functional-differential equation (3.71) with initial value (xo,¢) is an
absolutely continuous function defined for r > £y with values in R"” and is denoted as

x('7t07 (‘x07 (P))
Equation (3.71) can be written in the form

dx(t) Cdx,(fr)
dt dt

= Ax(t) + Bx; (— +/Gxt )do

(3.72)
x(to) =x9 € R"

=@ e W2 ([-r,0),R")
for t > to, where x, € W12 ([—r,0),R") is a shifted restriction of x(, y, (xo, ¢)) to an interval
[f —rt).

The theorems of existence, continuous dependence and uniqueness of solutions of equation
(3.72) are given in [34].

Definition 3.8. The difference equation associated with (3.71) and (3.72) is given by a term
x(t)=Cx(t—r) (3.73)
fort >ty

The eigenvalues of neutral equation (3.72) for large modulus are asymptotically equal to the
eigenvalues of the difference equation (3.73). The stability of the difference equation (3.73)
is the necessary condition of the stability of the neutral equation (3.72).

According to the Theorem 9.6.1 [40] the difference equation (3.73) is stable when the spectral
radius y(C) of the matrix C fulfills the condition

Y(C) < 1 (3.74)

We assume that the matrix C is not singular and fulfills the condition (3.74).
We introduce a new function y, defined by a term

() = x(t) = Cxi (=) (3.75)

for t > 1.
Thus the equation (3.72) takes a form

) _
dt

y(t) =x(t) — Cx; (—r) (3.76)
=@ c WH2([-r,0),R")
y(to) = Yo

— Ay(t) + (AC+ B) x,(— +/Gxt

for t > tp where yo = xo — Co(—r).
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The state of system (3.76) is a vector
S(t) = [ y(0) ] (3.77)

for t > 1.
The state space is defined by the formula

X =R"x W'?([-r,0),R") (3.78)

In the parametric optimization problem is used the performance index of quality, which value
is given by the term

7= [ OWy(0dt =V (0. 9) (3.79)
fo

where V is the Lyapunov functional defined on the state space X and W is a positive definite
matrix. The controllability of systems with time delay is presented in [69].

3.3.2 Determination of the Lyapunov functional coefficients

On the state space X we define a quadratic functional V positive definite, differentiable, given
by the formula [21]

0 00
VO@)x) =y Oaxe)+ [ (0BO)x(0)a8 + [ [x](8)5(8,0)(c)dode (350

—r—=r

o= OCT e R, ﬁ c Cl([—I’,O],RnX”); S¢ CI(Q,Rnxn);

Q={(6,0): 06 c[-n0],0€[-n0]};

C' is a space of continuous functions with a continuous derivative.

In this paragraph will be given a procedure of determination of the functional (3.80) coefficients
to obtain the Lyapunov functional. The time derivative of the functional (3.80) on the trajectory
of system (3.76) is computed. This time derivative is defined by the formula (2.10) which
for system (3.76) takes a form

dav(y(to), . 1

Vi), 9) = limsup — {V (v (to+h) ,xi40) =V ((t0), @) (3.81)
dt h—s0 h

It is taken the following procedure. One computes the time derivative of each term of the

right-hand-side of the formula (3.80) and one substitutes in place of dy(¢)/dt and dx,(0)/dt

the following terms

d%(t’) :Ay(t)+(AC+B)xz(—r)+/Gxt(9)d9 (3.82)
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9x(0)  9x(6)

ETRRF T, (3:83)
In such a manner one attains
T
YO0 _ {AT(HOCM BO)+ B <o>] o
+7 (1) 20 (AC + B) + B(0)C — B (1))t (—r)+
+/yT(t) [ZaG—i-ATB( ) — dﬁ( ) +68(0,0)+87 (8, 0)] (0)d6+
+/x, )[(AC+ B) ﬁ(@)JrCTS(O,G) —8(-r,0)4+CT87(0,0)—87(0,—r)|x(0)dO+
+ / / A ( [GT[E ‘9659%’ o) _ ‘95;6;’ °) ] x(0)dodd (3.84)
To achieve negative definiteness of that derivative we assume that
dv :
% = (OWy(r) (3.:85)
From relations (3.85) and (3.84) one attains the set of equations
T
AT+ aA+ w =W (3.86)
20 (AC+B)+B(0)C—B(—r) = (3.87)
2aG+AT/3(9)—%?+5(0,9)+5T(9,0): (3.88)
(AC+B)" B(6)+CT8(0,0)+C"67(0,0)—8(—r,0)—87(6,—r) =0 (3.89)
Jd6(0,0) d6(6,0)
50 + 5o =G B(o) (3.90)
for 6, o € [—r,0].
Let us consider a solution of equation (3.90) as below
5(6.0)=1(6—0)+f"(c—0)+ [ G"B(E)as (39
0

where f € C'([-r,7]).
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From equation (3.91) it attains

5(0,0)+87(0,0)=27T(0)+2f(— +/GT[3 (3.92)

and
6 —r
8(—r,0)+87(0,—r)=2f(—r—0)+2fT(0+r) +/GTﬁ(§)d§ +/ﬁT(§)Gd§ (3.93)
0 0
We put a term (3.92) into equation (3.88) and we obtain the formula

dﬁ( )

20G+ATB(6) — +2fT(0)+2f(— +/GTﬁ YdE =0 (3.94)

Now we put the terms (3.92) and (3.93) into equation (3.89) and we get a relationship

(cTAT +B")B(0)+CT (2f7(0)+2f(—6)) —2f(—r—0) —2fT (6 +r)+

0 —r
HCT 1) [ GTB(E)ag ~ [ BT(E)GdE =0 (395)
0

0

From equation (3.94) we attain the term

| dB7(6)

T
2£(8) +2f7(~8) = 0

[°]
—BT(0)A—-2G" o — /ﬁT(g)Gdg (3.96)
0

and the term

dB’ (-6 —r)

78 —BT(—6—r)+

2f(—0 —r)+2fT (O +r)=—
—0—r

—2GTa— / BT (&)Gdé (3.97)
0

We put the terms (3.96) and (3.97) into equation (3.95) and after some computations we
obtain the formula

(rdB(8)  dpT(-6-r) _
de de

0
~B'B(6) - BT (-0 - A+ [ GTB(E)ag+
0

0
n / BT (=& —r)GdE +2C" aG —2G" a (3.98)
0
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In computations we used a relationship

—0—r

0
~ [ BT&)GdE = [ BT (-~ rGa
Z 0
We introduce a substitution

P 9(0) (3.99)

for 6 € [—r,0]
We compute a derivative of a term 7 (-0 —r)

dpT(~6 1)

_ _ 9T/ _pn__
7 =0T (—0—r) (3.100)

for 6 € [—1,0].
We can write equation (3.98) in a form

0
CT3(8)~ 0" (-0~ 1) = ~B7B(6) B (-6~ 1A+ [ G B(E)dE+
0

[}
+/ﬁT(*§ —r)GdE +2CT G —2G" o (3.101)
0

Taking into account the formulas (3.99) and (3.100) we calculate a derivative of both sides
of equation (3.101)

ordd(8) dv"(-6-1)

_ _nT T(_p_
76 e — —B"9(0)+ 07 (-6 — A+

+G"B(6)+ BT (—6—-1)G (3.102)
for 6 € [—1,0].

We transpose both sides of equation (3.102) and then we change a variable putting 6 = —& —r
and d6 = —d&. In this way we obtain

do(§) do'(=&-r)
dé dé

+BT (=& —r)G+GTB(&) (3.103)

C=—-0T (& —r)B+ATO(E)+

for & € [—r,0]. The sense of the formula (3.103) does not depend on the notation of the
variable, so we can use symbol 0 instead of &.
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We introduce new functions
k(8)=BT(-6—r) (3.104)

and
n(6) =0"(-6—r) (3.105)

for 6 € [—1,0].
Formula (3.101) takes a form

0
CT(6)-n(6)=-B"B(6) - K(G)A+/GTﬁ(é‘)d€+
0

0

+/K(<§)Gd§+2CTaG—2GTa (3.106)
0
for 6 € [—1,0].
From equations (3.104), (3.100) and (3.105) it results that
dx (6
d(9 ) =-n(0) (3.107)
for 6 € [—1,0].

Using the definitions (3.104) and (3.105) we can rewrite the relationships (3.102) and (3.103)
in a form

dv(6) dn(6)

Cl— = =g = B 0(6)+n(6)A+G"B(8)+K(6)G (3.108)
%f))*d%})c =—1(6)B+A"9(6)+x(6)G+G"B(6) (3.109)

for 6 € [—1,0].
We reshape a set of equations (3.108) and (3.109) then we add to them the equations (3.99)
and (3.107). In this way we obtain the differential equations set

dp(e)
TR
dk(0) _
79 = 1)
d%@) —CTdif)C =G"B(6)-G"B(B)C+K(0)G(I-C)+ATD(0)+  (3110)
+BTH(6)C—1(6) (B+AC)
+(B"+C"AT) 8(0) —n(6)A—-C"n(6)B

for 6 € [—r,0] with initial conditions B(—r), k(—r), 3(—r), n(—r).
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From formulas (3.104) and (3.105) it implies that the solution of equation (3.110) satisfies
the relationships

K(60) lo=—;=B"(6) lo—; (3.111)

n(6) lo——;="10"(6) lp——z (3.112)

We determine a value of the initial conditions of system (3.110) to obtain a solution of the
set of differential equations (3.110) on the interval [—r,0].

From formulas (3.104) and (3.105) it implies that there exist the connections between initial
conditions

BO)=x"(-r)  x0)=B"(-r) BO)=n"(-r) 00)=0"(-r) G113
We calculate a value of a formula (3.106) for 6 = 0. Taking into account the relationships
(3.113) after transposition we obtain

N(=r)C—(—r)+ x(—r)B+ATB(—r) —2GT aC +20G =0 (3.114)

Taking into consideration the conditions (3.113) we rewrite equations (3.86) and (3.87)
into a form

_ T(_
ATa+aA+W=—W (3.115)
200 (AC+B) + k' (=r)C—B(~r) =0 (3.116)

The set of equations (3.114) - (3.116) and the terms (3.111) and (3.112) enable us to compute
the initial conditions of the differential equations (3.110) and the matrix «. This equations
composition constitutes the algebraic equations set with unknown B(—r), k(—r), ¥(—r),
n(-r), a.

Taking into account a term (3.99) we can write a formula (3.96) in a form

1(0)+17(~0) = 3 97(6) ~ L7 (0)A~ T~ |

N

[}
/ﬁT(g)Gda: 3.117)
0

According to a formula (3.91) and (3.117) we attain a term
L o7 L7
6(6,0)= 519 (06—0)— 5[3 (6 —0)A+
| 6—oc o
~5 [ BT&)GaE+ [ GTB(E)dE -G a (3.118)
0 0

In this way we obtained all the Lyapunov functional coefficients.
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3.3.3 The example

Let us consider a system described by the equation [21]

0
dx(t)  dx(t—r)
o T T ax(t) +bx(t—r) +/gx(t+ 0)do
= (3.119)
x(l‘()) = X0

x(to+6) = ¢(6)

fort > 1y, 0 € [-1,0), x(t) €R, ¢ € W'2([~1,0),R), a,b,c, g €R, ¢ #0, | c|< 1,7 >0.
We introduce a new variable

y(t) =x(t) —cex(t —r) (3.120)
for t > 1.

Formula (3.119) takes a form

d}:{(;) :ay(t)+(ac+b)x(l‘fr)+/gx([+6)d0
y(t) =x(t) —ex(t —r) B (3.121)

¥(t0) =x0 —c@(—r)
x(to+8) = 9(0)

fort >ty, 0 € [-1,0), y(t) €R, ¢ € W'2([-r,0),R), a,b,c, g €R, c#0, | c|<1,7r>0.
The Lyapunov functional is defined by the formula

0
V(). x(t +-) = (1) + / W(O)B(O)x(t+6)do+

00
+/ /5(6,G)x(t+6)x(t+c)d6d6 (3.122)

—r—r

We write the set of differential equations (3.110) for system (3.121)

[ dPO) 1T 0 0 1 0 ]
do
dx(6) 0 0 0 - A(O)
o | be b ¥(6) (3.123)
d9(6) g §_ atbe Drac 1l yg)
T 1+c¢ 1+c¢ 1—c 1—c
n(e)
dn(6) 8 8 b+ac _a+bc
L do L 1+4c l4¢c 1—¢2 1—¢c2 |
for 6 € [—1,0].
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The solution of the differential equations (3.123) system is given by a term

B(6) B(—=r)
k(0) | _ o | K
19(9) —'P(G+ ) 0(_r> (3.124)
n(6) n(-r)

for 6 € [—r,0], where ¥(0) is a fundamental matrix of system (3.123). The coefficient ¢ and
initial conditions of system (3.123) one obtains by solving the algebraic equations set

2a0+ k(—r) = —w
2(ac+b)o—B(—r)+cx(—r)=0

2g(1—c)ataP(=r)+bx(-r) = 9(=r)+cn(-r) =0 (3.125)
B(6) lo=—5=x(6) [o=—
19(6) |9:7%: T](G) |9:,%

where w is a positive real number.
Having solution of equation (3.123) we can obtain a coefficient 6(6,0)

6—c c
5(6.0)=30(0 o)~ 2aB(0—0)~ga—3 [ gBEME+ [¢B(E)aE  (3126)
0 0

Figure 3.1 shows the functions 3(6),x(0),9(0),n(0) graphs and the o value attained by
means of the Matlab code for given parameters a, b, ¢, g, w of system (3.119).

a=-1b=2c=0.9 g=1w=1r=1
15 ’ . : : ‘ :

—B®
~ = K(®)
if - - -96)

: ne)

] | alfa=0.3365

-1 -0.8 -0.6 -0.4 -0.2 0
-r<0<0

Fig. 3.1. Functions 3(6), x(6), ¥(0), n(0)
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3.4 A linear neutral system with a time-varying delay

3.4.1 Mathematical model of a linear neutral system
with a time-varying delay

Let us consider a linear neutral system with a time-varying delay, whose dynamics is described
by the functional-differential equation [18]

d);(tt) _Cdx(t ;tf(t)) = Ax(t) + Bx(t — (1))
x(t) =xp € R" 2D

x(to+6) = ¢(6)

where t > 19, 0 € [—1,0), T(¢) is a time-varying delay satisfying the condition 0 < 7(r) <r,
dt(t)/dt # 1 where r is a positive constant A, B, C € R"*" and C is non-singular, x(z) € R",
¢ € W12 ([-r,0),R"). W'2([-r,0),R") is a space of all absolutely continuous functions
[~1,0) — R" with derivatives in L*>([—r,0),R") a space of Lebesgue square integrable
functions on an interval [—r,0) with values in R”.

The space of initial data is given by the Cartesian product R" x W12([—r,0),R").

One can obtain a solution of FDE (3.127) using a step method. The step method is a basic
method for solving FDE with a lumped delay. A solution is found on successive intervals, one
after another, by solving an ordinary equation without delay in each interval.

The solution of equation (3.127) with initial value (xq, ¢) is an absolutely continuous function
defined for ¢ > #o with values in R” and is denoted as x(-,, (xo, ®)).

Definition 3.9. The difference equation associated with (3.127) is given by
x(t) =Cx(t — (1)) (3.128)
fort > t.

The eigenvalues of the difference equation (3.128) play a fundamental role in the asymptotic
behavior of the solutions of neutral equation (3.127). The difference equation (3.128) is stable
when the spectral radius y(C) of the matrix C fulfills the condition y(C) < 1.

A new function y is introduced and defined by a term

y(#) =x(t) —Cx(t —t(t)) (3.129)

for t > 1.
Thus the equation (3.127) takes a form

%Y) = Ay(t) + (AC+B)x(t — (1))

y(t) =x(t) — Cx(t — (1)) (3.130)
y(t0) =x0 —Co(—1(1))
x(to+6) = (0)
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It is assumed that y(C) < 1. Equation (3.130) can be written in the form

diii(tt) = Ay(t) + (AC+ B) x;(— (1))

y(t) =x(t) — Cx(t — (1)) (3.131)
y(to) = xo —Co(—1(t))
Xy =D

where x; € W2 ([~r,0),R") is a shifted restriction of the function x(-,f, (xo,)) to the
interval [—r,0). The state of system (3.131) is a vector

Xt

S(t) = [ y(®) ] (3.132)

for t > ty, where y(t) € R", x, € W'2([-r,0),R").
The state space is defined by the formula
X =R"x W'?([-r,0),R") (3.133)

The norm in the state space X is defined by the formula

18Ge) llx= /11 0) 1B + 1 1312 (3.134)

for t > 1.
In a parametric optimization problem is used an integral quadratic performance index of
quality, which value is given by the term

7= [ OWy(0d =V (0. ) (3.135)
fo

where V is the Lyapunov functional defined on the state space X and W € R™*" is a positive
definite matrix.

3.4.2 Determination of the Lyapunov functional

Let us consider a quadratic functional on X X [fg,o0), where X is defined by (3.133), given
by the formula [18]

0
V(y(0),x.1) =y (a()y(r) + /yT(t)ﬁ(9+f(t))xz(9)d9+
—1(t)
0

0
+ / /x,T(6)6(6+T(t),6+r(t))x,(6)d6d6 (3.136)
—1(r) 0

fort >ty where a € C! ([tg, ), R"™"), B € C'([0,7(¢)],R™"), § € C'(Q,R™"),

Q={(6,0): 6 €0,7(t)], 0 €[0,0]},0 < 7(¢) < r, where C! is a space of all continuous
functions with continuous derivative.
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In this paragraph will be given a procedure of determination of the functional (3.136)
coefficients to obtain the Lyapunov functional.

The time derivative of the functional (3.136) on the trajectory of system (3.131) is computed.
This time derivative is defined by the formula (2.10) which for system (3.131) takes a form

dv(y(1), @, . 1
WOLOL90) _ jmwup L[V (y10-+ 1) iyt )~V (i) gt0)] (3137
t h—0 h

It is taken the following procedure. One computes the time derivative of each term of the
right-hand-side of the formula (3.136) and one substitutes in place of dy(r)/dt and dx,(0)/dt
the following terms

DU py(e) + (AC +B)m(—<(0) (3.138)

Ix(8)  x(0)
ar 06

(3.139)

In such a manner one attains

dv (y(t),x,1)
dt

=" (1) [ATa(r) + a(r)A + di—f) +B(z)] v+

+37 (1) [ (@(0) + &7 (1)) (AC+ B) + B ((1)) C + B(0) (d%t) —1) | (=2 () +
0
4 / yT(I)[ATﬁ (G—I—T(l‘))—i- dﬁ (6; T(t)) _ dB (ed"g T(t))+

—(1)

0
+87 (0 +7(t), T(1))}x (0)d + / i (=3(0) [(AC+B) B (0 + (1)) +
—1(1)
+CT 8T (0+1(t), () + 8 (0,0 + (1)) (‘“(”

dt

- 1)}x,(e)de+

/0 /Oxf(e)[dS(GJr‘c(t),GJrT(t)) _98(8+(1),047() |
)8

- dt a6
—1(t
a6 (0
_99( +T(t)’c+r(t))]x,(o)d0'd6 (3.140)
do

for t > to where a € C! ([tg,0), R"™"), B € C'([0,7(¢)],R™™"), § € C'(Q,R™"),
Q={(6,0): 6]0,7(r)],c€[6,0]},0<7(t) <r.

To achieve negative definiteness of that derivative we assume that

av(y(t),x,1)

_ T
=—y' (t)Wy(t 3.141
o ¥ (O)Wy(r) (3.141)
From relations (3.141) and (3.140) one attains the set of equations
do(t
ATa(t)—i—a(t)A—km—kB(r(t)) =W (3.142)

dt
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(AC+B) B(O+1(t))+CT8" (0 +1(),7(r)) + 8 (0,0 +7(r)) (

(oc(t)+ocT(t)) (AC+B)+B(z(t))C+B(0) (dr(t) - 1) =0

ATB(0+1(1))+

dB(0+1(r) dB(6+1(t))

dt

dt

deo

dt(r)
dt

+8T(0+1(1),7(r)) =

_1):0

d§ (0 +1(1),06+1(1) 98(0+7(r),0+1(1)) I8(6+71(t),0+7(r))

dt

00 Jo

fort > 19; 6 € [—1(¢),0]; o € [6,0] where 0 < 7(¢) < r.
The new variables are introduced

The derivatives are calculated

The formula (3.146) takes a form
95(&.n)  98(5,n)

forz >1, 0 € [—1(1),0], 0 € [0,0], & € [0,7(¢)],n € [§,7(r)] where 0 < 7(r) <.
The formula (3.144) takes a form

114

ds(0+1(t),c+1(t)) d8(&,mn) 96(&,n)dr(r)

E=0+1()

n=o0+1(t)

0

=0

98(§,n) dz(t)

dt

dt d& dt an

d6(0+1(t),0+1(t)) d6(&,n) d8(&,n)

a0

26 F)2

98 (6+1(1),0+1()) _d8(5,n) _ 95(5,n)

(

Jo

do an

dB(6+1(t)) _ dB(5) 9§ _ dB(§) dt(r)

dt

dé 9t dE di

dB(6+1(t)) _ dB(5) 9§ _ dB(&)

dt(r)

de dé 00  dE

=0

98 an

BES) | ATp(&) + 57 (& 7)) =0

dt

)

dg

dt

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)

(3.153)

(3.154)

(3.155)



The formula (3.145) takes a form

(AC+B)" B(&)+CT 8T (&,7(1)) + 8 (0,€) (d;(tt) — 1) =0

The solution of equation (3.146) is given by the formula

6(0+7(t),0+1(t)) =6(6,n) =f(E—n)=f(6—0)

for t > 19, 8 € [~1(¢),0], o € [8,0], 0 < 7(¢) < r where f € C! ([—r,r],R™")

The formula (3.155) implies

87 (6.0 =7 (& - w0 = - (50 1) B -t

One puts the term (3.158) into (3.156). After calculations one obtains

d§

From the relation (3.158) one can determine the term 6(0,&) = f(—§)

B8 _ (40

~1
(1) Fe@re0g)

~B" (=& +1(r)A

f(_é) _ (dzgt) _ 1) dﬁ (_d§§+ T(t))

and put it into (3.159). In this way the relation is obtained

(&) (dr(r) dpT (& +1(1))
cr e ()

—1
:<d;§f>_1) BTB(E)— BT (~& +1(1))A

for £ € [0,7(¢)] where 0 < 7(r) < r

(3.156)

(3.157)

(3.158)

(3.159)

(3.160)

(3.161)

Into the formula (3.161) instead of & one substitutes the new variable —& 4 ©(r). After

calculations the formula is attained

(df(t) _ 1) dB(&) dp’(=§+1(r))

dt dE dE €=

_ (df“) _1) BT(—& +2(1)B—ATB(E)

dt

(3.162)
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In this way one obtained the set of differential equations

) (40 ) aBT (=& +(1)

dE dt dg
(3.163)
dt(r) dB(&)  dBT(—E+1(r))
(dt _1) & d& €
-1
:<d:l(t’)—1> BT (=& +1(t))B—ATB(E)

for ¢ > 1y, & € [0,7(¢)] where 0 < 7(r) < r with the initial conditions B (0) and 8 (7 (¢)).
One can reshape the set of equations (3.163) to the form

criBlc (45) 1>2"’3<5> - (2 arpee)

dé 71dt ? dr
(1) FBEIC- BT (L o) ACB)
i (3.164)
cr B e (G -1) - @ n+
(- D)arp-g o) - (52 -1) g+

for ¢ > g, & € [0,7(¢)] where 0 < 7(r) < r with the initial conditions f (0) and 8 (7 (¢))
There holds the relationship between (&) and B(—& + 7(¢))

B le_zp=B(=E+7(0) |;_=p (3.165)

The derivative of the equation (3.143) with respect to ¢ is calculated

T 2
(420440 sy D B0 (150
(3.166)
wher
o apo) _ ap(&) d(r) 3.167)
dt  dE ar &0 '
d d d
Equation (3.164) implies
dB(0) de(r)  \*dB(0) _dt(r) (dz(r)
' dr C_<dt_1) a dr (dt —1)AT[$(O)+
-1
90 (0 1) poc- BT s Gae)
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2
B e (420 Y BEO) 00 gy ey
-1
fd%t) (‘12(;) - 1>AT[3(r(t)) - d;gt) <d2(t’) - 1> BTB(z(t))C (3.170)
From equation (3.142) one obtains
d(ZEt) — ATa(r)— a()A— B(e(t) - G (3.171)

One puts the term (3.171) into the equation (3.166). After calculations one gets

[AT (a(t) +a” (1)) + (a(t) + " (1)) A] (AC+B) + (B(z(t)) + B (z(z))) (AC + B) +

2
_d%tgt)g(o) _ dﬁ(dft(”)c_ d@(to) (d:l(:) - 1) ——(G+G")(AC+B)  (3.172)

The matrix ¢(z), the initial conditions of system (3.164) and df3(0)/dt, dB(t(¢))/dr are
obtained by solving the set of algebraic equations (3.172), (3.143), (3.169), (3.176) and
(3.165). That set of equations is written below

[AT (a(t) +a” (1)) + (au(t) + & (1)) A] (AC+B) + (B(z(t)) + B" (z(t))) (AC + B) +

o B(0) - dﬁ(drt(t))cf d@(to) (d:l(tt) - 1) ——(G+G")(AC+B)  (3.173)

(a(t)+a’ (1)) (AC+B)+ B (t(t))C+ B(0) (d::) - 1) =0 (3.174)

crdBO) . (dr(t) - 1)2 dB(0)  dz(r) <d17(t) .

dt dt - dt

dt dt )ATﬁ(OH

L) (dr(t) B 1)‘ BB(0)C dz(r)

dr \ dr BT (x()) (AC+B) (3.175)

BT (0)(AC+B)+

dp(z(1)) dr(t)  \*dB(z(r)) d(r)
¢ dt C_(dt _1) d dt

-1
(4 ) apee - 0 (0 1) #TpGe Gate)

B l;_zp=B(=E+7(0) |;_=p (3.177)

2
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Having the solution of the set of differential equations (3.164) and taking into account the
formulas (3.147), (3.157) and (3.160) one can get the matrices

B(0-+5(1)) = B(E) le—o.r) (3.178)
5(6+1(1),0+1(t)) = f (G 0) (3.179)
where
T
o) = (50 1) BB e (3.180)

fort >19; 6 € [—7(¢),0]; 0 € [0,0] where 0 < 7(¢) < r.

In this way one obtained all coefficients of the functional (3.136). This coefficients depend
on the matrices A, B and C of system (3.131). The time derivative of the functional (3.136)
is negative definite.

3.4.3 The example. Inertial system with delay and a PD controller

Let us consider a first order inertial system with delay described by the equation [19]

dx(t) ¢ ko
P —?x(t) + 7u(t —1(1))
x(to) = x,
08 0 (3.181)
ule) = —pr(t) - 7,20

t > 1o, x(t) ER, 0 € [-1,0), p, ko, T, Ty, q, xo € R, 7(¢) is a time-varying delay satisfying the
condition 0 < 7(¢) < r, dt(t)/dr # 1 where r is positive constant. The parameter ky is a gain
of a plant, p is a proportional gain, Ty is a derivative gain, 7 is a system time constant, x is
an initial state of system. In the case ¢ = 1 the equation (3.181) describes a static object and
in the case ¢ = 0 the equation (3.181) describes an astatic object.

One can reshape equation (3.181) to a form

dx(t) n koTy dx(t —t(t)) q.

dt T dt T
x(to) = x, (3.182)
x(0)=0

for t >ty and 6 € [—1,0).
It is assumed that the element ko7, /T satisfies the condition (3.14), whose takes a form

koTy

1 1
T < (3.183)
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A new function y is introduced and defined by the term
y(t) = x(1) = Cx(r — 7(2)) (3.184)

for t > 1.
One can reshape equation (3.182) to the form

D) — Lyt + (B3 - B ) e w0

() = x(0) + 2 x(c — 2(1) (3.185)
¥(to) = xo

x(to+6)=0

Performance index of quality has a form

J= /yz(t)dt =V (y(to), @,t0) (3.186)
fo

The Lyapunov functional is given by the formula
0
V(3 (1) x,1) = a(0)y* (1) + / B(6+71(t)y(t)x (6)do+

—2(0)
0 0

+ / §5(0+1(1),0+7()x (8)x (0)dod8 (3.187)
—1(r) 0

where
x(6) =x(t +6)
for 6 € [-1,0), x, € W'2([-r,0),R)
The coefficients of the functional (3.187) will be obtained.
Equation (3.164) takes the form

dB(s)
o = | P B(&)
dB (=& +1() - { px =P } [ B (=& +1(r)) ] (3.188)

dg

for > 19, & € [0,7(¢)], where 0 < 7(r) <r

4 (dr(t) - 1) . K3 pT,
T\ dt - (df(t) 1)

dt
p1= (3.189)

RT? (dr(r) 12
e
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qkoTy 3 kol
T (3.190)

P2 =
§17 () ?
2\ dar

The fundamental matrix of the differential equation (3.188) is given by the formula

ChAE + BLSHAE f%mg
R(E) = (3.191)
P2 P1
Tshlé chA& — Tshlﬁ
where
2
Bp? = (42— 1)
RT? ([ de(r) 12
=\ @
A= (3.192)
- dt(r)
dr
Hence

(3.193)

—~ =
—~
=)
=

[E—'

st | 7RO

for r > 19, & € [0,7(¢)] where 0 < 7(¢) <r.
One needs the initial conditions of the set of differential equations (3.188) to obtain

B0+ (1)) = B (E) le_o-rt (3.194)
5(6+1(t),0+1(t)) = f (6 —0) (3.195)
o) = (L5 1) P o) (3.196)

fort > 1y, 0 € [—1(¢),0], 6 € [0,0] where 0 < 7(¢) < r.
The initial conditions of the differential equation (3.188) and the coefficient () are attained
by solving of the set of equations (3.173) to (3.177) which take the form as below

» <qkon B kop) o(t) + (konpsz(t) _d(1) o dz(t) (dr(t) B 1>) B(0)+

T2 T T dt dt? dt dt
gkoTy  kop koTy d’l?(l‘) d‘L’(l‘) d’l'(t)
2 e -1 =
+(2( B - BE) B 0 (42 B(x()
T,
_ o[ 9kTa _kop (3.197)
T2 T
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2(qkT°2Td —kOTp) a(t) + (df;)%)ﬁ(o)—m (1()) =0 (3.198)

- At(t Az(t
L (Pmp g AT AT gy — o (3.199)
A 2 2
We compute the value of the performance index (3.186) for initial conditions given below
¥(0) =xo
¢(6)=0
for 6 € [—1,0)
J(1) = x50(t)
for ¢t > 0.

Figures show the graphs of functions J(¢), B(&) and B(—& + 7(¢)) obtained with the Matlab
code, for given values of parameters g =1,T =5,ko=1,xp =l and 7(¢) = r(1 — exp(—%)),
r = 0.5 of system (3.185). Figure 3.2 presents the index value graph for p = 6.9003 and
T; = —4.6802. These values are called the critical values of p and 7. For p and T, greater
then critical ones system (3.185) becomes unstable.

15
J(1)
p=6.9003
10+
Td=-4.6802
5 -
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time in sec

Fig. 3.2. Value of the index J(¢) for p = 6.9003 and T; = —4.6802
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Figures 3.3-3.5 show the functions J(z), B(&) and B(—& +7(¢)) for p=5and Ty = —2.

0.9

J®

p=5

Td=-2

0.1 - - -
0 2 4 6 8 10
time in sec

Fig. 3.3. Value of the index J(¢) for p=5and T; = -2

—BE®

p=5

Td=-2

0 0.1 0.2 0.3 0.4 0.5
0<E<T(l)

Fig. 3.4. Function (&)
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0 0.1 0.2 0.3 0.4 0.5
0<i<1()

Fig. 3.5. Function B(—¢& +7(7))
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4 The Lyapunov matrix
for a retarded type time delay system

4.1 Mathematical model
of a retarded type time delay system

Let us consider a time-delay system

dx(t) & o
dt - j;OAlx(t h]) (41)

x(to+6) = ¢(6)

for t > 1y, 0 € [—h,0]
Where x(1) € R", Aj € R, 0 =ho < hy < ... < hy, = h, function ¢ € PC([—h,0],R") —the
space of piece-wise continuous vector valued functions defined on the segment [—A, 0] with

the uniform norm || @ ||[pc= sup | @(0) |
0e[—h,0]
Let x(¢,#9, @) be the solution of system (4.1) with the initial function ¢.

Definition 4.1. [2] K(¢) is the fundamental matrix of system (4.1) if it satisfies the matrix
equation

d m
SK(0) = Y AK(—h)
j=0

Sort > 0 and the following initial condition K(0) = I, and K(t) = Oy x,, for t <0 where I,xp
is the identity n x n matrix and 0,,,, is the zero n X n matrix.

Theorem 4.1. [2] Let K(t) be the fundamental matrix of system (4.1), then fort >ty

0
x(z,to,(p):K(t—zo)(p(O)JrZ /K(t—to—hj—e)Aj(p(e)de 4.2)
j:1_h

J
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The initial condition holds

X, (10, 9) = @ 4.3)

for 6 € [—h,0], where x(to,9) € PC([—h,0],R") is a shifted restriction of the function
x(-,t9, @) to the segment [—A,0].

4.2 The Lyapunov—-Krasovskii functional
for a retarded type time delay system

Given a symmetric positive definite matrix W € R"*". We are looking for a functional
v:PC([—h,0,R") = R

such that along the solutions of system (4.1) the following equality holds

d
5V, ) = —x"(t,t0, 9)Wx(t,10,9) (4.4)

for t > t9, where x(¢,7y,¢) is a solution of system (4.1), with the initial function ¢ €
PC(]—h,0],R"), given by (4.2).

We assume that system (4.1) is asymptotically stable and integrate both side of equation (4.4)
from f¢ to infinity. We obtain

v(xy (0, 9)) = v(@) = / (2,10, @)Wx(t, 10, )di 4.5)
fo

Taking into account (4.2) we calculate the integral of the right-hand side of equation (4.5)

= oo

/ (1,10, @)Wx(t, 10, )dt = 9" (0) / KT (WK (1)di9(0)+
1o 0

oo

+Y /2(pT(0)/KT(t)WK(t—hj—G)thj(p(O)dG—F

Ty 0
m m 0 0 e
+Y Y /(pT(B)AJT»//KT(t—hj—G)WK(t—hk—n)thk(p(n)dndG 4.6)
J=He=1, "y 0
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The relations hold

/KT(t—hj—G)WK(t—hk—n)dt: /KT(g)WK(g+hj—hk+9—n)dg:
0 —h;—6

0 3
= / KT(g)WK(g+hj—hk+9—n)dg—i—/KT(g)WK(g—i—hj—hk—irG—n)dg:
—h;—8

= /KT(Q)WK(th—thrG —n)dg
0

The term

/ KT (Q)WK(c+h;—hg+6 —1)dc =0

—hi—6

because K(g) = 0 for ¢ < 0. Formula (4.6) takes a form

=

/xT(t,zo,(p)Wx(t,t0,<p)dt =’ (0) /KT(I)WK(t)dt(p(O)+
0

0 IS

+y /2(pT(O)/KT(t)WK(t—hj—G)thjq)(G)dG—l—
=L 0
m m 0 0. ot
+Y Y [ 0" ©nT [ [KT(@WK(c+hi—hi+0—m)dsap(ndnds  @7)
J=He=1 iy 0

Definition 4.2. [81] We introduce a Lyapunov matrix
- / KT (WK (¢ + &)dr 4.8)
0
for & >0.

Using the Lyapunov matrix (4.8) and taking into account equation (4.5) we obtain the formula
for the functional v(¢@)

=

W) = [ 47 (t,10,9)Walt,to,9)dr = 97 (O)U(0)p(0)+
m 0
+207( Z/U —hj)A;0(6)d6+
7h/
0
/qu VATU (h; — i + 6 — 1)Aro(n)dn do 4.9)
—hy
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Corollary 4.1. The Lyapunov matrix (4.8) satisfies the following properties [81]:

Dynamic property
d m
—UE) =Y U —hjA, (4.10)
d& =0
JoréE>0
Symmetry property
U(=§)=U"(¢) (4.11)
for& >0
Algebraic property
Y [U(=hj)A;+ATU(hj)] = -W (4.12)
j=0

Formulas (4.10), (4.11), (4.12) enable us to calculate the Lyapunov matrix U (&) for & > 0.

4.3 The Lyapunov matrix for a system with one delay

Let us consider a system [20]

d);i(;) =Aox(t) +A1x(t — h) (4.13)
x(0) = ¢(0)

fort > 0 and 6 € [—h,0]. Where Ag,A; € R"" and ¢ € PC([—h,0],R"),0 < h € R.
System of equations (4.10), (4.11), (4.12) takes a form

d

EU(@ =U(§)Ao+U(E —h)A; 4.14)
U(=§)=0"(§) (4.15)
U(0)Ag+U(—m)A +ALU(0) +ATU(h) = —W (4.16)
for & € [0,h].
Formula (4.15) implies
U —h=U"(h-8§)=2() (4.17)

We compute the derivative of Z(&)
d d

EZ@ = —éUTUz—é) =AU (h— &) —ATUT (=&) = —AJZ(E) —A[U(E) (4.18)
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We have received the set of ordinary differential equations

%U(é) — U(E)Ao +Z(E)A)

%z(&j) = —ATZ(&) - ATU(E)

for & € [0, 4] with initial condition U(0), Z(0).
Formula (4.17) implies

U(~h) =U"(h) = Z(0)

Taking (4.20) into account equation (4.16) takes a form

U(0)Ag+Z(0)A; +ATU(0) +ATZT (0) = —w

Using the Kronecker product we can express (4.19) in a form

d

£ colU

22U ©) ATel  AT®I
S T T

%COZZ(.‘,‘) I®A] I®A)

for & € [0, h] with initial condition colU (0), colZ(0).
Formula (4.21) can be expressed

(Ab @ T+12AY)colU(0) + (AT @1)colZ(0) + (12 AT )colZT (0) = —colW

Solution of equation (4.32) is given by a term

colU(&) D11(8)  Pi2(8) colU(0)

COlZ(é) @21 é) 4522(5) COIZ(O)

(
Pii(5)  Pi2(S)
D(5) Pn(S)
We determine the initial conditions colU(0), colZ(0).
The term (4.17) implies Z(h) = UT (0) = U(0).
From (4.24) we obtain

where a matrix (&) =

colU (h) = colZT (0) = @y (h)colU (0) 4 P12 (h)colZ(0)

colZ(h) = colU(0) = @31 (h)colU (0) + P (h)colZ(0)
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(4.19)

(4.20)

421

4.22)

(4.23)

(4.24)

is a fundamental matrix of system (4.22).

(4.25)

(4.26)



We put (4.25) into (4.23) and reshape (4.26). In this way we attain the set of algebraic equations
which enables us to calculate the initial conditions of (4.24).

[Af @I+I®AL + (1@ AT)®y1(h)]colU(0)+

+[AT @I+ (I®@A])P12(h)]colZ(0) = —colW (4.27)
[1— @51 (h)] colU (0) — P (h)colZ(0) = 0 (4.28)

4.4 Formulation of the parametric optimization problem
for a system with one delay

Let us consider a time-delay system with a P-controller

dx(t)
P Ax(t) +Bu(t —h)
= ) (4.29)

u(t
x(6) = ¢(6)
fort > 0 and 6 € [—h,0]. Where A € R, B € R"*P, P € RP*" is a P-controller gain and

¢ € PC([—h,0],R"), 0 < h € R.
System (4.29) can be written in the equivalent form

dx(t
) _ 4r(e) — BPx(t— )
dt (4.30)
x(6) = ¢(0)
In parametric optimization problem will be used the performance index of quality
J= /xT (t:0)Wx(t; @)dt 4.31)
0

where W € R"™*" is a symmetric positive definite matrix and x(z; @) is a solution of (4.30)
for initial function ¢.

Problem 4.1. Determine the matrix P € RP*" whose minimize an integral quadratic
performance index of quality (4.31)

According to (4.4) the value of the performance index of quality (4.31) is equal to the value
of the functional (4.9) for initial function ¢. To calculate the value of the functional (4.9)
we need a Lyapunov matrix U(&).
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To obtain a Lyapunov matrix U (&) we solve a system of differential equations (4.22) and
a set of algebraic equations (4.27) and (4.28) whose take a form

d
EcolU(C’) ATl —PTBT®I colU (&)
; = (4.32)
Ewlz(é) I@PTBT  —I®AT colZ(&)
AT @I+10A" — (1@ P"B") ¥ (h)]colU(0)+
—[PTB" @1+ (1® P"B")¥5(h)]colZ(0) = —colW (4.33)
[1— ¥ (h)]colU (0) — ¥ (h)colZ(0) = 0 (4.34)
where P(&) = g; 52 iz% is the fundamental matrix of system (4.32).
4.5 The examples
4.5.1 Inertial system with delay and a P-controller
Let us consider inertial system with delay and a P-controller [20]
dx(t 1 k
);(t ) = —?x(z‘) + ?Ou(t —h)
u(t) = —px(t) (4.35)
x(0) =xo
x(6)=0

t>0,x(t) €R, 6 € [—h,0), p, ko, T, xo € R, h > 0. The parameter k is a gain of a plant, p
is a gain of a P-controller, T is a system time constant, xp is an initial state of system.
One can reshape equation (4.35) to a form

TR S
x(0) = x, (4.36)
x(0)=0
for t > 0 and 8 € [—A,0).
The initial function ¢ has a form
xo for 6=0
®(0) = (4.37)

0 for 6¢€[-h,0)
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In parametric optimization problem we use the performance index
J= / Wi (1; 9)dt (4.38)
0

where w > 0 and x(z; @) is a solution of (4.36) for initial function (4.37).
The differential equation (4.32) takes a form

4 1 ke

déU(é) _ T T l: U(E) :| 439)
4 7 kop 1 Z(8) '
d& T T

The fundamental matrix of (4.39) is given

coshlé—isinhlg —];LO—psmh),é
d(&E)= (4.40)
kop
— smh)L‘g' coshA& + smhlé

AT
for & € [0,h], where

_ 1 / 2,2

The initial conditions for (4.39) are obtained from equations (4.33) and (4.34) which take a form

1 kop
2+ kop(coshAh — —sinhAh)  kop(1 — — smh?Lh)
AT AT U(0) _ | Tw 4.42)
kop 1. Z(0) 0
1— 228 Ginh Ak —coshAh — —sinhAh
AT AT

Solving (4.42) we obtain

Tw 1
7(coshlh + ﬁsinh ),h)
U0) = 4.43
0) kop+coshAh+ AT sinhAh (4.43)

Tw(l—ko—p nh/lh)
kop+coshAh+ AT sinhAh

(4.44)

The solution of (4.39) is given

1
T coshAh+ —sinh Ak

_w A
)= 2 | kop+coshAh+ AT sinhAh coshA.G — smh/lé (“4.45)
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Tw

_ 2 _kop .
2(6) = kop—i—coshlh—k/lTsinhlh((l AT smh’”’) coshA&+
1 .
+ﬁ (1 + kopcosh lh) sinh lé) (4.46)

The value of the performance index (4.38) is equal to the value of functional (4.9) for U (&)
given by (4.45 ) and initial function given by (4.37)

T osh k4 ——sinh A
7(‘”3 tart™ )2

= kop—+coshAh+ AT sinh Ak ©

(4.47)

Figure 4.1 shows the value of the index J(p) forxg =1,kp=1,w=1,T =1 and h = 1. You
can see that there exists a critical value of the gain p.,; . The system (4.36) is stable for gains
less then critical one and unstable for gains greater then critical.

’ x0=1, k0=1, T=1, h=1 ‘
500 ‘

J(p)

=500 b

—-1000 b

-1500 b

-2000 [ b

_2500 L L L L
0 0.5 1 15 2 25

Fig. 4.1. Value of the index J(p) for p greater then pc,i

Figure 4.2 shows the value of the index J(p) for p less then critical gain. You can see that
the function J(p) is convex and has a minimum.
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0.65

0.6

0.55

0.5

0.45

x0=1, k0=1, T=1, h=1

0.5

15

Fig. 4.2. Value of the index J(p) for p less then pepir

We search for an optimal gain which minimize the index (4.47) for a given xo = 1, ko = 1,
w=1and T = 1. Optimization results, obtained by means of Matlab function fininsearch,
are given in Table 4.1.

Table 4.1
Optimization results
Delay 4 | Optimal gain | Index value | Critical gain
0.1 7.10 0.13 16.350
0.2 3.50 0.22 8.502
0.5 1.25 0.37 3.806
1.0 0.50 0.46 2.261
2.0 0.14 0.495 1.519
3.0 0.05 0.499 1.292
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4.5.2 Inertial system with delay and a PI-controller

Let us consider inertial system with time delay and a PI-controller [24]

dx(r) 1 ko
ar ~ e h
u(t) = —px(t) — %/x(é)dé (4.48)
0
x(0) =xo
x(6)=0

t>0,x(t) €R, 0 € [-h,0), ko, T, T;, p € R, h > 0. The parameter k is a gain of a plant, p is
a gain and T; is a time of isodrome of a PI controller, 7 is a system time constant, xp — is the
initial state. One introduces the state variables x;(7) and x,(z) as follows

50 =(0)
)= 3 [ @ o
0

dx;t(t) _ %xl (1)

x1(0) = xo

2(0) = x20 -
x1(6)=0

x(0)=0

u(t) = —px1(t) —x2(t)

for 7 >0, 8 € [—r,0). One can reshape equation (4.50) to a form

dxl(t)_ 1 k()p ko
7 TXl(f) Txl(f h) sz(t h)

4.51)

fort >0, 6 € [—r,0).
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Matrices

Ly
Ao = ]T (4.52)
-~ 0
1
_kop ko
Alzl T T ] (4.53)
0 0

In parametric optimization problem will be used the performance index of quality

J:Z[ 0() ) ] [ ; VOV } [’”(t) ]dt (4.54)

xz(t)

where w > 0.
The value of the performance index of quality (4.54) is equal to the value of the Lyapunov
functional for initial function of system (4.51).

. U11(0) UIZ(O) X0
7=[x0 xo] { U21(0)  Uxn(0) } [ x20 } (435)

Where U (&) for & € [0, 4] is obtained by solving the set of equations (4.32), (4.27) and (4.28)
which takes a form

Un(é) | Un (&)
U1 (§) Un (&)
Un(&) U2(8)
d | Un(E) _ | 9n Qe U (&) 4.56)
d& Z11(8) 021 O» Z11(&)
Z1(8) Z1(8)
Z12(€) Z15(&)
| Zn(§) | Zn(&) |
U11(0) Z11(0)
1= 21 ()] %Egi — ®n(h) 258; =0 (4.57)
U (0) Z»(0)
U11(0) Z11(0) —w
[QII_QZZ_Q21¢11(h) g?;gg; + 012 — 021P12(h) ;T;Eg; = 8 (4.58)
Ux(0) Z2(0) —w
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where

1 1
__ 0 — 0
T T;
1 1
ou=| 0 -7 0 & 459
0 0 0
0 0 0 0
'_"071’ 0O 0 0]
on— (4.60)
_@ 0 0 0
r k
0
20y
|0 T 0]
[ kop 0 0 0]
T
k
D09 0 o0
on—| T op 4.61)
0 0 = 0
T
0 o Koy
L T .
1 1
— = 0 o0
T T;
0 0 0 ©0
00— 1 X (4.62)
0o 0 = —=
T T;
0O 0 0 0
(P(é) _ (1511(5) (DIZ(é) (4.63)

L Pu(g) Pn(é)

& (&) is a fundamental matrix of system (4.56).

Problem 4.2. Determine the parameters p and T; whose minimize an integral quadratic
performance index of quality (4.54).

We search for an optimal parameters of a PI-controller which minimize the index (4.55).

Optimization results, obtained by means of Matlab function fininsearch, are given in Table 4.2.
These results are obtained for xo = 1, xpo =05w=1,T =5, and kg = 1.
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Table 4.2
Optimization results

Delay & | Optimal p | Optimal 1/7; | Index value
1.0 3.7175 0.3693 7.0684
1.5 2.5023 0.2478 8.0224
2.0 1.9008 0.1877 8.9227
2.5 1.5442 0.1521 9.7723
3.0 1.3094 0.1287 10.5749
35 1.1442 0.1121 11.3346
4.0 1.0222 0.0997 12.0554

Figure 4.3 shows the value of the index J(p) for fixed 1/7; = 0.1877 and & = 2. You can see
that there exists a critical value of the gain p.,;. The system (4.51) is stable for gains less
then critical one and unstable for gains greater then critical.

x0=1, x20=0.5, w=1, k0=1, T=5, h=2 ‘

600

M)
400} 1

2001 J 1
O =
-2001 (/‘

-400 1

1/Ti=0.1877

-600 1

-800 | 1

-1000 1

-1200 1

-1400
0

Fig. 4.3. Value of the index J(p) for fixed 1/T; = 0.1877

Figure 4.4 shows the value of the index J(p) for fixed 1/7; = 0.1877, h = 2 and gains less
the critical one. You can see that the function J(p) is convex and has a minimum. Figure 4.5
shows the value of the index J(1/T;) for fixed p = 1.9008 and /& = 2. You can see that there
exists a critical value of the parameter 1/7; . The system (4.51) is stable for 1/7; less then
critical one and unstable for 1/7; greater then critical.
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x0=1, x20=0.5, w=1, k0=1, T=5, h=2 ‘

16

J(P)

Fig. 4.4. Value of the index J(p) for fixed 1/T; = 0.1877
x0=1, x20=0.5, w=1, k0=1, T=5, h=2 ‘
6000 : ‘ :
I(UT)
5000
3000
2000

1000 J
0 B
-1000 F’_/

-2000
0

0.5 1 15
Fig. 4.5. Value of the index J(1/7;) for fixed p = 1.9008

Figure 4.6 shows the value of the index J(1/7;) for fixed p = 1.9008, i = 2 and 1/7; less the
critical one. You can see that the function J(1/7;) is convex and has a minimum.
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x0=1, x20=0.5, w=1, k0=1, T=5, h=2 ‘

70

J(UT)

p=1.9008

Fig. 4.6. Value of the index J(1/T;) for fixed p = 1.9008

Figure 4.7 shows elements of matrix U (&) for optimal values of the PI controller parameters
p =1.9008 and 1/7; = 0.1877 for h = 2.

11

U11()
0 Tl L

BRI U12(8)
of T w2
8,

7t || p=1.00008

6 -
1/Ti=0.1877
5 -
At
2 \
1 ‘ ‘ ‘
0 0.5 1 15 2

0<é<h

Fig. 4.7. Elements of matrix U (&)
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4.6 The Lyapunov matrix for a system
with two commensurate delays

Let us consider a system [25]

dx(t) = Agx(t) + A1x(t — h) + Apx(t — 2h)
dr (4.64)

fort > 0and 6 € [-2h,0]. Where Ag,A|,Ay € R"" and ¢ € PC([—h,0],R"),0 <h €R.
The set of equations (4.10), (4.11), (4.12) for system (4.64) takes a form

d

EU@ =U(G)Ao+U(E —h)A1 +U(§ —2h)A; (4.65)

U(-&)=U"(&) (4.66)

U(0)Ag+U(—h)A; +U(=2h)A; + AL U (0) +ATU (h) + AU (2h) = —W (4.67)

for & € [0,2h].
The relation (4.66) implies

U(—h) =UT(h) and U(—2h) = UT (2h)
so we can write equation (4.67) in a form
U(0)Ag+UT (WA, +UT (2h)A, +ATU(0) +ATU (h) + AU (2h) = —W (4.68)
Formula (4.66) extends the function U defined on the segment [0,24] to the segment [—24,0].

Indeed for & € [0,2h], U(—&) =UT(&). For t = —&,U(t) = U (—7) and 7 € [-2h,0).
We define the functions U; (&), Ua(§), Z1(&), Z2(§) for & € [0,4]

Ui(§) =U(¢) (4.69)

Ua(§) =U(h+8&) (4.70)
Z(§)=U(E—h) =U"(=¢+h) @.71)
Zy(E) =U(E —2n) =UT(—& 42h) 4.72)
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For & € [0,h] equation (4.65) can be written in a form
i
dg

For &+ h = ¢ € [h,2h]

Ui(&) =U1(§)A0+Z1(E)A1 + 22 (E)Az

UG)=U(E+h)=U(E).U(c—h) =U(§) =U1(&). U(c—2h) =U(E —h) =2

and equation (4.65) can be written in a form

iUz(g) =Ur(E)Ag + Ui (§)A1 +Z1 (§)A,

d§
We compute the derivative of Z; (&)
%zl (€)= %UT( E+h)= drU ( )jg jTUT(f)

=-AuT(v)—ATUT (v —h)—ATUT (1 —2h) =
= —AGUT (=€ +h) —ATUT (=) —AJUT (=& —h) =
=—AJZi(§) —ATUI(§) —AT UL (§)

where T = —& + h and the derivative of Z(&)

d
dE

22(8) = 7gUT (& +2) = U7 (0) 5 =~ U7 (0) =

=AUt (v)—ATUT (v —h) —ATUT (1 —2h) =
= —AJUT (=& +2h) —A[U" (=& +h) —AJU" (=) =
= —ALUI(8) —A[Z1(§) —AG Z2(8)

where T = —& + 2h.
We have received the set of ordinary differential equations

%Ul(g) = Ui (E)Ao+Z1(E)A1 + Z2(E)Ar
%Ug(‘é) = UI(E)A1 +U(E)Ao +21(E)A2
%zl(g) = —ATU (&) — AL UL (&) - AT Z1(€)
%Zz(@ = —ATU(E) —ATZ,(E) — AL Z, ()

for & € [0,h] with initial conditions

U1(0),02(0),Z,(0),2>(0)

(4.73)

&)

(4.74)

(4.75)

(4.76)

4.77)
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There hold relations

U(0) = Uy (0),U (k) = U(0),U (2h) = Us(h)

and therefore equation (4.68) takes a form

U1 (0)Ag +UJ (0)A; +UT (h)Ay + AL UL (0) + AT UL (0) + AT UL (B) = —W

Using the Kronecker product we can express equation (4.77) in a form

- d T
——colUy (&)
ddg : colU, (&)
Ecole(é) _ colU>(&)
dicolZ1(§) colZ (&)
j colZy (&)
_ Ecolzz(é) |

for & € [0,h] with initial conditions

colU;(0),colU(0),colZ;(0),colZ,(0)
where

AT o1 0 ATer  Alwl

Aol  Afel  Alel 0

—IQA] —I®AT —I®A] 0

—1®AT 0 —I®AT —I®A}

Formula (4.78) can be expressed in a form

(AL @ 14+1®AY)colU; (0) + (1@ AT )col U (0)+

+(AT @ IcolU] (0) + (I @AY )colUs (h) + (AT @ I colUT (h) = —colW

Solution of equation (4.79) is given in a form

colUy (§) colU(0)
colUy (&) _ o) colU(0)
colZ (&) colZ,(0)
colZ (&) colZ,(0)
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where a matrix

P11(8) Pia(8) Pi3(8) Pua(d)
B(E) = D21 (8) Pn(8) Pu(8) Pu(d)
D31(8) P(8) Pn(E) Pu(d)
Dy (&) P(E) P3(E) Pu(E)

is a fundamental matrix of system (4.79).
We determine the initial conditions

colU;(0),colU,(0),colZ,(0), colZ,(0)
From equation (4.81) we obtain
colU; (h) = colU,(0) = @y (h)colU; (0) + P2 (h)colU(0)+
+®3(h)colZi (0) + Py4(h)colZy(0)

colZi(h) = colUy(0) = P31 (h)colU;(0) + @35 (h)colUy (0)+
+P33(h)colZi (0) + P34(h)colZy(0)

colZy(h) = colZ(0) = P41 (h)colU;(0) + Pz (h)colU(0)+
+Dy3(h)colZi (0) + Paa(h)colZ,(0)

colUz(h) = @1 (h)colU;(0) + Paa(h)colUs(0) + Paz(h)colZ1 (0)+
+Dy4(h)colZ,(0)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

We reshape equations (4.83), (4.84) and (4.85). In this way we attain a set of algebraic

equations which enables us to calculate the initial conditions of system (4.79).

@1 (h)colU;(0) + (Pi2(h) — 1)colU(0) + Py3(h)colZ, (0) + Pra(h)colZy(0) =0 (4.87)

(@31 (h) — 1)colU, (0) + D3 (h)colUs(0) + P33 (h)colZi (0) + P3a(h)colZ,(0) =0 (4.88)

Dy (h)COZUl (0) + Dy (h)colUg (0) + (¢43 (h) — 1)60121 (0) + Dyy (/’l)COlZz (0) =0 (4.89)

colUs (h) = @,y (h)colU;(0) + Pro (h)colU(0) + Pr3(h)colZ1 (0) + P4 (h)colZ(0) (4.90)

Ay @ T+12AY)colU; (0) + (1@ AT)colUs(0) + (AT @ IcolUT (0)+

+(I @A) colUs (h) + (AL @ IcolUT (h) = —colw

4.91)
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4.7 Formulation of the parametric optimization problem

Let us consider a time-delay system with a P-controller

d);(tt) = iij(t —hj)+Bu(t —h)

=0
u(t) = —Px(t) (4.92)
x(to+6)=¢(6)

for t > 1y, 0 € [—h,0]

Where x(r) € R” is the state of system (4.92), u(t) € R? is the control, A; € R"*", B € R"*?,
P € RP*" is a P-controller gain, ¢ € PC([—h,0],R") is the initial function, 0 = ko < h; <
... < hy = h are delays.

System (4.92) can be written in an equivalent form

d’;(;) - iij(t —h;)—BPx(t —h)
j=0 (4.93)
x(to+6)=¢(0)
for t > 19, 0 € [—h,0].
In parametric optimization problem will be used the performance index of quality
J= /xT(t,to,(p)Wx(t,to,(p)dt (4.94)

fo

where W € R"*" is a symmetric positive definite matrix and x(¢,7y, @) is a solution of equation
(4.93) for initial function ¢.

Problem 4.3. Determine the matrix P € RP*" whose minimize an integral quadratic
performance index of quality (4.94)

According to equation (4.5) the value of the performance index of quality (4.94) is equal to the
value of the functional (4.9) for initial function ¢. To calculate the value of the functional (4.9)
we need a Lyapunov matrix U(&).

To obtain a Lyapunov matrix U (&) we have to solve a system of equations (4.10), (4.11)
and (4.12).
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4.8 The example. Parametric optimization problem
for a scalar system with two delays

Let us consider a system with two delays and a P-controller [25]

u(t) = —px(t) e
x(6) = o(6)

t >0, x(t) € R is the state of system (4.95), u(r) € R is the control, ¢(0) for 6 € [—24,0] is
the initial function, 0 < h, 2h are time delays, the parameter p is a gain of a P-controller.
One can reshape equation (4.95) to a form

d%(f) = ax(r) +bx(t —h) + (¢ — p)x(r — 2h)
» (4.96)
x(68) = ¢(6)

for+ > 0 and 6 € [—2h,0].
In parametric optimization problem we use the performance index of quality

J= / wx(t,@)dt (4.97)
0
where w > 0 and x(z, @) is a solution of equation (4.96) for initial function ¢.
The Lyapunov functional for system (4.96) has a form, see formula (4.9)

0

v(9) =U(0)9*(0) +269(0) [ U(~6 ~h)g(8)d6-+
h
0

00
+2(c=p)p(0) [ U6 -2n)g(8)d0 -+ [ [U(6~mp(®)p(m)dndo+

—h —h—h
0 0
2b(c=p) [ [ UC-h+0-mp(®)9m)dnde+
—h—2h .
He=p? [ [U@=mp©)9(n)dnae (4.98)
—2h—2h

The value of the performance index of quality (4.97) is equal to the value of the functional
(4.98) for initial function ¢

J=v(9) (4.99)
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To obtain the value of the performance index of quality one needs a Lyapunov matrix U (&)
for & € [0,2h]. In Chapter 3.6 was presented a method of determination of the Lyapunov
matrix for a system with two delays.

System of equations (4.77) takes a form

-4 -
EUI (€)
d
dg (%)
d
i Ezz(‘ﬁ) |
where
a 0 b c—p
_ b a c—p 0
6= —b —c+p —a 0
—Cc+p 0 —b —a
Initial conditions of system (4.100) one obtains solving the algebraic equation
U,(0) 0
U,(0) _ 0
0 zo | =| o (4.101)
7(0) -w
where
Dy (h) Dip(h)—1 Di3(h) Dy4(h)
D31(h)—1 D3 (h Dy3(h D3y (h
_ 31(h) 32(h) 33(h) 34(h) 4.102)
Dy (h) Dy (h) Dy3(h) — 1 Pys(h)

P41 j2%) D43 D44

pa1 = 2a+ 2(C — k)(pz] (h), P42 = 2b+ 2(6 — k) @22(}1), paz = 2(6 — k) Dy3 (h),
pag = 2(c—k)DPp4(h), P(€) is a fundamental matrix of solutions of equation (4.100).

We search for an optimal gain which minimizes the index (4.97) for the initial function ¢
given by the formula

xo for0=0
®(0) = (4.103)
0 for 6 € [~2h,0)

The value of functional (4.98) for ¢ given by formula (4.103) is equal to

J(p) =v(9) =U(0)x5 (4.104)
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Figure 4.8 shows the value of the index J(p) fora= —1, b= —0.5,c=1and h = 1. You can
see that there exists a critical value of the gain p.,;. The system (4.96) is stable for gains less
then critical one and unstable for gains greater then critical.

60 T T T T

x0=1, w=1, a=—1, b=-0.5, c=1, h=1 ‘

40t 1

201 b

Fig. 4.8. Value of the index J(p)

Figure 4.9 shows the value of the index J(p) fora=—1,b=—0.5,¢c=1, h=1 and for p
less then critical gain. You can see that the function J(p) is convex and has a minimum.

0.9 . : :
x0=1, w=1, a=—1, b=—0.5, c=1, h=1 ‘

0.85F

0.8
J(p)
0.75 1
0.7
0.65
0.6

0.55

0.5

0.45 ' ! '
0 0.5 1 1.5 2

Fig. 4.9. Value of the index J(p)
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Optimization results, obtained by means of Matlab function fininsearch fora = —1, b = —0.5,
¢ =1, xp =1, are given in Table 4.3.

Table 4.3
Optimization results
Delay & | Optimal gain | Critical gain | Index value
0.5 1.15 3.13 0.4043
1.0 0.87 2.39 0.4578
1.5 0.90 2.17 0.4964
2.0 0.96 2.08 0.5252
2.5 1.02 2.03 0.5428

Figure 4.10 shows graphs of functions U;(§), Ux(€), Z1(€) and Z(€) obtained with the
Matlab code, for parameters of system (4.96) used in optimization process with 4 =1 and
for optimal gain p = 0.87.

x0=1, w=1, a=-1, b=-0.5, c=1, h=1

0.6
- — —UL@E)

U2(€)

0.5} Z1(8)
— = Z2(§)

p=0.87

0<t<h

Fig. 4.10. Functions U; (&), U (&), Z1(&) and Z, (&) for optimal gain p = 0.87



S The Lyapunov matrix for a neutral system

5.1 The Lyapunov matrix for a neutral system
with one delay

5.1.1 Mathematical model of a neutral system with one delay

Let us consider a neutral system

dx(t) dx(t—r) B
i C e Ax(t)+Bx(t —r) 5

x(to+6) =¢(6)

fort >1, 0 € [-r,0],r>0
Where x(t) € R", A, B, C € R"™", function ¢ € PC'([—r,0],R") - is a space of piece-wise
continuously differentiable vector valued functions defined on the segment [—r,0] with the

uniform norm || @ ||pc1= sup || @(0) ||
0€[—r0]
Let x(t,t0, ) be the solution of system (5.1) with the initial function ¢ for t > ;.

Definition 5.1. The difference equation associated with (5.1) is given by a term

x(t)—Cx(t—r)=0 (5.2)
fort >ty

We assume that the difference x(¢) — Cx(r — r) is continuous and differentiable for ¢ > 1,
except possibly a countable number of points.

Let x(z, @) be the solution of system (5.1) with the initial function ¢ for ¢t > 1.

The initial condition for equation (5.1) can be written in a form

X (P) =@ (5.3)

where x; (@) € PC'([—r,0],R") is a shifted restriction of the function x(-,fy, @) to the segment
[7”7 0]
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The eigenvalues of the neutral equation (5.1) for large modulus are asymptotically equal to
the eigenvalues of the difference equation (5.2).

According to the Theorem 9.6.1 [40] the difference equation (5.2) is stable when the matrix
C is Schur stable.

When the matrix C is Schur stable, then the asymptotic stability of system (5.1) is equivalent
to the exponential stability of the system (5.1). We assume that C is not singular and a Schur
stable matrix.

Definition 5.2. [2] K(¢) is the fundamental matrix of system (5.1) if it satisfies the matrix
equation

d d
EK([) —CEK(I —r)=AK(t)+BK(t—r)
fort > 0 and the following conditions

— initial condition: K(0) = I, and K (¢) = 0,,x, for < 0 where I, is the identity n x n
matrix and 0,,«, is the zero n X n matrix,
— sewing condition: K(t) — CK(t — r) is continuous for ¢ > 0.

It follows from the definition that the fundamental matrix K (z) has discontinuity points.
The sewing condition implies the jump equation
AK(t)—CAK(t—r)=0 (5.4)

for t > 0, where AK(t) = K(t+0) —K(t —0)
To compute the size of the jumps one needs to solve the jump equation (5.4) at ¢; = jr,
j=0,1,2,..., with the initial condition AK(0) = I.

Lemma 5.1. [2] The fundamental matrix K (t) has jumps at points t; = jr, j=0,1,2,...

AK(t) == K(jr+0) —K(jr—0) =/ (5.5)
and K(t) = K(t +0) at the jump points.

Theorem 5.1. [2] Let K(t) be the fundamental matrix of system (5.1), then fort >ty

x(t,@) = [K(t—10) —K(t —1t0 — )] 9(0)+
0
+/K(ttor9) B¢(9)+C%(p(9) o (5.6)

This expression is called the Cauchy formula for system (5.1).

Theorem 5.2. [2] The fundamental matrix K (t) of system (5.1) satisfies also the equation

d d
KO =2 K@-rC=KA+K(~n)B (5.7)

fort>0andt # jr, j=1,2,...
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5.1.2 The Lyapunov-Krasovskii functional for a neutral system
with one delay

Given a symmetric positive definite matrix W € R"*". We are looking for a functional
v:PC'([-r,0],R") = R
such that along the solutions of system (5.1) the following equality holds

d

V(@) = =" (1, 0)Wx(t,9) (58)

for t > 1y, where x(¢,¢) is a solution of system (5.1), with the initial function ¢ €
PC'([-r,0],R"), given by (5.6) and x;(¢) is a shifted restriction of x(-,) to an inter-
val [r—rt].

We assume that system (5.1) is asymptotically stable and integrate both sides of equation
(5.8) from ¢y to infinity. We obtain

5, (9)) = [ (1. @)Wt p)a (59

Taking into account (5.6) we calculate the integral of the right-hand side of equation (5.9)

=

[ a0, @Wx(tt0,9)dr = 97(0) [ KT (WK (1)drp(0)+
fo 0

—o"(0) / KT (WK (1 — r)diCo(0)+
0

o ()led / KT (t —r)WK(t)dto(0) + @™ (0)CT / KT (t —r)WK(t — r)dtCo(0)+
0 0

—|—2(pT(0)/0[/wKT(t)WK(t—r—B)dt} {B(p(6)+cjetp(9)}d6+
0

—i—/o/q[q)T(G)BT—i-d(pT(e)CT} [jKT(t—r—O)WK(t—r—é)dt] X
“r=r a9 0

Y [Bw(&) +cj§<p<é>}dedé (5.10)
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Using the Lyapunov matrix U (&) (4.8) we attain a formula for the functional v(x;, (¢))

v(xy (@) = @7 (0)[U(0) = U (=r)C—CTUT (—r) +CTU(0)C(0)+
0

+2¢T(0)/[U(—9 —r) —CTU(—O)] [B(p(e) +Cdd9(p(6)]d9+

—r

d
+//[B<p ) +C5 0l )} U(6-8)|Bo(e)+Cazo(@)]doas G
—r—=r
Lemma 5.2. [81] Let system (5.1) be exponentially stable. Then for every symmetric matrix
W € R™", matrix U () is well defined and satisfies the following properties:
Dynamic property

V&)~ JFUE—C=UEN+U(E 1B (5.12)
for&E>0and & # jr, j=0,1,2,...
Symmetry property
U(=¢)=u"(§) (5.13)
for& >0
Algebraic property

—W =ATU(0)+U(0)A—ATU(—r)C—CTUT (—r)A+
+BT'UT (—r)+U(-r)B—B'U(0)C—CTU(0)B (5.14)
Using the symmetry property one can express the formula (5.11) in a form
v (9)) = 97 (O[U(0) ~ U” ()€~ CTU(r) + C"U(0)C]p(0)+

+2¢7(0) /O [U(B +r)— U(B)C} ' [B(p(@) +Cdd9(p(6)} do+

—r

00 T
+[ [|po@cgoe) ve-o) s rczo@]ias 619

Using equation (5.3) one can express a relation (5.15) more general in a form
V(% (@) = %, (@) (0)[U(0) = U (r)C = C"U (r) + CTU(0)Clxs, (9)(0)+
0 T 4
24 0)0) [ [U<e+r>—u<e>c} 33, (0)(6) +C o0 9)(6) | a0+

—r

+//[th0 dexfo(w( )r U — 5)[3%( )(é)—i—Cdéxto((p)(ﬁ)}dedi

—r—=r

(5.16)
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Lemma 5.3. [81] The Lyapunov matrix U (§) for system (5.1) is continuously differentiable
at & # jr, j=0,1,2,..., and at & = jr matrix dU (&) /d& has the jump

%U(errO)f%U(jrfO):—(QfW)Cj (5.17)

Here Q is the solution of the matrix equation

o-cloc=w (5.18)

5.1.3 The Lyapunov matrix for a neutral system with one delay
To obtain a Lyapunov matrix for a neutral system one needs to solve the set of equations [22]

iU(é)f%U(éfr)C:U(é)AJrU(é—r)B (5.19)

U(-&)=U"(&) (5.20)

—W =ATU(0)+U(0)A—ATU(—r)C—CTUT (—r)A+
+B"UT (-r)+U(-r)B—B'U(0)C-CTU(0)B (5.21)
Formula (5.20) implies

UE—r)=U"(=&+r) (5.22)

and equation (5.19) takes a form

d d
—UE)— U (=E+nNC=UE)A+U (-E+71)B (5.23)
dg dg
We introduce a new variable T = —& + r . The term (5.23) for a new variable has a form
iUT(—T—i—r)—CTiU(T) =-ATUT(~t+r)-B"U(7) (5.24)
dt dt '
One obtains the set of equations
d d . T
—ZU(8) ——=U (=6 +rC=U(§)A+U" (¢ +r)B
dé& d&
d J (5.25)
~ygr(— _ T = :_AT T(_ _BT
JEUT(640) —CT U (&) = —ATUT (<6 +1) —BTU(E)
We introduce a new function
Z(E)=U"(-&+r) (5.26)
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The set of equations (5.25) can be written in a form

%U(g) - %Z(&)C —U(E)A+Z(E)B
d d

Ez(i) —CT—2U(§) =-ATZ(&) - B'U(E)

dg
or in a equivalent form

(5.27)

%U(é)—CT%U(é)C=U(é)A—BTU(é)C+Z(€)B—ATZ(€)C

d d

Ez(é) - CTEZ(@C =-B'UE)+CTU(§)A-ATZ(§) +CTZ(§)B

for & € [0,r] with the initial conditions U (0) and Z(0).
The formulas (5.20) and (5.26) imply

(5.28)

U(-r)=U"(r) = Z(0) (5.29)
Taking into account (5.29) one can write the algebraic property (5.21) in a form
W =ATU(0)+U(0)A-ATZz(0)C—-CTZT (0)A+
+B"Z"(0)+z(0)B—B"U(0)C - C"U(0)B (5.30)

Equation (5.28) can be written in a form

d
EcolU(ﬁ)

d
EcolZ(é)

Solution of equation (5.31) is given by the formula

colU(¢) @11(8) Pi2(8) colU(0)
= (5.32)
[ colZ(§) ] [ Dy (E) Pn(E) ] [ colZ(0) ]

[

where a matrix ® (&) = { z; Eg zzg; ] is a fundamental matrix of system (5.31).

We determine the initial conditions colU(0), colZ(0).
The term (5.26) implies Z(r) = UT (0) = U(0).
From equation (5.32) we obtain

colZ(r) = colU(0) = @51 (r)colU (0) + D (r)col Z(0) (5.33)
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In this way we attain the set of algebraic equations which enables us to calculate the initial
conditions of equation (5.32).

ATU(0)+U(0)A—ATZ(0)C —CTZT (0)A + BT 2T (0)+
+Z7(0)B—B"U(0)C—-CTU(0)B=-W (5.34)

(@1 (r) —1]colU(0) 4+ P2y (r)colZ(0) =0 (5.35)

5.1.4 Formulation of the parametric optimization problem
for a neutral system with one delay

Let us consider a neutral system with a P-controller [22]

dx(t) dx(t—r)

- = Ax(t) + Bu(t —
2 C 7 x(t)+Bu(t —r)
5.36
u(t) = —Px(r) (5.36)
x(to+6) = ¢(6)
for t > 1y, 6 € [—r,0]
Where x(r) € R, u(t) e RP, A,C € R™", B € R"™P, P € RP*" is a P-controller gain,
¢ € PC([—r,0],R").
System (5.36) can be written in an equivalent form
dx(t dx(t —
MO _ o @5 =r) )= BPx(r—r)
dt dt (5.37)
x(to+6) = ¢(6)
In parametric optimization problem will be used the performance index of quality
J= / X (1, 0)Wx(t, @)dt (5.38)

fo

where W € R"*" is a symmetric positive definite matrix and x(¢, @) is a solution of equation
(5.37) for initial function ¢.

Problem 5.1. Determine the matrix P € RP*" whose minimize an integral quadratic
performance index of quality (5.38).

According to equation (5.9) the value of the performance index of quality (5.38) is equal to
the value of the functional (5.16) for initial function ¢. To calculate the value of the functional
(5.16) we need a Lyapunov matrix U (&). To obtain a Lyapunov matrix U (&) we have to solve
a system of equations (5.12)—(5.14).
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5.1.5 The examples

5.1.5.1 A linear neutral system with a P-controller

Let us consider a neutral system with a P-controller [22]

dx(t)  dx(t—r)

a4 =ax(t) +bu(t —r)
u(t) = —px(r) (5.39)
x(0) = xo
x(0)=0

t>0,x(t),u(t) R, 6 € [—r,0], r > 0. The parameter p is a gain of a P-controller, xo € R
is an initial state of system.
One can reshape equation (5.39) to a form

dx(t)  dx(t—r)

Pl e ax(t) —bpx(t —r)
5.40
x(0) =xo (5.40)
x(0)=0
fort >0 and 6 € [—1,0).
The initial function ¢ is given by a term
xg for6=0
¢(6) = (5.41)
0 for6e[-r0)
In parametric optimization problem we use the performance index
J= / w1, @)dt (5.42)
0
where w > 0 and x(¢, @) is a solution of (5.40) for initial function (5.41).
System of equations (5.31) takes a form
d a+bcp ac+bp
—U —
dé (é) 17C2 176‘2 U(g)
= (5.43)
d ac+bp a+bcp
—z - Z(¢&)
d& (&) 1—c2 1—¢2
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A fundamental matrix of solutions of equation (5.43) has a form

a+bcp ac+bp

coshlé—&—msmhlé —msmhlé
®(E) = (5.44)
ac+bp _ a+bcp .
A=) sinhA & coshA& =) sinhA&

where

a2_b2 2
A:,/TCZP (5.45)

Initial conditions of system (5.43) one obtains solving of the algebraic equation

g qi2 U(0) -w
= (5.46)
Q@1 q» Z(0) 0
where
g1 = 2(a+bep)
q12 = —2(ac + bp)
ac+bp
= ———-sinhAr—1
Q1 l(lfcz)sm Ar
+b
g2 = coshAr — ;(li_cclg)sinhlr
Solving equation (5.46) we obtain
w a+bcp .
U(O) = M |:— COShAr-’- Msmhlr] (547)
_w | ac+bp .
where
M =2(a+ bcp)cosh Ar—2A4(1 —c?)sinh Ar — 2(ac + bp) (5.49)
Solution of equation (5.43) has a form
U(é)—K —coshlr—f—msinhlr coshlé—*sinhlé (5.50)
M A(1—c?) 2A(1—¢?) ’
w | ac+bp .
Z(E)=—|———<sinhAr—1 h
(&) i {A(l — sinhAr } coshA&+
w
—_ — h inh S
+M7L(1—c2) [a—i—bcp (ac+bp)cos lr] sinhA & (5.51)
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The value of the performance index (5.42) is equal to the value of the functional (5.16) for
initial function. In this example initial function is given by (5.41).

J=x5 [(1+c*)U(0) —2cZ(0)] (5.52)
After calculations one obtains

wx(z) ) a—bcp
> 2¢— (1+c¢*)coshAr+ 1 sinhAr

/= —ac—bp+ (a+bcp)coshAr—A(1 —c2)sinh Ar (5.53)

Figure 5.1 shows the value of the index J(p) forxo=1,w=1,a=—1,b=0.5, ¢ = —-0.6
and r = 1. You can see that there exists a critical value of the gain p.,;. The system (5.40) is
stable for gains less then critical one and unstable for gains greater then critical.

x0=1, w=1, a=-1, b=0.5, c=-0.6, r=1
600 T

500 k
400 h

300 b

200 b

100 b

Fig. 5.1. Value of the index J(p)

Figure 5.2 shows the value of the index J(p) for p less then critical gain. You can see that
the function J(p) is convex and has a minimum.
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x0=1, w=1, a=-1, b=0.5, ¢=-0.6, r=1
0.95 \

0.9
0.85
0.8
0.75
0.7
0.65
0.6

0.55

0.5

0.45 I I I I I I

Fig. 5.2. Value of the index J(p)

We search for an optimal gain which minimize the index (5.53). Optimization results, obtained
by means of the Matlab function fminsearch, are given in Table 5.1. These results are obtained
forxo=1,w=1,a=—1,b=0.5, and c = —0.6.

Table 5.1
Optimization results
Delay » | Optimal gain | Index value | Critical gain
1 2.2674 0.4598 4.51
2 1.4503 0.4959 2.95
3 1.2758 0.4995 2.50
4 1.2254 0.4999 2.32
5 1.2089 0.5000 2.20
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5.1.5.2 Inertial system with delay and a PD-controller

Let us consider inertial system with delay and a PD-controller [23]
dx(t)

dt

u(t) = —px

x(6) = (6)

t>0,x(t),u(t) €R, 0 € [—r,0], r >0, p and T; are parameters of a PD-controller, &y is a gain

of a plant, T is a system time constant, is an initial function. In the case ¢ = 1 equation (5.54)

describes a static object and in the case ¢ = 0 an astatic object.
One can reshape equation (5.54) to a form

x(t) + kou(t —r)

_ g dx(r) (5.54)
)—Ta o

N

—
~

S T G = ) k(i (5.55)
x(8) = ¢(0)

fort >0 and 6 € [—r,0].
In parametric optimization problem we use the performance index

=

J= | wil(t,Q)dt (5.56)
/

where w > 0 and x(z, @) is a solution of (5.55) for initial function ¢.
System of equations (4.20) takes a form

q qkoTy |
d ?+%Hp kop + T
gl iR i-err | [Ue) 55
d - ko, '
qrold q
EZ@ kop+ T ?—i—k(z)po Z(8)
1 - K377 1 — K377
A fundamental matrix of solutions of equation (5.57) has a form
coshA& —assinh A& —ay sinh A&
D(E) = (5.58)
ajsinh A& coshA& +apsinh A&
where
koT,
mp+q;d %+%Dp
= ,ap = (5.59)

CA(1-KT?) A(1-KT?)
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Initial conditions of system (5.57) one obtains solving of the algebraic equation

q11 912 U(0) —w
= (5.60)
Q1 qn Z(0) 0
where p
qi1 = 72(; Jrk(z)po)
koT,
q12 = —2(kop+ 4 ; d)
koT,
kop + 1 ; d
= —~ _sinhAr—1
P aa=kmy
%Jrkgpo
sinhAr

=coshAr4+ +t—F—-
q22 r+l(l—k3sz)

Solving equation (5.60) we obtain
q 4 12
w 7 tkoTap .
U(0) = m lcoshlr—i— A(1—R2T2) smhlr] (5.61)
k —+ M
2(0)=2 l — P T sinhAr (5.62)
M Al —=k5T7)
T,
ko d} (5.63)

where
T

M=2 {(; +k§Typ) coshAr+A (1 —k3T7) sinh Ar+kop +

Solution of equation (5.57) has a form

q
?+k§po . .
sinhAr COSh)Lg — W Slnhlé (564)

hAr+ 4——s—
cos r+),(1—k(2)sz)

qkoTy
w kop+ T ..
Z(cﬁ):M l_l(l—k(z)sz)Smh)Lr coshA&+

ko,
7507, cosh Ar| sinh A (5.65)

w q 2
f—l—k 1 + k +
T oldP (Op T

+ N
MA(1—K3T?)
We compute the value of the performance index (5.56) for initial function ¢ given by a term

xg for6=0
(5.66)

¢(0) =
0 for6e[—r0)
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The value of functional (5.11) for ¢ given by formula (5.66) is equal to
J = x5 [(1+KTU(0) + 2ko T,Z(0)] (5.67)

After calculations one obtains

*—k(z)po

2
O(Zkon +(1 +k2T2) coshAr+ L —— —

1 sinh A r>

(5.68)

gko

( +k(2)po> coshAr+A(1—k3T?)sinhAr

Figure 5.3 shows the value of the index J(p) for fixed T; = 0.4733 and r = 1. You can see
that there exists a critical value of the gain p.,;. The system (5.55) is stable for gains less
then critical one and unstable for gains grater then critical.

x0=1, w=1, g=1, k0=1, T=5, r=1, Td=0.4733 ‘
50 ‘

of JJ

_50 o m

-100 b

-150 b

~200 s s s
0 0.5 1 15 2

Fig. 5.3. Value of the index J(p) for fixed T; = 0.4733 and r = 1

Figure 5.4 shows the value of the index J(p) for fixed T; = 0.4733, r = 1 and gains less the
critical one. You can see that the function J(p) is convex and has a minimum.
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x0=1, w=1, g=1, k0=1, T=5, r=1, Td=0.4733

Fig. 5.4. Value of the index J(p) for fixed T; = 0.4733 and r = 1

Figure 5.5 shows the value of the index J(T) for fixed p = 1.0168 and r = 1. There exists
a critical value of the differential time 7y, too, which determines the interval of stability.

] x0=1, w=1, q=1, k0=1, T=5, r=1, p=1.0168 ‘

0 0.2 0.4 0.6 0.8 1

Fig. 5.5. Value of the index J(T}) for fixed p = 1.0168 and r = 1
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Figure 5.6 shows the value of the index J(7) for fixed p = 1.0168, r = 1 and Ty less the
critical one. You can see that the function J(7;) is convex and has a minimum.

x0=1, w=1, g=1, k0=1, T=5, r=1, p=1.0168
1.4 T T T T

T

T T T

1.35
15
1.25
12
1.15

11

1.05

Fig. 5.6. Value of the index J(Ty) for fixed p = 1.0168 and r = 1

We search for an optimal parameters of a PD-controller which minimize the index (5.68).
Optimization results, obtained by means of Matlab function fininsearch, are given in Table 5.2.
These results are obtained forxo =1, w=1,¢g=1,T =5, and ky = 1.

Table 5.2
Optimization results
Delay » | Optimal p | Optimal 7; | Index value
1.0 1.0168 0.4733 1.0245
1.5 0.6687 0.4559 1.3567
2.0 0.4949 0.4389 1.6096
2.5 0.3907 0.4222 1.8035
3.0 0.3211 0.4058 1.9528
35 0.2714 0.3897 2.0685
4.0 0.2340 0.3739 2.1586
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Critical values p and Ty, depend on the value of time delay. This dependence is presented
in Table 5.3. Critical gain is obtained for fixed 7; = 0.4733 and critical differential time is
obtained for fixed p = 0.45.

Table 5.3
Critical gain and differential time

Del ay r Pcrit Td crit
1.0 1.86 | 0.98

L5 1.25 | 097

2.0 095 | 095
25 0.77 | 092

3.0 0.65 | 0.87

35 0.56 | 0.81
4.0 0.50 | 0.71

5.2 Neutral system with two delays

5.2.1 Mathematical model of neutral system with two delays

Let us consider a neutral system with two delays

dx(t) dx(t—h) B B
P D = Ax(t)+Bx(t —h) +Cx(t —r) 569

x(6) =¢(0)

fort >0, 6 € [-1,0].
The state x(t) € R", matrices A, B, C, D € R"™*", initial function ¢ € PC!([—r,0],R") — the
space of piece-wise continuous vector valued functions defined on the segment [—r,0] with

the uniform norm || @ ||pci= sup || ¢(0) ||, delays r > h > 0.
0c[—r0]
We assume that the difference x(¢) — Dx(¢t — h) is continuous and differentiable for ¢ > 0,

except possibly a countable number of points, t; = jh, j=0,1,2,...

Definition 5.3. The difference equation associated with (5.69) is given by a term

x(t)—Dx(t—h)=0 (5.70)
fort > 0.

Let x(¢, @) be the solution of system (5.69) with the initial function ¢ for ¢ > 0.
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Definition 5.4. [2] K(¢) is the fundamental matrix of system (5.69) if it satisfies the matrix
equation

%K(r) —D%K(r — h) = AK(t)+ BK(t — h) + CK(t — ) (5.71)

fort > 0 and the following conditions

— initial condition: K(0) = I,x, and K () = 0, for t < 0 where I,,«,, is the identity n x n
matrix and 0y, is the zero n X n matrix,
— sewing condition: K(t) — DK (t — h) is continuous for # > 0.

Theorem 5.3. [2] Let K(t) be the fundamental matrix of system (5.69), then fort > 0

0
x(t,0) = [K(t)—K(t—h)D](p(O)—l—'/ K(t—h—0) [B(p(B)JrD;i)(p(e) do+
—h

0
Jr/K(t—rf 0)Co(6)d6 (5.72)

This expression is called the Cauchy formula for system (5.69).
It follows from the definition that the fundamental matrix K(¢) has discontinuity points.
The sewing condition can be written in a form

K(t+0)—DK(t+0—h) = K(t —0) — DK(t —0— h) (5.73)

for t > 0.
Formula (5.73) gives the jump equation

AK(t) —DAK(t —h) =0 (5.74)
for t > 0, where AK(¢t) = K(t+0) — K(t —0)
Theorem 5.4. The fundamental matrix K (t) has jumps at points t; = jh, j=0,1,2,...
AK(t) |i=;= K(jh+0) — K(jh—0) = D’ (5.75)
and K(t) = K(t +0) at the jump points.

Proof. We solve the jump equation (5.74) at¢; = jh, j =0,1,2,.., with the initial condition
AK(0)
AK(0)=K(04+0)—K(0-0)=1-0=1

AK(h) = DAK(0) =D
AK(2h) = DAK (h) = D?
AK(jh) = DAK(jh—h) =D’
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Theorem 5.5. [2] The fundamental matrix K (t) of system (5.69) satisfies also the equation

%K(r) - %K(r —h)D=K({t)A+K(t—h)B+K(t—r)C (5.76)
fort >0andt # jh, j=1,2,...

The initial condition for equation (5.69) can be written in a form

% (@) o=@ (5.77)

where x, € PC'([~r,0],R") is a shifted restriction of the function x(-, @) to the segment [—7,0].
The eigenvalues of neutral equation (5.69) for large modulus are asymptotically equal to the
eigenvalues of the difference equation (5.70).

According to the Theorem 9.6.1 [40] the difference equation (5.70) is stable when the
matrix D is Schur stable. When the matrix D is Schur stable, then the asymptotic stability
of system (5.69) is equivalent to the exponential stability of system (5.69). We assume that
D is not singular and a Schur stable matrix.

5.2.2 The Lyapunov-Krasovskii functional
for a neutral system with two delays

Problem 5.2. Given a symmetric positive definite matrix W € R™". We are looking for
a functional v : PC'([~r,0],R") — R such that along the solutions of system (5.69) the
following equality holds

d

2Vu(9) = =" (1, 9)Wx(z, ) (5.78)
for t > 0, where x(t,9) is a solution of system (5.69), with the initial function @ €
PC'([~r,0],R"), given by (5.72) and x,(@) is a shifted restriction of x(-, @) to an interval
[r—nt].

We assume that system (5.69) is exponentially stable and integrate both sides of equation
(5.78) from O to infinity. We obtain
v(@) =v(x (@) |i=0) /xT (1, 0)Wx(t,)dt (5.79)
0

Taking into account (5.72) we calculate the integral of the right-hand side of equation (5.79)

/ (1, @)Wx(t, 9)dt = @7 (0) / KT (1)WK(1)d9(0) — @7 (0) / KT ()WK(t — h)dtDg(0)+
0 0 0
-’ (0)D” / KT (t —h)WK(1)dt9(0) + @™ (0)DT / KT (t —h)WK(t — h)dtD@(0)+

0 0

_|_
o
hS)
-
2
—

/KT(t)WK(t . e)dt} [B(p(G) +Daff9(p(9)] 46+
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0

2(pT(O)DT/UOKT(th)WK(thB)dt} {B(p(G)JrDje(p(O)]dGJr
—h 0

+2(pT(O)/qUOKT(t)WK(t—r—B)dt}C(p(G)dBJr
0

o

+/0/0{(pT(9)BT+jG(pT(6)DT] [/KT(t—h—G)WK(t—h—é)dt}x
—h—h 0

«|Bol&ID o) doaz +

+2/0/0[(pT(6)BT+je(pT(6)DT} UoKT(t—h—G)WK(t—r—é)dt} Co(E)dOdE+
—h—r 0
00

+//(pT(9)CT [7KT(; QWK —r— g)dt] Co(E)d0dE (5.80)
0

Using a Lyapunov matrix U(§) (4.8) we attain a formula for the functional v(¢)

=

vo) = [+ (1.)Wx(r. p)dr =
0

= (0) {U(O) —U(-h)D—-D"UT (—h) —i—DTU(O)D] ®(0)+
; d
+2(pT(O)_/h [U(—e—h)—DTU(—e)] [B<p(9)+Dde<p(9)]d9+
0
+2(pT(O)/[U(9r)DTU(hrG)]C(p(G)dGJr

" /0 /0 [B<p<e>+0j9<p<e>rv<e—é>[B<p<5>+ujé<p<5>}ded5+
h—h

00 T
+2_/h_/{B<P(9)+Dje<P(6)} U0 — & +h—r)Co(E)dOdE+
00
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Theorem 5.6. Let system (5.69) be exponentially stable, U(&) be a Lyapunov matrix
associated with a symmetric matrix W. The functional (5.81) solves Problem 40.

5.2.3 Formulation of the parametric optimization problem
for a neutral system with two delays

Let us consider a neutral system with two delays and a P-controller

dx(t) dx(t —h)

dt -D dt :Ax(t)+Bx(t_h)+C1u(t—r)
u(t) = —Px(t) (5.82)
x(6) =¢(6)

fort >0, 6 € [—n,0]
Where x(f) € R", u(t) € R?, A,B,D € R"", C; € R"*P, P € RP*" is a P-controller gain,
® € PCI([ino]a]Rn)
System (5.82) can be written in the equivalent form
dx(r) dx(t—h)

i D e Ax(t) 4+ Bx(t —h) — C1Px(t — ) 5.8

In parametric optimization problem will be used the performance index of quality

J= /xT(t,q))Wx(z,(p)dt (5.84)
0

where W € R™*" is a symmetric positive definite matrix and x(¢, @) is a solution of equation
(5.83) for initial function ¢.

Problem 5.3. Determine the matrix P € RP*" whose minimize the integral quadratic
performance index of quality (5.84).

The value of the performance index of quality (5.84) is equal to the value of the functional
(5.81) for initial function ¢, in which a matrix C should be replaced by a matrix —C;P. To
calculate the value of the functional (5.81) we need a Lyapunov matrix U ().

5.2.4 The Lyapunov matrix for a neutral system with two delays

Let system (5.69) be exponentially stable. The Lyapunov matrix U (&) is given by equation
(4.8). We will compute the derivative of U (&) with respect to &. According to Theorem 5.4
the matrix K(¢) has jumps at points #; = jh, j =0,1,2,... We take a positive value § # jh
for j =0,1,2,... It can be written in a form § = lh+1 , where ) € (0,h) ,and [ = 1,2, ...
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For ¢ > 0 the matrix K(t 4+ &) has jumps at points 7; = jh—n for j =1,2,... On the set
G = [0,%0) \ {#;}7_, the matrix K(#+ &) has no jumps.
We can compute the derivative

d 0
EU(@ |§lh+n—G/KT( )4 9 K(t+&)dt+
+ZKT K(tj+&+0)—K(t;+& —0)] (5.85)

Using equation (5.75) from Theorem 38 we calculate

K(tj+&+0)—K(t;+& —0) =K((j+1)h+0) —K((j+1)h—0) = D'/ (5.86)

Taking into account equation (5.86) we obtain

/ KT (WL K(t 4+ &) dt+ZKT WD+ (5.87)
U(E—h) = /KT K(+&— hdt+ZKT WD (5.88)

d T
EU(&) /K K(t+&)— é K(t+E—mD|dr (589

Equation (5.76) for ¢ + £ takes a form

%K(l+€)—%K(l+€ —h)D=K(t+EA+K(t+E—-h)B+K(t+E—r)C  (5.90)

We substitute the right-hand side of (5.90) into equation (5.89) and obtain

%U(é) ddg (E—h)D= /KT (WK (t+&) th+/KT (t)WK(t+& — h)dtB+
+/KT(t)WK(t +&—r)dtC=U(E)A+U(E—-h)B+U(E—r)C (5.91)

We have obtained the dynamic property of Lyapunov matrix

%U(é)f%U(ffh)D:U(é)AJrU(éfh)B+U(§fr)C (5.92)

for £ >0and & # jh, j=0,1,2,...
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Now we introduce the algebraic property of Lyapunov matrix

d T
= [K(r) —K(— h)D] WK (1)~ K(t —h)D] =

_ {%K(r) - %K(t ~nD) "WIK ()~ K(t— D]+
d

+IK(t) — K(t — h)D)TW {EK(t) - %K(; - h)D} (5.93)

We substitute the right-hand side of equation (5.76) into equation (5.93) and integrate both
sides with respect to ¢ from zero to infinity taking into account the definition of Lyapunov
matrix (4.8). After calculation we obtain the algebraic property of Lyapunov matrix
—W =ATU(0)+U(0)A—ATU(~h)D—D"UT (~h)A+B"UT (—h) + U(—h)B+
—B'U(0)D-D"U(0)B+CTUT (—r) +U(—r)C~C"U(r—h)D—-D"U(h—r)C (5.94)

We calculate U(—&)

=)

o0 0
U(-8)= [ KT (OWK(-&)di = [ K" (n+EWKm)an = [ KT (n-+EWK(m)dn+
0 ¢ g

oo =

+ [ KT+ EWKm)dn = [ KT (n+EWK(n)dn =
0 0

= [/OQKT(n)WK(n%)dnr:UT(é) (3.93)
0

The integral f?i KT(n+&)WK(n)dn = 0 because K(n) =0 for n < 0.
We have obtained the symmetry property of Lyapunov matrix

U(-§)=u"(¢) (5.96)

for &€ > 0.
We had obtained the following theorem.
Theorem 5.7. Let system (5.69) be exponentially stable.The Lyapunov matrix for that system
fulfills the conditions:

d d

7U -
for&E >0and & # jh, j=0,1,2,...

UE-hnD=UE)A+U(E—hB+U(E —r)C (5.97)

u(=£)=U"(¢) (5.98)
for&>0
~W=ATU(0)+U(0)A—A"U(~h)D—D"U" (~h)A+B"U" (—h) + U(—h)B+
—~B"U0)D-D"U(0)B+CTUT (—r)+U(~r)C—~C"U(r—h)D—D"U(h—r)C (5.99)
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5.2.5 The Lyapunov matrix for a neutral system
with two commensurate delays

Let us consider a neutral system with two commensurate delays

dx(r) _Ddx(t—h) = Ax(t) + Bx(t — h) + Cx(t — 2h)
) 7 (5.100)

x(0) = 0(6)
fort >0, 6 € [-2h,0].
The state x(¢) € R”, matrices A, B, C, D € R™" initial function ¢ € PC'([—2h,0],R") — the
space of piece-wise continuous vector valued functions defined on the segment [—24,0] with

the uniform norm || @ ||pc1= sup | @(0) ||, delays &k, 24 > 0.
6e[—2h,0]
The set of equations (5.97), (5.98), (5.99) for system (5.100) takes a form

d d
S-U(D) = U(t=h)D =U(D)A+U(t~h)B+U(T~2h)C (5.101)

U(-1t)=U"(1) (5.102)
for T € [0,2A]
~W =ATU(0)+U(0)A—ATU(~h)D—D"U" (~h)A+B"U" (—h) + U(—h)B+
—B"U(0)D-D"U(0)B+CTUT (—2h) +U(—2h)C — CTU(h)D — D"U(~h)C  (5.103)

Formula (5.102) extends the function U defined on the segment [0,24] to the segment [—24,0].
Indeed for T € [0,2h], U(—1) = UT (). For g = -7, U(g) = UT (—¢) and ¢ € [-2h,0].
We define the functions U; (&), U2(&), Z1(&), Z2(&) for € € [0, 4]

Ui(8)=U(%) (5.104)
U2(8)=U(h+§) (5.105)
Z(&)=U(E—h)=U"(-E+h) (5.106)
Zy(E) =U(E —2n) =UT(—& 4 2h) (5.107)

Relations (5.104)—(5.107) imply
U(0)=U:(0), U(—h)=2(0)
U(—2h) =7,(0), U(h)=U,(0) (5.108)
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Taking into account (5.108) the algebraic property (5.103) can be written in a form
~W =ATU(0) + U (0)A — AT Z,(0)D — D" ZT (0)A + BT T (0) + 7, (0) B+
—B"U;(0)D—D"U;(0)B+CT 72 (0) 4 2,(0)C — CTU,(0)D — DT 7, (0)C (5.109)

We will use the relations

U(=&)=U"(&)=U{ (&) (5.110)
U(=E—h)=U"(E+h)=U; (§) (5.111)
UQh—&)=U"(&—2h) =275 () (5.112)

for £ € [0,h].
Taking into account relations (5.104)—(5.107), equation (5.101) for T =&, dt =d&, & € [0, 4]
can be written in a form

;%m@y7%a@w:wﬁm+a@w+a@x (5.113)

Taking into account relations (5.104)—(5.107), equation (5.101) for © = & + h, dt = d&,
& € [0,h] can be written in a form

d d

EUz(é)*EUI@)D:Uz(é)A+U1(§)B+Zl(§)C (5.114)
Equation (5.101) for 7= —& +h, dt = —d&, & € [0,h] can be written in a form
d d
EU(—é +h)— EU(—&)D = U(—E+WA-U(-EB-U(—E—C  (5.115)

We transpose doth sides of equation (5.115) and taking into account relations (5.104)—(5.107),
(5.110) and (5.111) we obtain

%Z@—N%M@FHHL@—WM@—ﬂw@ (5.116)

Equation (5.101) for 7 = —& 4+ 2h, dt = —d&, & € [0,h] can be written in a form

d d
EU(—& +2h) — EU(_é +h)D=-U(-E+2nNA—-U(-E+h)B-U(=&)C (5.117)
We transpose both sides of equation (5.117) and taking into account relations (5.104)—(5.107),
(5.110) and (5.112) we obtain

d d

EZZ(é) _Dng

Z\(&) =—-AT2,(8) - B" 21 (&) - CTUL (&) (5.118)
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Equations (5.113) and (5.116) can be reshape to a form

4 uy(&) - DT

0z U1(§)D = —A"Z,(§)D - B" U\ (§)D+

d
&
~CTU(E)D+ U (E)A+Z1(E)B+Z(E)C (5.119)

%z &) DTEzl@D — DTUL(E)A+ D' Z)(£)B+

+D"7,(§)C—A"Z1(&) - B UL (§) - C"Ua(§) (5.120)
We have obtained the set of ordinary differential equations with unknown U; (&), U (&),

Z(8), Za(8).

d d
EUl(g)—DTE

—CTU,(E)D+ U1 (E)A+Z(E)B+Z1(E)C

d
dg

Ui(§)D =—-A"Z,(§)D—B"U\ (§)D+

Us(E) %
%zl (&) - DTEZI@)D — DU, (£)A + D7 Z,(€)B+
+D"Z,(E)C—ATZ (&) —BU (&) —CTU, (&)

U1 (E)D = Uy (E)A+ U, (E)B+Z1(E)C
(5.121)

EB & =D 21 = ~ATZ2(&) B 4 (&) ~CTU )
for & € [0,4] with initial conditions
Ul (0)7U2(0)7ZI (0)722(0)

Equation (5.121) can be written in a form

colU, (&) colUy (&)
d | colta(§) | _ colU (&)
e { colZ)(2) ] %ﬂ[ colZy (&) ] (5.122)
colZy(&) colZy ()
for & € [0,h] with initial conditions

colU;(0),colU(0),colZ1(0),colZ,(0)

Solution of the set of ordinary differential equations (5.122) is given in a form

0)

8; ] (5.123)
0)
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where a matrix

@1(8§) Pia(8) Pi3(E) Pua(§)

_ | Pu(8) Pn(8) Pn(S) Pu(S)
POV oy(€) @n(E) ule) Bu(E) 129

D41 () Pn(8) Pu3(§) Pu(d)

is a fundamental matrix of system (5.122).
We determine the initial conditions colU; (0), colU,(0), colZ,(0), colZ(0).
Relations (5.104)—(5.107) imply

Uy (h) = U(h) = Uy(0) (5.125)
Zy(h) = U(0) = U,(0) (5.126)
Z>(h) = U(—h) = Z,(0) (5.127)

Solution of the differential equations (5.122) for & = h is given

colU; (k) = colU(0) = @y (h)colU;(0) + @12(h)colU,(0)+
+Pi3 /’l)COlZl (0 +¢714( )COlZz(O) (5.128)

colZi(h) = colUy(0) = P31 (h)colU;(0) + D3, (h)colU» (0)+
4 ®y3(h)colZy (0) + Bsa (h)colZ>(0) (5.129)

COlZz(h) = colZ; (0) Dy (h)COZU] (0) + Dy (/’l)COZUz (0)+
+®y3(h)colZ, (0) + Paa(h)colZ,(0) (5.130)

Equations (5.128) to (5.130) and (5.109) enables us to calculate the initial conditions of system
(5.122). We reshape them to a form

Dy (/’l)COlU] (0) + ((p]z(h) — 1)COZU2(O) + @y3(h)colZ,(0) + @14(/’1)60122(0) =0 (5.131)
(P31 (h) — 1)colU; (0) + P3p(h)colU(0) + D33 (h)colZ1 (0) + P3a(h)colZ,(0) =0 (5.132)

D41 (h)colU;(0) + Paa(h)colU(0) + (Paz(h) — 1)colZi (0) + Pag(h)colZy(0) =0 (5.133)

ATUL(0) + U (0)A — AT Z,(0)D — D" T (0)A +B" T (0) +Z,(0)B — B U, (0)D+
—D'U(0)B+CTZE (0) + Z,(0)C — CTU,(0)D — DT 7, (0)C = —W (5.134)
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5.2.6 The example

Let us consider a neutral system with a P-controller

d.z(tt) _ddx(tdt_ h) _ ax(t) +bx(t _ h) +Clu(t — 2]’[)
u(t) = —px(t)
x(0) =¢(0)

(5.135)

t>0,x(t), u(t) €R, 0 € [-2h,0], h > 0. The parameter p is a gain of a P-controller, ¢ is

an initial function of system.
One can reshape equation (5.135) to a form

d);(tl) _ddx(tdt— h) _ ax([) +bx(t _h) _Clpx(t —2h)

x(6) = (6)

fort > 0 and 6 € [—2h,0].
In parametric optimization problem we use the performance index of quality

J= /wxz(t,(p)dt
0

where w > 0 and x(z, @) is a solution of equation (5.136) for initial function ¢.

The Lyapunov functional for system (5.136) has a form, see formula (5.81)
V(@) = [(1+d*)U(0) —2dU(~h)]9*(0)+

2000 [ [u-0- -av(-0) [po(0) +42 -

—h

0
72(p(0)clp/ {U(ezh)dy(he)]q)(e)dm
—2h
00

+//U(e—n)[b<p(e)+dd‘flg°)] [b<p(n)+dd‘2$1")}dnde+
—h—h
—2c1p/0/OU(—h—H—)—n)[b(p(9)+dd(gl(:)](p(n)d9dn+
—h—2h

0 0
vt [ [ uie-me®)pmdoan
—2h—2h
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The value of the performance index of quality (5.137) is equal to the value of the functional
(5.138) for initial function ¢

J=v(p) (5.139)

To obtain the value of the performance index of quality one needs a Lyapunov matrix U (&)
for & € [0,2h]. In Chapter 5.2.5 was presented a method of determination of the Lyapunov
matrix for a system with two delays.

System of equations (5.122) takes a form

-4 -
EUI@) _ ;
Ui(8)
L)
dE " ? U2(8)
= (5.140)
d
4 Z1(8)
7z 1
4
d L ZZ(%) |
—7Z
| 520
where
hy  —hyd h3 hy
h4 h5 /’l6 h2d
%:
—hy —hy —hy hyd
| —he —had —hs —hs |
where
a—bd
e
. ap
=1
b—ad
h=——
3 1_d2’
N _ b+ad—2bd*
4 = 1—d2 )
I _a—adz—clpd2
5= 17d2 s
bd — ad® +c1p — c1 pd?
he =

1—d?
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Initial conditions of system (5.140) one obtains solving the algebraic equation

U,(0) 0
0 gf(((o); = 8 (5.141)
Z2 (0) —W
where
Dy (h) Dip(h) —1 Dy3(h) Dy4(h)
| Pu(h)—1  Pn(h) D33(h) D34(h)
C=1 @) nh) By(h)—1  Du(h) (5.142)
2(a—bd) —cipd  2(b—ad)+cipd 2cip

Where @ (&) is a fundamental matrix of solutions of equation (5.140).
We search for an optimal gain which minimize the index (5.137) for the initial function ¢
given by a formula
0=0
p(6) =1 for (5.143)
0 for6 € [-2h,0)

For the initial function ¢ given by the formula (5.143) the performance index of quality
has a form

J=v(9) = [(1+d*)U;(0) —2dZ;(0)]x5 (5.144)

Figure 5.7 shows the value of the index J(p) forxo =1,w=1,a=—1,b=—-0.5,¢; = —0.4,
d = —0.6 and = 1. You can see that there exists a critical value of the gain p.,;;. The system
(5.136) is stable for gains less then critical one and unstable for gains greater then critical.

700 T T T T T

| x0=1, w=1, a=-1, b=-0.5, c1=-0.4, d=-0.6, h=1

600} 1

500 b

400 1

300 1

200 1

100 1

_100 1 1 1
0

Fig. 5.7. Value of the index J(p)
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Figure 5.8 shows the value of the index J(p) forxo =1, w=1,a=—1,b=—0.5,¢; = —0.4,

d = —0.6 h =1 and for p less then critical gain. You can see that the function J(p) is convex
and has a minimum.
0.75 . . . . . . .

x0=1, w=1, a=-1, b=-0.5, ¢1=-0.4, d=-0.6, h=1

0.7 J(p)
0.6
0.55

0.5

0.45 . . . . .
0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 5.8. Value of the index J(p)

Figure 5.9 shows graphs of functions U;(§), U»(&), Z;(&) and Z,(&) obtained with the

Matlab code, for parameters of system (5.136) used in optimization process with 4 = 1 and

for optimal gain.
0.5

| x0=1, \;v=1, a=—1,yb=—0.5, c1;—0.4, d=—6.6, h=1| Slg
Z1(%)
— = Z2(§)

0.4t

0.3}
p=1.3083

0.2t

0.1f

0.2 04 06 0.8 1
0<£<h

Fig. 5.9. Functions U (&), U (§), Z1 (&) and Z, (&) for optimal gain
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We search for an optimal gain of a P-controller which minimizes the index (5.144).
Optimization results, obtained by means of Matlab function fininsearch, are given in Table 5.4.
These results are obtained forxo =1, w=1,a=—-1,b=—-0.5,¢y = —-04and d = —0.6.

Table 5.4
Optimization results
Delay & | Optimal gain | Index value | Critical gain
0.5 2.4291 0.4579 8.0
1.0 1.3083 0.4799 52
1.5 1.0145 0.4804 4.2
2.0 0.8803 0.4791 32
2.5 0.7986 0.4784 29
3.0 0.7433 0.4784 2.7




6 Conclusion

In the monograph was presented the method of determination of the Lyapunov functional
for varies time delay systems and its applications to the parametric optimization problem to
calculation of the quadratic performance index of quality, Integral of Squared Error (ISE).
In the monograph were presented examples of parametric optimization problems for varies
controllers i.e. P, I, PI, PD and for varies plants i.e. inertial system with one and two delays.
An inertial system with delay (Kiipfmiiller model) is often used in practical applications so the
obtained results can be useful. Interesting illustration of application of presented method to
parametric optimization problem for separately excited D.C. motor angular velocity control
system is presented in [10].

In monograph equations describing dynamics of time delay systems are given in a form of
differential equations with time delay with respect to momentary state x(¢). We can reshape
them to the state equation using the relation

Jdx(0)  Jx(0)

ot d6 ©.1)

The procedure to obtain the state equation is presented below.
Let us consider a system with time delay whose dynamics is described by a functional-
differential equation

dx(t) B

T—Ax(t)‘i—th( r)

x(t0) = xo 62
Xy =D

for t > to, where x(t) € R" is a momentary state, @ € L?([~,0),R") is an initial function,
X; is a shifted restriction of x(-) to an interval [t — r,¢) and is given by a formula

x(0):=x(t+0) (6.3)
for t > 19, 6 € [—r,0)
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The state of system (6.2) is a vector

S(t) = [ *0) }

Xt

for t > to, where x(¢) € R" is a momentary state, x, € L*([—r,0),R").
The state space is defined by a formula

X =R"x L*([-r,0),R")

We compute the time derivative of (6.4)

dx(1) Ax(1) + Bx,(—r)
ds() — dt — = St
dt axt %
ot 00
for t > 1y, 0 € [—1,0).
_ | %0 | _
S(to) = [ e ] =S
In such a way we obtained an abstract initial-value problem
ds(r)
—= =8
= (t)
S(to) =S8y € @(%)
for t > 1o, where 2(«7) is a domain of operator </
ds
D)= {S(t) eX: # eX fort>1,0 € [—r,O)}

The state space X is a Hilbert space with an inner product

0
<S1,5, >:xlTx2+/€D]T(9)CD2(0)d9

—r

where S; = {(’;’ ]eXforizl,z.
i

Now will be presented the third method of determination of the Lyapunov functional.

6.4)

(6.5)

(6.6)

6.7)

(6.8)

(6.9)

Proposition 6.1. [32] The solution of (6.7) is exponentially stable if and only if there exists

a linear operator 7€ = ¢, defined on X, non-negatively definite i.e.
< S8(t),7#8(t)>>0

Sforevery S(t) € X, t > 1y is fixed
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such that
< dS(t), #8(t) >+ < S(t), #FS(t) >= —x (t)Wx(t) (6.10)

SforS(t) = [ x)(ct) } € D(A) CX, t>1tyis fixed, where W =WT >0, W € R™" is symmetric
'

positively definite real matrix.

The formula (6.10) is called The Lyapunov operator equation and enables us to determine
a linear operator 7.
The formula

V(S(1)) =< S(t), #S(1) > 6.11)

for t > ty, defines the quadratic Lyapunov functional.
There holds the relationship

=

J= / A (Wa(t)dt =< So, #Sy > 6.12)

fo

D
This method gives the same results for system (6.2), as methods presented in the monograph,
see [32] pages 146-148.
The Lyapunov matrices are also used in LQ problem for time delay systems to find the
suboptimal control [82]. The optimal control is the solution of the Bellman type equation.
In the monograph [68] the LQ problem for time delay systems is solved by means of variational
method.

for Sp = [xo ]
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