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MAREK PLUTA
Sound Synthesis for Music Reproduction and Performance

Summary

Sound synthesis has a history dating from the turn of XIX-th and XX-th century.
At present, synthesizers are commonly utilised in music, and they surpass traditional
instruments in the abilities related to the control over parameters of generated sound.
This quality allows to imitate and substitute existing instruments, as well as leads
to artistic experiments in the area of new means of expression. At the same time,
synthesis techniques remain firmly based on signal processing, and even more so on
mechanics. After all, not only methods of synthetic sound generation, but also char-
acteristics and parameters of the effect achieved, have to be considered and studied
in a category of physical, mechanical phenomena.

The monograph attempts to present current state of knowledge regarding sound
synthesis methods in two main areas of their musical applications: reproduction of
music from a symbolic score, and live music performance. The survey of synthe-
sis methods is based on the author’s proposal for their classification, which takes
account of the fundamental nature of the sound production principle. Apart from
traditional, often studied methods, the monograph presents a number of new or less
known methods, hitherto rarely discussed in books, such as concatenative or neural
audio synthesis. The objective of the survey was to present the subject in a manner
helpful and suitable for a sound engineer that either attempts to use, or to design
sound synthesizers.

On the basis of this broad survey, the monograph presents two new, author’s
methods of sound synthesis. The first one, phrase assembling synthesis, is an attempt
aimed towards realistic reproduction of musical scores. It combines selected features
of sampling and concatenative synthesis with a score interpreting sequencer supple-
mented with performance rules simulation algorithms. The second method is based
on a certain paradox, i.e. a numerical simulation of infeasible instruments. The key
idea is to design a mathematical model of a sound producing object that purposefully
breaks selected rules or exceeds feasible ranges of parameters. Instruments created
in this manner retain some features of real objects, which facilitates their intuitive
control, while the sound they produce manifests new, often complex and interesting
properties, which have been presented and analysed in the monograph.
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MAREK PLUTA
Synteza dźwięku w reprodukcji i wykonawstwie muzyki

Streszczenie

Historia współczesnej syntezy dźwięku sięga przełomu XIX i XX wieku. W tym
czasie syntezatory znalazły szerokie zastosowania w muzyce, przewyższając trady-
cyjne instrumenty w zakresie możliwości kontroli parametrów wytwarzanego dźwięku.
Ta cecha pozwoliła im z jednej strony imitować i zastępować istniejące instrumenty,
a z drugiej umożliwiła artystyczne eksperymenty w sferze poszukiwań nowych środ-
ków wyrazu. Jednocześnie same techniki syntezy pozostają bardzo silnie zakorzenione
w takich dziedzinach wiedzy jak przetwarzanie sygnałów, ale przede wszystkim
mechanika. To ostatecznie w kategorii fizycznego, mechanicznego zjawiska muszą
być rozpatrywane zarówno same metody syntetycznego wytwarzania dźwięku, jak
również cechy i parametry osiągniętego efektu.

Monografia przedstawia aktualny stan wiedzy dotyczącej metod syntezy dźwięku
wykorzystywanych w dwóch głównych obszarach jej muzycznych zastosowań: do re-
produkcji muzyki na podstawie zapisu symbolicznego oraz do wykonywania muzyki
na żywo. Przegląd metod syntezy oparto na autorskiej propozycji ich podziału,
uwzględniającej istotę zasady wykorzystanej do generowania dźwięku. Poza meto-
dami tradycyjnymi, szeroko opisywanymi w literaturze, praca przybliża także wiele
nowych lub mniej znanych metod, do tej pory rzadko omawianych w opracowaniach
książkowych, takich jak synteza konkatenacyjna czy też metoda oparta na technikach
głębokiego uczenia. Autor monografii skonstruował ją tak, by mogła być użyteczna
dla inżynierów dźwięku niezależnie od tego, czy zajmują się jedynie wykorzystaniem
czy również projektowaniem i budową syntezatorów.

Na tym szeroko zarysowanym tle zaprezentowane są dwie nowe, autorskie metody
syntezy. Pierwsza z nich, metoda montażu frazy, reprezentuje grupę metod przez-
naczonych przede wszystkim do realistycznej reprodukcji zapisu nutowego. Łączy
ona wybrane cechy metody konkatenacyjnej i samplingowej z elementami sekwencera
wspartego algorytmami symulacji technik wykonawczych i interpretacyjnych. Druga
z metod opiera się na pewnym paradoksie, czyli numerycznej symulacji instrumentów
nierealizowalnych. Polega ona na modelowaniu fizycznym obiektów wytwarzających
dźwięk, w których celowo łamie się określone zasady bądź też przekracza możliwe do
zaistnienia zakresy parametrów. Powstałe w efekcie instrumenty zachowują pewne
cechy obiektów rzeczywistych, co ułatwia ich intuicyjną kontrolę. Jednocześnie jed-
nak wytwarzany przez nie dźwięk ma nowe, często złożone i interesujące właściwości,
które zostały zaprezentowane i poddane analizie.
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1. Introduction

Since ancient times music has been an essential and influential component of hu-
man culture, that apart from artistic and utilitarian aspect, always triggered human
ingenuity to find, and later design, objects producing sounds with appealing features.
What exactly is musically appealing, depends on the purpose of music, its form, and
state of its evolution, with rhythmic, dynamic, melodic, harmonic, sonoristic, or other
features considered primary. Thus a progress in instrument design and production
methods does not slow down, even though at times, certain instruments reach such
level of refinement and perfection that further improvements do not seem possible –
the violin could be the very example.

Despite maturing, crystallising designs, science and technology constitute a source
of ideas that gives momentum to try entirely new approaches. From the very begin-
ning instruments were based on principles of mechanics, often quite sophisticated,
so that even today full understanding of the underlying phenomena regarding sound
production in certain instruments may be debatable to some extent, hampering ac-
curate modelling attempts and prediction of instruments behaviour. More recently,
with the earliest endeavours dating to XVIII-th century and devices such as Denis
d’or and clavecin électrique, musical instruments started to employ principles of elec-
tricity. Initially, electricity served as an aid to otherwise mechanical designs, but in
time it has become the principal source of signal in instruments such as the theremin,
the ondes martenot, or the Trautonium. Yet before such instruments were able to gain
acceptance comparable to their traditional counterparts, they have spawned a new
generation of musical instruments – the sound synthesizers.

1.1. Definition of Sound Synthesis

The area of sound synthesis is located at the intersection of science, technology,
and arts. The science is the primary source of methods, the technology is responsible
for implementations, and the arts give it a purpose. Each of them is focused on
a different aspect, so when it comes to defining the essence of sound synthesis the
result varies depending on the point of view.
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The most fundamental statement is that the synthesis is a process of producing
sound [485]. Such description, however, is clearly too broad. In musical applications,
a sound synthesizer is considered to be an electronics-based device or a computer
program that applies an algorithm substantiating a certain principle to produce sound.
Well defined process of sound generation allows to accurately predict its outcome,
giving synthesizers an advantage over traditional and electronic instruments when it
comes to reproducing existing, or designing new sounds. New sounds, in turn, may
be the cause of a common understanding of synthesizers as ‘artificial’, contrary to
‘natural’ instruments, based on principles of mechanics.

The term ‘artificial’ is one of three adjuncts that often complement definitions of
sound synthesis, with the remaining two being ‘electronic’ and ‘algorithmic’ [521, 470].
However, none of these is actually immanent for sound synthesis, and does not provide
an explanation on the concept – it is quite easy to give prominent counterexamples.

Even though majority of older, standalone synthesizers can be viewed as elec-
tronic musical instruments, some of the oldest, such as the Telharmonium, are electro-
mechanical. One can even consider a pipe organ as a variant of entirely mechanical
additive synthesizer. Other exceptions are quite new and of a different kind: contem-
porary synthesizers are based on pure algorithms implemented in a software form,
while electronics serves as a mere framework.

An algorithm seems to be a crucial part of a synthesizer, yet again, the Telharmo-
nium proves otherwise. There is no actual algorithm in its electro-mechanical design,
yet it obviously applies the additive synthesis method, implemented as a mechanism.
Therefore, a sound producing algorithm is not an universal and distinguishing feature
of sound synthesis.

The term ‘artificial’ is the most questionable of the three. In general understand-
ing it refers to being humanly contrived [364]. However this would make virtually all
musical sounds artificial, since they would have been produced on purpose. A rough
approach would be to put a division line between sounds generated mechanically and
electronically. In early years of electronic music that would be sufficient and quite
precise. But since that time many electronic instruments have become as much ac-
knowledged as their mechanical counterparts, and their sound is considered no longer
artificial. Moreover, mechanical instruments are recorded and reproduced with elec-
tronic devices, which does not attach the ‘artificial’ quality to their sound. Thus un-
derstanding of the term constantly evolves, and it might be more arguably attributed
to new, previously unknown sounds. However, many synthesizers are part of a musical
tradition now, and their sound is anything but novel. Therefore, it is not artificial.

With neither of the aforementioned terms being able to define sound synthesis,
a distinctive feature has to be looked for elsewhere. With vast variety of synthesized
sounds, signal features alone cannot serve the purpose. However, if synthesizers are
considered the third generation of musical instruments, one can attempt to isolate
– by comparison – the essence of their operation. Mechanical instruments are cen-
tred around a physical object and its properties, with the actual physical principles
governing production of sound being of secondary concern – a result of the design.
Electronic instruments focus on properties of the signal. Here the sound production
principle is more important, yet still it is the design of instrument circuits that is of

14



primary concern. Again, the principle is the result. Sound synthesizers interchange
these priorities: the design is a consequence of a chosen sound production principle.
Thus the synthesizers are centred around a precisely defined principle.

All things considered, the sound synthesis can be defined as a process leading
to production of sound, that is centred around a clearly defined principle.
The medium and method of implementing the principle is irrelevant. There are no
assumptions regarding properties of produced sounds. Even though, the definition al-
lows to distinguish between synthesizers and other instruments, and does not exclude
non-electronic devices. Following a definition of sound synthesis, one can define the
sound synthesizer as any device, either electronic, mechanical, or purely information-
based, that performs the sound synthesis using one or more synthesis methods.

1.2. Taxonomy of Synthesis Methods

Discussing detailed differences among numerous synthesis methods and their im-
plementations requires establishing some sort of systematics. Approaches to the prob-
lem vary from hierarchical to a group-oriented organisations with diverse and some-
times inconsistent criteria. Beneath the inconsistencies lies the question, whether to
consider synthesis on a practical or theoretical basis. A practical approach would start
with features of particular synthesizers and infer conclusions from their similarities.
A theoretical one would consider general principles of synthesis methods.

Russ [485] has chosen the practical approach. A hierarchy starts with a fundamen-
tal division into analogue and digital methods. Thus the main differentiation is based
on the implementation. There are three types of analogue methods: subtractive,
additive, and wavetable. On a digital side a number of types is larger, including: fre-
quency modulation, wavetable, sample replay, additive, samples and synthesis (S&S),
physical modelling, and software synthesis. The apparent flaw of such classification is
placement of some methods on both branches. A general division into analogue and
digital may better suit sound synthesizers, while in case of methods alone it disregards
their actual principles. It has to be considered though, that often a single synthesizer
employs several methods. Finally, software synthesis seems misplaced. While it is
digitally based, it is also general enough to be classified on the same level as analogue
and digital branches, since it can implement any method, such as additive or sampling.

A different approach has been employed by Roads [470], who presents somewhat
different list of methods that includes: additive, subtractive, wavetable, sampling,
physical modelling, wave terrain, granular, modulation, formant, waveform segment,
graphic, and stochastic synthesis. However, since the book concerns computer music,
the list is narrowed down to digital synthesis methods only. Moreover there is no
move towards grouping methods that display similar properties nor an attempt to
establish any apparent hierarchy.

Schwarz [502] classifies synthesis methods using a hierarchy tree presented in Fig-
ure 1.1. It emphasises a role of concatenative synthesis, and locates it on the highest
branch of hierarchy. While there may be a merit to such classification regarding gen-
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erality and inclusiveness of synthesis principles, it does not reflect importance and
actual impact of the concatenative method over the methods it supposedly includes.

Sound synthesis

Concatenative
synthesis

Unit
selection

Fixed
inventory

Granular

Sampling

Parametric
synthesis

Physical
models

Signal
models

Subtractive

Additive

Figure 1.1. Classification of sound synthesis methods, according to Schwarz [502]

A more balanced taxonomy has been proposed by Smith [521], even though, sim-
ilarly to Roads, he considers digital techniques only. He provides a long, detailed list
of methods, and groups them into four classes dealing with: processed recordings,
spectral models, physical models, and abstract algorithms. Furthermore, he predicts
migration of recording based methods towards spectral group, and eventual disap-
pearance of abstract methods due to lack of analysis support, and resulting difficulty
in obtaining sounds that would be musically appealing. Thus with time only two
categories shall remain: physical modelling and spectral modelling. He refers to the
former, based on the mathematical description of existing instruments, as model of
the source, an to the latter, based on the perception of sound, as model of the receiver.

The author of this monograph proposes to expand the original four-group hier-
archy proposed by Smith with an additional, highest level, and divide all synthe-
sis methods into direct or indirect, as presented in Figure 1.2). Principles applied
in direct methods aim primarily at producing sound, whereas principles of indirect
methods concentrate on various models and ideas that may produce sound. Methods
belonging to the first group allow to control sound parameters and properties directly.
In the second group control affects an intermediate layer. It may lead to more in-
tuitive control, like in physical modelling synthesis, where a musician understands
properties of the instrument. However, it may also cause the opposite effect, with an
example of modulation methods, where a single parameter can impact several sound
characteristics in a non obvious manner.

Direct methods include spectral and waveform based techniques. Spectral tech-
niques operate primarily in frequency domain, and their principles are close to the
human perception of sound. As such, they are inherently intuitive. Waveform-based
techniques operate directly on sound recordings, thus they usually are very efficient.
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Figure 1.2. Proposed taxonomy of sound synthesis methods

Indirect methods consist of abstract and physical modelling techniques. The first
group aggregates approaches based on various principles that are neither inherently
associated with sound signal, nor with musical instruments. With no associations
and their rules imposed, abstract methods are particularly well suited for sound ex-
periments [179] and may often produce new, intriguing sounds. The second group
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applies various numerical modelling approaches to simulate musical instruments –
mostly acoustic, but recently analogue electronic as well [399].

1.3. The Purpose and Scope of the Monograph

Sound synthesis has a history dating from the turn of XIX-th and XX-th century.
At present, synthesizers are commonly utilised in music. They surpass traditional
instruments in the abilities related to the sound control. They can be more precise,
repeatable if needed, and unlike traditional instruments that affect timbre through
articulation or dynamics, synthesizers allow to adjust it in a more fundamental, unre-
strained manner. Thus timbre becomes another controllable quality, providing a com-
poser with an additional, fully featured dimension besides duration, loudness, and
pitch. With a deep control over produced sound, a synthesizer can imitate, and
sometimes substitute another instrument or a group of instruments. Synthesis is
not limited to imitation though, but is a powerful tool allowing to experiment with
entirely new sounds.

This monograph has two main objectives. The first objective is to present
current state of sound synthesis methods in a manner useful for a sound en-
gineer that either attempts to use, or design sound synthesizers. Established works
[521, 470, 557, 485] are becoming outdated. They do not include new methods such as
concatenative synthesis or neural audio synthesis. These methods have been recently
made available due to progress in computer and information technology. Moreover,
previously described synthesis methods have progressed as well – notably additive and
physical modelling methods, that can make use of additional processing power facili-
tated by multi core processors and principally by graphics processing units, recently
turned into general purpose processing devices. Therefore, the author attempts to
update and complete this knowledge.

The second objective is to present the author’s contribution into the
filed of sound synthesis, in the form of two new synthesis methods: phrase
assembling synthesis, and infeasible instruments. Phrase assembling synthesis
is an attempt at combining selected features of sampling and concatenative synthe-
sis, aimed towards realistic reproduction of musical scores. It may be considered as
a system consisting of a synthesizer and a score interpreting sequencer. It is based
on several areas of knowledge, including musical acoustics, sound engineering, orches-
tration, musical analysis, music performance, and information technology. Infeasible
instruments aim at the opposite end of sound synthesis applications, i.e. at live per-
formance and design of new sounds for musical purposes. The method is based on
the principles of physical modelling synthesis, and relies on simulation of musical
instruments that retain some properties of the original objects, but are modified in
various ways that would prevent them from being built in a physical form. Thus they
combine two important features: they can be controlled by a performer in an intuitive
manner, but at the same time they produce sounds with features uncommon for any
existing instrument. Due to high complexity of underlying computations, presented
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implementation of infeasible instruments makes use of graphics processing units to
perform finite difference simulations.

The monograph includes five chapters and a summary. The first chapter defines
the sound synthesis and introduces author’s view on the taxonomy of sound synthe-
sis methods. The second chapter presents sound synthesis techniques belonging to
a group of direct methods. This includes spectral methods and waveform based meth-
ods that are studied with regards to their abilities at reproducing particular musical
features. A large part of the chapter is devoted to concatenative synthesis, that has
not been widely described in the literature, but its implementations are gaining atten-
tion, and it shares some mechanisms with the author’s method of phrase assembling.
The third chapter presents indirect methods of sound synthesis, including abstract an
physical modelling techniques. A section devoted to abstract methods presents a few
interesting techniques that have not been widely described in literature, including
a new method based on deep learning. Part devoted to physical modelling methods
is dominated by finite difference approximations, as the most universal of presented
physical approaches, and at the same time as a computational basis for the infeasible
instruments method. The fourth chapter presents the author’s method of phrase as-
sembling synthesis, from the concept, through design and realisation, to preliminary
tests of a prototype implementation. The fifth chapter presents the author’s concept
and implementation of the infeasible instruments method. It includes a section de-
voted to programming sound synthesizers based on finite difference schemes, using
graphics processing units to simulate large models in real time, thus allowing to pro-
duce a performance synthesizer. The following sections present implementations and
properties of several infeasible instruments. Finally, the conclusions of the monograph
outline the author’s accomplishments and summarise the place of both new methods
with regards to current state of sound synthesis.



2. Direct Methods

2.1. Spectral Methods

2.1.1. Modular View on Elements of a Synthesizer

Operation of sound synthesizers may be analysed using a convenient abstraction
layer, introduced to group parameters related to certain tasks, and to clarify function
of particular synthesizer elements. Blocks performing simple tasks, such as signal
generation or a specific type of signal modification, are referred to as unit generators
(UG). Symbols representing UGs are commonly used in synthesizer diagrams.

The concept of UGs can be traced down to large modular analogue synthesizers,
where clear flow of control data was vital for handling of a device. UGs however, are
not limited to modular appliances – they can describe arrangement of elements and
data flow in closed-architecture synthesizers as well. It may be possible to use the
concept of UGs referring to methods other than spectral, although it is the additive
and particularly the subtractive synthesis, that may be considered as based entirely
on such model.

In analogue synthesizers the data is represented by control voltage (CV) and gate
signals. Due to analogue origins nomenclature of UGs is based on this form of data,
even though digital synthesizers use different systems and protocols, such as MIDI.
Direct usage of UGs naming scheme in digital domain is therefore not precise, since it
is not a voltage that is the control signal. Nevertheless, the concept became so popular,
that analogue terms were brought to digital domain to name digital counterparts of
analogue UGs. Traces of this nomenclature are still present in contemporary music
programming languages.

The list of the most basic UGs consists of [485]:

• VCO – voltage controlled oscillator,
• VCA – voltage controlled amplifier,
• VCF – voltage controlled filter,
• LFO – low frequency oscillator,
• EG – envelope generator.
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2.1.1.1. Voltage Controlled Oscillator
From the functional point of view VCO is a basic periodic signal generator operat-

ing in auditory frequency range. In hybrid and digital synthesizers it is also referred
to as DCO (digitally controlled oscillator) to emphasize a fact, that control data is
digital. A more general OSC (oscillator) term is also used. A main input of a VCO
is frequency. There can be additional inputs for amplitude, and for frequency mod-
ulation. If the latter is controlled by LFO it produces a vibrato effect. VCOs may
have input for connecting output from other VCOs, e.g. for a synchronisation pur-
pose. Finally, when applied in subtractive synthesis, there is a waveform selector,
with optional input allowing to adjust its shape (e.g. pulse width).

VCOs applied in additive synthesizers generate sine output. Such signal may not
be useful for subtractive synthesis due to lack of harmonics, but it may serve different
purposes. For instance, it can be mixed with other waveshapes, or can modulate other
signals. Apart from sine signal, analogue VCOs typically generate triangle, square,
sawtooth (Fig. 2.1), or pulse waveshapes (Fig. 2.2), and their variants [485]. In
hybrid or digital implementations this set may be much larger.

User of a subtractive synthesizer needs to know spectra of these signals in order
to be able to determine a possible effect of their filtering. The practical ability to
distinguish their characteristic auditory features, such as spectral envelope or absence
of even harmonics, can be trained using various timbre solfege tools, as described by
Pluta and Kleczkowski [444]. Auditory skill should be followed by precise knowledge
of respective spectra.

A Fourier series is a convenient source of required information, including ampli-
tudes and phases of partials, in easy to implement form. In fact, for triangle, square
and sawtooth signals phase information can be greatly simplified. The only phase
shifts required are inversions (shifts by π), and they can be substituted by negative
amplitudes. Therefore all signals considered can be represented by weighted sums
of sine components.

The simplest case is a sawtooth signal (Fig. 2.1, bottom plot). It can be produced
using the following formula

u(t) = 2
π

∞∑
k=1

(−1)kk−1 sin(2πkf0t) (2.1)

where u(t) is the output value, f0 is the fundamental frequency, and k is the partial
index (harmonic). The output will be limited to [−1, 1] interval. Sawtooth from (2.1)
ramps up. If the reverse is required one needs to skip (−1)k that shifts every second
harmonic by π

u(t) = 2
π

∞∑
k=1

k−1 sin(2πkf0t) (2.2)

and the result will be a sawtooth that firstly jumps, and then ramps down. In case
of discrete signals, a sawtooth, as well as square, triangle, and pulse, should be band-
limited. Therefore a sum needs to end on such k that kf0 < fN (Nyquist frequency)
to avoid aliasing.
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Figure 2.1. Waveshapes (left) and magnitude spectra (right) of a triangle (top plots),
square (middle), and sawtooth (bottom) signal with common f0 = 440 Hz; spectra are
plotted against harmonic numbers k to emphasize lack of even harmonics in triangle and
square signals; red curve on spectra plots represents spectral envelope – common for square

and sawtooth signal; harmonics magnitudes are scaled to the magnitude of f0 partial

A slightly adjusted formula produces a square signal that shares a common spec-
tral envelope with a sawtooth, but contains only odd harmonics (Fig. 2.1, middle plot)

u(t) = 4
π

∞∑
k=1

(2k − 1)−1 sin (2π (2k − 1) f0t) (2.3)

In the above expression k is still the partial index, but it is no longer index of a har-
monic, due to even harmonics missing.
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Spectral envelope of a triangle signal makes its partials decay faster than previous
two. Similarly to square signal, a triangle also has only odd harmonics (Fig. 2.1, top
plot), and can be expressed by the following formula

u(t) = 8
π2

∞∑
k=1

(−1)k−1(2k − 1)−2 sin (2π (2k − 1) f0t) (2.4)

Every second partial of a triangle signal is phase-shifted by π, hence the coefficient
(−1)k−1 is introduced. If this is changed to (−1)k, instead of ascending from t = 0,
a triangle will first descend – its waveform will be amplitude-reversed.

Figure 2.2. Waveshapes (left) and magnitude spectra (right) of a pulse signal (f0 = 440 Hz)
with three values of duty cycle D; spectra are plotted against harmonic numbers; red curve
represents spectral envelope, according to (2.7); magnitudes in spectra are scaled to the
magnitude of f0 partial; even though envelopes for D = 0.2 and D = 0.8 are different,

discrete spectra are identical, and it is the same for all pairs: D and (1−D)

An interesting case is a pulse signal, also referred to as a pulse train (Fig. 2.2).
In subtractive synthesizers pulses are rectangular. Unlike sine, triangle, square, and
sawtooth, all of which have fixed spectra, spectrum of a pulse signal can be adjusted
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through manipulation of a pulse width Wp, which has a dimension of time and is
expressed in seconds. Wp can be substituted by a duty cycle D ∈ (0, 1) that controls
the ratio of a pulse width to a signal period T

D = Wp

T
(2.5)

For D = 0.5 pulse train becomes a square signal, as in (2.3). The following expression
presents the Fourier series expansion of a pulse signal with adjustable duty cycle

u(t) = (2D − 1) +
∞∑
k=1

4
kπ

sin (πkD) cos (2πkf0t− πkD) (2.6)

In the formula above pulse starts at t = 0. If this is not required initial phase πkD
under cosine can be skipped, and point t = 0 will divide the pulse in half – the
waveshape will have a y-axis symmetry. Amplitudes of partials change according to

Ak = 4
kπ

sin(πkD) (2.7)

and D−1 determines position of the first zero in a spectral envelope expressed as
a harmonic number. If it is not integer, all partials are present, although attenuated
according to the envelope. Otherwise, partials where kD ∈ Z are missing from spec-
trum. For decreasing D the first zero in envelope moves towards higher harmonics
(Fig. 2.3). Therefore very narrow pulses produce almost flat spectrum.

Figure 2.3. Waterfall plot displaying amplitude envelopes of pulse signal partials for duty
cycle values between 0.1 and 0.9; negative amplitude values represent phase shifts by π
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Signals produced by both, analogue and digital oscillators, only approximately
match the ideal waveshapes, and vary depending on particular implementation. In
digital implementations periodic signal can be synthesized directly from Fourier se-
ries, using additive synthesis. It prevents aliasing, but is computationally inefficient,
and may pose a problem in devices with low computing power. Periodic signals can
also be produced by transforming sawtooth signal, generated using fast and simple
modulo counter [487]. Such method introduces aliasing, but it can be efficiently atten-
uated using Bandlimited Impulse Train (BLIT) [536] or Bandlimited Step Functions
(BLEP) [79] that modify a signal in time domain by adding ripple characteristic to
the effect of bandlimited additive synthesis. Curiously, contemporary digital imple-
mentations of subtractive synthesis often implement BLIT in an attempt to recreate
characteristics of analogue oscillators while preventing aliasing in a technique of vir-
tual analog [399].

2.1.1.2. Voltage Controlled Amplifier
VCA can change signal gains according to input value. In analogue applications

VCAs may have linear or exponential inputs [485]. The former are usually used for am-
plitude modulation, such as tremolo effect. The latter can be connected with output
of linear amplitude envelopes. Tremolo is produced by controlling VCA through LFO
outputting sine or triangle signal. If LFO is replaced by VCO, amplitude modulation
becomes fast enough for sidebands to become audible as two additional frequencies
for each sine component of the input signal.

2.1.1.3. Voltage Controlled Filter
Due to a different approach to shaping of a signal spectrum, basic variant of

additive synthesis does not utilise VCFs. However, filters are the most important
modifiers in subtractive synthesis – they directly affect the spectrum, thus shaping
a timbre of sound. Various types of filters can be utilised, but for a synthesizer the
most important aspect is the frequency response, or attenuation curve. Depending on
the response shape VCFs perform low-pass, high-pass, band-pass, or notch filtering –
number and type of a block control inputs changes accordingly. Analogue implemen-
tations typically utilise two or four pole filter designs, while digital can have more
than eight poles [485].

2.1.1.4. Low Frequency Oscillator
Similarly to VCO, LFO is also a periodic signal generator, but with frequencies

below the auditory range. It is used to produce effects such as vibrato, tremolo, or wah-
wah through modulation of frequency, amplitude or filter parameters. Connection
diagrams for these effects are presented in Figure 2.4, while a spectral evolution they
cause is shown in Figure 2.5.

In LFO it is the waveshape that is more important than spectrum [485] – the actual
waveshape is audible due to its low frequency. Therefore phases of partials play much
larger role, and there are e.g. two different sawtooth variants – one in a ramp-up
form, and the other in ramp-down (time-inverted). A special type of LFO output is
referred to as sample and hold. It operates by sampling value of another signal
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once in every period of LFO. Sampled value is held until next one arrives. The result
is a step-like signal. If a noise is sampled, the pattern is random. In case of a periodic
source the result is periodic, with period depending on sampling and sampled signal
frequency ratio, though for long periods it can appear as quasi-random.

a)

VCO

+

LFO

f

Out

b)

VCA

+

LFO

A

In Out

c)

VCF

+

LFO

fc

In Out

Figure 2.4. Modulation effects attainable through application of LFO: a) vibrato – a fre-
quency (f) modulation effect; b) tremolo – an amplitude (A) modulation; c) wah-wah –

a modulation of cut-off frequency (fc) in low-pass filter

Figure 2.5. Spectral evolution of a periodic signal caused by modulation effects: vibrato
(left), tremolo (middle), and wah-wah (right plot); LFO frequency was set to 5 Hz

2.1.1.5. Envelope Generator
An envelope is a curve that outlines extremes of a signal [271]. In sound synthesis,

and in spectral methods in particular, the term has a special meaning that may seem
reversed: it is not a signal characteristics, but one of control data sources. Initially
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envelopes were utilised to introduce time-variability to signal amplitude through con-
trol of an amplifier gain. In such role they were very close to the original meaning
of a signal envelope. After applying an envelope to control signal amplitude, the
actual signal envelope was taking shape of the controlling envelope. When modular
approach had been gradually applied to the synthesizers, a link between the enve-
lope and the amplitude has loosened, as the envelope proved to be a convenient and
universal source of control data.

Envelope generators produce output that changes over time. Their primary func-
tion is similar to LFOs – they are a source of variability applied to selected synthesis
parameters related to amplitude, frequency, or spectrum. Though in contrast to
LFOs they are not periodic. Envelopes have either fixed duration or their duration
can be controlled by an external source – such as a person playing a synthesizer,
or a sequencer. Therefore EGs are suitable for controlling evolution of an entire
sound event.

An envelope may be given by any time-domain function. It can be arbitrarily
provided by a user, sampled from a data source, or defined by some kind of formula.
The most common approach is to assemble an envelope out of a small number of
ramps or segments. Thus an envelope can be considered a piecewise linear function,
or more universally – a piecewise function, since not only linear, but also exponential
or logarithmic segments are utilised, which introduces additional parameter related
to a segment curvature.

Segments are applied to approximate variability of a selected parameter, in an
attempt to reduce amount of control data (Fig. 2.6). This is often the case in
the additive synthesis, where envelopes control parameters of signal partials while
synthesizing sound of acoustic instruments. In a different approach, applied in the
subtractive synthesis and its derivatives, EG produces a universal sequence of seg-
ments. A set of standard segment names is presented in Table 2.1. Some envelopes
use all of these segments, other ones only a selected subset, and in some cases chosen
segments may occur more than once. Sequence of such segments is an attempt to
generalise envelope of a musical instrument – with proper values it allows to roughly
approximate actual amplitude envelopes of many acoustic instruments. In some EGs
not only sustain, but also initial, peak, and final level can be set.

Popular envelope types are presented in Figure 2.7. Their naming scheme seems
simple – from the first letters of subsequent segments – but it is not always strictly
observed. In a few cases some letters are omitted as obvious. It is important to note
that one segment stands out among other parameters listed in Table 2.1. While the
majority of parameters control segment duration, sustain controls segment level. Its
duration is controlled externally – usually the end of segment is triggered by releasing
a controller key. The role of sustain segment is to ‘freeze’ envelope and keep it at
a defined level for as long as required. Therefore if envelope contains such segment,
its total duration can be freely adjusted.

The first type – AD envelope (Fig. 2.7) – does not have sustain segment. In such
envelopes attack is typically short, and key is released during decay without impact
on total envelope duration. However, if a key is released in attack segment, envelope
can be shortened. It jumps to decay immediately. Output value though is not set
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to peak, but instead starts at value at which attack has been interrupted, and is
shortened to keep a decay rate.

Figure 2.6. Amplitude envelope of a fourth harmonic of a bassoon playing B2 pitch (blue),
and its 11-segment approximation (red)

Table 2.1. Common envelope segments

Segment Parameter Description

Delay Time Before the initial level rise; envelope lag
Attack Time Rise from initial to peak level
Hold Time Keep at peak level
Decay Time Fall to sustain level
Sustain Level Keep for an externally controlled amount of time
Release Time Fall from sustain to final level

AR envelope (Fig. 2.7b) is the simplest of envelopes that contain sustain segment.
Key can be released during sustain, which triggers start of release segment, or during
attack. In the latter case AR envelope behaves similarly to AD – attack is interrupted
and release starts with current output value. Release time is shortened, while release
rate is conserved.

AD envelope can be supplemented with an additional segment. In ADR variant
appended release segment allows to change decay slope on the key-off event. In ADS
decay is followed by a sustain, and after that – either by a fast release, or by a release
with the same time as decay. In contrast to AD, duration of both ADR and ADS
can be controlled.

ADSR (Fig. 2.7c) is a more versatile envelope. It is still quite simple, but allows to
simulate much broader set of instruments, and therefore is the most popular one. In
some implementations it has not one, but two decay segments before the sustain, with
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a break point between, where the decay rate changes – it is a rough approximation
of exponential or logarithmic curve. If key is released before sustain, the envelope
jumps to the final release, just as AD or AR.
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Figure 2.7. Envelope types: a) AD; b) AR; c) ADSR; d) AHDSR; e) ADBDR
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Variants of ADSR address its shortcomings in simulating percussive or otherwise
decaying envelopes. AHDSR envelope (Fig. 2.7d) is useful when a very rapid attack
and decay have to be slightly separated. ADBDR (Fig. 2.7e) is suitable for piano-like
sounds [485], where instead of a constant sustain level, a slow decay with externally
controlled duration is required. Therefore, similarly to ADR, second decay either
does not have predefined duration, only decay rate, or simply has the duration set
to a very large value.

There are many more possible segments arrangements. In some implementations
envelope can be preceded with a fixed delay. All segments with slope (other than
sustain or hold) can have one or more breakpoints. And finally, there are multi-
segment envelopes with various sequences of sections.

In monophonic synthesizers, reproducing a single pitch at a time, there is a possi-
bility, that a key is still held in sustain while another one is pressed. In such case EG
may restart part of attack starting from a sustain level, and continue through decay
to sustain again. Releasing the first key will then be ignored, and only releasing the
second will trigger release segment, unless a third is pressed before, and so on. In less
common cases EGs can be triggered not by a key, or a note-on event, but by LFOs.

Additive synthesizers may use separate envelopes for each signal partial, or for
groups of partials. In the most basic case a single envelope can be applied to the
sum of all partials. A subtractive synthesizer may have only one EG controlling both,
amplifiers and filters. However, it is common that separate EGs control VCA and
VCF, and there can be another one modulating VCO frequency.

2.1.2. Additive Synthesis

A musician, familiar with the concept of harmonics, might consider additive syn-
thesis the most intuitive way to synthesize sound of a musical instrument. The method
is based on Fourier theory that allows to decompose a periodic or time-bounded sig-
nal into the sum or integral of sinusoids. In additive synthesis the analysis process
is reversed: sinusoidal components are composed together to produce sound with the
desired spectrum [470, 557, 61]. In a typical case sinusoids represent fundamental
frequency and harmonic overtones of a pitched sound [233, 202, 438]. Overtones take
part in forming the sensation of timbre, yet under some circumstances they can be per-
ceived as separate pitches [299, 385]. What makes the method particularly intuitive
is a direct and simple relation between control data and resultant timbre – adjusting
parameters of the sound production process leads to predictable auditory results.

The method does not impose any conditions on the component frequencies and
their relations. In particular, they need not be in a harmonic ratio, though in pitched
sounds it is often assumed that they are. If a single sinusoidal component is de-
scribed by

u(t) = A cos(2πft+ φ) (2.8)
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where u(t) is the output value, Ak is the amplitude, fk is the frequency, and φ is the
initial phase, than the whole signal takes the following form

u(t) =
M−1∑
k=0

Ak cos(2πfkt+ φk) (2.9)

whereM is the number of components. Each component can have independent ampli-
tude, frequency, and initial phase. The sum starts from zero to honour a convention,
according to which the fundamental frequency is represented by f0. A schematic
diagram of the process is presented in Figure 2.8.

Output

A0 f0 A1 f1 A2 f2 AM−1 fM−1

Figure 2.8. A basic variant of additive synthesis with M sinusoidal oscillators in parallel
configuration corresponding to formula (2.9); each oscillator has individual frequency f and

amplitude A; initial phases are omitted

For a digital implementation (2.9) can be rewritten in a discrete time

u[n] =
M−1∑
k=0

Ak cos
(

2πfk
n

fs
+ φk

)
(2.10)

where fs is the sampling frequency, and n is the integer time step index.

2.1.2.1. Evolution of Spectrum
A number of spectral components M of a synthesized signal can be much larger

than the actual number of separate partials that need to be represented. Using densely
distributed component frequencies formula (2.9) alone can lead to a spectrum that
varies on a short time scale, where each evolving partial is produced by a group of
interfering components. It is more common though that components directly represent
distinct partials. Such spectral structure is easier to control and can be simply scaled
when a different pitch is required, but it does not change over time. Time evolution
of the spectrum is introduced through implementation of amplitude envelopes instead
of constant amplitudes of interfering components. Similar operation can be applied
to component frequencies (Fig. 2.9).
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The signal with envelopes for both parameters can be written as

u(t) =
M−1∑
k=0

Ak(t) cos (2πfk(t)t+ φk) (2.11)

where the envelopes Ak(t) and fk(t) are slowly-varying control functions. In a discrete
time (2.11) transforms into

u[n] =
M−1∑
k=0

Ak[n] cos
(

2πfk[n] n
fs

+ φk

)
(2.12)

Output

Ak[n]
fk[n]

Figure 2.9. Additive synthesis with evolution of spectrum controlled separately for each
oscillator through amplitude and frequency envelopes, Ak[n] and fk[n], in a discrete time n;

such configuration corresponds to formula (2.12)

2.1.2.2. Control Data
Additive synthesis may deal with a substantial amount of control data. It is

assumed [470, 485], that a number of partials required for adequate approximation
of a sound of an acoustic instrument lies between 32 and 64. It varies, however,
depending on the instrument and pitch. Assuming that we only need to produce
partials fitting within an auditory frequency range of a young, health human, then for
pitch A4, usually tuned to f0 between 440 and 443 Hz, we need at most 45 harmonics.
The number shrinks to only 11 two octaves higher at pitch A6, but reaches 180 in
case of A2, and could even exceed 700 for very low pitch A0 (usually the lowest
key on a grand piano keyboard)1. In Figure 2.10 a total of 37 harmonics of oboe
playing D5 can be observed. They are compared to 37 harmonics of tuba playing
D1, which constitute only a part of its spectrum that fits below 1400 Hz. Lower
pitches obviously require far more oscillators, even if we recognize that starting at
some frequency, decreasing amplitudes would make higher partials imperceptible.

1Some of commercial additive synthesizers aiming at very detailed sound reproduction allow to
combine hundreds of partials: 500 in Image-Line Harmor, 512 in AIR Loom, and 320 in Native
Instruments Razor 1.5.
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Figure 2.10. Comparison of a number of observable harmonics between an oboe playing
pitch D5 (blue) and a tuba playing pitch D1 (red); top plot shows 37 oboe harmonics
observable below 24 kHz; bottom plot displays 2 oboe and 37 tuba harmonics that fit below

1400 Hz

Considering that parameters of each component can change independently from
the rest, it poses a serious control problem. A solution is either to automate most of
control data operations, or to reduce amount of independent variables. A reduction
is possible through approximation of slowly-varying control functions or by relating
parameters of separate components.

Data Reduction

The largest amount of data is contained within envelopes. Therefore it is common
practice to approximate both, amplitude and frequency envelopes by a piecewise linear
functions – such technique is referred to as line-segment approximation [470].
Number of segments may vary to efficiently fit approximated envelope. Segments
can be determined manually, usually with an aid of sound visualisation tools, but
automatic procedures are also available [537]. According to Tolonen et al. [557], 10
segments used to approximate envelope lasting 500 ms of a signal with 44100 Hz
sampling rate allow to reduce data by 69:1.
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Further data reduction is possible if partials are in harmonic relation. With this
assumption fk can be supplemented with (k + 1)f0 and (2.11) changes to

u(t) =
M−1∑
k=0

Ak(t) cos(2π(k + 1)f0(t)t+ φk) (2.13)

or in discrete time

u[n] =
M−1∑
k=0

Ak[n] cos
(

2π(k + 1)f0[n] n
fs

+ φk

)
(2.14)

Higher component frequencies are related to the fundamental frequency which can
either be a constant value f0 or an envelope f0(t). If latter is the case, the same
envelope will be scaled proportionally through all components, thus representing pitch
deviation.

Even though it is possible to use common frequency envelope through all com-
ponents, the same cannot be done with an amplitude envelope. It would be overly
simplistic, considering that various parts of spectrum evolve differently. It is however
possible to divide components into several groups belonging to sections of spectrum
that evolve together. Oscillators within a group are controlled with a single, com-
mon amplitude envelope and a common frequency function. Such technique is called
control grouping [485] or group additive synthesis, as presented with digital
implementation by Kleczkowski [298]. Division into groups is based on the amplitude
envelope criterion, where a measure of similarity can be a simple Euclidean measure
of distance

ρ(Yj , Yk) =

√√√√ N∑
n=1

(yjn − ykn)2 (2.15)

where j and k are harmonic numbers of compared partials, n is the sample index,
Yj and Yk are vectors storing all envelope values yjn and ykn of partials j and k,
and N is the number of samples in envelope. Even though partials within a group
have a common amplitude envelope, it is possible to scale it separately for each
partial. Common frequency envelope for a group may be chosen arbitrarily from
within envelopes of group partials. Alternatively, it may be calculated as a mean of
all frequency functions, once they have been scaled down by a harmonic number. In
case of cello and clarinet sounds grouping is difficult to perceive even with as few as
three groups. For a trumpet four or five groups are required [298].

Sources of Control Data

Not only a substantial amount of synthesis data is a control problem, but providing
its source is an equally important issue. Even with a modest configuration of 32
oscillators, a simple 4-segment ADSR envelope (Fig. 2.7c), and fixed component
frequencies, one needs to set 160 values beforehand. It obviously points at adapting
some kind of automated procedure for control data acquisition.
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Roads [470] specifies five ways of obtaining control data, also referred to as driving
functions. Some of them lead to new, and possibly abstract sounds, while others
tend to recreate existing sounds.

The first way is to use data from entirely different domain and map it onto syn-
thesis parameters. Such data might originate, for instance, from a shape of a natural
object or a skyline, although any object or concept that can be modelled in either geo-
metric, stochastic or otherwise mathematical way can be used. As an example, Cádiz
and Ramos used a momentum distribution of a one-dimensional Gaussian quantum
particle in an infinite square well [94]. The second way involves creating a compo-
sition algorithm that would generate driving functions according to some assumed
constraints. Yet another way utilises higher-level musical concepts, such as phrases,
or clouds. The fourth way relies on an intentional and manual use of the above meth-
ods combined in a creative way. The last way, which receives an increasing attention
due to advances in methods of signal analysis, is the resynthesis.

2.1.2.3. Resynthesis
Resynthesis is a technique of synthesizing sounds in which synthesis parameters

originate from the analysis of existing sounds [470, 300]. It is also commonly re-
ferred to as analysis-resynthesis or analysis-synthesis [61]. Its primary objective is
to transform the original sound using capabilities of a synthesizer. The process has
three stages, as depicted in Figure 2.11: analysis, editing, and synthesis. Analysis of
a source sound has to provide parameters matching those required by the synthesizer,
or at least such that can be converted accordingly. In editing stage parameters of the
original sound are modified to change its chosen properties, such as pitch, duration,
or timbre. Details of each stage can vary, since the technique can be applied not only
to additive, but to other synthesis methods as well.

Input sound

Output sound

Analysis

Synthesis

Editing

Extracted parameters

Modified parameters

‘Sample’

Synthesized

Figure 2.11. A resynthesis diagram; an existing sound (a sample) is analysed to extract
parameters required for synthesis; parameters can be modified to introduce desired changes

into the original sound; modified parameters are used to synthesize a new sound
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In case of additive method the analysis has to produce parameters for envelopes of
partials. Depending on the analysis method and parameters required by a synthesizer
a set of extracted parameters may include either amplitude envelopes only, or more –
amplitude and frequency envelopes, as well as phases. A number of analysis techniques
is utilised, most of which are based on filter banks or numerical signal decomposition
with fast Fourier transform (FFT) [138].

Vocoders are tools originating from speech analysis and resynthesis, that have
been successfully adapted to a musical sound synthesis. They divide a signal into
parallel channels associated with frequency bands. The most basic one, channel
vocoder, keeps only an amplitude of channels. The phase vocoder (PV) [190, 449,
387, 214, 168, 300] improves the original channel vocoder by supplementing amplitude
data with a phase information. PV has equally spaced frequency bands, therefore if
immediate data is used alone, it is suitable for harmonic signals only. There are,
however, PV extensions that allow to handle pitch changes such as vibrato, or signal
inharmonocity, as shown by Moorer [387]. As of analysis technique, both – a bank
of band-pass filters or a short-time spectrum analysers such as short-time Fourier
transform (STFT) – can be utilised [168, 557].

While immediate data regarding a signal component obtained from PV consists
of amplitudes and phases, McAulay–Quatieri algorithm (MQ) [358, 300] extracts
all three types of information needed for full additive synthesis: amplitude, phase,
and frequency. Such a triplet of parameters is estimated for each signal component
at subsequent locations in time determined by the hop size of STFT, which is used
in MQ to analyse subsequent signal windows [557]. Both, a hop size and a number
of components, can vary in time to adapt to the analysed signal. In each signal
window prominent peaks are searched for in the surroundings of integer multiplies
of f0. The range of search can be adjusted, but it is typically limited to

(
k ± 1

4
)
f0,

where k is an index of assumed harmonic partial. Peaks not exceeding noise threshold
level are removed, and the remaining ones are connected by the peak continuation
algorithm that produces amplitude and frequency trajectories for detected sinusoidal
components. Components are not assumed to start and end together – their durations
are independent.

Both methods, PV and MQ, are well suited for analysing signals consisting of
a limited number of sinusoidal components. Signals containing noise are not analysed
properly unless a very large number of components is assumed, and even then the
result of such resynthesis usually differs significantly from the original sound [557].
This problem affects not only the analysis stage, but the synthesis stage as well, since
additive method is very inefficient and in consequence inaccurate in synthesizing noise.
As of frequency envelopes, they are estimated most accurately in case of slow and
continuous changes. Such changes are typical for the majority of acoustic instruments,
where they are caused by vibrato, or initial and final phase of bowing or blowing.

Other methods of analysis can also be applied, as long as they provide parameters
required by a particular additive synthesis implementation. A choice of analysis type
can also be based upon a transformation the signal is going to be subjected to in the
editing stage. Roads [470] gives a list of such transformations. Pitch shifting without
time scaling, and time scaling without pitch shifting allow to separately manipulate
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two basic note parameters – pitch and duration. Other transformations are timbre-
related or otherwise aimed at producing new sounds. They include various ways
of manipulating frequency ratios of partials, creating spectral hybrids by replacing
some envelopes with envelopes extracted from different sounds, interpolating from
one instrument timbre to another, enhancing resonance regions, inverting spectra,
stretching transient regions, and cross-synthesizing. Roads explains cross-synthesis
as a technique of applying parameters extracted from one sound to synthesize other,
with a possible change of their meaning. For instance, amplitude envelopes of one
sound may control phases or frequencies of the second one.

Thus the resynthesis may be performed with two different objectives. The first
one is to allow less constrained control over recorded sounds, such as independent
change of pitch and duration, required to freely play a synthesizer. The second one is
to utilise existing sounds for generating new, perhaps surprising and interesting ones,
without resorting to arduous manual entry of overwhelming amount of parameters.

2.1.2.4. Control of Pitch, Duration, and Timbre

Control of Pitch

It is a common practice to store component frequencies fk of the additive synthesis
signal not as absolute values, but as ratios to the fundamental or the lowest frequency
f0. It can be expressed as the following modification to (2.11)

u(t) =
M−1∑
k=0

Ak(t) cos (2πbk(t)f0t+ φk) (2.16)

where bk(t) are frequency envelopes related to f0, or time-varying multipliers of f0.
Expression (2.13) is a special case of (2.16), where all partials vary in time according to
a common envelope f0(t), and their frequency ratios are harmonic, that is bk = k+ 1.

A component frequency structure in which all frequencies are related to a single
value f0 makes controlling a pitch a straightforward procedure – it involves changing
f0 only. All of the remaining fk automatically follow, thereby the whole spectrum
shifts with f0.

The frequency shift does not affect sound duration nor contents of envelopes. It
does, however, change the timbre of sound, because amplitude envelopes Ak(t) are
attributed to component indices rather than to absolute frequencies, so when the
frequencies shift, formants shift as well. This is rather undesired outcome, and it
can be partially solved by simulating registers, i.e. introducing dependence of Ak
on f0 ranges.

Control of Duration

In case of time-invariant additive synthesis, as in (2.9), duration can be controlled
simply by running oscillators for as long as needed, or by gating their output using
control events such as note-on and note-off MIDI messages. It is straightforward
in time-evolving signals as well, assuming that envelopes are approximated by line-
segments. One of the segments – synchronous in all components – needs to be identi-
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fied as a sustain phase of sound evolution, during which envelopes remain fixed for as
long as required. Other envelope segments are not altered, thus duration adjustments
do not affect transients or fades.

If there is no sustain segment in envelope, one or more selected segments might
be stretched according to required duration change. This, however, is problematic in
case of real-time control, when target duration is not known beforehand. Moreover,
it does not reflect behaviour of acoustic instruments and may sound unnatural.

Finally, in digital implementations envelopes might not be approximated, and
instead could store detailed time-evolution of parameters in a discrete-time domain.
Sampled envelopes can be resampled – either as a whole, or in selected sections only,
leaving the rest, e.g. fast transients, unaffected. Such a selective procedure would
require envelopes to be complemented with markers denoting parts excluded from
resampling.

None of the duration control mechanisms presented affects pitch, nor spectral
structure of a sound – it is one of advantages of the additive method. Due to this
reason additive resynthesis is often utilised as a duration-control mechanism in sample-
based methods, such as concatenative synthesis.

Control of Timbre

The working principle of additive method is essentially a design of a spectrum.
Therefore a spectral aspect of timbre is precisely controlled, to the level of amplitude
and phase of a single partial. Additive method can synthesize any discrete spectrum
with partials arbitrarily evolving in time, controlled by envelopes. However, it is this
detailed control which is also a weakness of the method: a change of timbre requires
modifications of an extensive set of parameters. While it is arduous to modify the
parameters individually and manually, two solutions can be applied to automate the
procedure. The first is to use data sets prepared and stored beforehand. The second
is to employ algorithms that generate larger sets of control data on the basis of much
smaller collections of user-provided input parameters.

Ready to use data sets, or presets, can originate from any of previously mentioned
sources, such as data of a different meaning (graphics, such as landscapes, geometry,
physics), human invention, or analysis of existing sounds. Since only some combina-
tions of values in extensive parameters space result in musically attractive sounds,
in commercial applications presets store such potentially interesting sets provided by
the manufacturer on the basis of his superior knowledge, understanding, and experi-
ence with the synthesizer. On the other hand, if the synthesizer has a full resynthesis
capability, timbre of any recorded sound can be utilised as a pattern, with synthesis
parameters obtained through analysis.

There are virtually no constraints on the algorithms employed to help managing
large data sets in additive synthesis. In experimental implementations they are more
inclined towards unconventional, unprecedented associations. In commercial solutions
the goal is to provide easier, more intuitive control for the end user. That is why such
algorithms are aimed at a convenient user interface, grouping of parameters, and
creating additional abstract layers of control. They can provide extensive envelope
design and modification facilities, modularise sound processing, allow mapping of
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parameter groups onto various physical controllers, or translate high-level timbre-
related concepts, such as articulation2, onto actual envelope parameters.

Registers, Dynamics, and Articulation

In case of synthesizing sounds of acoustic instruments a notion of timbre separates
into areas of registers3, dynamics4, and articulation. Playing range of a typical in-
strument is divided into a few registers (Fig. 2.12). In the additive synthesis a change
of register is simulated by separate sets of control data – one for each register. A set
is obtained through analysis of sound belonging to the appropriate register of an
instrument, and is associated with an exclusive range of pitches produced by the syn-
thesizer. While playing a synthesizer, a set of control data representing particular
register is chosen, depending on the pitch played, which in case of a MIDI keyboard
might simply be a key number.

A change of dynamics in a musical instrument has a twofold effect. It affects
the amplitude of generated sound, but is responsible for a change of timbre as well.
The latter is a result of a change in playing technique required to produce different
levels of dynamics. A technique used to simulate dynamics-related timbre change is
similar to the one used to simulate registers. Two or more sets of control data have to
be acquired by analysing sounds of an instrument performing on different dynamics
levels. These sets have to be associated with a counterpart of the dynamics in the
synthesizer, which is commonly attributed to the MIDI velocity value.

The articulation is a more complex problem. In music it is not only associated with
performance technique of separate notes, but also with note transitions. As for single-
note articulations, such as staccato, its implementation follows the scheme of registers
or dynamics. Distinct sets of control data are attributed to various performance
techniques, and assigned to a controller of choice or to a note attribute in a sequencer.

The above-described solutions for simulating registers, dynamics, and single-note
articulations in additive synthesis are not unlike the multisampling technique em-
ployed in sampling synthesis. The difference is that in sampling sound samples with
different timbres are reproduced directly, while additive synthesis analyses them to
acquire envelope parameters, though both synthesis methods use ‘snapshots’ of real
timbres.

Note transitions however, require a different solution. The problem is particu-
larly prominent in instruments controlled by breath or bow, while performing legato
articulation, and has been widely researched [537, 191, 10]. Here additive synthesis
has the upper hand over sampling. The advantage has two sources. The first is the
line-segment approximation of envelopes that allows to selectively skip or connect
envelope segments of adjacent notes. The second is a separate processing of partials,
allowing to preserve their continuity in a transition phase. In the simplest case, en-

2In music, ‘articulation’ is the element that controls performance technique and note transitions.
3The term ‘register’ denotes a section of pitch range of a particular instrument that shares common

timbre characteristics. Switching to a different register results in a change of timbre that is caused
by e.g. a change of string in violin or by overblowing in woodwinds.

4In music, ‘dynamics’ refers not to a range of sound levels, but to one of the musical elements that
controls the loudness of music and its changes through applying appropriate performance technique.
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velope segments following the sustain phase are omitted in a preceding note, while
in the following note segments preceding the sustain are omitted, and both sustain
phases are connected, as presented in Figure 2.13.

If required, continuity or other desired behaviour of partials can be properly mod-
elled by shaping their frequency and amplitude envelopes. Figure 2.14 shows two
different examples of note transitions in a melody performed by a violin. Due to
capability of simulating natural sound transitions additive synthesis is often used to
connect notes in sample-based synthesis methods [504, 336, 505].

Figure 2.12. An illustration of a register-based spectrum difference; two flute sounds have
been analysed; the lower one, pitched F5, belongs to the middle flute register; the higher one
(F6) belongs to the high register; analysis results were used to carry out additive synthesis
of two sounds presented in the top plot; thereafter synthesized F5 has been transposed one
octave up by keeping amplitudes of partials, while doubling their frequencies; bottom plot
compares spectra of a sound generated on the basis of analysis of a correct register (F6),
with a sound transposed to a higher register (F5 to F6); as a result of transposition partials
2–4 are noticeably amplified (by approximately 10 dB), and partial 8 is similarly attenuated,

which makes the sound unnatural
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Figure 2.13. Connecting ADSR amplitude envelopes of partials belonging to adjacent
notes performed legato; the first note begins normally (e.g. start of a bow movement),
with initial segments present (A1 and D1) and continues to the sustain segment (S1); the
second note starts before the first finishes, but it jumps to the sustain phase (S2) without
going through A2 and D2, because it is not started separately (e.g. the bow continues its
movement, only a pitch has changed); R1 segment is skipped as well, because the instrument
still plays; if there are no more notes to play, then R2 follows S2 and the sound finishes

Figure 2.14. Two subsequent pitch transitions in recording of a violin; the first one is
performed in détaché articulation, with a change of bow direction, the second one is legato

with slight portamento, on one bow
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2.1.2.5. Variants of Additive Synthesis

The additive method is based on a general principle of combining simple partials
into a complex sound. It allows to synthesize virtually any sound, providing that
sufficient numbers of partials have been combined, and that their envelopes have
been modelled with adequate accuracy. While being powerful, the method has its
drawbacks: it is computationally demanding, requires a sizeable set of parameters,
and does not produce good noise components. These issues have been addressed by
methods that are either variants of additive synthesis, or were – at some point –
based on it.

The main source of inefficiency is a parallel operation of a multitude of oscillators.
Many solutions of the problem have been proposed, such as multirate additive
synthesis. The technique, presented by Phillips and Purvis [435], uses a priori
knowledge of component frequencies and applies multirate DSP techniques to adapt
oscillators frequency ranges.

The inefficiency can also be addressed by switching from an oscillator-based sig-
nal generation to a calculation of inverse Fourier transforms of consecutive windows.
The method is referred to as inverse FFT synthesis, or FFT-1 synthesis, and was
proposed by Rodet and Depalle [474]. It groups all signal components into a series
of spectral envelopes and stores them in a series of STFT frames. IFFTs of frames
are calculated and added with overlapping, thus producing output signal [557]. Two
different windowing functions are used in time and frequency domains: a triangular
one results from linear interpolation of amplitude and frequency between frames, and
the second one needs to have low sidelobes due to efficiency reasons [474]. Inverse
FFT synthesis can generate periodic, and quasi-periodic signals. It can also synthesize
noise components of arbitrary characteristics.

A different way of addressing lack of capability to produce noise components is
spectral modelling synthesis (SMS) presented by Serra and Smith [511, 512]. SMS
is a resynthesis technique that decomposes a signal into deterministic and stochastic
components [557]. The former is tone-based and can be obtained using MQ or sim-
ilar algorithm, while the latter is noise-based. After the deterministic component is
resynthesized, it is subtracted from the original signal in time or in frequency domain.
The result – the residual signal – is used to form the stochastic component. For this
purpose a bank of filters controlled by a series of spectral envelopes is applied to
shape a white noise signal [470]. A convenient side-effect of separate processing of
both components is a possibility to exclude stochastic component from pitch shift-
ing operations. While SMS can adequately model sounds of many instruments, very
short transients tend to be spread in time domain. It is a consequence of dismissing
phase information of the original signal. Only magnitude spectra of the stochastic
component are shaped, while the phase spectra are random.

Due to transients issue, another method has benn developed as an expansion of
SMS. Transient modelling synthesis proposed by Verma et al. [595] separates the
residual signal into steady noisy components and transients. The first stage of analysis
corresponds to the SMS analysis. The resultant residual signal, in TMS referred to
as the first residual, consists both – noise and transients. TMS detects the transients
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and fits them with a parametric model. Transients are synthesized and subtracted
from the first residual, creating the second residual that contains slowly evolving
noise only. Since sinusoidal model cannot adequately represent transients, pulse-like
signals are first transformed to a frequency domain to become sinusoidal. In order
to obtain not complex, but real-valued frequency-domain representation, the discrete
cosine transform (DCT) is used instead of the discrete Fourier transform (DFT).
Parametric model of transients is thus obtained by sinusoidal modelling (DFT) of
DCT of the actual transients. A DCT block must be sufficiently large for overlapping
DFT windows – it was determined [595] that one second is adequate.

Fractal additive syntehsis (FAS) is a method of additive resynthesis, similar to
SMS, presented by Polotti and Evangelista [448]. It is best suited for voiced sounds.
Like in SMS, a signal is decomposed into deterministic and stochastic component, but
the process is based on harmonic-band wavelet transform. Unlike the original SMS,
FAS method preserves attack transients. Polotti later proposed a pitch-synchronous
extension of FAS via time-varying cosine modulated filter banks [447]. The extension
allows to synthesize a wider class of voiced sounds, including those with variable
pitch, such as vibrato or glissando effects.

An interesting effect of a timbre evolution can be obtained with spectral inter-
polation synthesis (SIS), as shown by Serra et al. [510]. The evolution is achieved
through interpolation between successive spectra using ramp functions. A sequence
of spectra is controlled by a spectral path. The path connects amplitude values rep-
resenting matching harmonics in subsequent spectra. It is defined by these values
and a mixing function, e.g. a linear one. A set of spectral paths resemble a set of
piecewise-linear approximated amplitude envelopes. In SIS though, break points of
all envelopes are simultaneous. The auditory effect might be similar to crossfading
between sound samples, however due to the additive synthesis approach SIS allows
for a better control over a generated signal, such as independent time stretching and
pitch shifting.

Yet another modification to the additive synthesis is the Walsh function syn-
thesis [470]. It is one of several additive approaches that consider different than
sinusoidal component signals. A Walsh–Hadamard transform can decompose a signal
into components represented by rectangular Walsh functions [259]. A finite series of
such functions can approximate an arbitrary periodic function. Instead of frequen-
cies, the parameters representing components are sequencies that correspond to the
one-half of the average number of zero crossings per second. Using Walsh function
synthesis it is easier to produce rectangular-like signals that would otherwise require
a large number of sinusoids. Though precise sine-shaped signals would require a large
number of Walsh functions. One of the drawbacks of the method is that Walsh func-
tion components do not directly represent signal harmonics, and as such do not have
immediate auditory representation, which makes the process of signal construction
less intuitive.

2.1.2.6. Implementation Remarks
Additive synthesis is one of the oldest synthesis methods. It had been utilised even

before a synthesis has been defined and established as a way of sound production. Its
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principle was implemented in Cahill’s Telharmonium on a turn of XIX-th and XX-th
century to create various timbres for musical purposes [97]. But if a requirement for
components to be sinusoidal is loosened, then the same principle has been utilised in
music for centuries. Most notable example is the organ mixture, which is a mechanism
that allows one key of a keyboard to control not one, but a group of pipes from different
ranks. Through selecting different mixtures one can produce various timbres. The
method is flexible and general enough to be implemented in a very wide class of
synthesizer types, from electro-mechanical, through electronic, both analogue and
digital, to purely software-based.

The last class gradually gains a dominant position. Software can rely on a com-
puter hardware that is constantly improving, or at least, is improving faster than
dedicated synthesizer hardware. Therefore most of commercial additive synthesizers
are, as of now, software-based – usually in a form of a plug-in for a digital audio
workstation (DAW) software [617].

Many of commercial software engines are not limited to additive method, but
implement a wider set of synthesis methods. It allows to combine their elements,
such as filters from subtractive method, recordings from sampling, or a modulation.
Although filters may seem redundant in additive method, where the spectrum is
controlled in detail, they are applied to the output signal for a convenience – they are
faster and easier to set. In a combination of additive and subtractive method harmonic
partials may be supplemented with either generated or sampled noise, subjected to
filtration. Sampled signals might be used as a source for analysis and resynthesis.
Vocoders (with as much as 34 channels) are popular as analysis method. Since storage
is not a problem any more it is possible to extract practically unlimited number of
spectral snapshots to create detailed envelopes.

Additive synthesizers are supplemented with effects ranging from frequency modu-
lation for introducing dissonance into the harmonic structure, to spatial effects. Due
to a principle of additive method, design of a complex, evolving echo is possible.
Reverberation can be applied not only to the output signal, but also per partial,
following pitch changes. The same applies to panorama effects – partials can have
individual panorama settings.

The main emphasis is put on control issues though, which normally is a weak spot
of additive synthesis and in commercial applications it would discourage inexperienced
users. Envelopes can be modified in many creative ways, including graphical, or
through grouping into formants. Some programs allow to use images, either loaded
from files or drawn at run time, as a source of partial envelopes – the idea has been
exploited in music for some time. Several parallel signals may be generated and mixed
or morphed (crossfaded), which is a concept borrowed from vector synthesis. To tackle
a large amount of synthesis parameters, or to quickly test various timbres, parameters
might be randomised within predefined boundaries. Some programs display a modular
structure, allowing a user to modify the sound production process. It is a standard
to include presets or patches with factory-set parameters.

Current commercial software synthesizers use hundreds of partials. While it may
seem to be a large number, it can be further increased to allow very detailed sound
control. Savioja, Välimäki, and Smith showed, that it is possible to compute over
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one million unique sine waves in real-time [490]. It can be carried out using graphics
processing unit (GPU) available in 2010. Konopko [306], Kobayashi [303], and Crespi
[142] further studied the subject. GPUs are massively parallel, and due to recent dy-
namic progress of game industry, they evolve rapidly. Considering a single precision
floating point data type (FP32), top class GPU of 2010 had an estimated peak process-
ing power of approximately 1.35 TFLOPS, while as of 2018 this value has reached 16.3
TFLOPS. This definitely solves the problem of processing power requirement, and the
additive method can now be used practically without any computational constraints.

2.1.3. Subtractive Synthesis

A sound spectrum does not have to be produced in a laborious process of additive
synthesis that starts from zero and adds subsequent sine components. An opposite
approach may be applied as well. The procedure begins with a signal that is spectrally
rich, and transforms it to match target spectrum by subtracting necessary amount
from its components. Hence the method is referred to as the subtractive synthesis
[470, 485, 61]. It would not be significantly different from the additive method if
subtractions were performed on a partial basis. In subtractive synthesis, however,
a precision of spectral shaping is traded for a convenience of control – the signal
spectrum is shaped through filtering, thus a few parameters can affect large parts
of the spectrum. Due to this principle, schematically presented in Figure 2.15, the
method is also referred to as a source-filter synthesis [557].
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Figure 2.15. A general principle of the subtractive synthesis; the sound generation starts
with an initial signal that has a rich spectrum; the spectrum is shaped in a desired way by

subtracting its unwanted parts through filtering

The method was a particularly popular way of sound generation in commercial
analogue synthesizers, with such notably examples as Buchla and Moog instruments.
At least part of the acclaim may be attributed to the sound control mechanism.
While in general a user is not able to control a single partial, the sound can still be
intuitively shaped in spectral domain. And even though filter parameters require some
understanding, it can be easily obtained through auditory experience – alteration of
each parameter produces audible result.
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A principle of filtering spectrally rich source signal is – in a way – an analogy
to the process of sound generation in acoustic instruments. Although the parallel
is only a crude one, since source-filter model disregards influence of the excitation
and resonator coupling on characteristics of both [61], it is helpful for a musician.
Through filtering one can introduce and control a phenomenon of formants [191, 105]
– spectral peaks related with major instrument resonances. Thus a control of filter
parameters translates into an intuitive control of instrument qualities.

2.1.3.1. Source-Modifier Principle

Sound production mechanism applied in the subtractive synthesis can be reduced
to a source-modifier principle. The source is a signal generator, while the modifier is
some configuration of filters and amplifiers. Therefore the following three elements
can be controlled in the process of sound production:

• source waveform,
• filters parameters,
• and amplitude.

Selected parameters may be linked to physical controls of a synthesizer, such as
sliders, knobs, joysticks, or pedals, to allow alteration of their values in real-time, as
a part of performance. Such mechanism would be less practical in additive synthe-
sizers with way too many detailed parameters to control in real time, but in case of
subtractive synthesizers, with a relatively limited set of globally-operating parame-
ters, it expands their expressive capabilities.

Signal Sources

Two classes of acoustic signals are used as a source of an initial signal in subtractive
synthesis. The first is stochastic, and the second is periodic. The most basic stochastic
signal is a white noise. It requires no parameters and in a linear frequency domain has
a flat magnitude spectrum, therefore it is an excellent basis for filtering. Stochastic
signal can be used either as a noise component required in sound of instruments such
as flute or violin, or – shaped by a very short amplitude envelope – as a source of
clicks or cracks produced at the very beginning of an excitation phase when plucking,
striking, or playing sharp staccato. Noise can also be a base of some percussive sounds.

Signals from the second class – periodic – are produced by the VCO, and include
waveshapes such as sine, triangle, square, sawtooth (Fig. 2.1), and pulse (Fig. 2.2).
Periodic signals share a common auditory feature: they elicit a sensation of pitch [299],
and therefore always require at least one parameter: a frequency. To be more precise,
the actual parameter is a fundamental frequency f0, since apart from sine all periodic
signals have more than one partial, and all these partials are in integer frequency re-
lations to f0. Selection of a source waveform determines the initial spectral properties
of a signal, including spectral envelope and harmonics content (all or only odd), that
is later to be shaped by filters. Some waveforms expose additional parameters, such
as pulse width, that allows to alter the initial spectrum in a continuous way.
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Filters

Due to various kinds of filters applied in subtractive synthesizers, their parameters
vary, although it is common that VCF has at least one parameter related to frequency,
for instance a centre or a cut-off frequency, while others control the shape of filter
characteristics. Amplitude and filter parameters may either by controlled directly,
or through EGs and LFOs. Both of the latter introduce additional parameters that
control temporal variability of a signal.

In subtractive synthesis one feature of filters plays the most important role: it is
their ability to attenuate or boost selected areas of a signal spectrum. Therefore the
paramount filter quality is its frequency response [470], and specifically magnitude
frequency response. While most filters used for subtractive synthesis purposes are
linear and time-invariant (LTI)5, some effects applied during synthesis may be re-
garded as filters that are non-linear (e.g. dynamic compression) or time-varying (e.g.
amplitude modulation) [525]. LTI filters do not introduce new spectral components
to the signal, which makes them suitable for subtractive purposes – they only modify
previously existing partials or spectrum bands.

Subtractive synthesis uses the following types of frequency response curves: low-
pass, high-pass, band-pass, and notch (band-reject), as well as shelving filters [470]. If
a filter provides more than one type of response curve it is referred to as amultimode
filter. For synthesis purposes filters are controlled by a very limited parameter set
with a flexible naming scheme. Particularly in digital implementations or virtual
synthesizers parameter names originating from analogue and digital domains are being
mixed. Usually one parameter controls position of the curve on a frequency axis and
other one or two – its overall shape. In low-pass and high-pass filters the curves
are characterised by a cut-off frequency and a slope parameter, which in musical
applications is expressed in dB/octave. In band-pass or band-reject filters curve
position is controlled by a centre frequency value, and shape – through a quality factor
(Q) or a parameter referred to as a resonance, accompanied with gain. Parameters
may differ depending on implementation. In many synthesizers the shape of low-
pass or high-pass filters cannot be controlled, while in some it is controlled through
a resonance parameter, as in band filters. For band-pass filters Q relates centre
frequency and bandwidth [470]

Q = fc
f2 − f1

(2.17)

where fc is the centre frequency, f1 is the low, and f2 the high cut-off frequency
(at –3 dB).

Rarely in subtractive synthesizers a quality factor is termed as such, and a res-
onance term is used instead. It refers to the auditory effect of accentuating centre
frequency as a pass-band gets narrower. It is similar to the resonance effect in acoustic
instruments, and hence the name. Resonance can be controlled not only in band-pass

5If time-variance of a filter is below audio rate, then for audio purposes such filter may still be
treated as time-invariant. For a digital filter its coefficients should be practically constant at least
over a duration of its impulse response [525].
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and band-reject filters, where it peaks central frequency, but also in some low-pass or
high-pass filters, where a peak appears near the cut-off frequency.

A band-pass or a notch filter is referred to as a constant Q filter if it adjusts its
bandwidth to centre frequency in order to maintain constant quality factor. Constant
Q filter spans over a fixed musical interval, and it maintains the shape of its frequency
response in a logarithmic frequency scale. This feature may be useful with pitched
sounds: if a centre frequency is related by a constant ratio to a fundamental frequency
of filtered signal, then even if a pitch is changed, passband will always contain partials
with the same harmonic indices – spectral structure will shift with pitch. Similar
principle can be applied to low-pass or high-pass filters: their cut-off frequency can
be related to the fundamental frequency of filtered signal. In commercial applications
the feature is termed filter scaling, pitch tracking, or pitch following [485].

If a subtractive synthesizer is used for a resynthesis purpose it may include a num-
ber of parallel filters organised in a filter bank [470], usually operating as an equal-
izer. Such arrangement allows to shape spectrum of a signal in a flexible way, hence
it can be referred to as a spectrum shaper. The level of detail however, does not
reach capabilities of additive synthesis, where amplitude and phase of each partial
is controlled separately.

The auditory effect of a low-pass filter is related to the attribute of sound bright-
ness: lowering cut-off frequency makes the sound darker through lowering value of
spectral centroid [498]. Shifting cut-off frequency of a high-pass filter also affects
brightness – the higher, the brighter – but in this case the effect may also lead to
pitch ambiguity, since fundamental frequency, and higher harmonics afterwards, will
gradually disappear. Typical usage of a high-pass filter is to slightly attenuate fun-
damental frequency in relation to higher harmonics [485], which is characteristic for
spectra of many acoustic instruments.

Even though filters embedded in subtractive synthesizers share a very similar con-
trol interface with a few simple parameters, their working principle and characteristics
can actually differ significantly. Analogue solutions such as Moog filters [383] or their
later improvements are often regarded as exemplary, due to more distinct features
than basic digital implementations. Therefore contemporary digital subtractive syn-
thesis aims at recreating these characteristics and features, as well as features of
all elements of analogue synthesizers, through a technique of virtual analog (VA).
Välimäki and Huovilainen claim [573] that VA allows to produce ‘retro’ sounds with
modern computers. Digital simulations of analogue circuitry pose a number of is-
sues, from aliasing to nonlinearity. Some possible solutions with a source code are
presented in the work of Välimäki et al. [570]. A generalisation of the wave digital
filter (WDF) theory with implementations and analyses of nonlinear devices, such as
Moog ladder filter or Buchla lowpass gate, can be found in a thesis of D’Angelo [149].
Work of Zavalishin [615], aimed at digital musical instrument and effect developers,
brings up not only emulations of existing analogue devices, but also guidelines how
to design new VA digital filters. While VA is mainly applied in subtractive synthesis,
it may also be regarded as a special case of physical modelling synthesis [61] where
not mechanical, but electronic systems are modelled.
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2.1.3.2. Synthesizer Designs
Unlike a clear arrangement of data paths in additive synthesis, a source-modifier

principle is very general. Elements and control sources of a subtractive synthesizer,
represented by unit generators, may be arranged in various ways. Thus the data flow is
not fixed, and depends on particular implementation. This freedom of configuration
is exploited in modular synthesizers.

Unit generators can be arranged as required, depending on the qualities of sounds
that are to be produced, or assumed control scheme. Some examples of typical ar-
rangements are presented in Figure 2.16. Arrangement (a) is suitable for analysis-
resynthesis tasks. Input signal is divided into several frequency bands with band-pass
filters. Each of bands is processed through EG that controls its gain. Amplitude en-
velopes can be obtained from analysis of a sample sound through a channel vocoder.

Configuration (b) uses two oscillators, possibly with different waveshapes. Both
signals are processed in the same way: they are low-pass filtered and amplified. Both,
VCF and VCA are controlled through separate envelopes. Fundamental frequency of
the second VCO can be detuned, which gives an opportunity to produce inharmonic
spectrum or beating. Here only two signals are mixed, but often three or more
are used.

Arrangement (c) has a simple signal path, but introduces two effects due to usage
of LFOs, as shown in Figures 2.4 and 2.5. The first LFO controls frequency, which
produces vibrato effect. The second one controls gain, which results in tremolo. A filter
here has two separate envelopes – one controls cut-off frequency of a low-pass filter,
and the other one – its slope. This arrangement can be regarded as an improvement
of a single path of arrangement (b). Several settings from (c) can be connected in
parallel in a manner similar to (b).

In modular synthesizers a number of universal EGs may be assigned to any control-
lable destination, including amplitude through VCA gain, various VCF parameters,
such as filter cut-off or centre frequency and filter resonance, VCO frequency, or –
more often – VCO frequency deviation, LFO frequency, as well as other parameters
mentioned in Table 2.2.

Regardless of chosen synthesizer design subtractive method demonstrates a pri-
macy of control ease over detail by limiting amount of control data. In accordance
to this principle EGs tend to be controlled through a very constrained parameter
set, unlike EGs in additive synthesizers that may be composed of a relatively large
number of segments.

Patch

Simple analogue subtractive synthesizers are usually limited to a single configu-
ration of unit generators, such as one of presented in Figure 2.16, and to pre-defined
effects, like these in Figure 2.4. On the other hand, full-featured modular analogue
synthesizers allow almost free configuration of unit generators and controllers. Such
configuration is customary referred to as a patch, because essentially it is an arrange-
ment of patch cords that connect units. In analogue synthesizers there may not
be a distinction between control and signal data, since both are just analogue volt-
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ages. Patch cords that allow to connect any output to any input, beyond assignments
shown in Table 2.2, certainly provide great freedom in experimenting and inventing
new sounds and effects, though they obviously require caution.

a)

VCO MIX OUT

VCF1

VCF2

VCFn

VCA1

VCA2

VCAn

EG1 EG2 EGn

signal
control

b)

VCO1 VCF1 VCA1

VCO2 VCF2 VCA2

MIX OUT

EG1 EG2 EG3 EG4

freq. detune

*

c)

VCO VCF VCA OUT

freq. LFO1

+ * EG1

EG2 EG3 LFO2 ampl.

* +

Figure 2.16. Examples of unit generators arrangements; in configuration (a) VCFs work
as a filter bank – a set of band-pass filters – that divides signal spectrum; each of separate
bands is amplified by VCA controlled through individual EG; in (b) signals from two separate
oscillators are processed in parallel through low-pass filters and amplifiers before mixing;
amplitude in VCA and cut-off frequency in VCF are controlled by separate EGs; VCO2
frequency is set in relation to frequency of VCO1 – they can be detuned to produce beating
or inharmonicity; configuration (c) is the simplest, but introduces two LFOs, LFO1 controls
vibrato, LFO2 controls tremolo effect; in low-pass VCF, EG1 controls cut-off frequency and

EG2 – resonance or slope
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A concept of patch – units connected with patch-cords – is present in many of
contemporary graphical music programming languages. However, most of digital
implementations, either in software or hardware form, make a clarification about
a type of data sent: different connections are devoted for signal transmission and for
control data.

Table 2.2. Examples of sources and destinations in modular subtractive synthesizers

Source Comment Destination Comment

Pitch bend

Physical controllers

Rate
LFO parametersModulation wheel Pan Spread

Foot controller Depth
Breath controller Pitch VCO parameters

Pressure Portamento time
Note number Frequency VCF parameters

Note-on velocity Resonance
Note-off velocity Envelope depth VCA parameters

X-Axis
3-D controller

Panorama
Y-Axis Noise level —
Z-Axis Attack

EG parameters

LFO Bipolar output, or Decay
Unipolar output Sustain

VCA envelope
Various envelopes

Release
VCF envelope Attack curve

Auxiliary envelope Decay curve
Control sequencer Programmable Sustain curve
Voice number — Release curve

Modulation Matrix

Separation of control data allowed to form another concept. Pre-wired subtractive
synthesizers implemented a simplified variant of modularity, referred to as modula-
tion matrix. The name is not entirely established and various synthesizer vendors
introduce their own variants such as: alternate modulation system, matrix control,
routing, or mod matrix. A word ‘modulation’ in this context is very general and
refers to controlling one unit (either a signal generator or its modifier) using output
of other unit.

Modulation matrix is a set of source-destination pairs. A synthesizer has a fixed
number of possible sources of control data, a fixed set of control data receivers, and
a certain number of connections that can be established – channels. A connection is
set by pairing a chosen source with selected destination, and setting a parameter that
controls amount of modulation, usually referred to as depth, as shown in Figure 2.17.
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Depth can be either positive or negative. One source can be used multiple times, to
control several destinations. It is also common that depth of a particular modulation
is controlled by another source, set in a separate modulation. For instance, LFO can
modulate VCO frequency (one channel), while depth of this modulation is controlled
by a physical controller such as modulation wheel (another channel). Such chains
can follow multiple-levels deep.

Source Destination

Depth

*
Figure 2.17. An element of a modulation matrix; depth is a user-set parameter that

controls the amount of modulation; it can be either positive or negative

Depending on particular synthesizer, modulation matrix can be implemented and
presented in various forms (Fig. 2.18), from a simple one-column arrangement with
limited number of channels, to a full matrix that allows to connect every source to
every destination simultaneously. Examples of common sources and destinations are
presented in Table 2.2.

a)

So
ur
ce
s

D
es
tin

at
io
ns

L1

L2

L3

LN

b)

So
ur
ce
s

Destinations

S1

S2

S3

SP

D1 D2 D3 DQ

L11 L12 L13 L1Q

L21 L22 L23 L2Q

L31 L32 L33 L3Q
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Figure 2.18. Forms of a modulation matrix (Li or Lij represents modulation depth):
a) N -channel, one-column; b) P ×Q element matrix; in (a) up to N source-destination pairs
can be defined from among a larger set of sources and destinations; in (b) all P sources can

be connected to all Q destinations

2.1.3.3. Resynthesis
Additive and subtractive synthesis share a similar sound production principle.

Both shape a spectrum directly, and both deal with time-variability of a signal through
implementation of envelopes. Therefore, as is the case of additive synthesis, sub-
tractive synthesis is also suitable for resynthesis technique. A general approach is
the same, however subtractive and additive methods have different limitations, and
hence details vary.
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Vocoder

Subtractive resynthesis is aimed at creating such filter or configuration of filters,
and controlling them with such driving functions, that provided with properly chosen
excitation signal they reproduce a source sound allowing to alter its pitch, duration,
or timbre. First applications of subtractive resynthesis regarded the speech synthesis
area. Musical applications followed later. The first device that performed subtractive
analysis and resynthesis was the vocoder [175, 177, 176, 496, 189, 470]. The analysis
stage in analogue vocoder is performed by a set of fixed-frequency band-pass filters
that are fed with the original speech signal. Their outputs are directed to envelope
detectors that generate driving functions in a form of voltages proportional to the
amount of energy in analysed frequency bands. Resynthesis stage utilises a subtractive
synthesizer in an arrangement similar to one presented in Figure 2.16a. Synthesizer
uses bank of band-pass filters identical to those from the analysis stage, fed with wide-
band excitation signal, e.g. pulse train or noise. Band-pass filtered excitation signal
is directed to VCAs controlled by driving functions from envelope detectors. Output
of all VCAs is mixed to produce output signal. The overall process is schematically
shown in Figure 2.19.
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Figure 2.19. Vocoder diagram; symbols: F – band-pass filter, ED – envelope detector,
A – amplifier (VCA)

Originally the source signal was a human voice, and band-pass filters were used to
extract its formant structure in a form of time-varying spectral envelopes. Vocoder
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superimposes this structure onto excitation signal. Excitation should have a rich,
and possibly flat spectrum, but it does not have to be abstract or artificial. There-
fore, referring to an excitation-resonance musical instrument model, vocoder separates
resonance, in a form of driving functions, from excitation, and substitutes original ex-
citation with any signal of choice.

An initial goal of the process was to reduce amount of data required for speech
transmission or speech synthesis. Only driving functions were transmitted, while the
excitation was not. On the analysis side it was possible to detect if the sound was
voiced or unvoiced, and switch excitation signal on the synthesis side accordingly –
to a periodic signal or noise.

Separation of resonance and excitation proved to be useful for musical purposes.
Slow-varying driving functions are carriers of duration-related data, such as rhythm
and tempo, as well as some of source spectral characteristics. The excitation signal is
a source of fundamental frequency, and in consequence – pitch. Therefore, by separate
control over properties of both, excitation and source signal, or by modification of
driving functions such as time-stretching, it is possible to control pitch and time
structure separately, or apply spectral characteristics of one sound to the other.

An interesting and popular vocoder effect is a ‘singing instrument’. It is produced
by using instrument sound as excitation source, and driving it with data from analysed
speech signal. A usual setting is a keyboard-controlled synthesizer connected as an
excitation signal, and microphone connected as a source (Fig. 2.20). The effect is
achieved by simultaneous playing the synthesizer and speaking to the microphone.
In this kind of setting the excitation can be referred to as a carrier, and the source
– a modulator. Actually two separate synthesizers are at work here: the keyboard-
controlled one (any synthesis method), and the second one (subtractive) in vocoder.

Analysis stage Driving functions Synthesis stage

Source Vocoder Excitation

Microphone Synthesizer

Speech Keyboard

Output

Figure 2.20. A ‘singing instrument’ vocoder setup; microphone signal is a source of driving
functions, while keyboard-controlled synthesizer provides an excitation signal; playing the
synthesizer while speaking to the microphone produces the effect of ‘singing’ spoken text

with pitch and timbre of the synthesizer
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A vocoder can work with as little as eight octave-wide frequency bands. Enhancing
spectral resolution by increasing number of filters in a filter bank improves resynthesis
fidelity, but only to a certain point, after which further increase of filters number does
not bring extra improvement. The issue has to be addressed by applying a more
elaborate method.

Linear Predictive Coding

While the analogue vocoder may be the most straightforward approach to the
subtractive resynthesis, other possibilities exist. A more advanced approach is repre-
sented by the linear predictive coding (LPC). LPC attempts to estimate an all-pole fil-
ter with a magnitude frequency response that matches analysed signal [189, 350, 557].
The filter, designed using the optimisation procedure, is applied to a synthetic excita-
tion signal, and produces the best approximation of a signal that has been analysed.
Such approach is well suited for signals displaying spectral peaks, or formants, which
is a case of human voice and some musical instruments. In phase vocoder anal-
ysed frequency bands are equally spaced, which works well with harmonic spectra
only. Similarly, in STFT magnitudes and phases are determined in equally spaced
points, and to make a good spectrum estimation STFT requires many such points.
Contrary to foregoing two, LPC is a parametric method for determining spectrum
envelope. Therefore it does not assume harmonicity. As a result LPC can be applied
to a broader set of cases.

LPC may be considered a data reduction technique. Compared to a raw waveform,
LPC reduces data by analysing a signal in a series of time-frames, or blocks of samples,
typically between 50 and 200 per second [470]. Each frame consists of a set of data
sufficient to reproduce a segment of the original signal. A common set includes the
length of a frame, the average amplitude of the original signal, the average amplitude
of the estimated output produced by the inverse filter, the pitch of a frame, and
the coefficients of the all-pole filter. Pitch can be determined using any f0 detection
algorithm, while frame amplitudes may be estimated by calculating their RMS values.
A series of snapshots of filter coefficients from subsequent frames contains information
about spectral evolution of the analysed signal.

Unlike basic vocoders, LPC analyses the signal further. Each frame is categorised
either as voiced or unvoiced. This affects a choice of excitation signal in the synthesis
stage (Fig. 2.21). Voiced frames are resynthesized from a pitched pulse train. For
unvoiced – excitation is a white noise. Decision whether a frame is voiced or unvoiced
involves applying one of several heuristics. It can be based on the f0 estimation error,
using the amplitude ratio of the estimated filter output to the original signal. Unvoiced
frames produce large errors, so setting proper error threshold can be an initial hint.

An all-pole filter that contains formant structure of the analysed signal is deter-
mined in a two-step procedure described in detail by Makhoul [350]. Firstly, predictor
estimates an inverse filter. The process involves a linear prediction of the next sample
in a time series through linear combination of prior samples [136]

û[n+ 1] =
m∑
i=0

aiu[n− i] (2.18)
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where û[n+ 1] is the estimate of u[n+ 1]. A common method to calculate coefficients
ai involves the autocorrelation function [136]. The inverse filter is an all-zero FIR
filter that applied to the original signal attempts to produce the excitation signal.
Since the original excitation is not known, a synthetic is assumed: either a pitched
pulse train or a white noise. A difference between the assumed excitation and the
excitation obtained through application of the all-zero filter to the analysed signal is
the error of prediction [136]

ε[n+ 1] = û[n+ 1]− u[n+ 1] (2.19)

Estimation performed by LPC is optimal with a minimal mean square error (MSE)
criterion applied over the entire frame containing N signal samples [136]

MSE = 1
N

N−1∑
n=0

(û[n+ 1]− u[n+ 1])2 (2.20)

Minimisation results in the best fit of the inverse filter. In the second step the inverse
filter is inverted, thus producing the all-pole IIR filter, which was the initial objective.

Frame
parameters

Noise
generator Is pitched? Pitch

detector
Pulse

generator

Amplifier

All-pole
filter

Output
signal

No
Yes

Figure 2.21. A general principle of the LPC synthesis
Source: author’s elaboration, based on Miranda [373]

LPC viewed as an analysis and resynthesis tool is, in fact, a kind of vocoder, and
it was developed with similar aims: to reduce data amount in speech transmission
and synthesis [355]. And, similarly to vocoder, musical applications followed [98,
388, 319, 317, 167, 318]. If LPC is utilised for speech processing, twelve-pole filter is
considered sufficient, but in musical synthesis acceptable quality involves much larger
numbers – more than 55 [388].

Simple vocoders and LPC share a common musical advantage: a capability to
separate excitation, along with its pitch and spectral structure, from modulation
signal with its information on spectral evolution. They can ‘blend’ properties of
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different sounds, such as speech and instrument, which is a form of cross-synthesis.
Moreover, LPC provides extensive editing capabilities due to its frame-based data
set. According to Roads [470] frame duration can be changed, as well as order of
frames, or particular frame parameters, which allows to introduce effects such as pitch
glissando, crescendo, or trill – by manipulation of f0 or frame amplitude. Through
such manipulation a speech can be changed to singing.

Even though LPC provides an interesting musical capabilities and pushes synthesis
quality beyond that of simpler resynthesis techniques, the quality cannot be improved
over certain point [388]. Attempts to make the output signal less artificial involve
using more complex excitation: a multipulse cluster instead of a simple pulse
train [21]. Contents of such cluster are based on the frame analysis.

2.1.3.4. Control of Pitch, Duration, and Timbre

Control of Pitch

Due to separation of excitation and modification in subtractive synthesis, pitch
is controlled independently from spectral envelope and its temporal evolution. It is
determined solely by excitation signal fundamental frequency. There is a possibility
to alter pitch perception not through the oscillator, but through signal modifiers. It
involves either a filter removing some number of lower harmonics along with a funda-
mental frequency from excitation signal, or applying modulation effects with modu-
lation frequency high enough to produce audible sidebands. Both effects however are
rather incidental – they can make a pitch ambiguous, but do not allow to freely control
it. Therefore a normal way of controlling pitch is through VCO frequency parameter.

Unlike additive synthesis that can, but do not have to link frequencies of all par-
tials, and allows their independent control e.g. to introduce inharmonicity, pitched
oscillators in subtractive synthesizers produce periodic signals with all partial frequen-
cies in harmonic relation. It is not possible to control frequency of a single partial.
Even after filtering periodic signal through a bank of band-pass filters to separate
partials, only modification available for a single partial is related to amplitude, and
not frequency. If inharmonicity is required, it can be produced either through intro-
ducing sidebands with modulation effects or through mixing a number of oscillator
signals with detuned fundamental frequencies – the latter is a more common solution.

Control of Duration

Duration of a sound produced through subtractive synthesis is controlled inde-
pendently from pitch or timbre. If an evolution of amplitude needs to be imposed,
it is carried out by applying EG to control signal gain over time. Depending on
a type of envelope (Fig. 2.7) two cases are possible. If the envelope has a sustain
segment (Tab. 2.1) duration can be extended as required. Otherwise, the amplitude
will eventually fall to zero, and note will end. If a note-off event is sent before the
envelope reaches its last release segment, it starts the last ramp-down from current
value towards zero with a slope of release segment. These properties and behaviour
are inherited by other synthesis methods, such as wavetable, that share a source-filter
or, more generally, a source-modification model.
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Control of Timbre

While it is commonly assumed that subtractive synthesis separates pitch and tim-
bre control, actually it is not a complete separation. The reason is that a spectrum
of produced sound has two origins. The first is the original spectrum of a source sig-
nal, and the second – the filter applied. A spectrum of pitched source can be almost
flat, as in simplified Figure 2.15, if the signal is a pulse train with a very small duty
cycle. More often though, a spectrum has some kind of decaying envelope – either
monotonic (Fig. 2.1), or not (Fig. 2.2). This spectral structure follows changes of
oscillator frequency, and it cannot be prevented. The filter part, however, can behave
as required: filters cut-off or centre frequencies can follow pitch or can have fixed
values. In the first case the whole spectrum, its source and filter part, shifts with
pitch. It produces a sound that always has the same number of partials in the same
proportions. In the second case source part shifts, but filter part does not. This is
not unlike a behaviour of some acoustic instruments, where a fixed spectral structure,
originating from resonances of instrument parts, usually in a form of a number of
peaks, is imposed on a floating excitation spectrum (Fig. 2.22).

Unlike additive method, which is limited to constructing spectrum from discrete,
sinusoidal partials, subtractive synthesis can mix periodic, pitched signals with filtered
white noise, and is therefore capable of producing continuous or partially continuous
spectra. Such approach usually lacks precision, but is efficient in synthesizing percus-
sive sounds, as well as breath or bow noise.

A timbre depends not only on spectrum, but also on spectral evolution. In sub-
tractive synthesis it is controlled by EGs as well as LFOs. Another part that affects
timbre is configuration of unit generators, or settings in modulation matrix – routing
and depth. Therefore a complete timbre settings involve:
• choosing an oscillator waveform,
• arranging unit generators,
• and setting parameters of signal modifiers.

Registers, Dynamics, and Articulation

Subtractive and additive methods have similar capabilities to simulate timbre-
related features of acoustic instruments, with a few exceptions. Due to a performance-
oriented, less precise control mechanism, subtractive method can reproduce fewer de-
tails of instrument features, though it is able to reproduce noise components. Consid-
ering similarities, both methods can handle register, dynamics, or articulation changes
by using multiple sets of timbre-controlling parameters per instrument. When either
a register is switched, a dynamics is changed, or a different articulation is selected,
a set of parameters associated with a particular situation is applied.

In case of closely connected notes such as in legato articulation, subtractive method
can simulate smooth pitch transitions, although they are less convincing than addi-
tive approach. While additive synthesis is able to precisely control each partial in
transition region according to prior analysis of a real instrument behaviour, subtrac-
tive method simply skips parts of envelope segments that are responsible for prior
release and following attack phase, with an optional pitch glissando, applied equally
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to all partials. The result is smooth, yet not entirely realistic. Alternatively, a more
advanced resynthesis technique can be applied.

Figure 2.22. Magnitude spectra of four cello notes: C2 and D2 (top plot), E2 and G2
(bottom plot) recorded in anechoic chamber; apart from harmonic partials decaying with
frequency, a number of broader peak regions can be observed, most notably around 200 Hz,
and below 900 Hz; the lower can be attributed to C3 corpus resonance [92], the higher – to

the first bridge mode [191]

The diphone synthesis is a method designed for speech synthesis [430, 431,
414, 499] that has been later applied to music. The concept, initially implemented
as a subtractive analysis and resynthesis technique, is based on assumption that in
speech stable sounds are interchanged with transition sounds. Similar approach can
be applied to sounds of musical instruments. Musical diphone synthesis utilises a dic-
tionary of stable and transition sounds [470]. Diphones from a dictionary, described
by pitch and loudness, are concatenated to produce arbitrary output. Yet concate-
nations could lead to audible discontinuities. In order to avoid them, models based
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on transition rules are applied [537, 475]. A diphone is divided into interpolation
and non-interpolation zones that are treated differently. Non-interpolation zones are
preserved since they represent rapid signal changes that should not be altered. Inter-
polation zones can be stretched or compressed using LPC method – they are connected
through transition zones. Manipulation of interpolation zones allows to produce ar-
bitrary output.

Fundamentals of diphone synthesis were later applied in other sound synthesis
methods, and its variants are known under a number of different names, such as con-
catenative synthesis [452, 513, 504, 505, 344], reconstructive phrase modelling [336],
musical mosaicing [619, 124, 123], or phrase assembling [446, 445].

2.1.3.5. Descendants of Subtractive Synthesis
A source-filter or a more general source-modifier sound generation principle proved

to be a very robust approach. Even though a basic subtractive synthesis is less capable
in very detailed reproduction of acoustic instruments than the additive synthesis, it
makes up for this deficiency with convenient and reasonably intuitive control schemes,
and powerful reconfiguration ability of modular synthesizers. Both, strengths and
flaws together decided that the subtractive method branched into a multitude of new
– often quite successful – synthesis methods.

One of directions was to replace a few basic source waveforms with a much larger
set in the wavetable synthesis. New waveforms became available with the intro-
duction of digital oscillators and increasing storage space. Gradually, timbre-related
operations had been transferred from modifiers to source, with the assist of sophisti-
cated waveform selection mechanisms, while filters started to play a secondary role.
The method ceased to be spectral, and became waveform-based. Sampling took the
process even further. Obviously, basic sampling is not a source-filter method. It
was soon however, that a lack of signal modification capabilities brought subtractive
modifiers to the sampling method in a technique referred to by Russ as sampling
& synthesis, in contrast to a basic ‘sample replay’ method [485].

A second way involved development of improved modifiers. Filters were often used
to reproduce spectral effects of physical phenomena taking place while playing acoustic
instruments. Mapping these effects to appropriate instrument parameters, e.g. in
case of using wind or string instrument-like synthesizer controllers, required a model.
Thus source-modifier approach met physical modelling, and its traces can now be
observed throughout various physical modelling synthesis methods. These traces
are particularly explicit in simplified methods, such as modal synthesis, MSW
(McIntyre, Schumacher, and Woodhouse) [360] or Karplus–Strong method [286].

Lastly, a number of methods and tools picked selected elements of source-modifier
approach and arranged them in a different manner. Modulation methods built
upon a principle of modulating – which was initially an effect only – to produce dif-
ferent spectra. Still, a source-modifier principle holds, even though complex relations
between multiple sources and modulators in FM (frequency modulation) algorithms
differ from a straightforward layout of a pure subtractive synthesis. Some variants
of additive synthesis implemented filtered noise as a component sound alongside
sinusoidal partials. A traces of subtractive method can be observed even in granular

60



synthesis, when grains contents are processed through envelopes to obtain desired
spectral characteristics. Finally, the principle of sources, modifiers, and modularity
is a basis of many sound programming languages.

2.2. Waveform-Based Methods

2.2.1. Wavetable Synthesis
A wavetable synthesis is a group of digital and hybrid sound synthesis methods

that operate according to the source-modifier principle [485]. Its core is a digital
signal generator based on a table-lookup mechanism (Fig. 2.23). Hence the method
can be also referred to as a table-lookup synthesis [470]. Signal from generator, either
before or after conversion to analogue domain, may be modified by filters, amplifiers,
LFOs, and EGs.

Table-lookup signal generator requires two elements: memory, and digital to ana-
logue converter (DAC). The method assumes that a signal generated is periodic,
therefore it is necessary for the memory to store a single period of a waveform only.
Memory is organised as a one-dimensional array, where subsequent signal values – sig-
nal samples – are stored in a time-order. Thus a wavetable can be considered a sound
sample truncated to a single period. The array is read cyclically, and values read are
sent to DAC, or undergo further processing if the implementation is purely digital.

Table lookup operation can be written as

u[n] = tab[φn] (2.21)

where φn is the integer phase index produced by a modulo counter. Phase index is
incremented according to the following expression

φn = (φn−1 + ∆φ) mod L (2.22)

where ‘mod’ is the modulo operation, ∆φ is the value of increment, and L is the
array length.

Wavetable is actually a simple, efficient, and hence very common implementation
of a digital sinusoidal oscillator [61]. Contrary to analogue VCOs, it is not limited
to simple waveshapes only, but can produce any periodic signal, since data array can
store an arbitrary set of values. Contents of the array have no impact on the oscillator
efficiency – it is always the same array read operation. Efficiency and simplicity are
the reasons why a wavetable is very often a basis of other digital synthesis methods.

Signal Frequency

Phase index increment is related to a signal frequency by the following formula

∆φ = Lf

fs
(2.23)

where f is the signal frequency, fs is the sampling frequency, and L is the length
of a wavetable.
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According to (2.23) signal frequency can be controlled not only through ∆φ, but
through L or fs as well. These however, are more problematic. New array length
requires all signal samples to be either recalculated, or read from another data storage.
New sampling frequency is more viable if signal is going to be mixed with other signals
in analogue domain. In case of digital mixing it is still possible, but summing signals
with different sampling frequencies involves their prior resampling to a common value.
Therefore the most convenient way to change signal frequency is to change the phase
index increment.

Wavetable

Signal

00 1 2 3 4 5 6 7

Wavetable data

Wavetable indices

Output values

Sampling

Wavetable value

Interpolated value

Linear interpolation

Cycled wavetable value

1/fs

∆φ

Figure 2.23. Wavetable synthesis with linear interpolation; wavetable containing L sam-
ple values is read periodically with sampling rate fs, and phase index increment ∆φ set
according to a target frequency, as in (2.23); if ∆φ, and consequently wavetable index, has
a fractional part, there is no immediate value available and interpolation of some sort has

to be implemented

Indices of array cells are integer numbers, therefore according to (2.23) it might
seem that only a limited number of discrete frequencies is possible, with other values
unattainable. In fact, it is possible to produce any frequency using interpolation,
which may be considered resampling of a wavetable. The easiest to implement is
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the nearest-neighbour method, however, it has the worst auditory effect, producing
audible table-lookup noise [470]. The noise can be reduced either by use of larger
array, or by applying linear (Fig. 2.23) or higher-order interpolation. Even linear
interpolation brings a very significant improvement over nearest-neighbour approach.
According to Moore [386], for a wavetable storing 1024 values of sine function, SNR
is no worse than 109 dB if the linear interpolation is applied, compared to 48 dB for
the nearest neighbour method. Relations between table length, interpolation order,
spectral roll-off of stored signal, and SNR were studied by Dannenberg [150].

2.2.1.1. Single-Cycle and Multi-Cycle Wavetable

Single-Cycle

A single-cycle wavetable, or a wavecycle [485] is the most basic case of wavetable
synthesis, and the closest to subtractive method. It can also be referred to as a single-
cycle oscillator, when only a generator, and not the whole synthesizer is the object
of interest. Single-cycle oscillators can be implemented in various synthesis methods
as signal sources.

Like analogue VCO, single-cycle oscillator produces a fixed waveform, which is
either processed digitally, or – in hybrid synthesizers – converted to analogue signal
and further processed in this form. Processing involves low-pass filtering, usually in
a pitch-following mode.

The wavecycle oscillator and the VCO differ in the available waveshapes – the
wavecycle allows to choose among a larger set, or to define own waveshapes. In early
appliances entry of table values was carried out through sliders and slider-scanning
circuits, but soon more advanced interfaces followed, such as graphics monitor with
a light pen [485].

Larger number of waveforms available allows to implement ‘velocity-switching’.
Depending on key velocity value a different waveform is chosen, altering timbre in
an attempt to simulate change of articulation that occurs in parallel to a change of
dynamics. ‘Velocity-switching’ has a similar effect to linking velocity control and filter
parameters, though the former can be a source of more complex changes.

Multi-Cycle

Both, the multi-cycle and the single-cycle oscillators allow to produce various
waveforms. The difference is, that in a single-cycle a single waveform is chosen at
a time, while in a multi-cycle various waveforms are produced in sequence. Therefore
an additional control mechanism is introduced – a choice and order of waveforms
within a sequence.

Reproducing waveforms in a sequence has two interesting auditory effects. Firstly,
spectral elements of all component waveforms are present. Secondly, signal period
is lengthened, multiplied by a sequence length, thus a pitch drops [485]. If sequence
length is a power of two, pitch drops by a number of octaves. Otherwise – by a different
interval (Fig. 2.24). This sequence-related pitch sensation can cease to be perceivable
if a sequence is long enough to shift it below the auditory range. As a way of producing
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more complex signal with a limited memory, waveforms in sequences can be time-
reversed, inverted, or both at the same time. Longer, more varied sequences are better
at producing noise-like output. Very long sequences are, in fact, nearing a sound
sample concept.

Figure 2.24. Magnitude spectra of three- and four-component multicycle oscillator sig-
nals; component waveforms spectra are presented in the top plot (f0 = 441 Hz); a three-
component sequence in the middle plot has an effective f0 shifted 3× below f0 of its com-

ponents, and four-component sequence in the bottom plot – 4×
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2.2.1.2. Signal Modification and Evolution

In general principle, wavetable does not differ from subtractive synthesis: a spec-
trally rich source signal is shaped through filters and amplifiers with aid of EGs and
LFOs. However, wavetable synthesis mixes purpose of a source and a modifier. Much
of signal shaping capabilities are moved to the signal source, while the role of filters
shrinks in the majority of implementations, except the most advanced digital synthe-
sizers [485]. It is common, that only a simple, low-pass resonant filter is available.

Effects of filters can be reproduced in a much simpler way, at the expense of
memory requirements, through introducing waveforms characterised by a spectrum
that is already filtered in a desired way. Arranging such waveforms in sequences
with gradually changing spectra can simulate filters controlled by envelopes. This
technique requires large numbers of waveforms with very similar spectra, otherwise
waveform switching produces audible ‘steps’.

Wavetable Access

The term ‘wavetable’ is often used as a general name for a broad class of methods
that produce signal by reading its samples from memory – from single-cycle oscillators,
through multi-cycle synthesizers, to samplers. In commercial applications they are
often difficult to clearly categorise, when e.g. a synthesizer itself has full wavetable
capabilities, with a set of signal modifiers and flexible access to sample memory, but
in factory default settings it uses simple sample-replay capabilities only.

Single-cycle oscillators can switch waveforms on demand, but they do not switch
them in sequence, which is a distinguishing feature of multi-cycle oscillators. A fully-
fledged wavetable method builds upon a multi-cycle synthesis, which simply re-
peats a fixed sequence, by adding the ability to modify the sequence on a cycle
basis. The other way around, single-cycle and multi-cycle techniques are simply
feature-constrained variants of a full wavetable method. Sampling may behave like
a wavetable method, but it handles control and processing of long recordings differ-
ently. It is therefore considered a separate method, though it has its roots in the
wavetable synthesis.

That being said, a subdivision of wavetable techniques is based mostly on a way
of accessing and handling sample memory. Wavetables store separate signal periods.
These periods may represent subsequent stages of signal evolution. If they are repro-
duced in sequence, it can be considered a sound sample, with a notable difference:
wavetables can be picked and used separately, while a sound sample in a conventional
sampler is not segmented into periods, therefore there is no direct way to select and
use one.

Wavetable synthesis uses two storage areas. The first one contains cycles – single
periods of waveforms. It is not modified while playing, and can be a read-only memory.
The second one stores a sequence of cycles. A fully-fledged wavetable synthesis allows
a sequence data to be accessed and modified during operation. Changes are carried
out between waveforms, so once a waveform has started, it cannot be changed.
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A sequence is accessed in one of two ways [485] (Fig. 2.25):
• sweep progresses through all consecutive waveforms within a given range – initial

and final waveforms need to be defined,
• random-access progresses through a freely-defined sequence of waveforms – se-

quence can be altered during play.
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Figure 2.25. Wavetable access modes: a) sweep; b) random-access; each row represents
a single wavetable, and each cell – a single signal value

More advanced synthesizers have the ability to change a sequence depending on
the current envelope segment. The effect is a different source signal in attack, decay,
sustain, and release phase. A simpler variant is referred to as a loop sequence, where
each segment of an envelope is mapped to a specific wavetable, looped throughout this
segment. Both techniques have the advantage of preserving duration of envelope seg-
ments while changing pitch, unlike a transposition applied in sample replay technique,
which scales durations of all segments proportionally to the shift of frequency.

Interpolating Waveshapes

One wavetable can be ‘morphed’ into another using interpolation [485]. It allows to
prevent audible discontinuities while changing timbre. It can also provide intermediate
waveforms if wavetables contain only extreme examples of e.g. dynamics or other
performance-related parameters [85].

Rather than crossfading between two waveforms, some form of polynomial in-
terpolation is usually applied. One of possibilities is to use Lagrange interpolating
polynomial [85] that passes through N points, from (x1, y1) to (xN , yN ) [451]

P (x) =
N∑
j=1

Pj(x) (2.24)

where

Pj(x) = yj

N∏
k=1
k 6=j

x− xk
xj − xk

(2.25)
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The coordinates of points represent positions xj of wavetables on some assumed scale,
and sample values yj [n] in a wavetable, where n is the sample index and j is the
wavetable index.

As an example we can assume that three wavetables y1, y2, and y3 are equidistantly
positioned (Fig. 2.26), therefore we can set x1 = 0, x2 = 1, and x3 = 2. In this case
N = 3 and for each signal sample n polynomial will assume the following form [85]

y[n] = (x− 1)(x− 2)
(0− 1)(0− 2) y1[n] + (x− 0)(x− 2)

(1− 0)(1− 2) y2[n] + (x− 0)(x− 1)
(2− 0)(2− 1) y3[n] (2.26)

Controlling x ∈ [0, 2] we can ‘morph’ between wavetables y1 (x = 0), y2 (x = 1),
and y3 (x = 2).

Figure 2.26. Morphing from square, through triangle, to sine wavetable using Lagrange
interpolation; top plot is the output in a short time scale to emphasize waveform changes;
middle plot is a spectrogram of two seconds morphing; for comparison, bottom plot shows

period-based linear crossfade

Figure 2.26 presents the effect of interpolating from square, through triangle, to
sine waveform, using formula (2.26). It is compared to a crossfade between wavetables.
Since interpolation is carried out separately in each period, crossfade was performed
on a period basis as well, i.e. weight ratio of wavetables was constant in one cycle, and
changed between cycles. Although both effects are generally similar, the differences
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are easily audible. In this particular case interpolation introduces high-frequency
partials corresponding to a waveform region between 22 and 32 ms (top plot), where
additional sharp edges appear.

2.2.1.3. Resynthesis

A general sound production principle employed by wavetable synthesis is inher-
ited from subtractive synthesis, therefore the same resynthesis techniques might be
expected to work. This, however, is the case for some wavetable implementations
only, because subtractive resynthesis usually involves filter banks or otherwise highly
flexible filters that many wavetable synthesizers do not have at their disposal. Part
of filter functionality is transferred to the oscillator – as Bristow-Johnson points out,
it is not necessary to work in spectral domain if spectral manipulation can be carried
out beforehand and stored as a wavetable, which is more efficient [85].

Signal modification capabilities distributed between signal generator and filters,
as well as a variety of implementations with different features, increase complexity of
a process of wavetable resynthesis. Apart from subtractive-type resynthesis that does
not fully exploit wavetable capabilities, some wavetable synthesizers can operate as
sampling synthesizers, which makes resynthesis a default sound production technique.
But again, while operating as simple sample-replay device, most wavetable facilities,
such as envelopes, are not available, therefore sound control capabilities are severely
limited.

Bristow-Johnson [85] proposed a set of methods for extracting wavetable data from
recorded sounds, albeit categorised them as suboptimal. Nevertheless, they can be
considered a basis for wavetable resynthesis. The first issue is, that wavetables have to
store single periods of signal that need to be selected and isolated from the recording.
At the beginning, a fundamental frequency around given time t0 is estimated [362],
e.g. using autocorrelation-based average magnitude difference function (AMDF) with
window w(t − t0) wider than anticipated period and centred at t0 [85]

γt0(δ) ≡
∞∫
−∞

∣∣∣∣u(t+ δ

2

)
− u

(
t− δ

2

)∣∣∣∣2 w (t− t0) dt (2.27)

where u(t) is the analysed signal. If ∆ represents the first local maximum, i.e.
γ′t0(∆) = 0 and γ′t0(δ) > 0 for 0 < δ < ∆, then global minimum for lags larger
than ∆ represents period value τ , which depends on chosen t0 [85]

γt0 (τ (t0)) = min
∆<δ
{γt0(δ)} (2.28)

Value of τ(t0) can be extracted with fraction-of-sample precision by interpolating
around the global minimum.

Having determined a value of period, a single signal period around t0 is extracted
from the recording. Since when utilised as a wavetable it will be looped, it needs to
be periodically extended.
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Unless the signal was perfectly periodic, simple repeating extracted period will pro-
duce discontinuities that can be attenuated by applying a normalised window wn [85]

ût0(t) ≡ u(t)wn
(
t− t0
τ(t0)

)
(2.29)

with complimentary fade-in and fade-out characteristic. Such window needs to satisfy
the following conditions [85]

wn(−β) = wn(β)
wn(0) = 1
wn(β) = 0 for |β| ≥ 1

wn(β − 1) + wn(β) = 1 for 0 ≤ β ≤ 1

(2.30)

therefore e.g. Hann window can be utilised.
With time-scaled window of half-amplitude length equal to τ(t0), periodic exten-

sion of ût0 [85]

ut0(t) ≡
∞∑

n=−∞
ût0(t) (t− nτ(t0)) (2.31)

is a match for analysed signal in t0.
Extracted wavetables have to be phase-aligned if they are to be crossfaded. Period

τ determines the fundamental frequency f0. Assuming phase to be zero at t = 0, one
can obtain phase at t0 [85]

φ(t0) = 2π
t0∫

0

f0(t)dt (2.32)

In the end resampling [494, 312] is applied to extract arbitrary number
of K signal samples from the periodic extension between

(
t0 − φ(t0)

2π τ
)

and(
t0 − φ(t0)

2π τ + K−1
K τ

)
. The number of samples needs to be at least twice the in-

dex of the highest harmonic, but since wavetable values are to be interpolated during
synthesis, it is better to further increase K [85].

The final issue is to determine how many wavetables need to be extracted, and
where are they to be extracted from. The simplest approach would be to extract
them in constant time intervals, and starting with small interval increase it, until
reconstructed sound differs from the original. The criterion can be purely auditory,
or based on a quantitative estimation, such as cumulative or maximal deviation of
partials amplitudes. Some propositions can be found in works of Horner [251, 246].

2.2.1.4. Control of Pitch, Duration, and Timbre

Pitch and Duration

Both single, and multicycle table-lookup generators are based on wavetables con-
taining single periods of signal. They do not store any evolution-related data and
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thus the signal they produce is time-invariant. Through manipulation of generator
frequency one directly controls pitch of produced signal, without affecting its duration.

Like in subtractive method, change of wavetable oscillator frequency shifts a whole
spectrum of produced signal. Though in wavetable this effect can be more prominent
due to the fact that more spectral details are produced by a generator, and less by
filters, while in subtractive synthesis oscillator produces relatively simple spectrum
that is later shaped by filters.

Sharing a principle of operation with subtractive method, wavetable imposes signal
evolution through envelopes, thus providing means for control of signal duration.
Amplitude envelope starts with a note-on event, and continues to the sustain segment
which is held until note-off event arrives, triggering the last, release segment.

Timbre, Registers, Dynamics, and Articulation

Wavetable method utilises mechanisms inherited from subtractive synthesis to
control pitch and duration. However, when it comes to controlling timbre, it uses
a different approach. Subtractive method provides three ways to control timbre,
namely choice of oscillator waveform, arrangement of unit generators, and control
over extensive set of signal modifiers. Out of these, units arrangement predestines
a synthesizer to a particular task, such as synthesis or resynthesis, oscillator provides
a very limited choice of waveforms, and therefore signal modifiers have a predom-
inant role. Wavetable, on the other hand, relies primarily on changing waveforms
produced by a table-lookup oscillator. If an EG is employed to control interpolation
of waveshapes, it produces an effect analogous to envelope control of a filter cut-off
or centre frequency.

Subtractive method allows to either relate filter frequency to a fundamental fre-
quency of produced sound, or to set it to absolute value, thus providing means of
reproducing resonances of instrument corpus that do not change with pitch. In
wavetable, however, independent control of pitch and spectral structure is difficult
to achieve, since most of spectral shaping is performed not in filters, but in gen-
erators, and spectral structure shifts with pitch. To mitigate it, different sets of
wavetables can be provided for specific instrument registers or pitch regions – the
smaller the region, the better the result, but larger memory requirement and effort
needed to prepare control data.

Similar solution – dedicated sets of wavetables combined with changes to envelope
segments – allows to reproduce various separated articulations or timbre changes
caused by changes in dynamics. Note transitions can be simulated through skipping
or combining segments of envelopes. This technique may be enhanced with waveshape
interpolating – thus timbre can morph from one pitch to another.

2.2.1.5. Multiple Wavetable Synthesis
Horner et al. [251] proposed a method that combines principles of wavetable and

additive synthesis. It utilises a number o fixed wavetables that are mixed together.
Each wavetable has its own amplitude envelope, therefore their proportions differ in
time. Originally, multiple wavetable synthesis was aimed at finding close matches
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to sounds of musical instruments, therefore in this context it may be considered
a resynthesis method.

Figure 2.27 presents the principle of the multiple wavetable synthesis. General
layout is not unlike additive synthesis (Fig. 2.9), but components are different –
wavetables are used instead of sinusoids. Amplitude envelopes are also referred to as
time-dependent wavetable weights. They serve a purpose of controlling wavetables
proportions in output signal. It is usual, however, that in a given moment only two
wavetables have non-zero weights, therefore what weights actually control is a cross-
fading between subsequent wavetables [470]. One, common fundamental frequency is
set for all wavetables. Wavetable phases must be aligned to avoid phase cancellation
while crossfading.

* * *

f0

+

Wavetables

Envelopes

Out

Figure 2.27. Multiple wavetable synthesis
Source: author’s elaboration, based on Horner [251]

Multiple wavetable resynthesis can employ either genetic algorithms (GA) or prin-
cipal component analysis (PCA) to find wavetable spectra and amplitude envelopes
that mixed will match the original time-varying spectrum [251]. A task of GA was
to select spectra at various points in time, while PCA helped to obtain a set of or-
thogonal basis spectra for wavetables. Resynthesis results were evaluated using the
following relative error measure [251]

ε̄rel = 1
N

N∑
j=1


M∑
k=1

(Ak(tj)−A′k(tj))2

M∑
k=1

A2
k(tj)


1
2

(2.33)
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where N is the number of selected time values, tj are time values, M is the number
of harmonics, Ak(t) is the amplitude of original signal k-th harmonic, and A′k(t) is
its equivalent in synthesized signal, according to [251]

A′k(t) =
P∑
l=1

wl(t)akl (2.34)

where akl is the time-fixed amplitude of k-th harmonic of l-th wavetable, wl(t) is the
weight of l-th wavetable, and P is the number of wavetables. In case of both, GA and
PCA, three to five wavetables proved enough for a good reproduction of the original
signal, however with lower number of wavetables GA produced smaller errors.

A principle similar to multiple wavetable synthesis has been implemented in a num-
ber of synthesizers. These implementations differ in the arrangement of wavetables
as well as their control scheme, and they use various names of the technique, such
as wavetable crossfading, compound synthesis, vector synthesis, or linear
arithmetic synthesis [470]. Wavetable crossfading variant uses several wavetables
to crossfade from the first to the second, from the second to the third, and so on –
so that pairs of adjacent wavetables are mixed, one fading-in, the other fading-out,
thus producing rich, evolving sound. Crossfading control can be automatic or manual.
Automatic uses envelopes, while in manual weights can be controlled with a joystick.

Wavestacking synthesis may be seen as a hybrid of additive, multiple wavetable,
and sampling synthesis. While it retains the general layout of multiple wavetable, it
does not use looped periods of signal, but instead utilises full sound samples that are
enveloped and mixed. Unlike in multiple wavetable, where common fundamental fre-
quency is assumed, component signals in wavestacking can have different frequencies,
or – more precisely – each can have its own frequency envelope as a characteristic of
recorded signal, and can be additionally resampled. Wavestacking may be combined
with multiple wavetable synthesis.

2.2.1.6. Wave Terrain Synthesis
In digital implementations waveform is ordinarily stored in a one-dimensional data

structure, indexed by a time-related variable. Wavetable synthesis uses this approach
to store periods of signal as one-dimensional arrays. However, if the data arrangement
had changed, this alone might serve as a basis of a sound synthesis method.

A method referred to as wave terrain synthesis expands wavetable to two di-
mensions, which results in new capabilities, problems, and possible applications. In
a two-dimensional domain waveform becomes a wave terrain, and a path chosen over
wave terrain to produce one-dimensional audio signal is referred to as an orbit or tra-
jectory. According to Roads [470], the term ‘wave terrain’ was first used by Gold [64],
and a number of implementations followed [378, 76, 265].

Terrain

A wave terrain can be considered a surface over a two-dimensional domain –
a sample value within a wave terrain is addressed by two indices. Terrain data can
be generated through some mathematical formula, or can originate from an arbitrary

72



source such as wavetable cross-multiplication, image, relief map, texture, etc. Math-
ematical formulas have the advantage of predictable output signal characteristics.

If a continuous output signal is to be produced, and the orbit is expected to cross
terrain boundaries, two conditions should be met. Firstly, terrain generator functions
in both directions and their first-order partial derivatives should be continuous. Sec-
ondly, generator functions should be zero, or at least assume a constant value, on
edges of terrain – it will allow to cycle wave terrain in both directions [470]. Works
of Mitsuhashi [378], Borgonovo [76], and James [265] provide definitions of functions
fulfilling both conditions in the range x1 ∈ [−1, 1], x2 ∈ [−1, 1]. A common example
is the following function, presented in Figure 2.28

y(x1, x2) = (x1 − x2)(x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1) (2.35)

where x1 and x2 are coordinates.

Figure 2.28. Wave terrain generated by (2.35) [265]

However, complying to the aforementioned restrictions it is difficult to produce
more complex surfaces. James [265] gathered a large number of procedures that allow
to generate useful terrains either by violating the conditions, or by going beyond
simple arithmetic formulae. He pointed at particular characteristics that produce
interesting and desired auditory effects, such as discontinuities that introduce large
number of harmonics, or undefined values. For instance, the following function [265]

y(x1, x2) = cos
(

12 sin
√

(x1 − 1)2 + x2
2 − 4 tan−1

(
x2 + 1
x1

))
(2.36)

is periodic, but discontinuous (Fig. 2.29). In a digital domain the discontinuity itself
can be simply avoided, while its steep surroundings remain useful still.

73



Figure 2.29. Wave terrain generated by (2.36) [265]

Orbit

In a process of wave terrain synthesis a two-dimensional data structure has to be
rearranged into a one-dimensional output signal. This task is performed by an orbit.
It is an orbit that determines whether an output signal will be periodic, or not – signal
periodicity follows a periodicity of an orbit. Therefore, an orbit controls a fundamental
frequency. Orbits can be divided into four categories presented in Table 2.3.

Table 2.3. Categories of orbits in wave terrain synthesis, according to James [265]

Category Examples

Periodic Lines, ellipses, Lissajous curves
Quasi-periodic Spirals, waveforms of recorded musical instruments

Chaotic Strange attractors, waveforms of recorded environment sounds
Stochastic Noise, random walks

A rich collection of orbits can be found in the work of James [265]. A rose curve
(Fig. 2.30, top left)

r = a cos(nθ) (2.37)

controlled by parameter n is an example of periodic orbit. A butterfly curve (Fig. 2.30,
top right) is another example from the same category

r = ecos θ − 2 cos(4θ) + sin2( θ12) (2.38)
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Figure 2.30. Orbits for wave terrain synthesis [265], from top-left to bottom-right: rose-
curve (2.37); butterfly (2.38); standard torus (2.39) projected on x1x2-plane; figure 8 torus
(2.40) projected on x1x3-plane; and Ikeda map (2.41) with two different sets of parameters

A standard torus

x1 = (a+ b cos θ) cosφ
x2 = (a+ b cos θ) sinφ
x3 = c sin θ

(2.39)
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projected on a plane can produce a quasi-periodic orbit (Fig. 2.30, middle left).
Similarly, a figure 8 torus can be utilised (Fig. 2.30, middle right)

x1 = cos θ(a+ sinφ cos θ − 1
2 sin θ sin(2φ))

x2 = sin θ(a+ sinφ cos θ − 1
2 sin θ sin(2φ))

x3 = sin θ sinφ+ 1
2 cos θ sin(2φ)

(2.40)

where a, b, and c are parameters.
Various chaotic orbits can be generated using the Ikeda map (Fig. 2.30, bot-

tom row)

x1[n+ 1] =a+ b(x1[n] cos(x1[n]2 + x2[n]2 + φ)−
− x2[n] sin(x1[n]2 + x2[n]2 + φ))

x2[n+ 1] =b(x1[n] cos(x1[n]2 + x2[n]2 + φ)+
+ x2[n] sin(x1[n]2 + x2[n]2 + φ))

(2.41)

Evolution

Most common periodic orbits are elliptical. If a signal is supposed to evolve in
time, then one of non-periodic orbits needs to be applied. An interesting case of
orbits are projections of higher-dimensional objects onto a plane. It is also possible
for an orbit trajectory not to be pre-calculated, but entered manually by a user, e.g.
with a help of graphic tablet, touchscreen, or similar device. A temporal evolution of
orbits can be achieved through geometric transformations, such as scale, translation,
rotation, or reflection [265]. Orbits may also be arranged in poly-trajectories, where
two or more of them are added or multiplied – one is usually responsible for periodicity,
thus changes fast, while the other is slowly modulating position of the first one.

A straightforward way of determining spectral evolution is possible only for rela-
tively simple wave terrains and orbits. It is usually recommended that if one, terrain
or orbit, has a complex structure, the other should be simple, otherwise control of
output signal is practically impossible. Apart from complexity, any functional rela-
tionship between terrain, orbit, and output signal data is obviously possible only if the
first two are expressed in functional form. In other cases predictability is problematic,
and only general remarks can be provided [265].

Early works tended towards fixed wave terrains and variability based on orbits,
but faster computers with large number of controllers allow to break this scheme
[369, 367, 366, 128]. Controllers such as MATRIX, designed by Overholt [418, 419],
are an efficient way of changing a wave terrain in a flexible way – in case of MATRIX
through 144 independent continuous controllers arranged into 12× 12 array. Terrain
evolution can also be imposed in a parametric manner, through a much narrower set
of variables, with a use of more traditional controllers. Evolution of terrain differs
from evolution of orbit in regards to rate. While orbits are processed with audio rate,
wave terrains require only haptic rate, or control rate. Newer works propose a much
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more complex interpretation of wave terrain data, aimed at spectral spatialisation in
acousmatic music. Studying spatiomorphology and spectromorphology [515], James
proposes mapping strategies within wave terrain synthesis framework that would pro-
duce meaningful – i.e. taking into account psychoacoustics – spectral and timbre
spatialisation [267, 266].

2.2.1.7. Progress of Wavetable
Wavetable synthesis was implemented as a fully-developed method in hybrid syn-

thesizers like PPG Wave or Waldorf Microwave, and progressed in a number of di-
rections (Fig. 2.31). Its basic form is often combined with a manual wave-data
entry, which resembles early wavecycle oscillators equipped with switches. In place of
switches users are able to draw, or otherwise create and edit wavetable data, which
results in a very direct control of sound – partially due to a very limited signal pro-
cessing outside of a generator. Usually it is a part of some larger music performance
systems, like in case of the Laptop Orchestra [516].

Wavetable

Basic wavetable,
part of larger systems

Advanced wavetable,
software synthesizers

Sampling and synthesis,
virtual instruments

simplicity,
efficiency

flexibility,
controllability

reproduction,
imitation

Figure 2.31. Specialisation of wavetable synthesis

The second way is blending with other methods in commercial software synthe-
sizers. Due to similar principle, and possibility to reuse the same signal modifiers
like LFOs, filters, and EGs, arranged using modulation matrix, wavetable if often
mixed with subtractive synthesis. Commercial implementations employ all of multi-
ple wavetable techniques. Single-cycle generators are supplemented with elements of
vector synthesis, i.e. user controls crossfading between a small number of wavetables,
usually four, with some equivalent of joystick. Wavestacking of e.g. 16 wavetables is
the second option. In another one, different wavetables can be assigned to specified
parts of amplitude envelope, with signal crossfading or interpolating through succes-
sive tables to produce evolving spectra – in software synthesizers this technique is
often referred to as wavetable morphing6. Apart from multiple wavetable techniques,

6Simpler synthesizers allow to use only 16 wavetables, but more advanced raise this number
to 256.

77



virtual analog filters and effects are employed to emulate sound and behaviour of hy-
brid systems like PPG or Waldorf instruments, where generators were implemented
digitally, but filters were analogue. Some commercial synthesizers allow to load user-
provided wavetables, but many are equipped with a set of built-in waveforms only.
More advanced synthesizers allow to break imported audio files into wavetables, gen-
erate and edit wavetable data using mathematical formulae, or produce waveforms
using additive synthesis. They also use more refined resampling algorithms. An inter-
esting function is a real-time wavetable manipulation. It applies various modulation
techniques to a table data. In a few cases wavetable is supplemented with granular
synthesis.

The last way leads from wavetable synthesis to sampling. Multi-cycle oscillators
with a very large number of wavetables reproduced in a fixed sequence produce an
auditory effect very close to sampling synthesizers. Early wavetable synthesizers had
a very limited memory, but soon it ceased to be a limiting factor, and practically
whole sound events could have been stored in a series of wavetables. In transitional
synthesizers attack phase could have been reproduced as a simple sound sample, while
only further phases, particularly sustain, used a wavetable method [61]. Gradually,
this way led to development of sampling synthesizers with much more powerful sig-
nal modification capabilities than simple sample-replay devices, i.e. with envelopes,
filters, and modulators. In a number of works this method is referred to as ‘sampling
and synthesis’ [485], It is clearly distinct from wavetable method. Its data storage
is not organised in period-based tables, which has consequences for pitch, duration,
and timbre control capabilities.

2.2.2. Sampling

The term ‘sampling’ refers to various techniques and applications often utilised in
the area of contemporary sound synthesis. Applied in the role of a synthesis method
directly, it may be referred to as ‘sampling synthesis’. However, it raises a certain
degree of controversy, and not all may consider sampling a ‘true’ sound synthesis
technique [485]. Such claim may have a merit in case of the simplest applications
of sampling that operate by directly replaying recorded sound events. In musical
applications, however, such simple approach is very rare, since it provides virtually
no control over reproduced sound other than start time, hence can be used only for
some basic percussive purposes.

The broadest definition of sampling would be a manipulation and reproduction of
recorded sounds [470]. Such experiments within musical performances have been car-
ried out already in 1920s by Paul Hindemith, Darius Milhaud, and Ernst Toch [185].
The underlying technology was based on phonographs with controllable speed, which
allowed manipulations of pitch. After the Second World War Pierre Schaeffer and
Pierre Henry turned to tape recorders. A change of data carrier made it possible to
edit sound in a time domain, which involved cutting, splicing, and rearranging tape
fragments. Thus the musique concrète – a technique of working with sound objects
– has been invented.
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While sampling synthesis is a descendant of musique concrète [521], it is also
related to instruments, developed since 1930s [470], that reproduced waveforms of
pre-recorded real-world sounds written onto optical discs or tapes. These instru-
ments, including Welte’s light-tone organ, Sammis’s singing keyboard, and much later
Chamberlin, Mellotron, Optigan, Orchestron, and Birotron, to name a few, may be
considered analogue sampling synthesizers.

These early sample-based instruments utilise a number of techniques important
for all of later sampling synthesizers. Firstly, some of them – disc based, and a few
tape-based – play samples in a loop, thus allowing to fully control note duration, and
not only to shorten it. However, in analogue instruments looping is introduced at the
expense of losing natural attack phase of the original instrument. Secondly, most of
them use separately recorded waveforms for every pitch [485], therefore they repro-
duce natural register-based timbre changes. This may be considered an equivalent of
modern digital sampling synthesizer full multisampling technique.

With transition from analogue to digital technology, some of more advanced ca-
pabilities – such as separate sample for every pitch – were initially lost, mainly due
to very limited memory capacity in early digital devices. However, a new feature has
been added: early sampling-based instruments introduced a built-in recording capa-
bility. Thus a user was able to create own samples using microphone or line recording.

Interestingly, recording capability marked a division point in sampling-based syn-
thesis methods. Samplers started to rely on a record-store-replay principle, with
control over sound characteristics limited to selection of a recording. Sampling syn-
thesizers did not allow to record own samples, but provided libraries of recordings to
use, and gradually introduced some of signal modification techniques based on other
synthesis methods to grant user some degree of control over produced sound, other
than basic selection from a limited set of samples. The method applied by samplers
is sometimes referred to as ‘sample replay’, or ‘sample and replay’, while sampling
synthesizers are deemed to utilise ‘sample and synthesis’ (S&S) method [485].

While many studies seem to acknowledge this differentiation, it recently seems to
be gradually fading out. The change is related to transfer of a synthesis process from
external devices and separate instruments to a very particular software form. Majority
of contemporary synthesizers, not only sampling-based, are implemented as plug-in
modules for digital audio workstations (DAWs). DAWs, in turn, are mainly focused
on sound recording, which makes samplers built-in recording capabilities obsolete. It
is sufficient that sampling synthesizer can import recordings in some standard format,
and the whole system consisting of DAW and sampling synthesizer plug-in operates
as an advanced mixture of sampling synthesizer and sampler (Fig. 2.32).

In a digital domain two synthesis methods, i.e. sampling and wavetable, tend to
be confused with each other. Both are based on a similar principle of reproducing
memory content – an array of signal samples. There is, however, a significant dif-
ference. Wavetable synthesis stores either one, or a number of signal periods, but
there is always a simple relation, that a single table stores one period of a signal. In
consequence, wavetable acts as a signal generator that can be paired with EGs, thus
allowing to control pitch and duration separately. Wavetable can store and reproduce
a natural spectrum of an instrument, but not its evolution, which can only be ap-
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proximated using envelopes and interpolation. Sampling synthesis, in turn, stores the
entire sound event, with its natural evolution. Timbre, duration, and pitch, however,
are linked, and it requires complex tools to control them separately. In particular,
depending on implementation details, control over timbre and its evolution is either
completely impossible, or rudimentary at most. Notwithstanding, the difference be-
tween wavetable and sampling is clearly apparent only in case of synthesis methods
principles. The actual synthesizers, apart from early models, often mix properties of
both. For instance, they use samples for definite transients, such as an attack, or – in
case of some instruments – release phase, and wavetables for a sustain section. It is
possible, because underlying implementation technique is very similar in both cases.

Analogue

Digital
Sampler

Digital
S&S

DAW

Plug-in
S&S

Smp

Rec Smp

Smp Mod

Rec Edt

Smp Mod

Figure 2.32. Diversification and convergence of sampling-based synthesizers; dashed gray
lines indicate transfer of functions to newer technology; functions: Smp – sample storge,

Rec – recording, Mod – sample modifying, Edt – sample editing

Synthesizers often supplement sampling synthesis with components of other meth-
ods, making a strict attribution of particular synthesis aspects to sampling method
a subject of discussion. Despite that fact, in contemporary musical applications sam-
pling synthesis has a very distinct and simple meaning. It is a method that on
demand replays recording of a sound event representing performance of a single note,
with a single pitch. Obviously, it can reproduce unpitched sounds as well, like some
percussive or effect sounds, but still, they are closed sound events, equivalent to single,
separated notes. Recordings contain a natural evolution of all sound characteristics,
i.e. timbre, amplitude, and pitch, although the latter is usually expected to vary only
slightly, like in vibrato. The evolution, however, is almost impossible to be removed,
separated, or modified without resorting to fairly advanced signal processing. Thus
in a basic sampling method a sound sample can be triggered by a note-on event,
and possibly terminated by a note-off, but in between it generally does not respond
to control.

Paradoxically, the greatest strength of the sampling method is also its weak-
ness. Sampling may effortlessly produce sounds characterised by even the most
complex evolution of pitch, timbre, and amplitude, and it requires no parameters
to do so – the evolution is simply reproduced. However, it cannot be controlled
otherwise, than by switching to another sample. In effect, the set of controllable
parameters in basic sampling is significantly smaller than in other synthesis methods.
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It is limited to:

• pitch,
• duration,
• amplitude,
• and selection of sample.

2.2.2.1. Digital Sampling Synthesis Principle
Figure 2.33 presents an overall diagram of digital sampling synthesis. It can be

broken down into two parts: sample preparation (Tab. 2.4), and sample playback.
Firstly, a source sound is chosen and sampled, i.e. converted to a digital recording.
Secondly, it is edited, e.g. to remove leading and trailing silence. If a sample is to
be looped, loop points need to be defined, either manually or automatically. When
sampling and editing is carried out in a DAW, sample can be processed as any normal
recording, using all of extensive DAW capabilities. Alternatively, a sample may not be
recorded at all, but instead produced using some other synthesis plug-in. Depending
on data format handled by sampling synthesizer, some additional information may
need to be provided, e.g. regarding special purpose sample zones. This concludes the
first part – sample is stored in memory, and ready to use.

Table 2.4. Basic operations carried out to prepare a sound sample

Operation Description

Acquisition A sample is either recorded, read from file, produced using a sound
synthesizer, or created using other signal generator

Setting pitch
Assigning pitch to a sample; a sampler requires this information
to perform pitch-shift when a sample is to be replayed at pitch
different than assigned

Trimming Leading and trailing silence is removed; to avoid clipping on both
sample ends, removed sections should be aligned to zero crossings

Applying fades
If signal gradually fades into trailing background noise, a fade-
out may be applied; similar operation may be required in case of
a gentle attack emerging from background noise

Normalisation Signal level is normalised to match other samples within a set

Setting loop points Loop points allow a section of sample between them to be repeated
in order to control playback duration

The second part starts with a sample in memory. It is read on demand, e.g.
in case of a note-on event. If a pitch assigned to a sample differs from a target
pitch, resampling is performed using table-lookup technique (2.23). Before playing it
back, a sample may be further processed using signal modifiers from other synthesis
methods, such as envelopes, filters, various modulators, and effects.

Figure 2.33 depicts data paths for typical arrangements of sample replay variant
(in red) and S&S (blue). The former consists of both parts, sample preparation and
playback, though it skips signal modifying stage. Thus its only means of controlling
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timbre is to select or record another sound. The latter starts with ready to use
samples, and allows to control some of their characteristics, thus making up for the
lack of recording capabilities.

Input sound

Sampling

Editing and setting loop

Sample data in memory

Resampling

Modifying

Reproducing

Output sound

Pitch control

Allow duration control

Sample replay
Sample
and synthesis
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Figure 2.33. Stages of digital sampling synthesis; red path denotes sample replay variant,
blue – sample and synthesis

Presented layout is characteristic for a basic implementation of sampling method,
and may differ in more advanced cases. Improvements addressing deficiencies of basic
sampling method are concentrated in two areas: control capabilities, and imitation
quality. The former deficiency is obvious. Risset attributes it to roots of sampling
reaching musique concrète, which resorted more to a technique of collage, than to
actual control and manipulation of sound itself [464]. The latter deficiency, how-
ever, may seem questionable, since sampling reproduces recorded sounds, and digital
recordings can be of exquisite quality. The problem is not in recordings though, but
in their content and its handling. Separately recorded pitches do not reproduce fluent
musical phrases well enough, since pitch transitions are not preserved. Therefore,
while samples may sound perfectly natural played separately, they lose this quality
when combined into a phrase.
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2.2.2.2. Control of Pitch
In additive, subtractive, wavtable, and many other sound synthesis methods, fun-

damental frequency is either a direct parameter, or it can be trivially calculated. For
instance, in wavetable synthesis it is defined by table length, phase index increment,
and sampling frequency (2.23). Despite apparent similarities between wavetable and
sampling, pitch control in sampling is less straightforward and involves additional
effort.

A sound sample does not store one period of signal that would allow to precisely
determine its fundamental frequency. It may have, however, some internal pitch.
Without knowledge regarding contents of a sample this pitch is unknown. It needs to
be determined and attributed to a sample during its preparation. Moreover, it may
naturally, albeit slightly, change over time, e.g. due to vibrato, or during attack phase.
Therefore, there is not one fundamental frequency, but a function f0(t), even though
variability is usually much below a semitone range, so that a sample may be attributed
with one averaged pitch. This variability is desired and needs to be preserved.

Sampling synthesis may use two general means to control pitch of produced sounds:
pitch-shifting or multisampling. Pitch-shifting allows to produce various pitches
out of a single sample. Multisampling uses separately recorded samples to reproduce
different pitches – depending on target pitch, matching sample is reproduced. Pitch-
shifting allows to control pitch in a continuous manner, but multisampling is only
able to provide discrete values, since every pitch requires a separate sound sample.
In most cases samples can be recorded in semitone intervals at best7. Therefore even
if multisampling is the base pitch control mechanism, fine tuning, if required, has to
resort to pitch-shifting anyway.

Pitch-shifting

Pitch-shifting can be carried out using various methods. The simplest way is to
change a digital to analogue converter (DAC) clock frequency – it does not require
any changes applied to the sample. Manipulation of DAC clock, however, is a viable
option only if each synthesizer voice is reproduced through separate DAC. Such design
was only encountered in early digital samplers, with analogue mixers. With a com-
mon DAC, all voices would be shifted together. Contemporary implementations, and
particularly software synthesizers, utilise a common DAC and digital mixing, thus
a different method is required.

The most common pitch-shifting method is a conversion of sample rate, or re-
sampling. As a result of conversion, the same waveform is represented by a different
number of signal samples. Therefore, if sample rate remains unchanged, frequency of
a signal will be scaled by a ratio of original and new number of signal samples

fr = fo
No
Nr

(2.42)

7Most instruments that utilise keyboards or frets can only play pitches in semitone intervals,
unless they are detuned. It would be arduous and impractical to attempt at recording pitches
between semitones.
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where fr is the signal frequency after resampling, fo is the original frequency, Nr
is the number of signal samples after resampling, and No is the original number of
signal samples within a sound sample.

A pitch may need to be shifted by an arbitrary interval, including microintervals8,
or by even smaller values, in case a pitch-bend controller is to be utilised to produce
portamento effect. Due to this reason a common approach is to calculate new samples
using interpolation, though it introduces some level of distortion. Software synthesiz-
ers may allow to choose order or type of interpolation, thus a compromise between
signal quality and processing requirements may be found.

A comparison of the effect of changing DAC clock frequency and resampling is
presented in Figure 2.34. The former keeps the number of samples, and the latter
– the sample rate. Using either method, a sample is shifted with its internal pitch
envelope, and the operation affects all the component frequencies. They are shifted
by the same frequency ratio, while their mutual amplitude ratios remain unchanged.
In effect both methods have a side effect of shifting not only a pitch, but also an entire
spectral structure and its evolution, which may not be desired. Samples of acoustic
instruments shifted by more than a few semitones sound unnatural due to retained
spectral envelope of a different register. Perhaps even more important consequence
of pitch-shifting using either method is a change of sample duration, proportional to
a frequency shift. Consequently, internal time-structures, such as the attack phase,
or vibrato, are unnaturally slowed down or sped up.

Figure 2.34. Comparison of pitch-shifting through change of DAC clock frequency (left),
and through resampling (right); top – original pitch, middle – shifted octave up, bottom

row – shifted octave down

Some of resampling-related problems may be solved by using more elaborate pitch-
shifting methods. Roads [470] discusses various means, such as granular time-domain

8Microintervals are intervals smaller than a semitone.
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techniques, wavelets, and two resynthesis techniques: phase vocoder and linear pre-
dictive coding.

Digital time-granulation allows to shift pitch without change of duration. The
technique is based upon a principle of an electromechanical device built by Denis
Gabor. The device used a head spinning across the film or tape recording, which
produced signal grains, i.e. smoothly windowed fragments of the original signal.
Grains were reassembled on another tape. By controlling tape speed and spinning of
head, pitch and duration could have been adjusted separately. Head rotation velocity
controlled signal duration without affecting its pitch. Change of pitch without change
of duration was achieved through altering a tape speed, and compensating for the
resulting duration change with appropriate change of head rotation velocity. The
device produced audible discontinuities between grains if signal values in junction
points were not matched. Several digital variants of the procedure were proposed.
Jones and Parks [273] applied smooth grain envelopes with a small overlapping area,
and achieved a continuous reconstruction. As in Gabor’s device, local frequency in
grains is preserved, while duration is changed by multiplying or removing some of
grains.

Similar result, i.e. pitch-shift without affecting duration, may be achieved through
application of phase vocoder. Evolution of signal partials is determined by calculating
FFTs of overlapping signal segments. Frequencies of partials are multiplied according
to required pitch shift, and such modified data is used to control additive synthesis.
The procedure does not affect signal duration. Due to intermediate stage with data in
spectral form, it is possible to partially correct spectral structure, according to knowl-
edge regarding registers or other spectral characteristics of shifted instrument [168].
Instead of FFT analysis, it is possible to use wavelet transform [310], and scale phase
values of analysed wavelets.

Linear predictive coding [388, 167, 318] may also be used as a pitch-shifting tech-
nique. However, due to its filtering-based resynthesis mechanism, it does not produce
perfect reproduction. On the other hand, its frame-attached data that e.g. distin-
guishes between voiced and unvoiced segments of signal, may allow to correct or
modify more aspects than other methods.

Sample rate may also be converted using fractional delay (FD) filters discussed
by Välimäki [569]. The method, presented by Tarczynski [547], was further discussed
by Franck [193] and Blok [70, 71]. Algorithm proposed by Blok allows to change re-
sampling ratio freely and instantaneously, during processing, thus providing means for
continuously changing pitch-shift. If r[n] is the inverse of instantaneous resample ratio

r[n] = fs1[n]
fs2[n] (2.43)

where n is the sample index in output signal, fs1[n] and fs2[n] are input and output
sample ratios, respectively, then the fractional delay is a distance from the output
sample to the nearest input sample, calculated using a recursive formula [71]

d[n] = d[n− 1]− r[n] + ∆m[n] (2.44)
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where ∆m[n] is the number of new input samples required to calculate output sam-
ple [71]

∆m[n] = br[n]− d[n− 1]e (2.45)

where b·e is the nearest integer, or round function. The algorithm starts with d[0] = 0,
∆m[0] = 0, and the buffer filled with zeros. Then, it waits for ∆m[n] new input
samples. Next, output sample u[n] is calculated using FD filter with fractional delay
d[n]. In the last step, d[n] and ∆m[n] for next n are calculated, and the algorithm goes
back to wait for next ∆m[n] new input samples. The algorithm needs to calculate
different values of d[n] for every output sample. If resampling ratio is rational, the
process is periodic, and values can be stored in a look-up-table [234]. In case of
arbitrary, time-dependent ratio, filters need to be calculated in run time, which may
be acheved by using the Farrow structure [188, 232]. Blok proposes to design FD filters
using the offset window method [613, 614], since it reduces large lobes in a stop-band
in comparison to minimax filters [312].

Pitch Multisampling

Control over a sound produced by sampling synthesis is very limited. A possi-
ble solutions to this deficiency is to relegate control outside of a synthesizer, and
record larger number of sound samples with desired qualities for a given instrument.
With such set of samples available, a control over particular sound quality is carried
out through selecting appropriate sample. Such approach is referred to as multisam-
pling [253], and can be applied to virtually any sound characteristic. Clearly, it has
two important disadvantages:
• control is not continuous, and only as fine, as large a sample set is,
• it can be issued only when a sound is to be started, with no possibility to change

it while a sample is played.
One area where multisampling can be advantageous, is a pitch control. Apart from

pitch-bending or ribbon controllers, main means to select a pitch in synthesizers is
a piano-like keyboard, where only discrete pitches, distributed in semitone intervals,
are represented. Actually multisampling had been already applied to control pitch in
analogue sampling synthesizers. Mellotron had individual mechanisms attached to all
keys. Each mechanism utilised a strip of magnetic tape with a recording of different
pitch, reproduced by appropriate key. Digital samplers can utilise the same principle.

Multisampling applied to control pitch (Fig. 2.35) solves an issue of register-
related change of timbre, characteristic for simple pitch-shifting methods, and
only partially attenuated by applying more advanced methods based on analysis-
resynthesis. Moreover, if a selected few of instrument pitches have some characteristic
features, not shared by their neighbours9, a full multisampling will preserve them.

Number of available pitches depends on playing range of a particular instrument,
and in same cases can be rather large. For instance, a grand piano has at least 88 keys.
It has two consequences. Firstly, multisampling may require a large amount of sample

9It can be e.g. a characteristic inharmonicity, or buzzing sound produced by some excited element.
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memory. Secondly, in case of acoustic instruments with human performer, recording
and preparing large sample sets may be a laborious and difficult enterprise. As for
memory requirements, it is not an issue in contemporary software synthesizers – at
least not for pitch multisampling alone. Assuming that recordings are monophonic,
sampled with 44.1 kHz rate, stored in 24-bit values, and that an average sound sample
lasts 10 seconds, one terabyte drive can hold over 750 thousands of them. However,
preparing such large sample libraries is still a problem. During recording all pitches
have to be performed very consistently. Variations in playing technique, i.e. dynamics
or articulation, affect the timbre, which cannot be well compensated later, during
editing [253]. Similarly, editing large sample sets takes a lot of effort, since every
sample has to be at least normalised, trimmed, and searched for adequate loop points.
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Figure 2.35. Examples of key-maps: a) octave-wide key-zones (represented by different
colours) with C key-notes; b) minor third zones; c) overlapping zones

Control over pitch through multisampling is limited to sampled values only. If
fine tuning is required, e.g. to perform a portamento, synthesizer has to resort to
pitch-shifting. Taking this a step further, a synthesizer can use a lesser number of
samples, separated with intervals larger then semitones, and produce missing pitches
by pitch-shifting, or transposition. Organisation of samples and their transpositions
is provided by a mechanism of key-maps. A map attributes samples with recorded
pitches to particular keys. These are the key-notes. Remaining keys are divided into
key-zones around key-notes. Zones are also referred to as ranges or groups. If a key-
note is used, it is played without pitch-shifting. If a key from a zone is pressed, its
key-note sample is appropriately transposed, and reproduced. Such technique is also
referred to as multisampling, while a variant with all pitches sampled is sometimes
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distinguished as ‘full multisampling’. Using key-notes and zones is a common way
to preserve some of full multisampling qualities, but with much less effort put into
preparation of samples.

Key-notes do not have to be evenly distributed, and differently sized key-zones
may be utilised in one key-map, since not all registers of sampled instrument have to
be equally important. In simple scenarios it is common to use one or two key-notes per
octave. However, a satisfactory effect, with no easily audible formant shifts, can be
achieved with four samples per octave, distributed every minor third interval. In such
arrangement the largest transposition required is by semitone (Fig. 2.35). Samplers
may allow to create overlapping zones to attenuate abrupt changes of timbre between
samples. In overlap section two neighbouring samples are mixed according to defined
ramps. However, mixing signals with the same fundamental frequency may lead to
phase cancellations.

2.2.2.3. Control of Timbre
Multisampling can be utilised to introduce some degree of control over timbre.

In most acoustic instruments change in dynamics implies a change in performance
technique. This, in turn, causes a change of timbre. A common scenario is to sample
several levels of dynamics, and map such obtained samples to key velocity values,
so that lower velocity reproduces a sample recorded in piano, and higher – in forte.
Since samples may have their amplitudes normalised, additional amplitude scaling
can be imposed to allow finer control over dynamics. In this manner both qualities
related to dynamics – sound level and timbre – can be affected simultaneously with
one control parameter – MIDI velocity.

Detached articulation is well reproduced by multisampling. Any required articu-
lation may be recorded, and replayed on demand. Sampling, though, does not have
effective means to reproduce fluent note transitions in articulations such as legato. It
may use elements of subtractive synthesis and apply amplitude envelopes to adjacent
samples in attempt to remove attack phases and mask a moment of sample transi-
tion. However, in order to produce convincing note transitions sampling needs to be
supplemented with a more precise method in a transition region. Additive resynthesis
or one of diphone synthesis variants may serve this purpose.

Multisampling may be a sort of solution to general lack of control over produced
sound in sampling synthesis. However, even though full multisampling of pitch is
easily manageable, adding subsequent controlled qualities makes number of samples
grow exponentially. As an example, 42 clarinet pitches, each in twelve performance
techniques10, multiplied by four dynamics levels, and again multiplied by three vari-
ants of each sample to avoid repeatability, would make 6048 separate samples for one
instrument only. In case of synthesizing an orchestral piece, about ten to twenty dif-
ferent instruments may be required. Not all pitch-dynamics-articulation combinations
may be necessary, but still, it makes thousands of samples that need to be recorded
and edited, so that they sound consistently. Not only producing extensive sample

10An incomplete list of clarinet articulations may consist of: long vibrato, long non vibrato, staccato,
accented, four different trills, and four mordents.
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libraries may require a tremendous amount of work and resources, but even manag-
ing and using them may be problematic. Studies were carried out to automate some
parts of the management process using music information retrieval (MIR) tools [122].

Layering Samples

Sampling synthesis can utilise a variant of wavestacking, which may also be re-
ferred to as layering. It may be seen as a hybrid of sampling and additive synthesis,
where instead of sinusoidal partials several sound samples are mixed, each with own
amplitude envelope. If a synthesizer does not have such capability, it may be sim-
ulated by using overlapping key-zones in pitch or in velocity domain. For instance,
a complementary, overlapping velocity layers allow to use key velocity to control pro-
portions of a two-sample mix. Two, or three axis controllers allow to control larger
mixes. Layers are often utilised to enhance main samples with effect sounds produced
during instrument performance, such as key hit, pedal action, fret noise, breath, etc.

2.2.2.4. Control of Duration

Sound samples contain separate sound events characterised by specific duration
and evolution of some kind. In comparison to synthesis methods that utilise peri-
odic or noise generators, able to produce signal for as long, as required, control over
duration of reproduced sound samples requires more effort. Two possible solutions
had been already applied in analogue samplers, and their evolved variants are still in
use in digital synthesizers. The first one is to use long recordings, and stop them on
request. The second one involves reproducing signal in a loop.

The first solution, a long recording, has the advantage of preserving natural signal
evolution. A sample length is limited by either capability of the original signal source,
such as breath of a wind instrument performer, or by a technical solution utilised in
particular synthesizer. There is always a possibility, that even a long recording may
not be sufficiently long. The Mellotron utilised strips of magnetic tape that contained
approximately eight seconds of recording, and it was often too short. An interesting
workaround was invented in a form of ‘crawling spider’ playing technique. Every
time a tapes were nearing end, a performer was changing inversion of played chord,
with palm movement resembling aforementioned arachnid. Contemporary software
samplers may impose no length restrictions, but source-related restrictions are still
valid. One may argue, that e.g. if oboe cannot play a note such long, then a sampler
replaying oboe sound shall also not. But in some cases such possibility might have
been useful.

The second solution, a looped playback, addresses the length issue, allowing to pro-
duce any required duration through repetition of a sample or its segment. In analogue
looping samplers, e.g. employing optical discs, the whole sample content was looped.
Consequently, a sound contained no natural attack phase, since only a section with
sufficiently flat amplitude envelope, taken out of the middle of the recording, could
have been utilised. Since attack is one of key dynamic timbre characteristics [263],
its absence in samples resulted in worse resemblance to original sounds.
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To preserve attack, in digital sampling only a section of sample is looped. This
section is specified by loop points, and should be located after the attack, where
sound level is relatively stable, and before the release phase (Fig. 2.36). When sample
is reproduced it continues through start loop point L1 up to end loop point L2. From
L2 it jumps to L1, and repeats section L1–L2 for as long, as the key is pressed. When
the key is released, it continues from the actual position to the end of sample.
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L1 L2

Figure 2.36. Placement of loop points L1 and L2 in an idealised sound sample envelope

Even though looping solves a duration issue, it may result in undesired, audible
effects. In order to remain possibly seamless, loop points need to be carefully chosen.
It may be carried out automatically, or manually [470]. Russ points out selection
criteria that can be summarised as follows (Fig. 2.37) [485]:

• signal value has to be equal in both loop points to prevent discontinuity,
• first derivative of signal has to be approximately equal on both ends to assure

continuous signal slope.

Figure 2.37. Choice of loop points and resulting splice effect: correct (top left), discontin-
uous signal values (top right), switched sign of first derivative (bottom left), changed value

of first derivative (bottom right)

Equal signal value condition is often fulfilled simply by choosing loop points in
signal zero-crossings. Signal period shall also be considered, so that a loop contains

90



integer number of periods. Roads [470] and Howell [253] discuss some algorithms
and tools that automate selection of loop points. Early digital samplers used very
short loops, lasting only a few periods, to limit memory usage. Such loops, however,
with all natural evolution removed from a sustain phase, resembled fixed-waveform
wavetable synthesis. Without strict memory limits, current sampling synthesizers
often use loops lasting several seconds [253].

A loop points splicing issue may be attenuated by applying a different looping
method. A simple one is to perform a bidirectional loop (Fig. 2.38b). A loop continues
forwards from point L1 to L2, then goes backwards to L1, and so on. Another variant
reproduces bidirectional loop in two simultaneous layers (Fig. 2.38c). In one a loop
is reproduced forwards, in the other – backwards. A splice point may also be masked
by applying crossfade (Fig. 2.38d). End of loop gradually fades out, while beginning
fades in.

a)

L1 L2 L1 L2 L1 L2

b)

L1 L2 L2 L1 L1 L2

c)

L1 L2 L1 L2 L1 L2

L2 L1 L2 L1 L2 L1

+ + +

d)

L1 L2L1 L2L1 L2

Figure 2.38. Looping methods: a) simple splicing; b) bidirectional loop; c) bidirectional
layered loop; d) crossfaded loop; on all diagrams time goes from left to right, and arrows

mark direction of loop reproduction
Source: author’s elaboration, based on Roads [470]

Looping may distort a natural signal variability, such as vibrato, or slow buildup
of tension. Longer loops can make it less apparent, but still, on long notes even longer
loops will be repeated several times, and this periodicity may be audible. The problem
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reqiores more refined solutions, such as time-granulation or additive resynthesis. Once
sustain phase of a sample has been analysed, and is reproduced from partials, its
duration may be controlled in the same manner, as in additive synthesizer [470].

2.2.2.5. Application of Envelopes and Filters

Apart from the most basic samplers, sampling synthesizers utilise EGs that control
amplifier and low-pass filter. Even though such set of tools could be applied to
impose a new, artificial evolution on sample contents, under normal circumstances
its purpose is different. It provides means to simulate articulation and dynamics-
related changes of timbre, such as softening the attack phase, without a need to
utilise massive multisampling.

Howell [253] discusses a procedure that can be applied to simulate dynamics-
related timbre changes in struck or plucked string instruments (Fig. 2.39). The
procedure assumes that dynamics is controlled through MIDI key velocity value, which
is a standard approach. It uses three mechanisms:

• skipping initial sample segment of adjustable length,
• applying amplitude envelope with adjustable attack segment,
• applying low-pass filter.

Since all these mechanisms result in removal of some parts of signal, either in time or
frequency domain, an original sample to start with needs to represent the most rich
variant of instrument sound. A loud and bright sound, with distinct attack transient
is usually a good choice.

The first step involves removing part or all of attack transient. It is carried out
through mapping key velocity to a number of initial signal samples skipped, so that
low velocity values remove more of the attack section, and the highest possible velocity
removes none. It may be calculated according to the following formula

tS = fS(127− V ) (2.46)

where tS is the time skipped, which needs to be translated into a number of samples
considering sampling rate, V ∈ [0, 127] is the key velocity, and fS(·) is some mono-
tonically increasing function satisfying the condition fS(0) = 0. It may be linear, e.g.
fS(x) = ax, where a is the scaling factor controlling the maximal skipped part.

Skipping an initial sample fragment removes a part of plucking or striking sound.
However, it has a side effect of possible click, or at least makes the beginning un-
natural. An objective of the second step of the procedure is to produce artificial
attack in place of removed natural one. For this purpose an amplitude envelope is
imposed. Its attack time is controlled by the velocity value. Again, the highest ve-
locity should make the attack instantaneous, allowing all the recorded natural attack
to be played without attenuation, and lower velocity should produce longer attack,
making it softer. A formula similar to (2.46) can be applied

tA = fA(127− V ) (2.47)
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where tA is the duration of the attack phase in the imposed envelope. Function fA(·)
needs to satisfy the same conditions the fS does, but in general both functions may
be different.

Figure 2.39. A simulation of various dynamics levels; dynamics is controlled through MIDI
key velocity value by skipping an initial sample part (a) and applying amplitude envelope
(b); plot (c) presents the maximal velocity case, and plot (d) the result – no skipping is
applied, and imposed attack is instantaneous; plots (e) and (f) present medium velocity, with
blue section skipped, while plots (g) and (h) – low velocity, with blue and green sections

skipped
Source: author’s elaboration, based on Howell [253]
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The final step involves applying a low-pass filter with a cut-off frequency depending
on key velocity. A constant cut-off frequency or a cut-off controlled by the same
envelope that controls an amplitude may be applied. For the highest velocity a filter
should pass all the signal, but lower velocities shall produce less bright timbre through
lowering cut-off frequency.

Functions fS and fA depend on sampled instrument, or even on a particular sound
sample. Obviously, the procedure is not universal, and some instruments may require
a different approach, although applied properly, it may allow other timbre qualities
to be simulated.

Advanced sampling synthesizers may provide more signal modifying facilities, in-
herited from subtractive method, such as a number of independent LFOs, and more
flexible modulation matrix. They may be applied to compensate for lack of signal
evolution in looped sustain phase. Outputs of separate LFOs may be directed to
signal amplitude and filter cut-off frequency. Setting appropriate value of LFO delay
value will prevent modulation from affecting an attack phase.

2.2.2.6. Sampler Features and Implementation Remarks

Analogue sampling-based instruments were simple replay devices, aimed at sub-
stituting larger ensembles or difficult to carry instruments. Even after transition to
digital domain, sampling was initially considered as an additional function, accompa-
nying other, more sophisticated synthesis methods. Such was a case of early models of
Fairlight CMI in 1970s. Yet, when memory became less expensive and more capacious,
the main factor hindering quality of samples had gradually vanished. Availability of
large libraries containing realistic samples of virtually any useful instrument or effect
sound (Tab. 2.5) allowed sampling to become, and continue to be a synthesis method
of choice in music arrangement. As a curiosity, sampling is applied not only to repro-
duce acoustic instruments, but also sounds produced by electronic instruments and
other synthesis methods.

Sampling synthesis has two crucial advantages. The first is low complexity, re-
sulting in very modest requirements for processing capabilities. The second is an
ability to produce reasonably realistic simulation of some popular instruments. Even
though complexity may seem not to matter in case of software synthesizers operating
on fast computers, it is still, actually, a key factor in music production. If massive,
multi-voice musical pieces have to be synthesized in real time, and only a fraction of
processing unit time may be diverted to synthesis, due to rest of it being consumed by
processing audio data in a large digital audio workstation project, the more efficient
synthesizer allows to work on more complex projects.

Nevertheless, in comparison to other synthesis methods, sampling is seriously lim-
ited in its control capabilities. Throughout its development as a method it has been
addressed by adapting many elements from other, more flexible methods – particu-
larly from subtractive synthesis. Many contemporary samplers might be considered
subtractive synthesizers, only with an oscillator replaced as a signal source by an
audio file. Other than that, all the subtractive facilities, such as envelopes, LFOs,
filters, and modulation matrix, are present.
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Table 2.5. Contents of sample libraries

Content Description

Solo instruments Grand piano, guitar, etc.

Orchestral instruments Either single orchestral instruments or groups, like
strings, woodwinds, brass, etc.

Ethnic and exotic instruments Crwth, hurdy-gurdy, oud, etc.
Standard band instruments Rock, jazz, pop, etc.

Drum kits Acoustic and synthetic
Synthesizers and electronic Vintage and modern

Voices and choirs Different voices, various vocal ensembles
Drum loops Rhythmic sequences

Phrases and loops Various musical excerpts
Ambient textures Noises, people talking, nature background, etc.

Foley and other effects Steps, household sounds, engines, explosions, etc.

It may, though, still be difficult to attain level of control over produced signal
comparable to what is possible in subtractive synthesis. The problem is natural evo-
lution inherent in recorded samples. It manifests itself through irregular modulations
as well as slow variations of parameters that may be attributed to envelopes control-
ling a timbre. In subtractive synthesis oscillator signal is stationary, and variability
is imposed through modifiers, making a result predictable. In sampling, intrinsic
source variability combined with artificially imposed evolution renders the effect vir-
tually unpredictable in all but the simplest cases. In practice, if the advantage of
realistic samples is to be exploited, signal modifications have to remain subtle. Thus
they are often limited to applying ADSR or similar amplitude envelope, and enabling
low-pass filter.

Commercial sampling-based synthesizers are sometimes differentiated into ‘synth’,
‘sampler’, and ‘hybrid’ groups, depending on provided features. The groups, though,
often intersect, as particular synthesizers gain new functions in subsequent releases.
Generally, most synthesizers tend to accumulate functions over time, and aim to-
wards multi-method synthesis engines. Only small fraction remain implementations
of a pure, straightforward sampling method.

Since one of main applications of sampling method is music arrangement and
related tasks, commercial synthesizers in a software plug-in form aim at high efficiency.
Most of them replay samples directly from non-volatile memory, such as hard (HDD)
or solid state (SSD) drives. HDDs and SSDs have much larger capacity than RAM,
therefore tens of thousands of samples may be utilised. Indeed, sample libraries
bundled with current sampling synthesizers occupy 50–70 GB of storage. Even with
such numbers, if samples utilised at the moment are cached in RAM, it allows to play
hundreds of simultaneous voices.
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Contemporary samplers utilise various sample-replay techniques. Even though
most support multisampling, they also allow to transform samples in time and fre-
quency domain. Time-stretching and pitch-shifting is carried out either by simple
sample conversion, or through more advanced resynthesis-based methods, such as
time granulation or phase vocoder, which allows to correct pitch-shifting related for-
mant structure deformations. Besides sample transformations, various looping and
splicing modes are usually available. As odd as it seems, high quality of samples may
be a problem, since it makes sample repeatability clearly apparent, if only one sample
is used for a particular key-velocity combination. As a remedy, samplers utilise a num-
ber of alternative samples that are randomly chosen when the same note is played
repeatedly. Another quality-related function implemented in a number of samplers
is an emulation of ‘vintage’ digital samplers, i.e. a possibility to simulate the effect
of lower sampling frequency, low bit-rate, or artifacts produced by various types of
early digital to analogue converters.

Majority of sampling synthesizers implement multisampling technique, accompa-
nied by flexible sample assignment routines, such as configuration of key-ranges with
key and velocity overlapping, as well as layering. Due to multisampling, sample
libraries may contain tens of thousands of samples. An advanced sampler aimed at
simulating a guitar alone, able to reproduce slight variations in playing technique, can
utilise as much as 9500 samples. With such libraries sample management becomes
an issue. Most samplers implement a tree structure to organise library contents.
Yet, if a library does not have key and controller assignments for all sample variants
factory-set, or if a user attempts to prepare own sample library, a tremendous amount
of work might be required. Therefore a number of samplers introduce some proce-
dures that automate parts of this process. Pitch-detection algorithms are utilised
to automatically map samples to appropriate keys, and define valid key-zones. An
interesting feature is an automatic extraction of multisamples from VST instrument
plug-ins, where a sampler controls another virtual instrument, playing and sampling
its sounds, according to initial user decisions, such as sample duration, or number
of sampled velocities.

Even though detailed modulating of recorded samples is problematic due to apply-
ing modulation to already modulated signal, advanced commercial synthesizers utilise
source-modifier approach of subtractive synthesis, with comparable set of modulation
modules. They include envelope generators, LFOs, and step sequencers, as well as
possibility to modulate a sample with external signals, e.g. incoming MIDI. Modula-
tors are directed through modulation matrix to various signal modifiers. Apart from
filters, sampling synthesizers often include large sets of effects, such as reverbs and
delays, distortions and bit crushers, or dynamics processors, that can be arranged
in effect chains. Due to high efficiency of sampling method, it is often possible to
separately process each voice.

A new feature introduced in later releases of major sampling synthesizers is script-
ing. It is aimed at customising tasks that can be carried out automatically. A very
simple example would be a programmable arpeggiator . Scripting may provide a way
to effectively exploit multi-samples and modulation modules, particularly if a number
of samples gets larger, and their manual assignment becomes unmanageable. Script-
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ing is concentrated on particular use scenarios. A script may help to produce more
realistic sequences. As an example, by selecting appropriate samples and controlling
their envelopes a legato phrase may be synthesized, which is otherwise a very difficult
task for sampling synthesizer. Some scripts may be instrument specific and simulate
string selection, chord voicing, alternating bowing, strumming, or switching between
a single instrument and an ensemble. Different kind of scripts may recognise a mu-
sical context, and e.g. harmonise a melody, or impose context-specific micro-tuning.
Composition-oriented scripts may produce generative or algorithmic music, or perform
music transformations, such as mirror, inversion, or transposition. In case of a few
samplers scripts are written in their own, proprietary languages. Yet, there are also
samplers that can be scripted in general, open scripting languages, such as Lua [260].

Due to improvements and elements adapted from other synthesis methods, sam-
pling synthesis has overcome or lessened some of its crucial weaknesses. In its refined,
complex forms it may be a very realistic and convincing resynthesis tool, able to
reproduce sound of a number of instruments almost perfectly, and produce satisfac-
tory results in case of many others. Yet, this has been attained through application
of very large sample libraries combined with signal modifiers that require numer-
ous parameters tuned to individual samples. Scripting helps to automate much of
scenario-specific tasks involving sample selection and processing, but even if using
scripts may not be difficult for end user, writing them requires much more expertise,
and may prevent many users from going beyond scripts that are factory-provided.

Therefore control capabilities still remain a serious disadvantage, and if they are
of key importance, one should utilise other synthesis methods. A flexible method
that provides an interesting set of control abilities, and is still based on waveforms,
is the granular synthesis. On the side of realistic reproduction, sampling has still
issues with instruments that involve continuous control, such as solo violin or cello.
It is particularly audible in fluent phrases. This problem, in turn, is addressed by
concatenative synthesis, that in many aspects may be considered a descendant of
sampling.

2.2.3. Granular Synthesis

Even if one looks at music as a purely acoustical phenomenon, without considering
its contexts and meanings, it consists of various levels of diverse structures in time and
frequency domains. It is interesting then, that majority of sound synthesis methods
aim at one of these levels only, and produce sound events representing single musical
notes, just like most of traditional musical instruments that are controlled at this
exact level. In twentieth century ‘a note’ had already been losing its significance and
place as a basic structural element in numerous musical styles. Since sound synthesis
is not bounded by the limitations of traditional instruments, and may be controlled
in entirely different ways, it might be used to generate different levels of musical
structures. Such is the case of granular synthesis, which may be considered either a set
of audio signal processing techniques, a sound synthesis method, or a composition
technique.
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In granular synthesis sound, in a form of objects or events, is produced through
arrangement of sonic grains (Fig. 2.40), defined by Roads as brief, microacoustic
events [472]. A grain has a duration that nears auditory limits for perception of its
time and frequency-based characteristics – usually from 1 to 100 ms. Spectral syn-
thesis methods are frequency-based. Sampling or wavetable synthesis are time-based.
While the grain is basically also time-based, actually it is considered a convenient
sound representation due to combining time-domain and frequency-domain informa-
tion (Tab. 2.6).

Figure 2.40. A single grain with 440 Hz sinusoidal waveform and Gaussian envelope

Table 2.6. Information contained within a grain, according to Roads [472]

Time-domain Frequency-domain

Starting time
Duration Pitch

Envelope shape Spectrum
Waveform shape

The concept is based on works of physicist Dennis Gabor and composer Iannis
Xenakis. Gabor postulated [197, 198] that granular representation may describe any
sound, and designed granular mechanism for independent time-stretching and pitch-
shifting. The claim was verified by Bastiaans [38, 39, 40]. Granular sound representa-
tion was also proposed by Wiener [606] and Moles [382]. Windowing, a key element of
controlling a grain, was applied in the short-time Fourier transform (STFT) [497]. Xe-
nakis applied granular sound theory in composition, producing grains by the means
of analogue tone generators and tape splicing [611]. Curtis Roads was the first to
implement granular synthesis in a digital form, using a computer [468].
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2.2.3.1. Grains
A sonic grain is a short fragment of sound shaped by amplitude envelope. Any

signal origin is possible, either synthetic or sampled. In case of the former, grains
are usually built out of harmonic partials which results in a fixed waveform, or are
produced through some modulation technique resulting in a time-varying signal. As
for the latter, grains are sampled from selected positions within a sound file, and may
be pitch-shifted. In Figure 2.40 the signal is a 20 ms long section of 440 Hz sinusoid,
and its amplitude is shaped by a Gaussian envelope.

Figure 2.41. Envelopes used in sonic grains: a) Gaussian (2.48) with σ = 0.31; b) Tukey
(2.49) with α = 0.5; c) triangular (2.50); d) trapezoid (2.51) with α = 0.5; e) expodec (2.52)

with τ = N
6 ; f) rexpodec (2.53) with τ = N

6 ; g) sinc (2.54) with τ = N/10
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Perception of a single grain depends on its duration. According to Roads [472],
weak impression of pitch appears in grains longer then 5 ms. Above 25 ms a grain has
a distinct pitch and timbre of a waveform it is based on. If duration is 2 ms or lower,
it is perceivable as a click, and its timbre is strongly affected by envelope, though
waveform properties still have some effect. Grain duration may be fixed, random, or
related to a selected parameter, such as frequency. Even small variations in duration
within large clouds of grains affect resultant timbre significantly.

Grains can be produced using almost any envelope, though only several envelopes
have their properties and effects studied in greater detail (Fig. 2.41). Functions used
in some envelopes extend to infinity, and need to be truncated. In early works of
Gabor [197] envelopes were assumed to be Gaussian. Such envelope in a discrete
form is expressed as [110]

w[n] = e
−

1
2

(
n− (N − 1)/2
σ(N − 1)/2

)2

(2.48)

where σ ≤ 0.5, N is the envelope length in samples, and n is the sample index.
In case of larger grains amplitude envelope controlled by Tukey window allows

longer section of waveform to remain unattenuated, since it convolves cosine lobes
with rectangular window. It is also referred to as tapered cosine window or quasi-
Gaussian envelope, and assumes the following form [231]
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where n1 = 1
2α(N − 1), n2 = (N − 1)(1 − α

2 ), and α ∈ [0, 1].
If computational efficiency is vital, line-segment envelopes may be applied, al-

though they introduce some additional spectral effects compared to Gaussian or Tukey
envelopes [291]. Triangular envelope may be calculated according to [231]

w[n] = 1−

∣∣∣∣∣∣∣
n− N − 1

2
N

2

∣∣∣∣∣∣∣ (2.50)

while trapezoid envelope is expressed as [600]

w[n] =



n

n1
for 0 ≤ n < n1

1 for n1 ≤ n ≤ n2

N − 1− n
N − 1− n2

for n2 < n ≤ (N − 1)

(2.51)

where n1 = 1
2α(N − 1), n2 = (N − 1)(1 − α

2 ), and α ∈ [0, 1].
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Roads mentions two asymmetric exponential envelopes [472], one decaying, re-
ferred to as expodec

w[n] = e

(
−
n

τ

)
(2.52)

and the other being a reversed variant, or rexpodec

w[n] = e

(
n−N + 1

τ

)
(2.53)

where τ should be related to N . Finally, sinc function, or band-limited pulse
envelope

w[n] = sinc
(
n− N−1

2
τ

)
(2.54)

where τ needs to be related toN , produces grains with a ‘resonant’ characteristic [470].
A list of parameters that may be controlled on a basis of a single grain include du-

ration, envelope, waveform frequency, relative amplitude, spatial location, and wave-
form itself. The last one is a set of sound production parameters for synthetic grains,
or a file and a location within it for sampled grains. Roads points out that since gran-
ular synthesis trades off instrument complexity for score complexity [472], grains may
be produced by a simple synthesizer, such as one presented in Figure 2.42, although
more complex solutions can be applied as well.
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Waveform
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Frequency
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Figure 2.42. A simple grain generator with a single-cycle wavetable oscillator as a source
of waveform; grains have controllable duration, frequency, amplitude, and spatial position
– through a choice of output channel; various envelopes and waveforms may be chosen

Source: author’s elaboration, based on Roads [472]

101



A single sonic grain requires a relatively large number of parameters. Considering
that average number of grains per second, also referred to as grain density, may reach
several thousands [470], it is impractical to control all of grains parameters manually
and directly. Control data reduction is achieved through organising grains into higher-
level units. Such units require a reasonably small number of global parameters, and
in turn control all parameters of grains within.

There are six types of granular synthesis, characterised by different organisation
of grains [472]:
• time-frequency plane matrices and screens,
• pitch-synchronous overlapping streams,
• synchronous and quasi-synchronous streams,
• asynchronous clouds,
• physical and abstract models,
• granulation of sampled sound.

2.2.3.2. Time-Frequency Plane Matrices and Screens
Matrices originate from analyses of existing sounds, performed using the Gabor

matrix [472], the STFT, or the wavelet transform (WT). Analysed signal is trans-
formed from time-domain to a two-dimensional quantised matrix on a time-frequency
plane.

The Gabor transform is a windowed analysis technique that relates time-domain
signal of effective duration ∆t to a frequency-domain spectrum of effective spectral
width ∆f [197, 198]. Such ‘acoustic quantum’ is bounded by an uncertainty rela-
tion [197]

∆t∆f ≥ 1 (2.55)

and may have either good temporal or spectral resolution, but not both at the same
time. Gabor defined quanta as [197]

g(t) = e−a
2(t−t0)2

e2πif0t (2.56)

where the first part is the Gaussian envelope, the second – the complex sinusoidal
function, and parameter a determines the uncertainty [197]

∆t = π
1
2 a−1

∆f = π−
1
2 a

(2.57)

In case of STFT matrices grains are aligned on a time-frequency grid with linear
frequency scale and fixed duration of analysis window. A single grain may comprise
a set of overlapping windows in each analysis channel [19]. WT matrices differ from
STFT in logarithmic frequency spacing and variable analysis window duration that
is a function of frequency [310]. Both kinds of matrices may be used to perform
analysis, transformation, and resynthesis of recorded sounds such as pitch-shifting or
time-stretching. They may be regarded as general signal processing methods rather
then sound synthesis.
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Xenakis proposed a concept of screens [611]. A screen is a Gabor matrix at a given
moment, in an amplitude-frequency grid. Sound evolution emerges through reproduc-
ing a synchronous sequence of screens, referred to as ‘a book’. The technique is aimed
more at synthesis alone than at analysis and resynthesis, therefore screen contents
may be produced by the use of practically any generative algorithms. Screens may
be filled by random scattering of grains, and further subjected to set-theory opera-
tions. Xenakis postulated, that such operations lead to production of new sounds, not
related to these produced by traditional instruments or physical objects. The other
example are screens produced by cellular automata [78, 371, 372, 373].

2.2.3.3. Pitch-Synchronous Granular Synthesis
The aim of pitch-synchronous granular synthesis (PSGS) is to reproduce pitched

sounds with spectra containing formant regions [156]. It is an analysis and resynthesis
method, therefore it allows to transform recorded sounds [107].

An initial stage involves spectral analysis, where individual time-frequency cells
represent grains. Each cell has its frequency response as well as fundamental fre-
quency estimated. Frequency response is calculated as filter coefficients at each cell
boundaries on frequency axis. Fundamental frequency is determined at cell bound-
aries on time axis [470].

In resynthesis stage a pulse train with detected frequency is produced and filtered
through a bank of parallel minimum phase finite impulse response filters with previ-
ously estimated coefficients. Therefore pulse train excites weighted sum of all filters
impulse responses. Grains neighbouring in time domain are overlapped (Fig. 2.43a)
to produce smooth signal variations [470].
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Figure 2.43. Stream of grains: a) overlapped; b) spaced apart

Similarly to improvements that LPC brings over vocoder in subtractive synthesis,
there are PSGS extensions that can separate quasi-harmonic and residual inharmonic
parts of sound [436].

2.2.3.4. Synchronous and Quasi-Synchronous Granular Synthesis
Grains can be organised into one or more streams. Such technique is exploited in

synchronous granular synthesis (SGS) as well as quasi-synchronous granular synthesis
(QSGS). Stream is a simple granular organisation, where grains are produced con-
secutively, and time interval between them is important for characteristics of output
signal. In case of SGS and QSGS (Fig. 2.44) the term ‘synchronous’ refers to regular

103



time intervals. Stream parameters are relatively easy and intuitive to control, e.g.
using a computer program with graphical user interface [417].

SGS can produce pitch or rhythmic effects, depending on grain density. For den-
sities lower than 20 grains per second, and grains spaced apart (Fig. 2.43b), the
effect is rhythmic. A gradual change of density leads to accelerando or rallentando
effect. Higher densities produce pitched sounds with strong fundamental frequencies.
Through appropriate selection of grain duration values and envelopes, sidebands may
be introduced and controlled. They can be perceived either as separate pitches, or
form a formant peak.

Roads notes [472], that perception of pitch in SGS may not be apparent. It
depends on interactions of three periodicities: period of waveform within a grain,
period of envelope determined by grain duration, and period determined by grain
density. Under different circumstances one of these may dominate the others, or none
of them may dominate and pitch may be ambiguous. In very dense streams SGS may
even be perceived as noise, with synchronicity effect imperceivable.

Figure 2.44. Streams in quasi-synchronous granular synthesis; frequency of grain waveform
is indicated by placement of stream on vertical axis; in all streams grain duration is 40 ms;
blue stream has an average time interval of 100 ms, red – 60 ms, and yellow – 80 ms; interval

irregularity has the highest value in yellow stream
Source: author’s elaboration, based on Roads [470]
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In QSGS time intervals slightly vary from grain to grain (Fig. 2.44), therefore
output signal may be considered a case of amplitude modulation, with grain envelope
being the modulator. Each sinusoidal carrier component modulated by periodic enve-
lope function produces a series of sidebands at a frequency distance equal to inverse
of envelope period. Sidebands amplitude is controlled through a grain envelope. Due
to modulation formant regions are produced instead of single frequency components.
QSGS allows to blur formant structure in a controllable way by making time interval
between grains less regular [562, 563]. Blurred formant structures lead to ‘thicker’
sound textures [470].

2.2.3.5. Asynchronous Granular Synthesis
Just as SGS and QSGS utilise streams of grains, asynchronous granular synthesis

(AGS) organises sonic grains into clouds. Clouds are regions of time-frequency plane,
onto which grains are scattered using stochastic or chaotic algorithms. Roads com-
pares using AGS to a spray jet, where each dot in the spray is a sonic grain [469].
Clouds are defined with a set of parameters collected in Table 2.7.

Table 2.7. Cloud specification parameters, according to Roads [470, 472]

Parameter Description

Start time For the entire cloud
Cloud duration As for a lower bound, clouds may be as short as 20 ms

Grain duration May be constant or random within limits, may follow a curve, or
may vary in function of grain frequency

Density of grains Can vary within a cloud; high density produces overlapping grains

Frequency band
Typically defined by two curves that define low and high frequency
boundaries (cumulus clouds); it is also possible to restrict grains
to a defined set of pitches (stratus clouds)

Amplitude envelope For the entire cloud

Waveforms Can vary between grains within a cloud; sampled and synthetic
grains can be mixed

Spatial dispersion Usually implemented as a number of separate output channels

Duration of grains impacts the bandwidth of the output signal – shorter grains
produce wider spectra (Fig. 2.45). If waveform within a grain is synthetic, it can be
controlled with a compact set of parameters, such as amplitudes of partial sinusoids
in case of additive synthesis. Otherwise, i.e. in case of sampled waveforms, control
is more limited and involves choosing a recording and position at which playback of
a grain will start. Roads names three kinds of clouds regarding a choice of wave-
form [470]. Monochrome clouds consist of a single waveform type, polychrome
randomly mix several waveforms, and transchrome ‘mutate’ between a number of
waveforms.

Clouds can also be differentiated according to their shapes on a time-frequency
plane (Fig. 2.46). It must be noted though, that in this plane frequency applies to
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grain waveforms only. Spectrum of output signal may significantly exceed limits set
by cloud shape due to effects of grain envelopes or grain density. Common cloud
shapes are: cumulus, stratus, and glisssandi. In cumulus clouds grains are scattered
randomly between two curves that form a frequency band. By narrowing a band
output signal gains more definite pitch. Instead of bands, stratus clouds occupy only
a limited number of specific frequencies, and can form chord-like structures. If these
frequencies change over time, such clouds are referred to as glissandi.

Figure 2.45. Impact of grain duration on output signal spectrum; signal was produced
using grains with sine waveform and Gaussian envelope; grain waveform frequency was fixed
at 2000 Hz, and grain density was 10 per second; grain duration was changing according to

the top plot; resulting spectrogram is presented in the bottom plot

Texture of a cloud is determined not by grain duration or density alone, but by
a combination of both – a fill factor, defined as [472]

FF = Tgρg (2.58)

where Tg is the grain duration in seconds, and ρg is the grain density, i.e. number of
grains per second. In AGS both parameters may vary within a cloud, hence FF is
estimated using their average values. For FF values below 0.5 a cloud is considered
sparse, around 1.0 it is covered, and above 1.0 it becomes packed. However, due
to random placement and overlapping of grains in AGS clouds, FF = 1.0 does not
guarantee a solid cloud – there may be a number of silence sections left. Solid clouds
are produced with FF values greater then 2.0 [472].

Granular clouds may be considered as sound objects, and form musical building
blocks. Such objects are controllable on a grain level as well as on a global cloud level,
providing a flexible means to create and organise musical structures, with interesting
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evolution effects. Individually synthesized clouds may be treated as separate sound
events and mixed in a traditional way. A different approach is also possible. Instead
of synthesizing individual clouds, the whole musical form may be composed and syn-
thesized in a granular domain – thus AGS may transcend a simple means of sound
production, and can become a formative element.

Figure 2.46. Cloud shapes in asynchronous granular synthesis: a) cumulus; b) stratus;
c) glissandi

Source: author’s elaboration, based on Roads [470]
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2.2.3.6. Physical and Algorithmic Models

Many sounds produced by physical objects may be regarded as granular, i.e. con-
sisting of discrete sound events in a microscale. Such sounds are characteristic for
moving particles enclosed in resonant containers, or for scraped objects. Examples of
instruments that produce sounds falling into this category would be maracas or güiro
– the former shaken, the latter scraped. Granular synthesis provides an efficient way
to simulate such kind of sounds without a requirement to design a complete numerical
model, and yet allows to control musically and physically meaningful parameters of
a simulated object.

Physically informed sonic modelling (PhISM) is a general synthesis approach pro-
posed and implemented by Cook, [134, 135, 136], where understanding of the physical
system behaviour is used to produce sound through some efficient synthesis methods,
without actually simulating its entire vibrational behaviour. If sound is produced
through granular synthesis, the method is referred to as physically informed stochastic
event modelling (PhISEM). Grains are controlled through parameters obtained from
physical observations and measurements, simulations, and heuristics. Since numerical
simulations are often easier to carry out and provide more immediate results then the
actual measurements of physical systems, they are the usual data source for further
synthesis process. In case of maraca, data collected include frequency, amplitude, and
time regarding collisions of beans with the enclosure. During synthesis it is adequate
to utilise a white noise with exponentially decaying envelope as a signal source, and
shape it through a set of resonance filters that simulate resonance frequencies excited
in collisions of particles with distinct instrument elements (Fig. 2.47). Cook presented
PhISEM solutions for a number of percussion instruments, and objects such as coins.
Other studies present algorithms for different instruments and objects, e.g. metallic
ball, or stream of water. In the former case, the authors refer to the method as the
ecologically-based granular synthesis [292]. Similar models can be created to simulate
sound of various mechanical systems under changing conditions – necessary data is
available in a number of publications within a filed of mechanics [218, 346, 348, 365].

Algorithms governing particle characteristics and behaviour do not need to simu-
late physical objects or systems – they can be based on other principles as well. One of
more popular approaches is to arrange grains using chaotic functions [241, 384, 207].
Contrary to stochastic, random number based arrangements that – unless some ad-
ditional, shaping function is imposed – produce simple structures that are either
uniform and uni-directional, or mirror some other statistical distribution, such as
Gaussian or Poisson, chaotic functions easily switch from stable to unstable states
[161, 209, 210, 162, 472]. Such behaviour can be exploited to dramatically change the
character of produced sound with small parameters adjustments. However, designing
mappings between synthesis parameters and chaotic behaviour that produce useful
and interesting musical effect may be non-trivial.

Interesting effects can be obtained through sonification, i.e. translation of data
into sound. Data can have any origin, but in granular synthesis many attempts have
been made to sonify various physical phenomena outside of classical mechanics, that
do not have natural connection to sound – from quantum mechanics, to astrophysics.
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Xenakis in GENDYN system experimented with trajectories of particles bouncing off
elastic barriers [611, 509].
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Figure 2.47. Basic PhISEM algorithm
Source: author’s elaboration, based on Cook [136]

2.2.3.7. Granulation of Sampled Sounds

The technique is also referred to as time-granulation of recorded sounds. It con-
cerns various ways of handling sampled sound using granular approach. In the first
step small sections of sound sample are read either from file, or directly from an
analogue-to-digital converter (ADC) [562, 563]. Next, envelopes are applied, to pro-
duce grains. And finally, grains are emitted in a specified order. If granulated signal
comes directly from ADC, means to reorder grains is limited, but in case of sound
files any order is possible.

For grains sampled from a file, three simple scenarios are the most common
(Fig. 2.48). In the first one, only a single, large grain is extracted, and cloned in
a sequence – such is the case of e.g. a snare drum roll. Another scenario involves
producing many grains from a single file, and emitting them in changed, and usually
random order. The last case is similar, but grains are produced using not one, but
more sound recordings.

If grains are sampled from an ADC, two approaches are possible. In the first one
granulation provides a sort of digital delay line. In the second, playback speed may
be flexibly slowed down through repetition of selected grains.
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Figure 2.48. Granulation of sampled sound stored in a file: a) replication; b) reordering;
c) merging and reordering

Source: author’s elaboration, based on Roads [470]

2.2.3.8. Particle Synthesis
Methods such as PSGS, SGS, QSGS, and AGS may be considered the core of

granular synthesis, but there also exists a number of methods that are either derived
from basic granular synthesis, or are based on similar principles. Roads categorises
them as particle synthesis methods [472].

Glisson synthesis introduces a concept of glisson as an enhancement of a sonic
grain. Glisson is a grain which frequency changes either up or down, producing
a short glissando effect. It may be represented by a vector describing its trajectory
on a time-frequency plane. Glissons are grouped in clouds, where each of them can
have a different trajectory. In this regard glisson synthesis is analogous to AGS, and
has a similar set of control parameters. However due to vector nature of its particles
it introduces additional property, referred to as magnetisation pattern [472], that
controls trajectories of glissons within a cloud (Fig. 2.49).

In wavelet synthesis grain duration is related to its frequency, i.e. the higher the
frequency, the shorter the grain. This relation can be generalised, and any granular
synthesis parameters may be linked in a similar manner. Such technique is referred to
as grainlet synthesis [472]. It may resemble modulation matrix utilised in subtrac-
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tive synthesis, but with grain and cloud parameters instead of parameters of source
and modifiers. In simple cases a parameter may influence another one directly, or
inversely. In more complex scenarios a point of attraction may be defined. For in-
stance, while linking frequency and duration, grains may become longer when their
frequencies get closer to such point.

a) b) c)

d) e) f)

Figure 2.49. Glisson synthesis magnetisation patterns: a) bidirectional shallow; b) bidi-
rectional deep; c) upwards unidirectional; d) downwards unidirectional; e) diverging from
center frequency; f) converging to center frequency; horizontal axis represents time, vertical

– frequency
Source: author’s elaboration, based on Roads [472]

Another variant of a sound particle is the trainlet – a short series of pulses. Train-
let synthesis organises trainlets into clouds [472], similarly to other granular meth-
ods. Trainlets introduce additional grain-related parameters, such as pulse period, its
harmonic structure, or spectral energy profile. Analogue pulse trains may be filtered
to obtain stipulated spectra. Digital, on the other hand, may already be produced
according to specified spectral parameters. Typical digital implementations involve
bandlimited harmonic pulses [607, 252, 535] with spectrum controlled through chroma
parameter [472]

Ak = A0χ
k (2.59)

where k is the harmonic number, χ is the chroma, A0 is the amplitude of the fun-
damental, and Ak is the amplitude of the k-th harmonic. Chroma may assume any
value – positive, or negative, as well as non-integer. For χ = 1 spectrum envelope is
flat. For χ > 1 lower, and for χ < 1 higher harmonics are attenuated. Therefore,
larger values correspond to brighter sound timbre (Fig. 2.50). Trainlet clouds exhibit
inherent evolution of parameters, which are defined as pairs of values, initial and final.
Cloud starts with a parameter set to the initial value and gradually morphs towards
the final value. A list of trainlet synthesis parameters is presented in Table 2.8.
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Figure 2.50. Impact of chroma (values inscribed in top part of plot) on spectra for
exponentially decaying harmonic signals (f0 = 100 Hz, 32 partials); for each value of chroma

signal amplitude has been normalised separately

Table 2.8. Parameters of a trainlet cloud, according to Roads [472]; ‘I/F’ denotes
a pair of initial (at the beginning of a cloud) and final (at the end) values

Parameter I/F Typical value

Cloud start time — —
Cloud duration — —
Trainlet durations X 0.001–0.8 s
Random trainlet duration flag — —
Density of trainlets X 1–300 per second
Upper frequency bandlimit of the cloud X 20–20000 Hz
Lower frequency bandlimit of the cloud X 20–20000 Hz
Cloud sound level X −96–0 dB FS
Number of harmonics X 1–64
Lowest sounding harmonic X —
Chroma X —
Waveform X usually sine
Spatial position of trainlets X —
Attack time X 5–50 ms
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Pulsar synthesis (PS) may seem similar to trainlet synthesis due to utilisation
of pulse signals, yet it is much more powerful and flexible. It was inspired by as-
tronomical objects – rotating neutron stars or white dwarfs that emit a beam of
electromagnetic radiation. Due to rotation a beam is observed only while pointed
at Earth, which results in a pulsed appearance. Observed pulsar periods range from
seconds to milliseconds 11, therefore the phenomenon covers time scale of rhythmic
and tonal events.

In PS a sound particle is referred to as pulsar (Fig. 2.51), and it has two segments:
pulsaret and silence [472]. A pulsaret is an arbitrary waveform, such as band-limited
pulse, sine, multicycle sine, decaying multicycle sine, or a sampled signal. Total
pulsar duration p is a sum of two values [471]

p = d+ s (2.60)

where d is the duration of pulsaret, and s is the duration of silence interval. There-
fore p represents a pulsar period and d corresponds to a pulse width of a pulse signal.
Repeated pulsar produces pulsar train that has two frequency parameters: fp = p−1,
or a fundamental frequency, and fd = d−1, which may be referred to as a formant
frequency, because it produces the effect of a formant peak in signal spectrum. Typ-
ically fp values fall between 1 Hz and 5 kHz, and fd values between 80 Hz and
10 kHz [472]. Both frequencies are continuously variable and controlled by separate
envelopes (Fig. 2.52). It is possible for pulsaret duration d to exceed total pulsar
duration p. In such case pulsaret may be truncated, with optional crossfading, or
may be overlapped, which produces phase cancellation effects.

Figure 2.51. A single pulsar; the initial red section is a pulsaret with duration d, and the
following blue flat section is a silent interval with duration s; in this particular case pulsaret

is a band-limited pulse signal, but other types of signal may also be utilised
Source: author’s elaboration, based on Roads [471]

11The first discovered millisecond pulsar, PSR B1937+21, rotates with 1.557708 ms period, corre-
sponding to almost 642 Hz.
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Figure 2.52. Evolution of a pulsar train; in the top plot pulsar period remains constant,
and pulsaret duration changes; in the bottom plot pulsaret duration is fixed, but pulsar

period changes due to increasing silence section
Source: author’s elaboration, based on Roads [471]

Another signal characteristic that can be controlled in PS is the envelope of a pul-
saret, which may differ from rectangular, affecting signal spectrum. E.g. a three-
segment envelope is characteristic for formant synthesis techniques such as FOF or
Vosim.

PS may be enhanced in several ways. Pulsar train from a generator may be
partially masked, with selected pulsarets muted, resulting in a specific pattern –
either deterministic or stochastic. When fp is within a rhythmic range, it results
in a rhythmic sequence. Otherwise, muted pulsars introduce subharmonic partials
resulting from local lengthening of pulsar period. Different PS enhancement involves
using multiple pulsar generators working with common fp, but with separate values of
fd. Such arrangement produces a signal with several formants, where each generator
controls a single formant through its fd value. Finally, pulsar trains may be convolved
with sampled sounds.

Particle synthesis is well-suited to produce spectrum with conveniently control-
lable formant regions. Roads mentions three such methods [470, 472]: formant wave-
function (fr. fonction d’onde formantique, FOF), Vosim, and window-function (WF)
synthesis. The first two were initially aimed at speech synthesis, while the last one
attempted to simulate formants of acoustic instruments.
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FOF synthesis may be considered a variant of PS with a specific grain envelope.
In FOF a stream of damped-sine grains produces a spectrum with a formant region.
Time-interval between grain onsets determines fundamental frequency of a signal,
and grain envelope parameters control formant shape. Another, global envelope con-
trols the entire sound event. A FOF grain envelope is produced using the following
expressions [472]

wA(t) = 1
2

(
1− cos

(
πt

ttex

))
e−tattent 0 ≤ t ≤ ttex

wD(t) = e−tattent t > ttex

(2.61)

where wA and wD is the attack and decay segment of the envelope, respectively, ttex
is the attack time, and tatten is the decay time. The most important FOF parameters
control formant central frequency (p1), its -6 dB bandwidth (p2), peak amplitude (p3),
and the lower part of peak – a formant skirt at −40 dB below the peak. Parameter
p2 is determined by the grain decay time, and p4 by the grain attack time. Several
FOF generators are used in parallel to produce signal with more formant peaks.
Bennett and Rodet presented various implementations of FOF, including synthesis
of musical instruments [49]. An implementation that simplifies control over multiple
FOF streams was proposed by Rodet at al. [477]. Although possible, FOF-based
resynthesis is difficult [36, 450, 31, 601].

In Vosim synthesis sound particles are decreasing pulse trains, where each pulse
is a squared sine [276, 277, 548, 278]. A single particle contains Np such pulses. The
first pulse within a train has amplitude A, and amplitudes of the following pulses
decrease by a decay factor b. Parameter Tp is a duration of each pulse, and a train is
followed by a variable delay Nd. Therefore, fundamental period of a signal produced
by Vosim synthesis may be expressed as [472]

TV = NpTp +Nd (2.62)

where TV determines fundamental frequency, and Tp determines formant peak posi-
tion. Fundamental frequency may be controlled without affecting formant position
by changing delay Nd, and by modulating it a vibrato effect or noise may be in-
troduced. Similarly to PS and FOF, each formant region requires a single Vosim
generator. Additional parameters may control type of frequency modulation, maxi-
mum frequency deviation, or modulation rate. Signal may evolve if Np, Tp, Nd, or
A changes over time.

The last of particle formant methods, the window-function (WF) synthesis pro-
duces a stream of grains separated with silence intervals, thus it may be considered
a variant of PS. The effect is a broadband and harmonic signal which requires further
processing – a weighting stage – to attenuate or emphasize selected harmonics. The
grain is based on a window function pulse, which is a special waveshape that has stip-
ulated spectral properties. In initial works Bass and Goeddel [37, 208] have chosen
Blackman–Harris window function, which has a low level of side lobes, therefore it is
virtually band-limited and produces very little aliasing.
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The window in a symmetric, 4-term variant (Fig. 2.53) is expressed as [231]

w[n] = a0 − a1 cos
(

2πn
N − 1

)
+ a2 cos

(
4πn
N − 1

)
− a3 cos

(
6πn
N − 1

)
a0 = 0.35875
a1 = 0.48829
a2 = 0.14128
a3 = 0.01168

(2.63)

where N is the window size, in samples. Other window functions may be applied.
Like in the PS, in the WF sonic grain a pulse is followed by a silence interval referred
to as a deadtime. Fundamental frequency of a signal produced is controlled by varying
deadtime duration, while the pulse duration remains unchanged (Fig. 2.54). For lower
values of f0 number of harmonics increases – more harmonics fit within the center
lobe of the window function spectrum. Due to increasing duration of deadtime for
decreasing f0, WF requires frequency-related amplitude compensation.

Figure 2.53. Blackman–Harris window – a basis of WF pulse: waveshape (top), and
spectrum (bottom); only half of the spectrum is plotted – value of 0 represents the center

frequency of the spectral peak

Further processing varies amplitudes of harmonics, producing formant regions
through slot weighting. A time slot is a single pulse and the following deadtime – it
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corresponds to a single pulsar in PS. In weighting process amplitudes of time slots
are periodically multiplied by a sequence of slot weights. Spectrum of a stream of
weighted pulses has a formant structure with peaks and valleys.

Figure 2.54. Change of signal fundamental frequency in WF synthesis; pulse width remains
constant, while deadtime interval varies; longer deadtime in lower frequencies results in lower

level of output signal, and thus requires amplitude compensation

Many other synthesis or sound processing methods may be classified as particle
methods. Apart from above mentioned methods, Roads describes a number of parti-
cle synthesis methods with possible musical applications, including particle cloning
synthesis, synthesis by transient drawing, or various sonification-related tech-
niques [472].

2.2.4. Concatenative Synthesis

From a musician’s standpoint a concatenative synthesis (CS), inspired by a speech
synthesis method [297, 452], is an attempt to solve note-transition related issues of
sampling synthesis that prevent it from producing fluent musical phrases. It may
be considered a kind of enhancement to the sampling method, and indeed, in some
works – presumably due to its genesis – it is categorised as a sub-group of sampling
synthesis [123]. However, even though compared to sampling CS is relatively new, it
is a more general method, and thus it may be placed systematically on a higher level.
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According to Schwarz [503] in its general formulation CS encompasses sampling as
well as granular synthesis.

CS methods can be applied on different levels, and use a variety of techniques [500,
501, 502, 503, 513, 102, 504, 505, 344, 56, 255, 410, 411]. Therefore, in its general form
CS is defined using common abstract terminology that in particular implementations
refers to elements sharing some minimal set of common properties, but otherwise
representing different classes of objects and algorithms. In some implementations CS
is also referred to as mosaicing synthesis [619, 324, 269, 124, 123].

A starting point of CS is a database of source sounds (Fig. 2.55) [503]. Since one
database may be utilised for various synthesis systems, particular synthesis uses its
subset referred to as corpus. Sounds within a database are time-segmented into units.
A sound or a musical phrase that is to be synthesized is referred to as a target. A unit
selection algorithm finds a sequence of units that best matches the target on the basis
of unit descriptors. Descriptors may be either extracted from units and describe their
characteristics, or attributed to them and contain some higher-level information. The
units selected to match the target may not fully match it. In such case they need to
be transformed. Afterwards, they are concatenated to produce an output signal.

Source sounds Audio score Symbolic score

Analysis

Database Target

Unit selection

Synthesis

Figure 2.55. A general structure of a concatenative synthesis system on the basis of
Caterpillar system presented by Schwarz

Source: author’s elaboration, based on Schwarz [501, 502]

CS is an example of a content-based processing paradigm, where operations per-
formed on sound are based not on signal processing alone, but also on symbolic or
high-level data [14]. Other examples based on the same paradigm, and dealing with
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problems similar to CS, are context-sensitive effects [337], manipulation of the audio
signal basing on its musical structure [270], the Song Sampler system for automatic
sampling of parts of songs [24], or the MusEd software for browsing through songs
using pitch and loudness descriptors [122].

In various implementations CS rules may be either supplied, or induced from the
sound data in a data-driven approach [500, 502]. Usually both sources are utilised,
in various proportions. Units may represent various levels of sound objects: from
snippets, through single notes, to phrases, and they need not to be uniform.

Concatenative synthesis is not as universal as more traditional synthesis methods,
such as additive, subtractive, or wavetable. However, there are particular applica-
tions where it may be targeted to bring significant improvements. Schwarz [503]
lists its three main applications: high-level instrument synthesis, resynthesis of audio,
and free synthesis. Moreover, even though CS may seem as a method suitable only
for assembling musical phrases on the basis of previously known score, a real-time
implementation has also been developed (Fig. 2.56).

Audio input Control input

Analysis Corpus Synthesis

Database

Figure 2.56. Structure of a real-time corpus-based concatenative synthesis; audio input is
feeding the corpus; corpus may be saved and loaded from database in a persistent manner;

synthesis retrieves data from the corpus
Source: author’s elaboration, based on Schwarz et al. [504, 505]

The first application is the most obvious, and CS is particularly well suited to
serve as a source of instrumental parts reproducing entered musical score, for instance
during work of a composer or in musical arrangement tasks. Due to ability to store
context information regarding sounds within its database, it can reproduce context
of target score and assemble musical phrases with natural sound transitions, which is
an issue in basic sampling synthesis. Moreover, details not covered in score, such as
phrasing-related local parameter irregularities, are filled in by database units.

The second application is less obvious. There are synthesis methods that allow to
resynthesize a single sound of a particular instrument, thus allowing to reproduce it
while altering some of its characteristics. CS is able to do this for the entire recorded
performance. A recording of a phrase, referred to as an audio score (Fig. 2.55) is
subjected to a processing similar to database sounds when they are segmented into
units. Next, it is resynthesized using units from database.

Finally, in free synthesis a heterogeneous sound database may be used directly.
Descriptors provide a means for efficient and meaningful control over selection amidst
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corpus of sounds. Thus free concatenative synthesis may be considered an extended
granular synthesis with a number of additional features. One of advantages is the
possibility to stipulate continuity through grain transitions, in any of the descrip-
tors. Another advantage is the ability to search through a sound file in a meaningful
descriptor space, and not simply by position.

2.2.4.1. Segmentation

Source sounds need to be segmented into units and analysed to obtain their char-
acteristics in a form of descriptors. This process may be automatic, blind, or arbitrary.
It may even be performed on-the-fly. Several different approaches can be utilised in
a single application, as in the Caterpillar system [501].

The first approach is to utilise some external software. There is a number of
implementations of algorithms performing, for instance, a note-segmentation [86, 588,
4]. Note-level units are commonly utilised by samplers. Another approach is possible
if a musical performance contained within an audio file has a steady pulse, which may
be determined by an appropriate algorithm [217, 181]. Such file can be segmented into
regularly spaced units of equal durations. Segmentation of recordings that contain
multitones requires additional effort to detect simultaneous pitches. It may be carried
out on the basis of components asynchrony [616]. When a score is available for the
audio file, it may be possible to go beyond a simple note segmentation and obtain
a larger set of data for descriptors. It involves aligning a pitch-contour of the recording
to the score using dynamic time-warping (DTW) algorithm (Fig. 2.57) [532, 279,
20, 280, 398, 99, 13]. Alternatively, score alignment may be performed using hidden
Markov models (HMM) [454]. Once aligned, all the data contained within a score may
be assigned to units as descriptors, including MIDI note number, lyrics, articulation,
etc. As a final solution, it is possible to perform manual segmentation, or manually
adjust result of automatic segmentation.

Parsing of the MIDI file into score events
to build a score model and representation

Extraction of audio features from the
recording containing a performance signal

Calculation of local distances between score and performance

Finding the path of optimal align-
ment that minimises the global distance

Figure 2.57. Steps of DTW-based procedure that aligns a recording to a score
Source: author’s elaboration, based on Schwarz [502]
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Automatic segmentation with a score alignment using DTW algoritm is a con-
venient solution. Comparing to other automatic approaches it is more flexible and
provides more information to use in descriptors. Being score-based, it performs seg-
mentation on a basis of pitch and produces units representing notes. It is, however,
difficult to use pitch as a main feature, since pitch tracking algorithms are not uni-
versal, and all of them produce errors under certain circumstances, particularly in
polyphonic performances. For the purpose of automatic segmentation a more reliable
approach is to match a structure of peaks in harmonic spectrum. Peak structure
match is defined as [502]

PSM(m,n) =

∑
i∈R(n)

SiPi∑
i∈R(n)

Pi
(2.64)

where m is the frame in the recording, n is the frame in the score, i is the FFT bin, S
is the magnitude spectrum generated on the score basis, P is the Fourier magnitude
spectrum of the analysed recording, and R(n) is the frequency range for the score
state n [502]

R(n) = {i ∈ N|ilow(n) ≤ i ≤ ihigh(n)} (2.65)

Such operation may be considered a filtering with normalisation. DTW algorithm
utilises an inverted structure, referred to as peak structure distance [502]

PSD(m,n) = 1− PSM(m,n) (2.66)

Using logarithmic scale for energy improves the procedure, due to reduced sound
level differences between segmented notes as well as among simultaneously perform-
ing instruments. Generally, narrower filters are advantageous, since they allow to
distinguish among more complex, dense harmonic structures. However, if the instru-
ment analysed does not produce fixed pitch, like in wind or bowed string instruments,
a certain degree of freedom around nominal filter frequencies is required [532]. There-
fore, filters are set to pass a certain range of r cents around nominal frequency, and
the energy passed is weighted with a Gaussian or Hamming window that penalises
stronger, but more distant spectral peaks in favour of weaker, but closer to the nom-
inal frequency.

Considering Fn analysed harmonic partials, the best tuning offset t for all filter
bands k, where 1 ≤ k ≤ Fn, of all notes p in score frame n, with nominal frequency
f(n, p) may be expressed as [502]

tmax(k) = arg max
−r≤t≤r

whamming(t) ∑
i∈Bn,p,k,t

Pi

 (2.67)

where whamming is the window function, and Bn,p,k,t are indices of bins for the filter
tuned [502]

Bn,p,k,t =
{
i ∈ N

∣∣∣∣ ∣∣∣ i fs
NFFT

− kf(n, p)2 t
144

∣∣∣≤ βn,p,k } (2.68)
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The harmonic filter band width given in tones is expressed as [502]

βn,p,k = kf(n, p)2
β
6 (2.69)

where β is the basic filter width. As Schwarz points out [502], better results are
obtained when filters are shifted independently, and not as a whole harmonic comb
structure. It allows for a better fit to slightly inharmonic spectra of some acoustic
instruments, with a notable example of piano [47, 191].

A local distance between a score frame n and a performance frame m is given by
the tuned peak structure distance (TPSD) [502]

TPSD(m,n) = 1− log

∑
i∈Bmax

Pi∑
i∈R(n)

Pi
(2.70)

where Bmax is defined as a union of the best tuned filter bands in the analysed frame

Bmax =
⋃
p,k

Bn,p,k,tmax(k) (2.71)

Schwarz carried out a number of tests to determine parameters of the procedure
that produce acceptable results [502]:

• Fn = 6 harmonics,
• filter width β = 1

10 of a semitone (10 cents),
• tolerance r = 3

4 of a semitone (75 cents).

The method described requires a refinement, since it produces alignment markers
that are often delayed, and in cases with many simultaneous pitches skips some notes.
The problem is related to attack phase, where energy is spread more evenly throughout
the spectrum resulting in low PSD values. Reverberation makes partials of a previous
note last after the next has begun, and sometimes a slow attack or window-related
blurring causes energy in filters to reach its maximal values some number of frames
after the note beginning.

The refinement is based on measuring a variation in the filters. It can indicate
sharp rise in particular harmonics and, in consequence, beginning of the attack phase.
At every onset special score frames are generated with energy variations instead of
PSD values. Every band k of the TPSD from (2.70) has its energy variation summed
to calculate the attack distance (AD). If onsets are simultaneous, AD is calculated
for every note and averaged, according to [502]

AD(m,n) = mean
p

(
1− tanh

(
α

(
Fn∑
k=1
|∆p

k|−θa

)))
(2.72)

where k is the index of harmonic filter, p is the note, ∆p
k is the energy difference in

dB with the previous local extremum in the band k, θa is the threshold, and α is the
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scaling factor. Schwarz experimentally established the following values: θa = 6.5 dB,
and α = 50 [502].

Notes may be followed by periods of silence. It is handled by adding special score
frames at the end of each note. Special distance (SD) is a measure of the signal
energy match above a silence threshold θs [502]

SD(m,n) =
{

E − θs if E ≥ θs
0 if E < θs

(2.73)

where E is the total logarithmic energy of the signal

E = log
NFFT∑
i=1

Pi (2.74)

Application of SD makes the alignment path to remain in the silence frame and
advance in the recording.

Finally, the local distance matrix is built by combining all local distance mod-
els [502]

ldm(m,n) =


AD(m,n) if n ∈ A
SD(m,n) if n ∈ S
TPSD(m,n) if n 6∈ A ∪ S

(2.75)

where A is the first frame of a note and S is the last frame of a note.
DTW algorithm uses local distances as well as global constraints to estimate cost of

the best path to point (m,n). It is expressed as augmented distance matrix adm(m,n).
Alignment is a path through adm, therefore a point (m,n) belonging to the path
means, that a performance frame m is aligned with a score frame n.

Local path constraints, or neighbourhoods, are used to calculate adm(m,n) from
values of ldm. A number of local constraints types was discussed by Rabiner and
Juang [455], but Schwarz tested types I, III, and V with Caterpillar system [502].
In type I

adm(m,n) = min


adm(m− 1, n− 1) +wdldm(m,n)
adm(m− 1, n) +wvldm(m,n)
adm(m,n− 1) +whldm(m,n)

 (2.76)

where wd, wv, and wh are weights of diagonal, vertical, and horizontal branches of
the local path. In type III

adm(m,n) = min


adm(m− 1, n− 1) +wdldm(m,n)
adm(m− 2, n− 1) +wvldm(m,n)
adm(m− 1, n− 2) +whldm(m,n)

 (2.77)
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In type V

adm(m,n) = min



adm(m− 1, n− 1) + λ1,1

adm(m− 2, n− 1) + λ2,1

adm(m− 1, n− 2) + λ1,2

adm(m− 3, n− 1) + λ3,1

adm(m− 1, n− 3) + λ1,3


(2.78)

where
λ1,1 = wdldm(m,n)
λ2,1 = wvldm(m,n) + wdldm(m− 1, n)
λ1,2 = whldm(m,n) + wdldm(m,n− 1)
λ3,1 = wvldm(m,n) + wdldm(m− 2, n) + wvldm(m− 1, n)
λ1,3 = whldm(m,n) + wdldm(m,n− 2) + whldm(m,n− 1)

(2.79)

Constraints of type I are sufficient for monophonic music. Types III and V are
more robust in handling mismatches between score and performance. Schwarz points
out that type V is preferable, giving the most freedom, although it uses the most
resources [502].

The best alignment path is found using Viterbi algorithm [596], with the additional
global constraints: alignment path starts in point (1, 1) and ends in (M,N), whereM
is the performance frame count and N is the score frame count, the path is monotonic,
and the score is stretched to approximate duration of performance, i.e. M ≈ N .
Such constraints should produce path close to diagonal. The algorithm iteratively
updates adm(m,n), and stores the pointer to previous point in ψ(m,n), as shown in
Figure 2.58 for a case with type I constraints. Optimal alignment path is decoded
from ψ by following backward indices.

Performance recording is usually analysed using STFT with 4096-sample Ham-
ming window, and a typical hop size used is 256 samples, or 5.8 ms with 44.1 kHz
sampling frequency. Therefore, DTW algorithm has to process a large amount of
data – Schwarz estimates, that a three minutes of performance produce approximately
36000 frames, amounting to 1.3 ·109 ldm matrix elements to compute [502]. However,
the computation time and resource cost may be reduced through improvements such
as implementation of shortcut path, or path pruning.

For the purpose of score alignment it is not necessary to process evolution within
a note. It is sufficient to keep only the first and the last score frame per note. Paths re-
duced to these frames only are referred to as shortcut paths, and their implementation
reduces path matrix by 98% [416]. The other improvement, path pruning, involves
keeping only the best paths in every iteration, and removing these with adm(m,n)
above a threshold value θP [502]

θP (m) = 1.1 min (adm(m− 1)) (2.80)

Pruning is not applied to paths between 400-frame wide corridor of selected paths
and the diagonal.
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There is a possibility to improve precision of DTW by implementing additional
transient or onset detection algorithms [476, 473, 227]. Percussion may also be han-
dled by combining score alignment with beat alignment [216].

adm(1, 1) = ldm(1, 1),
ψ(1, 1) = (0, 0)

n = 2

n = n + 1
adm(1, n) = adm(1, n −

1) + whldm(1, n),
ψ(1, n) = (1, n − 1)

n < N

m = 2

adm(m − 1, 1) +
wvldm(m, 1),

ψ(m, 1) = (m − 1, 1)

n = 2

n = n + 1

adm(m,n)=according
to (2.76),

ψ(m,n)=chosen pre-
decessor point with
minimum distance

n < N m = m + 1

m < M

Stop

Yes
No

Yes
No

Yes

No

variables
M : performance frame

count

N : score frame count

adm: augmented dis-
tance matrix

ldm : local distance ma-
trix

w : weight

ψ : path

Figure 2.58. Application of Viterbi algorithm to search for optimal path ψ in score aligning
procedure

Source: author’s elaboration, based on Schwarz [502]
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Note-level units are submitted to further sub-segmentation to separate units con-
taining attack, sustain, and release phases [228]. A crude solution is to blindly define
the first 100 ms of a note as attack, and the last 100 ms as release. Not all instruments
and not all performance techniques produce sustain phase, therefore attack may im-
mediately continue into release. An attack phase with a preceding release phase are
considered together a transition segment. Additionally a dinote units are produced.
They consist of two seminotes, and their transition segment. Seminotes are split in
the middle of the note – usually in sustain section.

2.2.4.2. Analysis and Descriptors
Characteristics of sounds used in CS are stored within descriptors (Tab. 2.9).

Three types of descriptors are utilised [501]. Static descriptors are constant over
a whole unit. Dynamic descriptors change over a unit duration and are usually the
result of unit analysis. They are stored in a reduced form, as a vector of characteristic
values (Tab. 2.10). The last type, category descriptors assign a unit to a particular
category and subcategories.

Table 2.9. Classes and examples of descriptors used in CS, according to Schwarz [501]

Class Examples of descriptors

Unit Start time, end time, duration, type
Source Class and subclasses of the source sound, performance style

Score MIDI note number, polyphony, lyrics, other information included in score,
arbitrary subjective information

Signal Energy, fundamental frequency, zero crossing rate, harmonics cutoff fre-
quency

Perceptual Loudness, sharpness, timbral width
Spectral Spectral centroid, spectral tilt, spectral spread, spectral asymmetry
Harmonic Harmonic energy ratio, harmonic parity, tristimulus, harmonic deviation

In cases where descriptor data is not assigned to units on the basis of score, or
arbitrarily, it is obtained through data analysis which may be performed by external
programs. Signal, perceptual, spectral, and harmonics descriptors (Tab. 2.9) are cal-
culated using standard signal processing or psychoacoustic methods [321]. A detailed
information on descriptors and characteristic values used in Caterpillar system may
be found in works of Schwarz [500, 501, 502].

2.2.4.3. Target
Target is specified in a form of symbolic or audio score [500]. Symbolic score

may be provided as a MIDI file, or in another digital representation, such as Mu-
sicXML [213] or Lilypond [406]. Schwarz discusses the requirements for symbolic
score format adequate for CS and describes a number of possibilities [502]. Some of
these representations are aimed towards performance and control over sound synthe-
sis, while others tend more towards score publishing. Therefore they slightly differ in
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types of stored information, although it is generally possible to perform a conversion
between them. The most basic data in a symbolic score are note parameters such as
pitches and durations. Score may also contain performance data, i.e. articulation,
dynamics, or changes of tempo. Additionally, vocal parts contain lyrics.

The second form of target requires a different approach. A recording to be resyn-
thesized is referred to as the audio score, and in order to provide target information
it needs to be analysed in a way similar to source sounds in the segmentation process.
Some descriptors (Tab. 2.9 and 2.10) need to be assigned as well.

Target score is segmented into a sequence of target units tτ , each with a set of
features that needs to be generated. Segmentation of symbolic score divides it into
separate notes with all note data obtained from the score. In case of audio score
a recording is segmented with the same tools as database recordings. In both cases
the result of score segmentation undergoes further segmentation into attack, sustain,
and release phases. It provides more combinations for the selection algorithm in
following stages.

Table 2.10. Characteristic values of dynamic descriptors, as implemented
in Caterpillar CS system [501]

Characteristic values Comment

Arithmetic mean, geometric mean, stan-
dard deviation, minimum and maximum
value, range

—

Slope, curvature, approximation residual —
Start and end values, curve slopes at start
and end of unit

Needed to calculate continuity of concate-
nation

Envelope: direct and inverse AR, i.e. at-
tack and release time relative to extremal
values, ADSR

—

Temporal centre of gravity Location of most important elevation or de-
pression in a descriptor curve

Normalised, 5-band Fourier spectrum of
the descriptor, and 4 first spectral moments

Reveals slow or rapid descriptor change and
possible oscillations

2.2.4.4. Database
Data stored within a database includes references to sound files, units, and their

descriptors. Depending on the complexity of CS system and expected amount of data,
various database systems may be utilised. In simpler cases flat analysis data files and
SDIF (Sound Description Interchange Format) [90] unit feature files may be suffi-
cient [500], but higher quality synthesis requires significantly larger databases, where
it is advantageous to use a relational database management system (DBMS) [501],
even at a cost of performance loss. In relational DBMS data is accessed using a declar-
ative query language SQL, and since it does not depend on physical data organisation,
such database is flexible, scalable, and open for future changes. Further advantages

127



are data consistency, and client-server architecture with possible networked operation.
Therefore one, central database may safely serve many distributed synthesis systems.
An example of CS database schema used in Caterpillar system [501] is presented in
Figure 2.59.

next

Unit

parent

has

source

is in

UnitData

SoundFile

Category

is a

FeatureFile

analysis

FeatureType

Figure 2.59. An overview of a database schema used in Caterpillar CS system; rectangles
depict entities, diamonds depict relationships

Source: author’s elaboration, based on Schwarz [501, 502]

2.2.4.5. Selection
There are multiple ways to perform selection of database units ui that best match

target units tτ . The first approach utilised in early implementations of Caterpil-
lar system developed by Schwarz [501] is based on two cost functions. Similarity
between ui and tτ is estimated by a target cost that also considers r units around
the target. Quality of concatenation between ui and preceding u′ is estimated by
a concatenation cost.

Target cost Ct may be expressed as [501]

Ct(ui, tτ ) =
p∑
k=1

wtkC
t
k(ui, tτ ) (2.81)

where Ctk is the individual feature distance function, wtk is the feature weight, and
p is the number of features. In order to prefer units that belong to the same context,
a context cost is estimated [501]

Cx(ui, tτ ) =
r∑

j=−r
wxjC

t(ui+j , tτ+j) (2.82)
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where r is the maximal considered unit distance, and weights wj decrease with dis-
tance j. Depending on the descriptor, different distance functions or lookup tables
may need to be used.

Discontinuity resulting from the concatenation of units ui and uj is expressed by
concatenation cost [501]

Cc(ui, uj) =
q∑

k=1
wckC

c
k(ui, uj) (2.83)

where Ctk is the feature concatenation cost function, wck is its weight, and q is the
number of concatenated features estimated. Cost may vary depending on a type
of unit.

Assuming that database containsN units, target sequence has T units, wtCx is the
state occupancy cost bij and wcCc is the transition cost aij , the Viterbi algorithm [596]
is used to find an optimal path ψ (Fig. 2.60) and sequence of units sτ (Fig. 2.61). The
sequence is found by decoding ψ in reverse order, beginning with the endpoint k with
the least global cost akT . Performance of the algorithm may be improved by pruning
the state transition network, in a manner similar to path pruning in score alignment.

More flexible approach to selection involves reformulating the problem as a con-
straint satisfaction problem (CSP) using the adaptive local search (ALS) algorithm
[564, 121]. Constraint satisfaction error function may be expressed by target and
concatenation cost.

Sequence of units indices to select is stored within variables Vi. A total cost of
selection is expressed by the global cost function that is to be minimised [501]

Cs = wtCx(uV1 , t1) +
T∑
i=2

(
wcCc(uVi−1 , uVi) + wtCx(uVi , ti)

)
(2.84)

where each unit constraint Ci comprises Vi−1 through Vi+1. The error function for
one constraint takes the following form [501]

E(Ci) = wtCx(uVi , ti) + wcCc(uVi−1 , uVi) + wcCc(uVi , uVi+1) (2.85)

consisting of target cost of unit uVi and concatenation cost of its two adjacent units.
AVL starts with a random configuration of variables, and repeats the following

four steps in a loop [501]:

1) compute error for each constraint, distribute it over the constraint variables;
Vi is responsible for a target error wtCx(uVi , ti), as well as for half of both
concatenation errors wcCc(uVi−1 , uVi), and wcCc(uVi , uVi+1);

2) replace a unit from the variable that has the largest error and is not marked as
taboo with the best matching unit uj , where

j = arg min
1≤j≤N

(E(Ci)) (2.86)
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3) mark the variable as taboo for a given number of iterations if there is no unit
with lower error;

4) restart with a new random configuration of variables if all variables were marked
as taboo.

j = 1

j = j + 1 aj1 = Cx(t1, uj)

j < N

τ = 2

j = 1

bjτ = wtCx(tτ , uj)

ajτ = min
j≤k≤N

(ak,τ−1 +

wcCc(uk, uj) + bjτ )

j = j + 1 ψjτ = kmin

j < N τ = τ + 1

τ < T

Stop

Yes
No

Yes
No

Yes

No

variables
N : database unit count

T : target unit count

ti : target unit

ui : database unit

Cx: context target cost

Cc : concatenation cost

w : weight

aij : transition cost

bij : state occupancy cost

ψ : path

Figure 2.60. Application of Viterbi algorithm to search for the optimal path ψ in unit
selection process

Source: author’s elaboration, based on Schwarz [501]

130



The loop breaks and the search is finished if either the global cost is lower then
a given threshold, or a previously assumed maximum number of iterations is reached.
There are four additional constraints: all different, unit ban, unit forcing, and unit
lock. The first two may be enforced using high penalty values: a second appearance of
a unit within a selection may be prohibited, and particular units may be banned. In
reverse, units may be forced by lowering error for variables they are contained within.
Finally, selected units may be locked by setting variables that contain them as taboo.

k = arg min
1≤j≤N

(ajT )

τ = T

sτ = uk

τ = τ − 1 k = ψτk

τ > 1

Stop

Yes
No

variables
N : database size

T : target length

ajT : global cost

ψ : path

sτ : units sequence

Figure 2.61. Decoding path ψ to find the optimal units sequence sτ in a unit selection
process

Source: author’s elaboration, based on Schwarz [501]

Out of two presented approaches, the linear path-search unit selection is more
efficient, and may be utilised in real time. Application of CSP unit selection makes
the process less efficient, but more flexible, allowing a better control over selected
units through aforementioned additional constraints.

As an alternative selection method Ó Nuanáin et al. propose to use k-best hidden
Markov model decoding [411]. Such approach allows to solve an issue of HMMs
when paired with Viterbi decoding, i.e. producing only the highest probable state
sequence, while solutions preferred in musical applications should allow alternatives
to be evaluated and chosen by the user.

2.2.4.6. Synthesis
The final step – synthesis – differs depending on application. If synthesis target

is a musical score, it determines positions of units on a time-line. Otherwise, e.g.
in speech synthesis, unit durations determine their placement. The process itself is
performed in two stages, transformation and concatenation.
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Transformation (Tab. 2.11) may need to be applied to reduce target distance
and concatenation distance. The former makes database units better match target,
while the latter matches edges of adjacent units to reduce transition artifacts. The
only method to change duration of sound samples without degrading sound quality
is shortening. Alternatively, if there is an option to switch from recorded samples in
a database to a different sound representation, then e.g. pitch synchronous overlap
add (PSOLA) [567] or additive synthesis provide more duration-manipulation possi-
bilities. A number and complexity of transformations required may be reduced by
preparing larger databases. If units were appropriately transformed, they may be
concatenated using a simple crossfade with overlapping.

Table 2.11. Unit transformations applied in the synthesis stage of concatenative
synthesis, according to Schwarz [502]

Parameter changed Method of transformation

Fundamental frequency Resampling
Energy Multiplication

Spectral envelope Filtering
Duration Shortening, time-granulation

2.2.4.7. High Level Instrument Synthesis
The most prominent use case of CS is reproducing instrument parts from a score,

using high-level control, and leaving fine details to be filled in by the database units.
Schwarz refers to such scenario as a high level instrument synthesis.

CS is able to reproduce details that are a result of various performance techniques
or phrasing, usually manifesting themselves as subtle irregularities in characteristics
such as energy, pitch, duration, or timbre. There are two cases where synthesis
methods other then CS may also produce such performance details. The first one is
a live performance of a musician playing a synthesizer. In this case the details are
produced by the musician on a skill, knowledge, and experience basis, provided that
the synthesizer allows to control fine details of produced sound, and is supplemented
with appropriately sophisticated controller to encode all control gestures into synthesis
parameters.

The other possibility to introduce fine details into a synthetic performance is to
pair a synthesizer with an implementation of performance rules that will analyse the
score and modify synthesis parameters accordingly, beyond coarse values provided
in score. Rules may be constituted in a number of ways [158], such as analysis by
synthesis [84, 195, 338] or analysis by measurement [199] approaches, using learning
systems such as artificial neural networks [603, 82, 604, 605], fuzzy logic [83], or
various other models [375, 296], including measurement-based complex modelling of
virtual performers [429].

Rule-based systems may produce results better than direct reproduction of score
data, but they still struggle to mimic human performance. On the other hand, a CS
system is aware of context of units it uses, and is able to produce natural transitions
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without imposing additional performance rules, on a score basis only. Performance-
induced irregularities are present in database units, produced from recordings of hu-
man performances, hence if a proper path has been found in selection stage, they are
transferred to the CS output signal.

High level instrument synthesis with CS method implemented in Caterpillar sys-
tem [502] utilises dinote segments as well as sub-segments containing attack, sustain,
and release phases. Since both, segmentation, and pitch analysis may produce er-
rors, it is necessary to perform sanity checks to verify dinote units pitch curves, e.g.
on a basis of pitch transition width and pitch range. During selection the highest
weight is given to pitch descriptor, since the melody has to be matched, and lower
to unit type descriptor. The latter forces seminote units at both ends of synthesized
phrase, and dinotes in the middle. Additionally, a very low weight is given to duration
descriptor to prefer units longer then a threshold value.

2.2.4.8. Real-Time Concatenative Synthesis
High complexity with multi-stage analysis process, and control over the synthe-

sizer through a musical score or recording of a musical piece, common for early im-
plementations, might imply that CS is not a method suitable for real-time perfor-
mance. There is, however, a number of real-time corpus-based CS implementations.
According to Schwarz [505] they may be grouped in two classes. In the first one
matching process is based on descriptors, in the second one – on spectrum. Exam-
ples of descriptor-based approach include synthesis systems such as CataRT [504],
MoSievius [324], Synful [336], or Ringomatic [23]. SoundSpotter system [104] is an
example of spectral-based approach. Systems based on spectral matching involve
control on a signal processing level, while descriptor-based systems allow to control
synthesis process on a score level, which is better suited to musical applications.

CataRT [504, 505] is an implementation of real-time CS that is corpus-based and
uses descriptors, thus adhering to content-based processing paradigm. Descriptors
form a multi-dimensional space filled with sound units. The user is given control
over a target point and selection radius within a lower-dimensional projection of the
descriptors space. Selection algorithm chooses units that are closest to a target and
are placed inside a selection radius. Selection and triggering of units are independent.
Due to real-time constraints concatenation is carried out in a simplified manner.
The only transformations are adjustments of pitch and loudness, as well as a short
crossfade. Quality of concatenation is not considered.

Diagram of CataRT is presented in Figure 2.56. The corpus is fed with audio
input which may be stored in a database. During synthesis data is retrieved from
the corpus. Different forms of audio input data, as well as various possibilities of its
analysis are presented in Figure 2.62. In the simplest case input data is provided
as an analysed audio file, with markers and descriptors already prepared. It can be
added to the corpus directly, without additional processing. If descriptors are missing,
they need to be prepared, and analysis is required. In case of audio data without
descriptors and markers, additional onset detection may be required, depending on
contents of the recording. The analysis required in this stage takes place in real
time, therefore the data, instead from a file, may as well originate from a real-time
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input. Another common practice is to constantly record a musician performing on
stage, analyse the data in real time, and use last several minutes as a corpus, which is
constantly updated. In such case the synthesizer is controlled by another performer
using a computer and controlling selection of units, as presented in Figure 2.63.

Audio file
+ markers

+ descriptors

Audio file
+ grain size
or markers

Audio file

Real-time
audio input

Descriptor
analysis

Onset
detection

Corpus

Persistent
database

Audio input

Figure 2.62. Analysis process in real-time corpus-based concatenative synthesis
Source: author’s elaboration, based on Schwarz et al. [505]

Corpus

Control

Target
descriptor
values

Nearest
neighbour
selection

Transformation
+ concatenation

Figure 2.63. Synthesis process in real-time corpus-based concatenative synthesis system
Source: author’s elaboration, based on Schwarz et al. [505]

Implementation of CS for real-time performance requires a number of simplifica-
tions [505]. If source audio needs to be segmented into units, viable options include
arbitrary grain segmentation, splitting on silence sections with a given threshold level,
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or using the YIN algorithm [153, 152]. Descriptors analysis may be based on MPEG-7
signal, perceptual, spectral, and harmonic descriptors [426, 543], while the YIN al-
gorithm can provide values of f0, aperiodicity, and loudness. For the sake of effi-
ciency, database is simplified, and based on Sound Description Interchange Format
(SDIF) [90].

The crucial difference is the simplification of selection stage. In interactive syn-
thesis it is not possible to search for globally optimal units path. Selection is carried
out among units that are close to the current position in a descriptor space. The
distance is calculated using squared Mahalanobis distance [345]

d = (x− µ)2

σ
(2.87)

where x is the position in a descriptor space, µ is the matrix of unit data, and σ is the
standard deviation of each descriptor over the corpus. For a specified selection radius
r a unit with d < r2 is selected. It may be the closest unit, one of k closest units, or
a randomly chosen unit. During synthesis, it is possible to precisely specify desired
pitch and loudness values. The original values are stored in the unit descriptor, and
may be altered using resampling and multiplication.

Comparing to methods such as subtractive or sampling synthesis, real time CS
is controlled in a different way, involving computer program with a graphical user
interface. In case of CataRT [504, 505] the user interface presents two-dimensional
descriptor space with points symbolising units, and a user-controllable circle sym-
bolising selection range. Playback of new units may be triggered in various ways,
according to selected modes presented in Table 2.12.

Table 2.12. Unit triggering modes in real-time concatenative synthesis, according to
Schwarz [505]

Mode Unit triggering principle

Bow Unit is triggered each time a mouse is moved
Fence When a different unit becomes the closest one it is triggered
Beat Units are triggered in regular time intervals
Chain New unit is triggered when the previous one ends

Continue Unit that followed the last one in the original recording is triggered
Seq Units are triggered by outside source, such as a sequencer

Further development in the area of real-time CS includes the EarGram system
proposed by Bernardes et al. [56], intended to explore large database of audio snippets.
EarGram is an interactive tool for improvisation and composition. It is based on
multiple views of the database, including an interactive scatter plot. A number of
unit triggering strategies is available.

2.2.4.9. Expressive Concatenative Synthesis
Schwarz formulation of the concatenative synthesis method [502] gives flexible

definitions that encompass a broad class of techniques with various aims and appli-
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cations. However, it may seem to lack some implementation details. The particulars
are left to fill in for the actual techniques aimed at more focused applications.

Maestre et al. [343, 344] proposed a CS variant, referred to as expressive con-
catenative synthesis, that emphasizes expressive component of musical performance.
While usually synthesizers require manual adjustments in order to produce instrument
performances that may be considered expressive on a score basis only, expressive CS is
aimed at producing such output automatically by utilising a set of expressive perfor-
mance recordings and performance models trained using inductive logic-programming
techniques. Thus it supplements the set of CS tools with more advanced mechanisms
dealing with unit selection and transformations.

Introductory research on analysis and concatenative synthesis of expressive perfor-
mance was presented by Maestre and Gómez [342], as well as Ramirez et al. [457, 458].
Expressive CS performs audio data segmentation and characterisation based on fun-
damental frequency and energy. Segmentation is carried out at different temporal
levels, i.e. note, intra-note, and note-to-note transition. Units are processed using
granular time-stretching, pitch-shifting, and energy transformation. During synthe-
sis stage a phase-vocoder is applied to concatenate samples corresponding to entire
performed notes of arbitrary durations.

Performance
recording STFT

f0 estimation Multiband en-
ergy computation

Frame f0 Onset detection Overall frame energy

Note boundaries

Note description

Onset, dura-
tion, MIDI note,
mean energy

Figure 2.64. Melodic description process in expressive CS
Source: author’s elaboration, based on Maestre et al. [344]
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Analysis of expressive performance recording begins with STFT and computation
of low-level descriptors for each frame. Next, melodic description is carried out to
determine MIDI pitch, onset, and duration of notes (Fig. 2.64). On the basis of note
descriptors a musical analysis is performed, according to Narmour’s theory of percep-
tion and cognition of melodies [401, 402], which assumes the existence of implicative
intervals. Such interval implies its successor according to two principles, i.e. registral
direction and intervallic difference. Interestingly, both are in accordance with strict
counterpoint rules concerning construction of a proper melodic line [489].

Apart from a high-level musical analysis, energy envelopes are studied to deter-
mine internal features of segmented notes and their transitions, i.e. attack, sustain,
and release sub-segments. Releases with following attacks are considered transition
segments. Their energy and f0 contours are utilised to determine articulation-related
descriptors, such as the legato descriptor [344]

LEG = A1

A1 +A2
=
∫ tend
tinit

(Lt(t)− EXX(t)) dt∫ tend
tinit

Lt(t)dt
(2.88)

where A1 is the area between the schematic energy contour and the line Lt joining
start and end points of the transition segment, A2 is the area below the energy
contour, and EXX is the energy envelope, as shown in Figure 2.65. LEG ∈ [0, 1]
assumes smaller values in smoother transitions, and larger – in more detached.

Notes stored in a database are classified according to their context in the original
performance, and to their internal structure [344]. Context is considered as a type
of previous and next segment, which can be either silence (SIL) or another note.
Therefore a note n can belong to one of four articulation classes, i.e. SIL-n-SIL,
SIL-n-NOTE, NOTE-n-SIL, or NOTE-n-NOTE, and it is considered a strict
constraint during sample selection. Notes within each group are divided into several
clusters by applying k-means clustering to a set of intra-note features: attack level,
sustain duration, sustain slope, spectral centroid, and spectral tilt. In NOTE-n-SIL
group k = 3, otherwise k = 2 is sufficient. Additionally, cases with more or less
than one score note represented by a single database unit can be considered, e.g.
consolidation, fragmentation, or ornamentation. Table 2.13 contains a complete list
of descriptors used in expressive CS, as implemented by Maestre et al. [344].

In order to synthesize an expressive audio a performance model is applied to pre-
dict expressive-related modifications in relation to the strict score reproduction [457],
as shown in Table 2.14. The model is obtained by applying inductive logic program-
ming techniques in a form of TILDE inductive algorithm [69] – a first-order logic
extension of the C4.5 decision-tree algorithm.

Predictions of the performance model and database samples are utilised to gener-
ate output audio sequence in a process depicted in Figure 2.66. Samples are analysed
in spectral domain and phase vocoder is applied for time, amplitude, and frequency
transformations. The actual concatenation stage is performed using generic CS ap-
proach with transformation and selection cost calculated to determine the most suit-
able path.
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Figure 2.65. Schematic view of the transition segment; EXX is the energy envelope, Einit
is the value of energy envelope at the start (tinit) of the transition segment, Emin is the
minimal energy in the transition segment at tc, Eend is the energy at the end (tend) of the
transition segment, Lt is the line connecting energy envelope at tinit and tend, A1 is the area
between the envelope and L1, A2 is the area below the envelope, F0(n−1) and F0(n) are f0
values of the note n− 1 and n, WPT is the width of a pitch transition, tFC is its midpoint,
and FC is the f0 value in the midpoint; values required to represent actual envelopes with

linear segments are calculated during automatic segmentation
Source: author’s elaboration, based on Maestre et al. [344]

Transformation cost is a weighted sum of costs resulting from three kinds of trans-
formation [344]

CT =
Ns∑
i=1

wDCD(i) + wFCF (i) + wECE(i) (2.89)

where Ns is the number of note samples within a path, w are the weights, CD is the
duration transformation cost, CF is the frequency transformation cost, and CE is the
energy transformation cost. Duration transformation cost is calculated according to
the following formula [344]

CD =
∑Ns
i=1|log2(ST (i))|2∑Ns
i=1|log2(ST (i))|

(2.90)
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where ST is the time-stretch factor. Frequency transformation cost is calculated
as [344]

CF =
∣∣∣∣ log2

(
F0,Pred

F0,DB

) ∣∣∣∣ (2.91)

where F0,Pred and F0,DB are fundamental frequency predicted and retrieved from
a database, respectively. Finally, cost of energy transformation is expressed as [344]

CE = 1
2

∣∣∣∣ log2

(
EPred
EDB

) ∣∣∣∣ (2.92)

where EPred and EDB are energy predicted and retrieved from a database, respec-
tively. Complete contents of a database are given in Table 2.13, and predictions –
in Table 2.14.

Table 2.13. Descriptors used in expressive CS, according to Maestre et al. [344]

Group Descriptors

Melody and dynamics Pitch, onset time, duration, alteration, mean energy

Context Metrical strength, Narmour group, articulation group, duration
of previous and next, pitch of previous and next

Timbre Mean spectral centroid, mean spectral tilt

Intra-note
Attack level, sustain duration, sustain slope, legato to previous,
legato to next, note change time, transition init and end time,
pitch step width and centre time

Classification Cluster number

Table 2.14. Performance model predictions in expressive CS, according to Maestre
et al. [344]

Level Transformations Affected

Note

Duration transformation Duration
Onset deviation Onset
Energy variation Energy
Note alterations (ornaments) Alteration

Transition Type of transition (legato/staccato) LEG (2.88)

Intra-note
Notes divided into a set of clusters based on intra-note
features; given a musical context of a note trained
classifier predicts a cluster

Attack level
Sustain duration
Sustain slope

Spectral centroid
Spectral tilt
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Like transformation cost CT , the concatenation cost CC is also a weighted
sum [344]

CC =
NC∑
i=1

wLCL(i) + wICI(i) + wPCP (i) (2.93)

where NC is the number of concatenations, w are the weights, CL is the legato cost,
CI is the interval cost, and CP is the continuity cost. The following formula expresses
the legato cost [344]

CL = |LEGPred − LEGDBrec| (2.94)

where LEGPred is the predicted value of legato descriptor, and LEGDBrec is the
pre-computed legato value of two samples considered for concatenation. Interval cost
is expressed as [344]

CI =
∣∣∣∣ |IPred − ILright|+|IPred − IRleft|IPred

∣∣∣∣ (2.95)

where IPred is the target interval, IRleft is the interval between the candidate for the
sample following in the transition and its predecessor in the database, and ILright
is the candidate for the sample preceding in the transition and its successor in the
database. Continuity cost CP favours usage of consecutive samples from the database
recordings. It is either zero, in case of consecutive samples, or unity in other cases.

Note energy MIDI score Note class Legato

Predictions

Sample retrieval

Sample transformation

Sample concatenation

Output audio

Database

Figure 2.66. Synthesis stage in expressive CS
Source: author’s elaboration, based on Maestre et al. [344]

Before concatenation samples are transformed (Fig. 2.66) using phase vocoder
techniques [14, 74, 320] to match target description. Duration transformation is ap-
plied by time stretching with variable factor, related to intra-note segment. Thus the
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transformation is carried out in the sustain segment, and blurring of transitions does
not occur. Spectral shape and f0 in new frames is linearly interpolated from the sur-
rounding frames. Concatenation discontinuities in amplitude, pitch, and timbre are
corrected. Energy and pitch are smoothed using cubic splines within a region of sev-
eral frames. Additionally, energy curve is corrected for the value of Emin (Fig. 2.65)
to match the legato prediction. Timbre is smoothed by spectral-shape interpolation.

2.2.4.10. Other Variants of Concatenative Synthesis

Though the term has been later adapted to serve as an alternative name to CS, the
musical mosaicing was initially developed by Zils and Pachet as a mechanism to au-
tomatically generate a sequence of sound samples. The sequence is specified through
high-level properties only. User-provided properties are interpreted and utilised as
a basis for constraint solving problem [619]. Typically CS is aimed at producing
continuous sequences. However, since musical mosaicing was primarily aimed at as-
sisting composition work in sample-based music genres, the algorithm allows to define
various constraint classes, such as difference, cardinality, or distribution, to produce
sequences that differ in expressive qualities.

Segments of the sequence are referred to as variables, and are assigned with de-
scriptors such as mean pitch, loudness, percussivity, related to variations of amplitude,
and global timbre, based on spectral distribution. The method minimises a global cost
function, consisting of weighted cost functions associated with particular constraints.
Segment constraints set target values for a single descriptor. Sequence constraints
apply to distribution, continuity, or cardinality of the whole sequence or any set of
segments. They are not limited by a number of descriptors. Distribution constraints
control sample placement, continuity constrains control continuity with regards to se-
lected feature, and finally, cardinality constraints control number of samples, as well
as their uniformity. The output is produced by finding a sequence satisfying the con-
straints. In large databases of samples a complete search would be too slow, therefore
the adaptive search algorithm [121] solves the constraint system locally (Fig. 2.67).
In the end, sequence quality is further refined using global transformations to correct
sample transitions.

Mosaicing may be implemented as an interactive, real-time synthesis method. It
was investigated and incorporated into MoSievius system by Lazier and Cook [324].
MoSievius (Fig. 2.68) is a framework that allows to conveniently implement various
interactive mosaicing techniques. Real-time control over mosaicing involves manip-
ulating source and unit selection process. As long as either of these is controlled,
mosaicing is considered interactive, even if the target has been fully specified.

Later modifications to mosaicing proposed by Coleman et al. include augmenting
the method with descriptor-driven transformations and adding dynamic smoothing
[125, 124, 123]. In the former, chroma, mel-spaced filter banks, and energy are utilised
as target descriptors modelled in order to adapt produced output to musical contexts.
In the latter several source atoms are mixed using sparse signal representation tech-
niques. In a standard path search approach applied in CS a single weighted source
frame is chosen for each target frame.
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Figure 2.67. Adaptive search algorithm, as applied in musical mosaicing to find a sequence
of database samples

Source: author’s elaboration, based on Zils and Pachet [619]

The optimisation problem is solved by fitting the following form [123]

arg min
s[t],wt

T∑
t=1
‖yt − wtas[t]‖2+f(s[1], ..., s[t]) (2.96)
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where s[t], t = 1 . . . T are the indices of a source frame sequence chosen for each target
frame, wt is the gain of the target frame t, and f is some function of s[t]. By introduc-
ing frame mixing, a single target frame can be approximated with a weighted sum of
all source frames. In consequence the optimisation problem changes as follows [123]

arg min
wt

T∑
t=1
‖yt −Awt‖2+f(w1, ...,wT ) (2.97)

where wt, t = 1 . . . T is the sequence of weight vectors, and A is the matrix of source
descriptor vectors. Mixing can solve a problem of insufficiently populated databases
by allowing to combine simpler features, which are usually easier to find, e.g. to
produce chords. As Coleman points out [123], since (2.96) is a special case of (2.97),
the distance to target in (2.97) will always be less then or equal to the case of (2.96).

Sound
database

Feature
extraction

Feature
database

Source
selection

Control
data

Audio
files

Audio
input

Real-time
feature extraction

MIDI

Transformation
and synthesis

Unit
selection

CLI and GUI

Out

User
definable

Figure 2.68. MoSievius, a framework for the implementation of various interactive mo-
saicing techniques

Source: author’s elaboration, based on Lazier and Cook [324]

Actually, the first system to use frame mixing was proposed by Hoffman et al. [239].
It utilised a probabilistic generative model, referred to as the Shift-Invariant Mixture
of Multinomials (SIMM), which can be interpreted as fully Bayesian variant of Shift-
Invariant Probabilistic Latent Component Analysis [518]. Although similar in its
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use of mixtures, a system designed by Coleman et al. [125] uses a different sparse
projection technology, referred to as a basis pursuit [113].

Simon et al. [513] developed a system referred to as Audio Analogies aimed
at producing audio output B′ given audio input A′, and two score inputs, A and B
(Fig. 2.69). Score B is the target to be synthesized as B′. Score A and audio A′,
which contains a recorded performance of A, is the example pair used to synthesize
B in such a way, that relation of B and B′ is the same as A and A′.

Audio Analogies

Score A Audio A′

Score B Audio B′

Control OutputExample pair

Figure 2.69. Working principle of the Audio Analogies synthesis system; relation of pro-
duced audio B′ to score B is the same as in the example pair of recorded performance A′

and its score A
Source: author’s elaboration, based on Simon et al. [513]

The score B may be regarded as a high-level control data. Output signal B′
is produced by concatenating sound units, referred to as frames, obtained through
segmentation of A using A′. Frames contain either single notes or pairs of adjacent
notes. Dynamic programming algorithm searches for the optimal sequence of frames
from A′, considering cost function of two objectives: match between each frame in A′
and B′, and coherence of the sequence with respect to A′. The optimal sequence is
found by minimising the following expression [513]

C = α

n∑
i=1

Cmatch(i, Si) + (1− α)
n−1∑
i=1

Ctransition(i, Si, Si+1) (2.98)

where S is the sequence of n frames, Cmatch is the cost of matching a frame from
A′ to B′, Ctransition is the cost of concatenation between two adjacent frames, and
α ∈ (0, 1) is the parameter that controls the tradeoff between output better matching
input score (α close to 1), and output being coherent with respect to A′ (α close
to 0). Example may contain a number of score-performance pairs, leading to better
matching at the expense of compute time. Furthermore, frames from A′ may require
modifications to match frames in B′. In such cases pitch and duration are manipulated
using resampling and synchronised overlap-add (SOLA) [480]. In concatenation stage
adjacent frames that contain pairs of notes are first lined up using cross-correlation
to align phases of shared note, and then blended using linear crossfade. A system
similar to Audio Analogies, though polyphonic, was described by Dannenberg [151].
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While concatenative or mosaicing synthesis is usually controlled using graphical
interfaces, a different approach was presented by Janer and de Boer, who developed
mosaicing synthesizer controlled with a voice signal [269]. Such control method is
referred to as a voice-driven synthesis [268]. Voice input is segmented, and each
segment is analysed to extract features (Tab. 2.15) that will be mapped to audio
source features.

Table 2.15. Features extracted from segmented voice input in a voice-driven mosaicing
synthesis, according to Janer and de Boer [269]

Feature Characteristic

Audio centroid Impulsiveness
Energy Loudness

Spectrum flatness Harmonicity or noisiness
Harmonic pitch class profiles Tonal description

Mel-Frequency Cepstrum Coefficients Timbre
Spectral Centroid Brightness

Musical concatenative synthesis originates from speech synthesis methods. Strong
traces of this origin remain in earlier CS systems aimed at synthesizing singing voice,
which requires a combination of both, musical and speech synthesis. Early research
on concatenative singing voice synthesis was presented in works of Macon et al.
and Meron [341, 363]. Singing voice synthesis presented by Bonada and Loscos [74]
and later by Bonada and Serra [75] utilises a database of diphoneme samples to
search for the best sequence, which is assembled using phase vocoder and spectral
concatenation methods. The method yields good results, and was implemented in
commercial synthesizer, Yamaha Vocaloid [293].

A method proposed by Kobayashi [302], sound clustering synthesis, uses STFT
analysis to extract spectral data containing sound transitions features. Database of
sounds is pre-analysed and pre-clustered. Spectral match function is used to resyn-
thesize a target inheriting transition features of analysed sounds (Fig. 2.70). The
method conserves the association of consecutive frame clusters.

Extract spectrum
from source sound
data using STFT

Detect sound frames
similar to elected frame

Resynthesize a sound
using analysis results

Repeat

Figure 2.70. Steps of the sound clustering synthesis
Source: author’s elaboration, based on Kobayashi [302]

Reconstructive phrase modelling (RPM) [336] is able to produce expressive
solo instrument performance controlled in real-time by MIDI. It relies on splicing frag-
ments of phrases, and in this regards it shares a number of features with CS. However
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it operates using hybrid waveform and additive synthesis with sine and noise compo-
nents, hence it differs from the majority of other CS methods that are based mainly
on waveform representation. Recordings of instrumental performances are segmented
into units, or splices, representing attack, sustain, release, and transition, with various
subtypes – one note can be built from several splices. A set of rules is used to convert
real-time MIDI data into a synthesis target, matched through selecting closest splices,
and taking into account local contexts spanning several notes. The distance function
is based on pitch and loudness. Hybrid waveform-additive representation allows RPM
to manipulate units with more flexibility than other CS methods. Selected units are
stretched, pitch-shifted, time-shifted, and combined. Although RPM may be more
constrained in applications than a general CS method due its fixed inventory and lim-
ited feature set, it is particularly well suited for high-level instrument synthesis [503],
and has a commercial application – the Synful Orchestra.

GUIDAGE, a system presented by Cont et al. [130] introduces a new descriptor
referred to as the Audio Oracle. It is a Markov model that allows to predict evolution
and repetitions of other descriptors. The system, however, is aimed more at audio
retrieval than at sound synthesis.

A number of CS implementations involve cross-synthesis, and may be consid-
ered as related to granular synthesis due to utilising frame-level units. Time-domain
audio decomposition is often based on a sparse approximation method referred to as
matching pursuit [351]. Collins and Sturm [126] proposed to decompose source and
target with a Gabor dictionary. Weights of Gabor atoms in the target can be modu-
lated, and source weights can be mixed with target weights [540, 541]. An alternative
method, non-negative matrix factorisation [330], can also be utilised to perform
separation of non-negative signals into parts [517]. Burred [89] designed a system
that performs cross-synthesis by substituting source and target spectral components.
Both sets are matched using a timbre similarity measure based on mel-frequency cep-
stral coefficients (MFCC). In a system designed by Fukayama and Goto [196] relative
chord present in target signal is imposed on the source signal. System presented by
Driedger et al. [171] factors the target spectrogram with the spectrogram of source.
This allows to resynthesize the target from weighted combinations of source frames.



3. Indirect Methods

3.1. Abstract Methods

3.1.1. Frequency Modulation
If one requires a very distinctive, ‘synthetic’ sound, frequency modulation (FM)

synthesis may be the method of choice. Interestingly, it is regarded so even though
Chowning, who was its inventor and carried out initial research on its musical appli-
cations [116], intended to produce sounds with natural qualities.

The principle of modulation in general, and frequency modulation in particular,
had been well known long before it became a sound synthesis method – its theory had
been established [103, 66], and it was utilised in radio broadcasting. Actually, FM
already had a musical application in a form of the vibrato (Fig. 2.4), though in case
of human performers and acoustic instruments modulation frequency was insufficient
to go beyond the simple effect. Initial experiments carried out by Chowning started
with an extreme vibrato, where a temporal structure of the modulation is no longer
perceived, and timbral effects begin to appear instead. Such technique proved to be
an efficient way of controlling timbre in real time [470], and became the basis of a new
synthesis method which, according to Chowning [116], allowed to generate diverse,
dynamic spectra of either known, or unknown sounds.

Actual musical applications of FM synthesis include complex configurations of
multiple generators producing various types of signals, yet the simplest FM instru-
ment, still capable of producing rich spectra, requires only two sine oscillators: the
carrier and the modulator that modulates carrier frequency, as shown in Figure 3.1.
In this configuration the output signal frequency has two components. The first one
is the constant carrier frequency fC , and the second one is the oscillating output of
the modulator. The instantaneous frequency value can be expressed as [61]

f(t) = fC +AM cos(2πfM t) (3.1)

where fM is the modulator frequency, and AM is the modulator amplitude expressed
in frequency units. AM may be considered the peak frequency deviation. Thus the
simple FM instrument shown in Figure 3.1 produces the following output signal [61]
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u(t) = AC sin

2π
t∫

0

(fC +AM cos (2πfM t′)) dt′
 (3.2)

where AC is the carrier oscillator amplitude.

AC fC AMfM

Output

Modulator

Carrier

Figure 3.1. A simple FM instrument with two sine oscillators: carrier and modulator;
AC is the carrier oscillator amplitude, fC is the carrier frequency, AM is the modulator

amplitude, and fM is the modulator frequency

FM signal produced according to (3.2) has a discrete spectrum with one centre
frequency FC and a series of sidebands uniformly spaced around it with a frequency
interval FM (Fig. 3.2). Thus all partial frequencies meet the following condition [61]

fP = fC + kfM , k ∈ Z (3.3)

f

am
pl
itu

de

FCFC − FMFC − 2FM FC + FM FC + 2FM

FM

Figure 3.2. Characteristic structure of partial frequencies in a simple FM instrument

Although FM synthesis may be implemented in analogue form, it was originally
developed as a digital technique with two crucial advantages over other digital meth-
ods popular at that time: the computational efficiency1, and the ability to produce
rich, time-varying spectra. Combination of these qualities allowed to design affordable
synthesizers capable of real-time control over complex sounds.

1A simple one-carrier, one-modulator instrument requires only two multiplications, one addition,
and two table lookups – to retrieve sine values for oscillators.
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A simple FM instrument, with one carrier and one modulator, can produce rich
spectra, but is obviously not powerful and flexible enough for real musical applica-
tions. However, due to general simplicity of the FM principle, designing more complex
instruments is relatively straightforward. The most important extensions include:

• adding EGs to control selected synthesis parameters in order to produce time-
varying sounds,

• introducing additional oscillators, both as carriers and modulators,
• creating feedback circuits,
• grouping simple synthesis elements into abstract functional units to allow exper-

imenting with their reconfigurations, in a manner similar to modularisation of
subtractive synthesizers.

Peculiarly, the high efficiency of FM synthesis is also, indirectly, a source of its
main flaw. Since the whole synthesis process is controlled through a few parameters
only, each of these parameters has a considerable impact on a timbre of produced
sound. Their relation to signal spectrum is relatively complex, and signal details
cannot be freely adjusted, which makes controlling signal properties unintuitive. As
a result, using FM synthesizer to obtain desired sounds often involves a trial and error
approach, and stipulated effect may not be attainable at all.

3.1.1.1. Frequency and Pitch

Frequency Ratio

Formula (3.3) expresses frequencies of partials produced by a simple FM instru-
ment. Partial positions depend on both, FC and FM , with FC constituting the centre
of the spectral structure and FM being the inter-partial frequency interval. Obviously,
in a musical instrument frequencies will have to be changed while producing different
pitches. In order not to change the spectral structure each time a new pitch is played,
both frequencies have to be changed accordingly. Hence a parameter controlling their
ratio is introduced [470]

Rf = fC
fM

(3.4)

If only a pitch is to be changed, and not a timbre, the ratio has to remain fixed.
Often a symbol c : m is utilised instead of Rf .

All FM spectra are discrete, but not all are harmonic (Fig. 3.3). The latter are
produced when Rf is a rational number [116]

Rf = N1

N2
, N1, N2 ∈ Z (3.5)

Furthermore, in order for the produced harmonic spectrum to evoke a sensation of
one, definite pitch, both N1 and N2, after dividing out their common factors, shall
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be relatively small. Otherwise resultant f0, while present, may be located way below
audible range, and produced spectrum may be virtually inharmonic. More details
regarding impact of Rf on a signal spectrum can be found in the work of Truax [561].

Figure 3.3. The effect of carrier to modulator frequency ratio Rf on FM signal spectrum;
lack of symmetry around fC and presence of small partials around the main ones is caused
by partials with negative frequency being reflected from f = 0 axis; in (a) and (b) spectra
are virtually inharmonic (actually harmonic, though with f0 = 1 Hz); in (c) N2 (3.5) can
be reduced to 1, hence all the harmonics are present; in (d) and (f) reduced N2 is even,
therefore the spectra are odd; in (e) N2 can be reduced to 3, which results in every third

harmonic removed
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Fundamental Frequency

With two controllable frequencies it is not immediately obvious how to determine
and control pitch of the FM signal. If in (3.5) N1 and N2 have their common factors
divided out, the fundamental frequency of harmonic FM signal is calculated as

f0 = fC
N1

= fM
N2

(3.6)

As Chowning points out regarding harmonic FM spectra [116], value N1 is the
harmonic index of the carrier frequency, and value N2 controls presence of particular
groups of harmonics. Specifically, for N2 = 1 all harmonics are present, and f0 = fM .
For even values of N2 the spectrum is odd, and if N2 = 3, every third harmonic is
removed (Fig. 3.3). It has to be considered though, that amplitudes of partials are
further affected by the peak frequency deviation AM , therefore some of remaining
partials may still be attenuated or entirely cancelled.

3.1.1.2. Modulation Index
The amount of modulation may be controlled through the modulator amplitude

AM , also referred to as the peak frequency deviation. However, it is a frequency
quantity, and musical applications deal with logarithmic frequency scale. As a result,
using the same value of AM in various frequency regions would have a distinctly
different auditory effect. Therefore a parameter that controls modulation should scale
with frequency. Such a parameter is the ratio of the peak deviation of modulation to
the modulating frequency, referred to as the modulation index [470]

I = AM
FM

(3.7)

Value of I = 0 represents a case without modulation – the output is entirely a carrier
signal. Even though the name of the parameter might suggest otherwise, I can assume
not only natural values, but real as well. The effect of changing value of I on a signal
spectrum is presented in Figure 3.4.

Due to frequency scaling, modulation index is a better match for perceptual
changes in timbre than a direct modulator amplitude, and as such it is more commonly
used as a parameter. Therefore it is convenient to replace AM with I in (3.2) [61]

u(t) = AC sin

2π
t∫

0

(fC + IfM cos (2πfM t′)) dt′
 (3.8)

Formula (3.8) may be written in a less strict, simplified form [61]

u(t) = AC sin (2πfCt+ I sin (2πfM t)) (3.9)

The difference is, that while in (3.8) it is the frequency that is being modulated,
in (3.9) it is the phase. The issue is further discussed in works of Bate and Holm
[41, 242].
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Figure 3.4. The effect of increasing modulation index I on FM signal spectrum; values of
I are set to match time in seconds, i.e. I = 1 in t = 1 s, etc.; larger values of I produce
wider spectrum; it is important though to note, that amplitudes of partials do not increase

monotonically with I, but can decrease and reach 0 in certain points

Modulation index allows to roughly estimate two spectral characteristics: the
number of significant sideband pairs2, and the bandwidth of the FM signal. The
former, according to De Poli [154] is approximately I + 1, while the latter, according
to Chowning is expressed as [116]

BWFM ≈ 2fM (I + 1) (3.10)

As Roads points out [470], modulation index that controls signal bandwidth may
be convenient in simulation of musical instrument behaviour. Specifically, in acoustic
instruments a bandwidth often tends to widen when an amplitude of a signal increases.
In FM it can be efficiently simulated by controlling both parameters, i.e. AC and I,
through a common envelope, or a pair of similar envelopes. Extension of a simple FM
instrument, with controllable modulation index I, ratio Rf , and two EGs, is presented
in Figure 3.5. For the purpose of facilitating finer control over timbre evolution,
commercial FM synthesizers apply EGs with additional segments (Fig. 3.6).

2In this case partials with amplitudes larger than 1% of the amplitude of the carrier are considered
significant.
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Figure 3.5. A simple FM instrument with two EGs; the first EG controls output signal
amplitude with user-set peak value AC,Peak; the second EG controls modulation index, with
user-set peak value IPeak; EGs are triggered by a common On/Off signal; fC is controlled
indirectly, by setting fM and ratio Rf , which allows to change pitches while keeping the

signal spectrum harmonic
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Figure 3.6. Envelope used in commercial Yamaha FM synthesizers (a) and some of its
possible shapes (b); the four segments (R1–4) and levels (L1–4) are freely adjustable, so

that inverted envelopes may be designed as well
Source: author’s elaboration, based on Russ [485]
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Amplitudes of Sidebands

Even though in general a bandwidth of the FM signal increases with I, with
subsequent sideband pairs emerging (Fig. 3.4), amplitudes of partials vary with I in
a non-monotonic manner (Fig. 3.7), and for some values of I amplitudes of certain
sidebands reach 0. Such behaviour makes predicting a spectral envelope, and hence
a timbre, an unintuitive task.

Figure 3.7. Amplitudes of first five pairs of sidebands in FM signal spectrum for increasing
value of modulation index I
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It is possible to determine partial amplitudes by developing (3.9) into the following
form [116, 154, 51]

u(t) =
∞∑

k=−∞
Jk(I) sin|2π ((fC + kfM ) t) | (3.11)

where Jk are the Bessel functions of the first kind and order k (Fig. 3.8), and k is
the index of sideband. Indices start from 0 in the carrier position fC , and continue in
both directions, which can be observed as a spectral symmetry around fC . Therefore
Bessel function Jk(I) is the amplitude of partial fC + kfM for a particular value of I
(Fig. 3.9).

Figure 3.8. Bessel functions of the first kind and orders (α) from 0 to 3

Figure 3.9. Amplitudes of FM partials in function of a sideband index (Bessel function
order) and a modulation index I (Bessel function argument); lines represent evolution of
partial amplitudes while increasing modulation index; a cross-section along a particular

value of I represents a discrete spectrum with amplitudes of subsequent sidebands
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As can be seen in Figure 3.8, Jα assume not only positive, but negative values as
well. Moreover, Bessel functions of the first kind have the following property

J−n(x) = (−1)nJn(x), for n ∈ Z (3.12)

As an effect, even order Bessel functions have the axial symmetry around x = 0, while
odd order functions have the central symmetry around (x, y) = (0, 0).

Figure 3.10. An impact of inverted phase on a spectrum of FM signal with fC = 3 kHz,
fM = 1 kHz, and I = 5; in (a) some partials have their phases inverted, according to
(3.11), which is represented by negative amplitudes; in (b) partials below f = 0 have their
phases inverted, and in (c) they are reflected above f = 0; in (d) partials with corresponding
frequencies are added, considering phases, and in (e) phase information is disregarded to

display only resultant partial amplitudes
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While negative values of Jα do not affect absolute amplitude values, and as such
are sometimes disregarded, as in Figure 3.7, they affect phases of partials, which is of
consequence when two partials occupy the same frequency, for instance, if one of them
has been reflected from f = 0. Due to this reason in schematic plots of FM spectra
it is common to represent partials with inverted phase, i.e. negative amplitude, by
downward bars, below the frequency axis [116, 470], as in Figure 3.10.

Unlike rapidly varying amplitudes of individual sidebands, the overall FM signal
level varies only to a small degree when modulation index is changed. It is a convenient
property with regards to control over musical dynamics, making an overall signal
level virtually independent from the timbre control. Dynamics of the FM signal may
therefore be controlled by simple adjustments of AC , possibly through an envelope.

Reflected Partials

The FM signal produces an infinite number of sidebands around a carrier fre-
quency. Even though their amplitudes drop below a significant level at some distance
from a carrier frequency, due to bandlimited nature of a digital signal a certain num-
ber of significant sidebands often exceeds lower or upper frequency limit. When this
happens, these sidebands are reflected and their phases are inverted. Usually it is the
lower limit that is exceeded first, as presented in Figure 3.10.

Even though reflected partials make designing a specified timbre more demanding
and less intuitive, the outcome is generally advantageous. Unless partials cancella-
tion occurs in the majority of cases, partials reflected from f = 0 boost lower part
of spectrum, which otherwise would be weaker in comparison to surroundings of fC .
Without reflected partials FM spectrum is symmetric around fC . Breaking this sym-
metry allows to produce more instrument-like sounds.

3.1.1.3. Multiple Carriers and Modulators
A simple FM, with one carrier and one oscillator, is very efficient, yet it allows

quite limited control over produced spectra. In order to provide further control pa-
rameters, and allow to shape the signal in a more detailed way, additional oscillators
are introduced, either as carriers, or modulators.

Inmultiple-carrier FM (MCFM) one common modulator is connected to inputs
of a few carriers (Fig. 3.11). Such arrangement of oscillators produces a spectrum
that is a superposition of spectra of all modulated carriers [470]

u(t) =
N∑
i=1

Awi sin (2πfCit+ Ii sin (2πfM t)) (3.13)

where N is the number of carriers, A ∈ (0, 1] is the amplitude constant, wi are the
weighting coefficients, fCi are the carrier frequencies, Ii are the modulation indices,
and fM is the single modulator frequency. It is common to set fM = fC1 [116, 470].

Since a single carrier-modulator set produces a centred spectrum that can form
a peak, employing a number of such sets MCFM is able to produce spectrum with for-
mant regions, and control each of them separately (Fig. 3.12). Carriers can also have
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separate amplitude envelopes to simulate various decay times in different frequency
regions, which is a typical feature of instrument spectra.

Output

AM fM

AC1 fC1 AC2 fC2 ACN fCN

Figure 3.11. Multiple-carrier FM

Figure 3.12. Spectrum of a three-carrier MCFM signal (bottom plot) with the following
parameters: fM = fC1 = 880 Hz, fC2 = 7040 Hz, fC3 = 12320 Hz, I = 1.5; three top plots

present separate spectra of each of carrier-modulator subsets without weights
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If a few modulators is connected to one carrier, such arrangement is referred to as
multiple-modulator FM (MMFM). Modulators can be connected in parallel or in
series. Both configurations are presented in Figure 3.13.

a)

Output

AC fC

AM1 fM1 AM2 fM2 AMN fMN

b)

Output

AC

fC

AM1

fM1

AMN−1

fMN−1

AMNfMN

Figure 3.13. Multiple-modulator FM in parallel (a) and serial (b) configuration

In case of parallel MMFM the expression for partial frequencies changes from
a simple case of (3.3) to the following form [470]

fP = fC +
N∑
i=1

kifMi , ki ∈ Z (3.14)

where N is the number of modulators. Given two modulators, it can be interpreted as
each of the sidebands produced by the modulator closer to the carrier is becoming an
additional carrier, with its own sidebands produced by the second modulator. Roads
refers to this phenomenon as the explosion in the number of partials [470], since adding
subsequent modulators increases this number exponentially (Fig. 3.14). For compar-
ison, in MCFM number of partials increases linearly with the number of carriers.
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Output signal of the parallel MMFM is given by the following formula [327, 495]

u(t) = AC sin
(

2πfCt+
N∑
i=1

Ii sin (2πfMit)
)

(3.15)

Figure 3.14. Spectra of two-modulator MMFM signals (three bottom plots); first two plots
present a simple FM with one carrier and one modulator, M1 and M2, respectively, with two
different modulation indices I1 and I2; the third plot is a spectrum of parallel MMFM with
modulators M1 and M2; two last plots present spectra of serial MMFM with two possible
oscillator orders; in the fourth, M2 modulates M1, and M1 modulates the carrier, while in

the fifth, M1 modulates M2, and M2 modulates the carrier
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Serial MMFM may produce an immense number of components [470]. Even in
the simplest case of two modulators signal spectrum is complicated – each of carrier’s
sidebands is both, modulated, and a modulator [553] (Fig. 3.14). The signal of serial
MMFM can be produced according to the following nested formula [495, 470]

u(t) = AC sin (2πfCt+ I1 sin (2πfM1t+ I2 sin (2πfM2t+ . . .))) (3.16)

3.1.1.4. Feedback
A simple FM with a pair of oscillators may produce signals with unique spectra

of a ‘synthetic’ quality, but it struggles to reproduce sounds of most of acoustic in-
struments. The problem has two sources. Firstly, the spectrum is symmetric around
fC , but it can be simply remedied by producing partials with ‘negative’ frequencies
and reflecting them back. Secondly, bandwidth of the signal is controlled through the
modulation index, and changes to this parameter cause large fluctuations in partial
amplitudes – a phenomenon that does not occur in acoustic instruments. The second
issue can be solved by introducing feedback.

In the feedback FM (FFM) output signal is fed back into the frequency input.
The simplest configuration utilises only one oscillator (Fig. 3.15) and produces a signal
that can be calculated according to the following formula [470]

u(t) =
∞∑
k=1

2
kβ
Jk(kβ) sin (k2πft) (3.17)

where k is the partial index, Jk are the Bessel functions of order k, and β is the
feedback factor. In one-oscillator FFM the product kβ functions as a modulation
index. It increases with partial index. Additional scaling coefficient 2

kβ is introduced
to decrease amplitude of partials when their indices increase, which can be observed
in spectra presented in Figure 3.16. Due to partial amplitudes decreasing towards
higher frequencies and more predictable behaviour of the spectral envelope with in-
creasing signal bandwidth, FFM is better suited to simulate broader class of acoustic
instrument sounds than a simple FM instrument from Figure 3.1.

Output

A

f

β

Figure 3.15. A feedback FM instrument; parameter β is the feedback factor
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Figure 3.16. Spectra of the one-oscillator feedback FM for various values of feedback
factor β

Output of a one-oscillator FFM can be directed to modulate another oscillator,
with parameter M being the modulation index. Such configuration is referred to
as two-oscillator FFM, and is presented in Figure 3.17a. Example settings of its
parameters are given in Table 3.1. Figure 3.17b presents configuration of a three-
oscillator indirect FFM. It can be utilised to produce non-pitched sounds by setting
f1, f2, and f3 to non-integer ratios.

Table 3.1. Selected parameter values for two-oscillator FFM (Fig. 3.17a) and their
effect, according to Roads [470]

Parameters Effect

M ∈ [0, 2] Monotonically decreasing spectrum

β > 1
Increase in overall amplitude of higher-
order partials – the effect of a variable fil-
ter

M = 1, fC = fM Spectrum of the one-oscillator FFM

fC/fM = 2, M = 1, β varies in [0.09, 1.571] Variation between quasi-sine and quasi-
square
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Figure 3.17. Two-oscillator feedback FM (a) and three-oscillator indirect feedback FM (b)

3.1.1.5. Operators and Algorithms
FM configurations such as MCFM, both variants of MMFM, various FFM arrange-

ments, as well as other multi-oscillator or feedback configurations, commonly referred
to as complex FM, may be presented in a modularised, symbolic manner with the use
of abstractions referred to as operators and algorithms. The operator is a single FM
module. It includes an oscillator, an amplifier, and an envelope generator, as shown
in Figure 3.18. Output of one operator can be connected to a modulation input of
another one. An arrangement of connected operators is referred to as the algorithm.

Most FM synthesizers allowed to use between four and eight operators. A very
popular Yamaha3 DX7 model utilised six-operator algorithms [51], a GS1 model used
eight [485], and an OPL3 chip integrated in various computer sound boards provided
both four, and two-operator algorithms.

3Yamaha patented FM method in 1981 [559].
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Figure 3.18. Elements of an FM operator (a) and its symbol used in synthesizers (b)
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Figure 3.19. FM algorithms: a) a simple FM; b) MCFM; c) parallel MMFM; d) serial
MMFM; e) one-oscillator FFM; f) two-oscillator FFM; g) three-oscillator indirect FFM; h)
additive with feedback; i) pairs with feedback; j) combination; last three algorithms (h–j)

were utilised in the Yamaha DX7 FM synthesizer
Source: author’s elaboration, based on Benson [51]
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Even though with operator-algorithm approach FM synthesis became modular
and potentially very flexible in creating user-defined configurations, the actual syn-
thesizers were more limited. The most popular models only allowed to choose from
some number of factory-set algorithms, e.g. Yamaha DX7 had 32 of them. Figure 3.19
presents algorithms for the basic forms of FM, as well as three of six-operator algo-
rithms of Yamaha DX7. Facilities to create user defined algorithms were limited to
more advanced models.

In actual synthesizers operators have various sets of capabilities. The most com-
mon differences are the number of controlled parameters, such as envelope segments,
and precision of control over their values. In more advanced applications not only
sine oscillators, but other waveshapes are available as well.

3.1.1.6. Simulation of Instruments and Resynthesis
FM synthesis is mostly regarded for its distinctive ‘synthetic’ sound, and less for

realistic reproduction of acoustic instruments. However, there are instructions re-
garding particular parameter values that result in an instrument-like sounds. Chown-
ing [116] lists a few of such sets for a simple FM instrument, as shown in Table 3.2.
In pitched instruments Rf parameter can be slightly detuned from the exact value,
e.g. by 0.5 Hz. It will result in a beating effect. Furthermore, a detuning of Rf can
be controlled by the amplitude or modulation envelope, allowing it to evolve as an
additional timbre-related quality.

Table 3.2. Parameter values for a simple FM instrument that produce instrument-like
sounds, based on Chowning [116] and Roads [470]; modulation index varies in a given

range controlled by the envelope generator

Rf I Instrument

1 [0, 7] Brass-like
3 [0, 2] Woodwinds and organ-like
5 [0, 1.5] Bassoon

1.5 [2, 4] (EG inversed) Clarinet
1.4 [0, 10] Bell-like
1.4 [0, 2] Drum-like
16
11 [0, 25] Wood drum

2 1
2 and other irrational various Various percussive and bell-like

MCFM with two carriers was initially applied to simulate sound of a trumpet and
other brass instruments by Morrill [389]. The first carrier produces the fundamental
and its surroundings, while the second carrier is fixed at the main formant region of
the instrument. With the addition of periodic and random vibrato effect Chowning
was able to apply MCFM to the synthesis of a soprano and bass voice [118, 119].

A simulation of piano sound was produced by Schottstaedt by applying MMFM
with two modulators [495]. Value of fM1 was set very close to the value of fC , in
order to introduce a certain amount of spectral inharmonicity inherent for piano sound
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[67, 27, 47]. As for the second modulator, fM2 ≈ fM1 . Value of modulation index
decreases as fC increases, to simulate simpler spectrum of higher pitched sounds.

Sounds that may be categorised as string-like were produced using MMFM with
three modulators, with frequency-dependent values of particular modulation in-
dexes [495]. A combined MCFM and MMFM method allowed to simulate a deep
bass voice [118, 119].

There is no straightforward way to carry out a resynthesis process using FM
method, and initial attempts at synthesising instrument-like sounds involved manual
trial and error. One of the main problems is the requirement to encode an arbitrary
spectrum, possibly evolving, into a very limited set of parameters. Early works aimed
at estimating parameters for steady state signals [275], for instance, by applying non-
linear analysis based on an extended Kalman filter [463]. Further research led to
solutions involving evolving sounds as well [310, 249], including optimisations based
on genetic algorithms [250, 247, 546, 335, 248]. A block diagram for the evolutionary
FM matching procedure applied by Mitchell [377] is presented in Figure 3.20.

Target sound Analysis Time-frequency
representation

Synthesis Analysis Error calculation

Evolutionary algorithm
(variation and selection)

Fitness function

Figure 3.20. Evolutionary sound matching model
Source: author’s elaboration, based on Mitchell [377]

3.1.1.7. Variants and Derivatives of FM Synthesis
FM With Non-Sinusoidal Signals

In basic FM synthesis implementations it is commonly assumed that carriers and
modulators are sine signals. Even though it simplifies the process of sound production
and makes it more predictable, it is not a requirement. Any signal, either abstract or
sampled, can modulate or be modulated. However, additional spectral components
in carrier or modulator lead to considerable increase in complexity of the resulting
FM spectrum. All partials of a carrier or a modulator take part in modulation, and
may be considered separate sine carriers or modulators. In effect, a large number
of sidebands is produced. Many of them share a common frequency, particularly in
case of harmonic frequency relations. Since Bessel functions of the first kind Jα,
controlling partial amplitudes, can assume negative values, and some partials have
their phase inverted due to being reflected from bandlimits, a complex pattern of
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partial additions and cancellations may emerge. Due to its discrete character, the
same principle applies to a digital bandlimited noise. A relatively simple example is
presented in Figure 3.21.

Figure 3.21. Spectra produced using non-sinusoidal carrier and modulator; in all cases
the sampling frequency fs = 44.1 kHz; plot (a) is the basis for comparison, presenting
FM with sine carrier (fC = 5000 Hz) and sine modulator (fM = 400 Hz), I = 1; in (b)
sine modulator has been exchanged for a square signal (f0 = 400 Hz); in (c) modulator
is sinusoidal (fM = 400 Hz), but the carrier is square (f0 = 5000 Hz); due to sidebands
extending far in both directions, noticeable partial reflections occur on bandlimits, and some
of them produce inharmonic components as a result of chosen fs value; in (d) sine signal is

modulated with bandlimited noise (300–500 Hz), and I = 4

Timoney et al. give the following formula for the FM signal with a sine carrier
modulated by a signal that has a discrete spectrum [553]

u(t) = sin
(

2πfCt+
K∑
k=1

Ik sin (2πkfM t+ φk) + θ

)
(3.18)
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where the modulator is expressed by its Fourier series, K is the number of modulator
partials, Ik is the modulation index of partial k, fM is the fundamental frequency of
the modulator, φk is the phase shift of the partial k, and θ is the carrier phase shift.
Instead of various Ik values, all modulator partials can share a common value I.

When a sine signal modulates a carrier that has a discrete spectrum, the expression
for a resulting signal assumes the following form [553]

u(t) =
K∑
k=1

sin (2πkfCt+ I sin (2πfM t) + φk) (3.19)

Formula (3.18) can be rewritten using Bessel functions to indicate individual par-
tials in the resulting signal [495, 327]

u(t) =
∑
kK

. . .
∑
k1

(
K∏
l=1

Jkl(Il)
)
sin

(
2πfCt+

(
K∑
l=1

kl (2πlfM t+ φl)
)

+ θ

)
(3.20)

Timoney et al. proposed a software implementation of (3.20) that does not require
nested loops, can be generalised, and may be applied in a distributed processing
environment.

Exponential FM

In majority of cases FM synthesis is implemented in a digital form. An analogue
implementation is also possible, however it leads to an issue regarding frequency
scale. In analogue synthesizers VCO commonly responds to a one-volt-per-octave
protocol, which assumes linear dependence between the voltage and musical interval
in 12-TET system4. Such approach makes the relation between the voltage, which is
a control signal, and the frequency exponential [470]. Therefore, if one analogue VCO
modulates another, output signal of a modulator causes a carrier VCO to oscillate by
an equal interval above and below the carrier frequency, which makes the modulation
exponential with regards to the frequency. Hence the analogue variant of FM synthesis
is referred to as exponential FM.

The consequence of exponential relation between the modulator output and carrier
input is shift of the centre frequency. It leads to the auditory effect of pitch detun-
ing. The pitch rises with increasing modulation index. The relation was studied by
Hutchins, who presented the formula for exponential FM signal [258]

u(t) = sin
(

2πI0 (VM ln(2)) fCet+
( ∞∑
k=1

2fC
kfM

Ik (VM ln(2)) sin (2πkfM t)
))

(3.21)

which is a multi-component complex FM signal, where VM is the time-varying
component of the modulation signal voltage V (t) = V0 + VM cos(2πfM t), and
fCe = fC exp(V0ln(2)).

412-tone equal temperament is a musical instrument tuning system that defines a frequency ratio
of 2 as an octave interval, and divides this interval into 12 equal semitone intervals, each having
frequency ratio of 12√2.
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Therefore the actual carrier frequency changes to

fE = fCeI0 (VM ln(2)) (3.22)

while the frequency deviation of each term k is expressed by

Dk = 2fC
kfM

Ik (VM ln(2)) (3.23)

Hutchins suggested a number of solutions to the pitch-detuning problem that may
be introduced in analogue implementation, such as adding an external logarithmic
amplifier to the modulator output. Timoney and Lazzarini further studied the prob-
lem for virtual analogue applications [551].

Phase Distortion

While Yamaha commercialised FM synthesis and patented its particular imple-
mentation, the phase modulation [117], another manufacturer attempted to develop
an alternative. Casio experimented with implementing the phase distortion (PD)
technique [262], which may be regarded as a subset of phase modulation or FM
method [554].

In basic PD a table-lookup sine oscillator is scanned with a ratio that varies over
a cycle. A phase increment that indexes a sine lookup table is therefore modulated,
but in PD carrier and modulator are synchronised per cycle. In Casio implementation
phase transforms, also referred to as phase distorters, are piecewise linear functions.
Such function for modulating cosine into a sawtooth waveform takes the following
form [554]

φmod(t) = (1− 2P )π (saw(t, P ) + 1)
2 (3.24)

where P ∈ (0, 1) is the part of cycle in which the sawtooth is increasing. The sawtooth
is given by saw(t, P ). The function is scaled and shifted to fit between 0 and (1−2P )π.
The result for three different values of P is presented in Figure 3.22.

In comparison to simple FM, PD produces spectra that are more linear, hence it
can be more easily adapted to simulate spectra of analogue synthesizers or acoustic
instruments. However, it is also regarded as less flexible than FM [470].

Further Derivatives

The computational efficiency of FM synthesis makes it a convenient element or
basis for other synthesis methods. Slater used cross-coupled FM oscillators in an
approach referred to as chaotic FM synthesis [514]. The method produces sounds
that can vary from basic sine waveforms, through complex discrete spectra, to coloured
noise. Interestingly, contrary to most FM synthesis methods, chaotic FM may be
conveniently applied in analogue form.

Adaptive FM synthesis (AdFM) [326] proposed by Lazzarini et al., is an at-
tempt to address an issue of control inherent to FM synthesis. When FM synthesizer
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is controlled by a physical, instrument-like controller, it is difficult to determine ap-
propriate mapping of gestural control onto synthesis parameters. In AdFM a carrier
is modulated by an arbitrary, real-world input signal. Phase modulation is achieved
either by using delay lines or heterodyning. Since there is no implicit control over
a frequency of the arbitrary signal, it needs to have its parameters estimated before
being used as a modulator, to keep required value of Rf . By combining FM with
signals of acoustic instruments AdFM can produce hybrid natural-synthetic sounds.

Figure 3.22. Top plot presents the phase distortion function that produces sawtooth-like
waveform, according to (3.24); middle plot is the PD output for three values of P ; bottom

plots are the spectra of produced PD signals

Symmetry of FM signals spectra is inconveneint in musical applications. The
issue has been addressed by Palamin et al. [424], who proposed modified FM formu-
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las for producing asymmetric spectra, more typical for acoustic instruments. Such
spectra may also be obtained using one of the following AdFM techniques [325]:
single-sideband AdFM, asymmetric AdFM, or the split-sideband method. The last
technique, which is an extension to heterodyne AdFM, is the most flexible among
the three.

A modified FM method may be utilised as a source of bandlimited signals for
digital subtractive synthesis. The implementation presented by Timoney et al. is
based on the following modified FM formula [552]

u(t) = e(I cos(2πft)−I) cos (2πft) (3.25)

where I is the modulation index, and f is the single frequency. The formula yields
quasi-bandlimited pulses (Fig. 3.23). Pulses may be used to build other signals.
A sawtooth is produced by integrating pulses and centring the result through DC
blocking filter. For a square waveform (3.25) is modified by doubling the frequency in
exponent, which results in bipolar pulses. The waveform is produced by integrating
pulses. Further integrating yields a triangle. Timoney et al. studied the behaviour of
such generators and observed, that in case of f0 ≈ 262 Hz produced spectrum begins
to significantly differ from the ideal digital signal only around 20th harmonic.

Figure 3.23. Bandlimited pulse signal with 440 Hz frequency, produced by (3.25) for three
values of modulation index I (top), and its spectrum for I = 10 (bottom)
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3.1.2. Waveshaping
When the efficiency in producing simple to handle time-varying spectra is a key

objective, waveshaping synthesis may be a solution. The synthesis process involves
applying a distortion function to a sound signal. If the function is non-linear, the
output signal obtains additional harmonic components. Since FM synthesis shares
a similar principle, both are sometimes referred to as distortion synthesis methods.

While in analogue audio nonlinear distortions, if not applied on purpose, might
by considered a negative phenomena, there was some initial work by Schaeffer [492]
indicating ways to utilise the effect for possible musical purposes. First digital appli-
cations of the waveshaping synthesis were presented by Arfib [18] and LeBrun [328].

The most basic digital implementation of the principle consists of a sine oscillator,
an amplitude envelope generator, and a shaping function, also referred to as transfer
function, in a form of data array (Fig. 3.24). Signal from the oscillator has its
amplitude altered by the EG, and the resulting signal value is used as an index to
read output signal value from a waveshaping array. Essentially, the process is limited
to multiplication and table lookups, which makes it extremely efficient.

A On/Off f

Output

Waveshaper

Oscillator
Index value

Figure 3.24. Simple waveshaping instrument with key elements indicated

In general, the waveshaping synthesis may be expressed as [155]

uout(t) = w (uin (t)) (3.26)

where w is the shaping function. If the amplitude of the input signal is controller
through an envelope α(t), (3.26) changes to

uout(t) = w (α (t)uin (t)) (3.27)

In practical applications an initial oscillator is not required to produce sine signal
– any signal may be used. In order not to exceed indices of array that stores values
of shaping function, it is commonly assumed that the signal has to be limited to
a range of [−1, 1]. A shaping function maps input values uin[n] to output values
uout[n] within the same range (Fig. 3.25). While it is not a part of waveshaping
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process, the output signal is often further processed using elements of other synthesis
methods, such as modulation.

-1

0

1

-1 0 1-0.4

-0.4

Input

Output

w

Figure 3.25. A principle of shaping function; here the shaping function w (thick gray line)
maps its input to output without changes (uout = uin)

Source: author’s elaboration, based on Roads [470]

3.1.2.1. Shaping functions
Virtually any function may serve as a shaping function (Fig. 3.26), as well as any

data, assuming that it can be limited and stored in a one-dimensional array. In a triv-
ial example a shaping function may simply pass input signal as output (Fig. 3.26a).
It can as well apply various effects to the input signal, such as inversion (Fig. 3.26b),
attenuation (Fig. 3.26c), or clipping (Fig. 3.26e,f).

Adjusting amplitude of the input signal makes use of various parts of a properly
designed shaping function, allowing a sound timbre to be controlled in turn. For
instance, one might simulate a sensitivity to amplitude characteristic for acoustic
instruments, where distortions start to appear with larger amplitudes, by applying
a shaping function that is linear around zero, and distorted towards ends, such as
one in Figure 3.26h. Furthermore, an amplitude envelope applied to the input signal
results in time-varying spectra. Finally, even more flexibility may be attained by
adding a variable offset to the input signal, thus utilising separate parts of a shaping
function that do not have to be placed around zero [580].

It is possible to obtain an arbitrary harmonic spectrum by designing a shaping
function as a linear combination of the Chebyshev polynomials of the first kind [18,
328]. The polynomials (Fig. 3.27) are defined by the following recurrence relation

T0(x) = 1
T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x)
(3.28)

and have a convenient property

Tk(cos θ) = cos(kθ) (3.29)

Therefore, if Tk is used as a shaping function for a cosine input signal that has
a frequency f , it produces a cosine output with frequency k × f , or k-th harmonic
of the input signal.
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An arbitrary linear combination of Chebyshev polynomials

w(u) =
K∑
k=1

akTk(uin) (3.30)

where K is the stipulated number of harmonics, and ak is the coefficient of the poly-
nomial Tk within the combination, used as a shaping function produces a spectrum
with the amplitudes of harmonics defined by coefficients ak. Since only a required
number of polynomials is used to design a shaping function, the resulting signal is
bandlimited.

Figure 3.26. Examples of shaping functions; each pair of plots depicts a shaping function
(left) and output signal it produces (right) out of a single period of sine as input; input
values are presented on x-axis, output on y-axis, both in range of [−1, 1]; the functions
include: a) identity; b) inversion; c) attenuation; d) scaled absolute value; e) expansion of
low signal levels and clipping of high levels; f) clipping; g) combined from several functions;

h) amplitude-sensitive distortions (distorted only at higher amplitudes)
Source: author’s elaboration, based on Roads [470] and Tolonen et al. [557]
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Figure 3.27. First six Chebyshev polynomials of the first kind

3.1.2.2. Amplitude Control
Apart from the simplest cases of shaping functions, such as presented in Fig-

ures 3.26a–c, the amplitude of input signal does not define output signal amplitude
in a direct way, but controls its spectrum instead. It has some impact on the output
amplitude due to various parts of shaping function being utilised, though the relation
between input and output amplitude may be complicated, and the output amplitude
may strongly vary with changing spectrum.

In order to make amplitude and spectrum control independent, it is convenient
to normalise output signal, so that additional amplitude control may be applied in
a further stage of processing. Normalisation may be loudness, power, or peak-based,
with the latter being the simplest to implement [470]. In peak normalisation another
data array is utilised to store amplification coefficients for every possible value of input
signal amplitude, i.e. for all values that may be produced by input signal amplitude
envelope. These coefficients are applied to the output signal (Fig. 3.28).

A On/Off f

Output

Shaping functionNormalisation function

Figure 3.28. Waveshaping instrument with peak normalisation
Source: author’s elaboration, based on Roads [470]
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3.1.2.3. Variants of Waveshaping
Being a simple and efficient method, waveshaping synthesis can also be relatively

easily modified or expanded. The most straightforward way is to apply some kind
of postprocessing to the output signal, such as a filter or a modulator [470]. De Poli
proposed a variant referred to as frequency-dependent waveshaping [155] which
through a form of filtering allows to separately control phases and amplitudes of har-
monics. In a different attempt Beauchamp applied a highpass filter [43] which allowed
him to synthesize brass-like sounds by mimicking damping behaviour of brass pipes.

Modifications can also be applied to the input signal, before the shaping func-
tion. It had been already attempted in initial works, where either the sum of several
cosines or a frequency modulated signal were applied to produce inharmonic spectra
or formant structures [18]. In a different approach, input may be a sampled sound.
It produces the effect of a hybrid between the original and synthetic sound.

Linear combination of Chebyshev polynomials is a convenient shaping function if
a well-defind static harmonic spectrum is to be produced. Though it is only one pos-
sibility, and in an extreme case a shaping function can be even drawn by hand [91]. In
fractional waveshaping Da Poli experimented with a rational shaping function [155]
that can produce spectral envelopes that are exponential or similar to damped cosine,
which results in a formant-like structure. The function can also vary over time. It
can be efficiently implemented by storing larger array and using its sections that start
at addresses indicated by a changing pointer [470].

Redundancy that is the effect of a sine function symmetry can be exploited to
further vary output signal by applying separate transfer functions for each quarter-
cycle of the input signal, as shown in Figure 3.29. Thus the symmetry of input signal
is not transferred to output signal. Such technique is referred to as quarter-cycle
waveshaping [485] and allows to produce more varied output waveforms out of the
same basic sine input.

Figure 3.29. Quarter-cycle waveshaping; in each quarter of the input signal cycle a different
shaping function is applied, and the output is concatenated

Source: author’s elaboration, based on Russ [485]
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Freed applied complex arithmetic to formulate a generalised approach to wave-
shaping analysis and implementation [194]. While it may not be a variant of method,
it provides some advantages, e.g. ability to control separate harmonics without con-
structing the Chebyshev expansion. Finally, a simple arrangement of input signal and
shaping function may be expanded by applying a number of such subsets to simu-
late spectra of existing instrument sounds [44] in a form of resynthesis. A recurrent
structure may be designed, where the first subset provides the first approximation of
the signal, which is then subtracted from the original spectrum to yield a residual.
The second subset repeats the procedure using residual as a signal. The scheme can
be iterated to refine the result.

3.1.3. Non-Standard Methods

The common assumption regarding sound synthesis is its goal to be mimicking
selected aspects of traditional instruments – either their sounds, or their behaviour
and usage. However, it is not always the case. A group of methods, referred to as
non-standard synthesis methods breaks these traditional bonds. Instead, according
to Holtzman, they consist of instructions describing a sound, without reference to
a superordinate model [243, 179]. Standard methods, in contrast, are deemed to
describe a sound using an acoustic model which is simulated during the process.
Roads classifies synthesis methods as non-standard if they are designed to produce new
electronic sounds, while standard methods either simulate traditional instruments, or
are based on similar principles [470].

3.1.3.1. Waveform Segment

In waveform segment synthesis individual signal samples are connected into larger
sound structures of various levels: waveforms, sections, or even entire musical pieces.
The process is carried out entirely in a time domain. Spectral structures arise as
a result of temporal structures and operations performed in time domain.

Waveform interpolation may be utilises as a synthesis technique. Various
interpolation methods can be applied, such as nearest neighbour, also referred to
as piecewise constant, linear, exponential, logarithmic, half-cosine, or polynomial, in
order to connect endpoints and breakpoints [470], Each of these points is defined by
a pair of coordinates. A new waveform may be produced from two source waveforms
by their weighted interpolation. The weight may be controlled through an envelope.
Spectral properties of interpolated waveforms, including non-uniform interpolation,
were studied by Bernstein and Cooper [57]. Mitsuhashi presented a way to control
amplitudes of n2 harmonics by altering ordinates of n breakpoints [379].

Brün designed the SAWDUST system that manipulates amplitude points while
creating a hierarchy of waveforms, up to a whole musical piece [72]. The elements are
manipulated using operations such as concatenation, looping, mixing, and varying.

Another interactive system able to manipulate waveforms and organise them in
hierarchies is the SSP designed by Koenig and implemented by Berg [52]. It is based
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on serial music selection principles [304, 305] such as alea, series, ratio, tendency,
sequence, and group [470].

The direction chosen in SAWDUST and SSP has been explored further in the
instruction synthesis [467]. In this technique the data loses all references to sound
or acoustics, and is simply a sequence of abstract binary values. Operations performed
on the data are not specifically oriented towards signal processing, but are purely
logical computer instructions. In some early implementations, such as PILE [53],
they are modelled on the assembly programming language [488], i.e. they cover very
basic, low level operations such as addition, bitwise conjunction and disjunction, loop,
or branch. It is also possible to produce random values. In the end, values are treated
as signal samples and the whole sequence is considered an output signal. Even though
in PILE instructions are executed in a virtual machine, the process is very efficient
due to a character of data and instructions. A different approach was proposed by
Holtzmann [244], where a user worked with a high level program generator, which in
turn produced short synthesis programs.

3.1.3.2. Graphics Synthesis

The idea behind graphics synthesis is to generate acoustic signal on the basis of
a picture, or convert a sound into a picture, edit it as such, and convert it back to
sound [470]. First attempts at such technique date as early as 1920s [462]. In case of
digital sound initial experiments with controlling it using graphics were carried out
by Mathews and Rosler [357].

Since there is no universal principle regarding the conversion between a sound
and a picture, the technique is widely open to experiments. Among many possible
approaches, graphical data may control various aspects and parameters of generated
signal, and can utilise different sound production mechanisms. Actually, the graph-
ics synthesis may be considered more a control interface for a synthesizer than the
synthesis engine itself. However, the results often demonstrate distinct qualities, par-
ticularly with hand-drawn images. Not unlike granular synthesis, graphics synthesis
operates on a level different than most of other synthesis methods. Instead of gener-
ating separate sound events representing notes, it is often utilised to produce larger
sound structures, and even whole musical pieces.

Early image-related techniques implemented in analogue instruments were based
on photoelectric signal generators. They utilised a transparent medium, such as an
optical disc or a film, containing a phonogram, i.e. an image of a waveform [470] which
formed a ‘track’ with varying transparency. The conversion involved applying a light
source on one side, and a light detector on the other side of a medium (Fig. 3.30).
Depending on varying opacity while the medium was shifting or rotating in relation
to the light source, various amount of light was getting to the detector which in turn
produced a signal. The actual implementations varied, but a general principle has
been applied in a large number of commercial instruments, from Cellulophone and
Superpiano in 1920s, through Welte Light-Tone Organ in 1930s, to Optigan [81] and
Orchestron in 1970s. In 1940s the method was used by McLaren, who drew waveforms
directly on the optical soundtrack to produce synthetic sound for films [361].
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Figure 3.30. Conversion of an audio signal represented by a one-dimensional image on
a transparent medium; movement of the medium changes transparency of its part positioned
over the aperture, resulting in variations of light stream reaching a light detector, which in

turn produces an electric signal

The next step in graphics synthesis was to move from a simple waveform-like
sound representation to a more abstract, parametric approach. Oramics Graphic
System designed by Oram in 1957 [170, 415] allowed to draw control functions for an
analogue synthesizer, including frequency, amplitude, and filter settings, as well as
magnitude of vibrato and tremolo effects. Even though Oramics shared basic technique
with the approach used by McLaren, having ten synchronised strips of a transparent
sprocketed film and its rich control abilities, it may be considered a kind of fairly
advanced sequencer. Other synthesizers allowed different forms of medium to be
utilised, such as paper and conductive ink [462]. In 1979 a rudimentary graphics
synthesis has been implemented in a digital commercial synthesizer Fairlight CMI
Series I, where a user was able to draw waveforms by hand on a computer screen
using a lightpen [485]. However, graphical control data was already evolving into
forms resembling a sonogram [470], and basic approach with one-dimensional control
functions has been gradually abandoned.

Early, simpler forms of graphics synthesis, based on transparent media and con-
verters similar to that shown in Figure 3.30 applied a direct approach of converting
light intensity to some immediate synthesis parameter, such as frequency or ampli-
tude. Further development, with a notable example of Oramics, led to ‘reversing’
the process of displaying a control signal on cathode ray tube display of an oscil-
loscope, allowing to draw various shapes of control functions on films. Yet, such
association of sound and image is still a very basic one. Advancements are possible
through implementation of digital technique with computers, high resolution colour
displays, graphics tablets, and – more recently – small computing devices equipped
with touchscreens, serving simultaneously as both, graphical input and output de-
vice. Computers allow to introduce complex middle layers of interpretation, which in
turn can be exploited to experiment with approaches much more flexible than simple
graphical representations of control functions.

A general discussion over the relation between a graphics and a sound, or
more specifically between graphical form and auditory event, has been given by
O’Sullivan [422], who also developed a controller for the graphical sound synthesis
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aimed at exploring cross-modal perceptual analogies. He seeks the relationship uni-
versal enough not to require grounding in music theory or cultural conventions to
understand. Some clues as to general principles of such relationship may be found
in the phenomenon of synaesthesia, and colour-mapping problems that resulted from
experiments carried out by Scriabin who designed the keyboard of light. O’Sullivan
mentions brightness, size, and some shape-related characteristics as image quantities
more agreeably assigned to particular sound qualities. While designing cross-modal
mappings, such as auditory interpretation of an image, three strategies may be con-
sidered [481]. One-to-one is the simplest, the least expensive, and intuitive, but
less expressive. Divergent, where one input controls several outputs, is less intuitive
in controlling sound, while convergent mapping requires some training, but may be
more expressive than one-to-one approach. Even though these strategies were ini-
tially aimed at gesture control, they can be applied in graphics synthesis as well,
through associations between gestures and shapes. As of sound and image features,
O’Sullivan experimented with simple relations, such as coordinate or distance to fre-
quency, size to amplitude, as well as with more complex, such as line curvature to
frequency modulation index, or irregularity to inharmonicity.

Experiments with graphical control over synthesis process, such as described by
O’Sullivan, grant insights into issues of association between image and sound, yet
they are still rooted in a traditional understanding of a controller, which is simply
a means to produce events representing notes. A move from analogue to digital made
graphics synthesis more flexible and allowed it to evolve from a simple synthesizer
controller to a composition environment. Various systems have been developed, such
as the UPIC (Unité Polyagogique Informatique de CEMAMu) created at the Centre
d’Etudes de Mathématique et Automatique Musicales (CEMAMu) with participation
of Xenakis [611]. UPIC utilises a large graphics tablet connected to a computer with
a vector display. A sound is produced at two levels [470]. Firstly its microstructure
is designed by drawing waveforms and envelopes, with computer able to perform in-
terpolation between manually entered points. Secondly, a time-frequency structure,
referred to as a score page, is created by drawing lines, or arcs. Data processing
characteristic for graphical data may be applied, such as moving or stretching of in-
dividual elements, copying, cutting, and pasting. In early versions drawing on the
tabled produced the result on screen immediately, but generation of a sound signal
took considerable amount of time. Due to usage of faster computer, later improve-
ments allowed to play edited page in real-time, thus making UPIC a performance
instrument [354].

3.1.3.3. Motion-Driven Synthesis

Graphics control applied to sound synthesis leaves a distinct footprint. Particu-
larly some features of hand-drawn images, such as certain kinds of irregularity, may
lead to audible and characteristic effects. In a similar manner sound synthesis may
be driven by motion data. The data can originate from video, but other sources are
becoming increasingly more accessible, bringing different kinds of motion sensors, i.e.
infra-red based, or relying on accelerometers.
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Large amount of work has been carried out in the area of video-related motion-
driven synthesis, geared towards application in computer animation, video games, or
virtual-reality [100]. Even though most of the research work aims at synthesising
sound effects and ambient sounds, there is also a number of musical implementations.
[226, 376].

Mishra and Hahn [376] proposed a methodology to map sounds to motions, and
a system that applies this methodology to produce soundtracks. Motion control sys-
tem supplies the data which is filtered, and mapped to musical constructs, producing
either a digital score or a real-time performance. Figure 3.31 presents how sound
and image production pipelines are bound to generate synchronised visual and au-
ral output. Mapping is carried out at two levels: local, or intra-stream, and global,
inter-stream. The former is applied to internal sound structures. The latter binds
streams together by attaching global constructs. Depending on sound structures that
are to be utilised different methods may be applied, such as timbre-trees [226] or
musical constructs.

Image Sound

Sound
rendering

Attach
rendering
nodes

Composition
Alternative
inter-stream
processing

Timbre tree
parameters

Data
filtering

Alternative
intra-stream
processing

Sound mappingImage
pipeline

Motion
parameters

Motion

Figure 3.31. Integration of sound and motion; the first stage of sound mapping is applied
on a level of internal sound structures, the second is responsible for binding streams together

Source: author’s elaboration, based on Mishra and Hahn [376]

Motion parameters vary depending on application. Position and orientation, as
well as joint angles can be obtained through kinematic techniques, such as keyframing.
If a motion is based on physical simulations additional data may be acquired, such as
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response to collision events. Virtual reality sets may also add data regarding gesture
or locomotion. Mishra and Hahn propose [376] that if the music produced is to consist
of a number of parts, some may be driven by a direct position, some by computed
velocities, and others by acceleration. Filters are applied to produce required number
of parts from available number of data streams.

When motion is used to drive production of sound effects, mapping motion param-
eters to sound parameters should correspond with real physical interaction. Though
when the system is applied to producing music, the mapping is abstract. Depend-
ing on exact sound production method various parameters describing internal sound
structure may be available. As of generalised constructs usual music-related data can
be controlled, including pitch and amplitude, as well as effects-related parameters,
such as pitch-bend, delay, or reverberation.

3.1.3.4. Noise Modulation
It is usual for distortion synthesis to utilise periodic waveforms, e.g. a sine, or

quasi-periodic, such as sampled instrument sounds. However, it is also possible to
modulate a periodic waveform using a filtered noise in a technique referred to as the
noise modulation. Such approach is possible in amplitude and frequency modulation
as well as in waveshaping synthesis.

a)

Output

Lowpass filter

Noise generator
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Output
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Figure 3.32. Noise modulation instruments in AM (a) and FM (b) configuration; param-
eter M controls the depth of modulation, and fc is the filter cut-off frequency

Source: author’s elaboration, based on Roads [470]

In digital implementations noise is produced as a series of random numbers by ran-
dom number generator (RNG). Earlier computer systems were only able to generate
random numbers through computational algorithms. Results of such algorithms are
sometimes referred to as pseudo-random numbers. The algorithms produce periodic
sequences of numbers. Pseudo-random sequence should have a very long period, so
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that the periodicity is not manifested in produced data. Moreover, it should have
no apparent internal pattern and, depending on projected application, shall pass at
least some statistical tests for randomness [597]. One of the most common pseudo-
random number generators (PRNG) is the linear congruential generator (LCG)
[301, 203], where

Xn+1 = (aXn + c) mod m (3.31)

where m is the modulus, a is the multiplier, and c is the increment. All three values
are integer numbers, and m > 0, 0 < a < m, 0 ≤ c < m.

The formula is recursive, and in order to begin generation of random numbers some
initial value of X0, referred to as seed, has to be chosen. Each time a generator is
started and different random sequence is required, a different seed has to be provided.
There may be a problem with source of new, random seeds in deterministic system.
Various computer systems solve it differently, e.g. by providing a virtual device that
gathers environmental noise from device drivers and other sources into an entropy
pool. A crude solution is to base seed on selected bits of current system time, read
with possibly high precision.

Selection of modulus, multiplier, and increment determines qualities of LCG, e.g.
length of its period. Valuem−1 determines the maximal length of produced sequence,
but it is only attainable under certain circumstances. The Hull–Dobell Theorem [257]
states, that LCG has a full period for all seed values if and only if:
• m and c are relatively prime5,
• a− 1 is divisible by all prime factors of m,
• a− 1 is divisible by 4 if m is divisible by 4.

Particular compilers utilise different values of m, a, and c (Tab. 3.3). Some ready
to use sets of parameters for multiplicative LCGs, which are the subset of LCGs, of
different sizes and good performance with respect to the spectral test are presented
by L’Ecuyer [329]. LCGs produce numbers which plotted in two or more dimensions
form lines or hyperplanes. Spectral test compares the distance between planes, which
in good generators should be small [301].

Apart from PRNGs random numbers may be produced using physical methods.
Some computer systems may allow to source random values from e.g. a thermal noise,
a radio noise, or a clock drift. Due to better efficiency of PRNGs than RNGs based
on physical phenomena, in speed-constrained applications the latter are good seed
sources for algorithmic PRNGs such as LCGs. In musical applications chaotic noise
can also be produced by some synthesis methods, particularly granular and modula-
tion synthesis. Generally, for the purpose of sound synthesis statistically acceptable
white noise may not always be the best choice. In some cases alternative methods can
be considered. Such methods may produce distributions of random numbers different
then usual uniform, or even introduce some forms of complex internal patterns, which
would be regarded as undesired in other applications of RNGs.

In noise modulation lowpass-filtered signal from PRNG controls the amplitude
or frequency of the oscillator (Fig. 3.32). The result depends largely on the filter

5Two numbers are relatively prime if the only positive integer that divides both of them is 1.
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cut-off frequency (Fig. 3.33). For values below 20 Hz the effect may be considered
an aleatoric tremolo or aleatoric vibrato. If cut-off frequency falls within an acoustic
range the effect of modulation is a band of noise centred around carrier frequency.

Figure 3.33. Effect of a 220 Hz sine carrier modulated using filtered noise with various
cut-off frequency value (fc): a) waveform of amplitude-modulated signal with fc = 15 Hz;
b) AM with fc = 1000 Hz; c) FM with fc = 15 Hz; d) FM with fc = 1000 Hz; the remaining

plots (e–h) present respective spectra

In the waveshaping synthesis noise may be added to a shaping function to change
the instantaneous signal amplitude. In the simplest case a varying amount of white
noise can be added to a shaping function (Fig. 3.34a-b). Like in noise modulation
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the noise may be filtered beforehand (Fig. 3.34c). Amount of noise may also depend
on the input signal amplitude (Fig. 3.34d), which allows to control a content of noise
in the output signal.

Table 3.3. Examples of parameter values commonly used in linear congruential gen-
erators (3.31)

Used in m a c

ANSI C 231 1103515245 12345
GCC/glibc 231 − 1 1103515245 12345

Borland C/C++ 232 22695477 1
Java and rand48 in POSIX and glibc 248 25214903917 11

Figure 3.34. Waveshaping functions with random component; each pair of plots is a shap-
ing function (left side) and output signal it produces (right) from a single period of a sine
as input; in each case the linear shaping function served as a base, and the noise compo-
nent was: uniform with 10% amplitude (a), uniform with 40% amplitude (b), uniform and

low-pass filtered with 20% amplitude (c), increasing with higher amplitudes (d)

3.1.3.5. Stochastic Waveform Synthesis
Musical applications of stochastic techniques have a long history. Most are cen-

tred around composition [340, 274, 15, 16, 611], but there is a number of works that
describe application of probability distributions, fractals, and other stochastic tech-
niques in sound synthesis [598, 509, 611, 470].

Majority of sound synthesis techniques attempt to design complex sounds through
modification and combination of simple elements, such as periodic functions. Accord-
ing to Xenakis [611] it may be considered as adding ‘disorder’, and there is an alter-
native way: to start with random, disordered elements, and add ‘order’ in a form of
constraints. Xenakis proposed a set of strategies regarding dynamic stochastic wave-
form generation [611, 470]. As a starting point, probability distributions may be used
directly to create waveforms. Probability functions may be multiplied by themselves
or combined through addition. Samples can be produced by treating amplitude and
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time as random variables that may bounce between elastic boundaries. There may be
a hierarchy or chain of probability functions, where results produced by one function
are passed to another, where the last function in the chain produces samples. Finally,
such hierarchy may also assume forms more complex than simple chains.

Stochastic waveform synthesis is applied, and combined with interpolation synthe-
sis, in the GENDY program [509]. The program works with a waveform represented
as a polygon that is bounded between amplitude and time boundaries. Signal sam-
ples are calculated by linear interpolation between polygon vertices. Vertices are
calculated according to various stochastic distributions, and subsequent waveforms
are stochastic variations on previous ones – vertices are repositioned. If during this
variation a vertex would cross a boundary, a mirror condition is applied, and it is
reflected back. Such constraints have an effect on sound timbre if amplitude bound-
aries are applied, due to introduction of discontinuity into a waveform, and pitch
effect in case of time boundaries. Multiple mirror conditions applied together allow
to produce vibrato and tremolo effects.

3.1.3.6. Cellular Automata Synthesis
Musical sounds often manifest various forms of patterns, either in spectral or

temporal representation. Patterns can be observed in structures on various levels,
from elements of a single sound, to whole musical pieces. Therefore it was only
natural to attempt at applying cellular automata (CA), known for ability to produce
complex structures, as a means to experiment with creating new sounds [371], as well
as organising sounds into larger musical structures [58, 368, 370, 372, 240].

CA were initially intended as a tool for computational modelling geared towards
studying self-reproducing and self-organising mechanisms [120]. They are dynamic
systems, implemented as arrays of elements, usually one or two-dimensional, although
higher number of dimensions may also be encountered. A single element is referred
to as cell. Cells are subject to transition rules that determine future state of a given
cell considering states of its neighbouring cells. All cells are updated simultaneously,
so that a whole array evolves in parallel steps. Hence CA may be regarded as existing
in a discrete space, represented by an array, and in a discrete time, measured in
subsequent steps of evolution. As such, they can be conveniently applied in a digital
sound synthesis.

In more sophisticated implementations cells can represent some complex process-
ing units, however it is common that a state of a cell is represented simply by an
integer number. Class of such cells is referred to as p-state CA, since their possible
states are 0, 1, 2, . . . , p− 1 [374].

An initial state of cells within an array may be set manually, randomly, or ac-
cording to some assumed rules. In subsequent time steps the arrangement of cells
in an array evolves, and various patterns emerge, depending on initial arrangement
and transition rules. In order to observe this behaviour an array is often presented as
a graphical map, where cell states are represented by indexed colours. An example
set of transition rules for binary6, one-dimensional, nearest neighbour CA, which is

6In this case ‘binary’ means a two-state cell that can assume either value of 0 or 1.
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the simplest case of CA, is presented in Figure 3.35. When cell arrangement is two-
dimensional and CA is of nearest neighbour type, usually either four or eight adjacent
cells are regarded as neighbours. The former is referred to as von Neumann neighbour-
hood, and the latter – Moore neighbourhood (Fig. 3.36). It is possible to consider
not only nearest cells, but extended neighbourhood as well, which is controlled by
range parameter r. In case of the nearest neighbour CA r = 1.

Figure 3.35. An example of a complete set of transition rules for a binary, nearest neigh-
bour one-dimensional cellular automaton; filled cell represents state 1, and empty – state 0

Source: author’s elaboration, based on Miranda [374]

a) b)

Figure 3.36. Types of two-dimensional neighbourhood: a) von Neumann; b) Moore;
nearest neighbours of crossed cell are represented in gray

The array is usually finite. In order to avoid edge problems either border cells have
constant states or the array is considered to have a toroidal arrangement, also referred
to as periodic boundary conditions, i.e. top and bottom cells are neighbours, as well
as rightmost and leftmost cells. In a two-dimensional periodic array of size X×Y von
Neumann nearest neighbours of cell (0,0) are: (1,0), (0,1), ((X−1),0), and (0,(Y −1)).

For the purposes of sound synthesis one-dimensional CA are particularly impor-
tant due to a straightforward way they can be interpreted – as an evolving waveform
or spectrum. Wolfram extensively studied their properties [609]. In case of the near-
est neighbours CA eight different arrangements of a cell and its nearest neighbours
(Fig. 3.35) lead to 256 possible transition rules. More generally, a total number of
possible automaton rules is expressed as

RN = pp
2r+1

(3.32)

where p is the number of cell states, and r is the range. Each set may be assigned
with a code

Cf =
(2r+1)(p−1)∑

n=0
pnf(n) (3.33)
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where f is the single argument function that specifies the cellular automaton rule

a
(t)
i = f

 j=r∑
j=−r

αja
t−1
i+j

 (3.34)

where a(t)
i and a(t−1)

i are current and previous cell states, and αj are integer constants.
If all constants αj = 1, the state of a cell depends on the total of its neighbours only,
while their particular configuration is irrelevant. Such rules are referred to as totalistic.
Figure 3.37 presents examples of evolution resulting from applying rules presented in
Figure 3.35 to a various initial array arrangements.

Figure 3.37. Examples of a one-dimensional, nearest neighbour binary CA with transition
rules given in Figure 3.35 applied to three different initial array arrangements; the horizontal
axis represents a series of subsequent time steps of the evolving array located on the vertical
axis; top example begins with a single cell, middle and bottom – with two different random

arrangements; after some time all three cases produce a similar pattern

Wolfram proposed to divide CA into four classes, according to their behaviour
(Tab. 3.4). Langton studied the connection between computation and phase tran-
sition using CA [316]. He introduced parameter λ that allows to predict general
properties of a pattern produced by CA and classify it as fixed, cyclic, complex, or
chaotic. In sound synthesis λ allows to estimate auditory result of particular CA rules.

Miranda [374] mentions three examples of CA that have been applied in sound
synthesis: Game of Life, Crystalline Growths, and Chemical Oscillator. The basic
variant of Game of Life, invented by John Conway, is a binary, two-dimensional,
nearest neighbour CA with Moore type of neighbourhood [55]. State 1 is referred to
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as a ‘live’ cell, and 0 as a ‘dead’ one. The original rules are presented in Table 3.5.
They are sometimes abbreviated as ‘B3/S23’, where ‘B’ symbolises number of alive
neighbours required for birth, and ‘S’ stands for number or numbers of alive neigh-
bours required for survival. Other numbers result in death of a cell. Game of Life
allows to observe various patterns that can expand, freeze, die out, change shape,
oscillate, travel, or produce another patterns. Interesting patterns are given names,
such as glider or lightweight spaceship for travelling structures, blinker, toad, or pulsar
for oscillators, die hard for a Methuselah kind of structure that evolves for a large
number of periods, and finally dies out, or glider guns for structures that periodically
produce gliders.

Table 3.4. Classes of one-dimensional CA according to Wolfram [609]; a code defines
rules according to (3.33); class IV automata require either range parameter r > 1, or

number of states p > 2

Class Evolution result Codes

I Homogeneous state 0, 4, 16, 32, 36, 48, 54, 60, 62

II A set of separated simple stable or pe-
riodic structures 8, 24, 40, 56, 58

III Chaotic pattern 2, 6, 10, 12, 14, 18, 22, 26, 28, 30, 34,
38, 42, 44, 46, 50

IV Complex localised structures 20, 52

Table 3.5. The original rules for Game of Life CA [55]; future state of a cell depends
on its current state and the sum of states of its eight neighbouring cells

Description Cell state Sum of neighbours New cell state

Birth 0 3 1
Death by overcrowding 1 ≥ 4 0
Death by exposure 1 ≤ 1 0

Survival 1 2 or 3 1

Crystalline Growths is a two-dimensional CA [160]. It is non-binary, i.e. assumes
a larger number of states represented by colours. The transition rule is, that a cell
in state k dominates its neighbours in state k − 1. These neighbours assume state k
in the next period. A cell that is dominated can at the same time dominate another
cells. The rule is periodic, therefore a cell in the lowest state zero dominates cells
in the highest state p − 1. Crystalline Growths evolves into stable, patchwork-type
patterns [374].

Gerhardt et al. [204] introduced an automaton for modelling a Be-
lousov–Zhabotinskii chemical reaction. It was adapted by Miranda [372, 374] in the
Chemical Oscillator (ChaOs) to produce patterns associated with oscillatory neuronal
activity. Cells in ChaOs represent neurons. A cell can be in a quiescent state, also re-
ferred to as polarised, in one of n depolarisation states, or in fired state. Cells interact
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through a flow of ‘electric current’. A state of a cell is characterised by threshold val-
ues Vmin and Vmax. A cell remains quiescent if its internal potential Vi < Vmin. When
Vmin ≤ Vi < Vmax a cell is being depolarised. Each cell has a capacitor k and two re-
sistors r1 and r2. Resistors attempt to maintain Vi < Vmin. If they fail a cell becomes
polarised. Polarisation increases in subsequent time steps with a rate controlled by
the capacitor. Once Vi = Vmax a cell is fired and will be restored to quiescent state
in the following time step. ChaOs cells are usually arranged in two-dimensional ar-
rays with Moore type of neighbourhood and are updated simultaneously according
to the following rules

mx,y(t+ 1) =



⌊
A

r1

⌋
+
⌊
B

r2

⌋
if mx,y(t) = 0⌊

S

A

⌋
+ k if 0 < mx,y(t) < p− 1

0 if mx,y(t) = p− 1

(3.35)

where b·c is the integer part of the value, mx,y(t) is the state of a cell, x and y are the
cell coordinates, A is the number of fired neighbours, B is the number of depolarised
neurons, and S is the sum of the states of all the neighbours. ChaOs evolves into
oscillatory cycle of patterns.

Several attempts have been made to develop synthesis systems based on CA. One-
dimensional binary CA has been applied by Orton et al. [417] in granular synthesis.
Kreger [308] modified sound spectra using binary one-dimensional CA to control filter
coefficients in resynthesis. Another granular implementation of CA was presented by
Vaidhyanathan et al. [566]. More synthesis systems based on CA were presented
by Burraston [88].

One of the most straightforward applications of CA in sound synthesis is the
Linear Automata Synthesis (LASy) proposed by Chareyron [112]. It may be con-
sidered as a variant of evolving table lookup methods, such as the Karplus–Strong
algorithm [286]. These methods share a general principle of periodic reproduction of
samples stored within a one-dimensional array. Unlike in wavetable method, stored
signal samples are subjected to modifications.

Production of a sound event starts with filling the array with initial data, usually
random. Once initialised, array is read in cycles to produce sound samples. In each
read cycle array is modified through some feedback function (Fig. 3.38). Karplus–
Strong uses a lowpass filter, while LASy applies a set of CA rules. Each signal sample
represents a single cell in one-dimensional array of automata. Transition rules are
applied after each read cycle to modify cell states, thus leading to evolution of the
signal produced. In most cases the fastest evolution occurs in earlier stages, while
later periods tend to stabilise. However, it depends on the choice of transition rules
and assigned class of CA (Tab. 3.4). Particularly chaotic class produce interesting
complex sounds with unpredictable spectra. It has to be considered though, that
the method has limited control capabilities and prediction of the auditory results is
difficult.
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Feedback algorithm

Noise generator

Figure 3.38. In Linear Automata Synthesis CA are utilised as a feedback algorithm to
modify samples in a time-varying lookup table

Source: author’s elaboration, based on Miranda [374]

While LASy applies CA in a table lookup synthesis, Chaosynth (Fig. 3.39) employs
ChaOs automata to control parameters of oscillators producing grains for a granular
synthesizer [374]. Parameters controlled by CA are the frequency and the amplitude.
Each grain is produced by summing output of several oscillators, able to generate
signals such as sine, square, sawtooth, or bandlimited noise. One time step of CA
evolution produces a single grain. While typically states of a cell are represented by
colours, in Chaosynth they are associated with particular frequency and amplitude
values. A single cell state represents both values at the same time. These values are
defined by a user.

Decoding states
of sub-array 1

Decoding states
of sub-array N

Averaging
amplitudes

Averaging
frequencies

Averaging
amplitudes

Averaging
frequencies

OSC1 OSCN

Output

Figure 3.39. Chaosynth produces sonic grains by utilising two-dimensional array of ChaOs
CA, divided into N sub-arrays, to control amplitude and frequency of N oscillators; each

time step of the automata evolution produces a single grain
Source: author’s elaboration, based on Miranda [372]
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ChaOs arranges cells in a two-dimensional array. Chaosynth subdivides this ar-
ray into a number of uniform sub-arrays. Each sub-array controls a single oscillator
(Fig. 3.39). Control value is defined as an arithmetic mean of all cell states within
a sub-array. Thus even with relatively low number of possible cell states it is possible
to obtain much finer parameter resolution by averaging over a larger number of cells
with different values. Synthesis process may be controlled either by changing prop-
erties of the system, or values of its parameters. Properties are the size of array and
sub-arrays, as well as choice of the oscillator signals. Parameters include frequency
and amplitude values mapped to cell states, and quantities related to ChaOs CA,
controlling transition rates, i.e. r1, r2, and k. Even though Chaosynth is more flex-
ible in its control possibilities compared to LASy, it is still difficult to predict and
describe auditory effect of its synthesis process. Some attempts have been made at
establishing taxonomy for these new categories of sounds [374].

3.1.3.7. Waveset Distortion

The waveset distortion technique, introduced by Trevor Woshart [373], may bear
some similarity to granular synthesis. Like granular synthesis it also transforms a sam-
pled sound by the means of fragmentation and rearrangement. However, the concept
differs in the fragmentation approach. Waveset distortion divides a sound recording
into units referred to as wavecycles. A wavecycle is a sample segment between two
subsequent zero crossings. Groups of wavecycles are referred to as wavesets.

The principle of waveset distortion synthesis relies upon performing particular
operations over wavecycles or wavesets [373]. The first group of operations is aimed
at montage. It includes addition and removal of wavecycles in a waveset. It is also
possible to substitute selected wavecycles with other waveforms or silence periods,
as well as interleave wavecycles of two different sounds. The second group involves
modulation of either wavecycles, or whole wavesets. Another kind of operation is
the application of amplitude envelope on a wavecycle level. The final group are the
permutations of wavecycles.

3.1.3.8. Sequential Waveform Composition

Selected principles of the instruction synthesis and the stochastic waveform
method were mixed in a technique of sequential waveform composition described
by Chandra [111] and Miranda [373]. In this technique signal is assembled in a time
domain out of segments grouped into sequences, referred to as states, which are re-
peated to obtain required sound duration. Pitch is controlled by changing a state
duration, while characteristics of timbre depend on features and order of segments
within a state.

There are three types of segments, named wiggle, twiggle, and ciggle, as described
in Table 3.6 and presented in Figure 3.40. While wiggle and twiggle are simple linear
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sequences, the ciggle is curved, thus requiring three points to define, and is given by
the following polynomial [111]

y(x) = y1 + (x− x1)

−y1 + y2

−x1 + x2
+

(x− x2)
(

y1 − y2

−x1 + x2
+ −y2 + y3

−x2 + x3

)
−x1 + x3

 (3.36)

where (x1, y1) is the start point, (x2, y2) is the peak point, and (x3, y3) is the end
point. If required, a segment may be slanted (Fig. 3.40b) to start with a sample
value that ended a previous segment, preventing from discontinuities in signal values.
It is possible to introduce new segment types besides the three described by Chandra.

Table 3.6. Types of segments in sequential waveform composition, according to Chan-
dra [111]

Name Description Parameters

Wiggle A stream of signal samples of the
same value Sample value, number of samples

Twiggle A peak in sample values with linear
slopes

Sample value at the base, sample
value at the peak, number of samples,
peak position

Ciggle A twiggle with curved slopes Polynomial parameters x1, x2, x3, y1,
y2, y3, as in Eq. 3.36

A state is composed by firstly, defining segments that are to be utilised, and
secondly, by specifying their order, with possible multiple occurrences. If, for example,
defined segments include two wiggles (w1 and w2), and three ciggles (c1, c2, and c3),
the following sequence is one of the possible states: [c3, c1, c3, w1, w2, c1, c2]. If
a pitched sound is to be produced, a total state duration needs to have a fixed value,
which in the simplest case corresponds to a period of produced signal

Ns =
⌊
fs
f0

⌉
(3.37)

where Ns is the number of samples within a state, fs is the sampling frequency, f0 is
the stipulated fundamental frequency, and b·e is the nearest integer.

Sequential waveform composition allows to produce evolving spectra (Fig. 3.40g)
by specifying transformations applied to variables from Table 3.6. Transformation
of a variable is defined by four values: initial, maximal, minimal, an rate. When
a signal is produced a variable is set to its initial value. With each repetition of
a state immediate variable value is increased by a rate, up to the point of reaching
a maximal value. Thereafter it is reset to a minimal value, and a cycle repeats.
Chandra points out [111] that interesting effects may be obtained by altering variables
synchronously, or in some special relation, such as following the harmonic series, or
being relatively prime.
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Figure 3.40. Examples of sequential waveform composition; plots a–c present three cases of
a single state lasting 100 samples, plots d–f present their respective spectra (fs = 44100 Hz);
(a) uses only wiggle segments, (b) makes every second wiggle slanted, while (c) supplements
wiggles with two twiggles and a ciggle, as denoted by red characters; the last example (g)
presents an evolving signal, with segments 2 and 3 altering their lengths and level, and

segment 5 altering level only

3.1.3.9. Neural Audio Synthesis

One of more recent sound synthesis techniques is founded on principles and facil-
ities of deep learning methods, that are beginning to find their way into various
areas of art-related research, including music creation. The neural audio synthesis,
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presented by Engel et al. [182], is a data driven approach to sound synthesis. In-
stead of relying on either various arrangements of usual synthesizer elements such as
oscillators, filters, and amplifiers, or on sound production algorithms with a well de-
fined principle of operation, neural audio synthesis implements deep neural networks
(DNNs) that process large-scale set of audio data.

The method may be regarded as a mixture of two synthesis approaches: an
analysis-resynthesis and a cross-synthesis. The output it produces is based on anal-
ysis of sampled sounds, which in majority of cases are musical instruments, with
addition of some animal or otherwise environment-related sounds. Two such samples
are combined into an interesting, and often unforeseen, mix of features of both.

Neural audio synthesis is based on two foundations: the NSynth large-scale
dataset, and the WaveNet-like [582] autoencoder. DNNs train better when supplied
with a large amount of high-quality data, therefore the NSynth dataset has been cre-
ated. It consists of 306043 recordings of musical notes performed using 1006 separate
instruments, each note with a defined pitch, timbre, and envelope, acquired from com-
mercial sample libraries [182]. Samples last four seconds, where the note is held on
for three, and the remaining one second is released. Recordings are monophonic, with
fs = 16 kHz. Pitches range over MIDI notes 21–108, and are sampled at five different
velocities (25, 50, 75, 100, 127), however not all instruments were able to produce
all combinations. Samples are attributed with annotations that are either based on
human evaluation, or are the result of heuristic algorithms. The first annotation type
is the source, either acoustic, electronic, or synthetic. The second assigns a sound to
a particular family, such as bass, brass, organ, string, etc. The last one is a set of tags
that define certain qualities, such as bright, dark, distortion, fast decay, long release,
multiphonic, non-linear envelope, percussive, reverb, or tempo-synced.

The WaveNet is a generative approach to probabilistic modelling of a raw acoustic
signal, and is based on the design of van den Oord et al. [582], where the next
signal sample is predicted from a fixed-size input of prior sample values by a a stack
of dilated convolutions. It attempts to capture longer term structure by learning
temporal hidden codes. Solution presented by Engel et al. does not require external
conditioning. A temporal encoder uses an input waveform to produce an embedding
(a mathematical representation) Z = f(x). The input is causally shifted and fed into
the WaveNet decoder. The decoder reproduces the input with a joint probability of
signal x [582]

p(x) =
N∏
i=1

p (xi|x1, . . . , xN−1, f(x)) (3.38)

Given two recordings, the autoencoder extracts 16 temporal features of each, and in-
terpolates them linearly to create new embeddings. The embeddings may be regarded
as semantically meaningful hidden representation of sound features. They serve as
high-level control data that manipulates tone, timbre, and dynamics. When decoded,
they produce a sound that combines qualities of both input sounds.

Generative model implemented in the neural audio synthesis is able to fuse various
aspects of the input instruments, and often yields perceptually interesting reconstruc-
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tions. The output can capture expressive aspects related to timbre and dynamics of
either of component signals, yet the result may be fairly distinct from any of input
recordings. It has a tendency to exaggerate behaviour related to amplitude modula-
tion. While the NSynth consists of separate notes, the method is somewhat capable
of reproducing note transitions when supplied with sequence of pitch, dynamics and
timbre data. It has to be considered though, that the technique, with regards to musi-
cal sound synthesis, is relatively new, and requires further research. In a manner that
is becoming increasingly popular, and could accelerate method development, many
of its elements, including the NSynth dataset, are well documented, open and easily
accessible, allowing to perform independent tests or embed them in other projects.

3.2. Physical Modelling Methods

The majority of synthesis methods are focused on the sound itself. In their core
they deal with sound either as a signal with its properties and parameters, or as
a purposefully evoked auditory sensation with certain attributes. In either way they
aim at designing a sound. Unlike them, physical modelling methods aim at designing
a sound source, and specifically a source that simulates working principle, behaviour,
and last but not least, way of controlling a musical instrument. They allow to use
a virtual counterpart of existing or possible to conceive instrument that operates as
a mathematical model based on physical description of the real object. The model
predicts the output sound, while its inputs are designed to represent instrument con-
trols and parameters [526].

Actually, one of the primary advantages that make physical modelling synthesis
particularly appealing is a fact that its parameters are closely related to instrument
control gestures [61], and thus meaningful for a performer. It may be exploited
by pairing a synthesizer with a controller that mimics the actual instrument, e.g.
violin-like, or trumpet-like, thereby allowing a performer to employ playing skills and
experience acquired with a real instrument to produce an expressive performance.
The remaining parameters of a model are intuitive as well, and correspond to physical
features of an instrument, such as its geometry and material properties.

Contrary to sampling, which is able to produce realistic results only in response to
separate, discrete excitation that simply triggers playback of a sound sample, physi-
cal modelling methods deal equally well with continuous control, such as bowing or
blowing [526]. This makes them particularly suitable for real-time live performance,
with direct human control, but may cause difficulties in automatic control, e.g. in
sequencers. In such cases simulation of an instrument needs to be accompanied by
simulation of a performer to fill-in a continuous control stream between a discrete
sequence data.

Due to character of its control parameters and because a model simulates an inter-
nal state of an instrument, physical modelling synthesis has a unique property of pro-
ducing broad selection of additional sound effects, including note-to-note transitions
and various phenomena related to specific performance techniques, such as multi-
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phonics in wind instruments. If a model is designed in elaborate detail, they need not
be considered and simulated as separate cases, but will emerge if certain combination
of input parameters is met. One of such phenomena is the re-excitation [526] which
causes small, though audible alterations to sound produced when a vibrating string
is struck again. More generally, physical modelling introduces interaction between
a performer and an instrument.

Access to internal state of an instrument model leads to more control dimensions.
For instance, in case of a string it is possible not only to adjust excitation force, but its
spatial distribution and location as well. A simulated string may be plucked, struck
or bowed at any point which changes output sound accordingly. Similarly, any point
or combination of points within a model may be considered its output.

The idea of applying physical modelling techniques to synthesize sound of musical
instruments is not new. Initial studies had been carried out by Ruiz [484], and more
followed [235, 236, 29]. However, numerical modelling can be computationally ex-
pensive if a model involved is supposed to demonstrate realistic qualities. Therefore,
unless some serious simplifications had been employed, physical modelling synthesis
was difficult to implement in real-time applications, thereby missing its greatest ad-
vantage. In consequence, initial development was aimed at finding efficient methods,
but later progress in computer technology, such as adaptation of multi-core central
processing units as well as general-purpose computing on graphics processing units
(GPGPU) [530, 254, 440, 63] provided enough processing power to carry out experi-
ments with more general methods to simulate much subtler physical and auditory
effects.

Physical modelling methods employ simplified instrument models that omit many
properties of real objects they simulate. Therefore when the aim of a synthesis process
is to obtain very close resemblance to a particular existing instrument, it may be hard
to precisely replicate its timbre through modelling only. In such cases model data
can be supplemented with measurements of the original object. Smith refers to such
technique as structured sampling [526]. Like in signal sampling, a selected quantity
is measured over some dimension, but it does not have to be acoustic pressure wave
in time. Instead, an impulse response of an instrument body or similar data can be
obtained to use with a model and bring its output closer to the original.

Although initially physical modelling synthesis was aimed at simulation of acoustic
instruments only, over time it has been employed to model circuits of electroacoustic
instruments and analogue synthesizers as well. The latter technique is referred to as
virtual analog [573, 570, 149]. One may also attempt to create models of instruments
that do not exist. An obvious reason would be to test if some hypothetical designs
demonstrate required properties before building a real instrument. This, however,
involves models much more complete and detailed than commonly used in sound syn-
thesis [3]. Models of such complexity require far too much processing time to serve as
a viable base for synthesis, even non real-time. On the other hand, playable models of
non-existing instruments may directly serve as a means to produce new sounds, either
by some new design decisions, or by allowing real-time control mechanisms impossi-
ble in real instruments, e.g. related to geometry or material. Still, even such models
retain the fundamental advantage of physical modelling synthesis: parameters con-

197



trolled by a performer are related to some understandable physical features, therefore
are intuitive and meaningful. According to Bilbao [61] physical modelling methods
applied to produce sounds not corresponding to recognisable physical objects may be
referred to as quasi-physical synthesis. The concept has been presented in works
of Djoharian [166] or Leonard and Cadoz [333], and earlier suggested by Roads [470].

Modelling of a musical instrument for the synthesis purposes might be carried out
using a number of methods. The most important difference between them concerns
selection of physical phenomena they simulate and simplifications they employ. As
a result, methods commonly referred to as physical modelling synthesis may markedly
differ in complexity and requirements for processing capabilities. Some of them may
require a laborious model design process. So far the most successful approaches in-
clude lumped models, modal synthesis, waveguide synthesis, various hybrid methods,
and direct numerical simulations [470, 61, 526]. They make an extensive use of finite
difference method (FDM) for solving differential equations, digital waveguides and
digital filters for efficient modelling of various wave propagating structures [145], as
well as modal techniques with Fourier decomposition as a bridge between additive
synthesis and physical modelling.

3.2.1. Finite Difference Approximation
A musical instrument may be modelled with a set of partial differential equations.

In a digital domain such equations can be approximated with finite differences. In the
finite difference method (FDM) a spatial domain is restricted to a grid consisting
of a finite number of points [61]. At these points values of a numerical solution are
calculated and recursively advanced through discrete time steps. FDM is straight-
forward and may be applied to a variety of systems, linear as well as non-linear. In
each time step a state of a system is known at any point of a grid, which allows to
freely choose and change observation points. An immediate accessibility to any part
of a model is crucial for the purpose of real-time synthesis, where a performer inter-
acts with a model through some form of physical controller. Following a controller
state, a state of a model is changed accordingly, and instantly. The main concern of
the method is to ensure its numerical stability, which has been extensively researched
and discussed by Bilbao [61].

Sound synthesis with FDM starts with a choice of modelled object, such as a string,
a pipe, a bar, a membrane, a plate, etc. Depending on the object, an appropriate
governing equation has to be chosen, and such choice is made on the basis of musical
or structural acoustics. Many cases start with the wave equation and supplement it
with additional terms that model some desired properties of the target object, like
dumping or coupling with other objects. Due to digital nature of a model, a differential
equation has to be approximated with a difference equation, which is reshaped into
a finite difference scheme. A scheme allows to compute value of a solution in
a given grid point, using its current, and some number of its previous values, as well
as values obtained from points within its neighbourhood. Boundary conditions affect
a scheme at some number of points on grid edges, while initial conditions determine
values for the whole grid in a number of initial time steps. The model is ‘played’ by
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applying excitation either in a form of another coupled distributed model, or – more
often – a lumped element. In some applications excitation may even be simulated
by a sampled data array.

To a large extent, the entire FDM section of this book is based on the book
of Bilbao [61], in which he presented and thoroughly analysed a comprehensive set
of difference operators used to design finite difference schemes for sound synthesis,
along with numerous examples. Among other works related to the subject, the basic
theory of the method has been discussed by Strikwerda [538], while a brief, simplified
approach has been presented by Adib [5]. Another concise compendium on FDM in
acoustics with some directions on scheme design can be found in works of Kristiansen
and Viggen [309], and various paths of arriving at solution have been described by
Causon and Mingham [106].

3.2.1.1. Temporal Operators
A continuous function of time u(t) is approximated in discrete points u(nT ) with

a time series u[n], where integer n is the time index. T is the sampling period, or
sampling interval

T = 1
fs

(3.39)

where fs is the sampling frequency.
The fundamental operation on a time series is the shift. Shift operators are applied

to the whole time series. They are defined as [61]

et+u[n] = u[n+ 1] (3.40)

et−u[n] = u[n− 1] (3.41)
The former is a forward shift operator, and the latter – the backward shift. The
identity operator is defined as [61]

1u[n] = u[n] (3.42)

and it may be multiplied by a scalar.
While designing certain types of FD schemes, accuracy-affecting effects of various

operators may be compensated with averaging operators that approximate identity
operation [61]

µt+ ,
1
2(et+ − 1) ∼= 1 (3.43)

µt− ,
1
2(1 + et−) ∼= 1 (3.44)

µt· ,
1
2(et+ + et−) ∼= 1 (3.45)

The first derivative operators may be approximated as follows [61]

δt+ ,
1
T

(et+ − 1) ∼=
d
dt (3.46)
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δt− ,
1
T

(1− et−) ∼=
d
dt (3.47)

δt· ,
1

2T (et+ − et−) ∼=
d
dt (3.48)

Due to temporal relations of time series it operates on, (3.46) is referred to as the
forward difference approximation, (3.47) as the backward, and (3.48) as the centred
difference approximation.

Basic operators defined in (3.43)–(3.48) can be combined to form other approxi-
mations, such as the second derivative

δtt , δt+δt− = 1
T 2 (et+ − 2 + et−) ∼=

d2

dt2 (3.49)

or a composition of averaging operators, which itself is also an averaging operator

µtt , µt+µt− (3.50)

as well as any other combination, e.g. µt+δt−, or µt+µt·δt·. In some cases it can be
advantageous to use a linear combination of operators, such as [61]

αδt+ + (1− α)δt− (3.51)

where α is the parameter that can assume any real value.
Forward and backward difference operators defined in (3.43), (3.44), (3.46), and

(3.47) have a temporal width of two, requiring two adjacent time steps for approxi-
mation (Fig. 3.41). They are first-order accurate [61]. Centred operators (3.45) and
(3.48) as well as the second derivative approximation operator (3.49) span three time
steps, thus they have a temporal width of three, and are second-order accurate. In
most sound synthesis applications higher than second-order accuracy does not lead
to perceptible gains, but strongly impacts performance. Therefore use of operators
with temporal width larger than three is rare [61].

n− 1

n

n+ 1

δt+ δt− δt· µt+ µt− µt· δtt

Figure 3.41. Temporal width of basic operators, assuming they operate at time step n
Source: author’s elaboration, based on Bilbao [61]

3.2.1.2. Spatial Operators

Grid

Real musical instruments often assume complex geometric forms, yet not all their
elements are equally relevant with regards to sound production mechanism. For the
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synthesis purposes it is common to simulate only these elements, that are directly
involved in sound production. Many of them can be modelled as one-dimensional
(1D) or two-dimensional (2D) structures represented on grids.

A 1D grid function ul[n] approximates continuous function u(x, t) at position
x = lX and time t = nT , where X is the spatial sampling interval, or grid spacing
(Fig. 3.42).

n− 2

n− 1

n

n+ 1

n+ 2

l − 3 l − 2 l − 1 l l + 1 l + 2 l + 3

Time
step

Grid index

X

T

Figure 3.42. A grid for simulation of 1D elements; X is the spatial sampling interval, and
T is the temporal sampling interval

2D elements can be conveniently simulated in Cartesian (x, y) or polar (r, θ) co-
ordinates (Fig. 3.43). Both systems are related by the following expressions

r =
√
x2 + y2

θ = arctan y
x

(3.52)

Xθ
Xr

Figure 3.43. A single time frame of a 2D spatial grid in polar coordinates with spatial
intervals Xr and Xθ
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A grid function ul,m[n] in Cartesian coordinates approximates continuous function
u(x, y, t) at position x = lXx, y = mXy, and time t = nT , where Xx and Xy are
spatial sampling intervals in x and y dimension, accordingly. In polar coordinates
a grid function ul,m[n] represents continuous function u(r, θ, t) at position r = lXr,
θ = mXθ, and time t = nT . While in some cases intervals Xx and Xy may be equal7,
intervals Xr and Xθ are generally different (Fig. 3.43).

1D Spatial Operators

Temporal shift operators applied to a grid do not differ from et+ and et− defined
in (3.40) and (3.41). They span over the entire grid, i.e. all values of spatial and
temporal indices l and n, though they modify temporal index only. The same ap-
plies to operators approximating time derivative and identity, based on et+ and et−,
minding that on a spatial-temporal grid δt+, δt−, δt·, and δtt approximate partial
time derivatives.

A set of new operators is required to handle spatial dimension. Forward and
backward spatial shift operators are defined as [61]

ex+ul[n] = ul+1[n] (3.53)

ex−ul[n] = ul−1[n] (3.54)
Spatial averaging operators are analogous to temporal operators [61]

µx+ ,
1
2(ex+ − 1) (3.55)

µx− ,
1
2(1 + ex−) (3.56)

µx· ,
1
2(ex+ + ex−) (3.57)

and spatial derivative operators assume similar forms as well [61]

δx+ ,
1
X

(ex+ − 1) ∼=
∂

∂x
(3.58)

δx− ,
1
X

(1− ex−) ∼=
∂

∂x
(3.59)

δx· ,
1

2X (ex+ − ex−) ∼=
∂

∂x
(3.60)

δxx , δx+δx− = 1
X2 (ex+ − 2 + ex−) ∼=

∂2

∂t2
(3.61)

Although it is uncommon to use higher than the second time derivative in sound
synthesis, in more realistic models higher spatial derivatives may be encountered [61]

δxxxx , δxxδxx = 1
X4 (ex+ex+ − 4ex+ + 6− 4ex− + ex−ex−) ∼=

∂4

∂t4
(3.62)

7Such simplification, where Xx = Xy = X is reasonable and common in isotropic problems.
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Some models require approximations of mixed derivatives, such as ∂3

∂t∂x2 . Appro-
priate operators are constructed by combining simpler operators. In this case two
variants are of particular interest [61], i.e.

δt−δxxul[n] = 1
TX2 (ul+1[n]− 2ul[n] + ul−1[n]−

− ul+1[n− 1] + 2ul[n− 1]− ul−1[n− 1])
(3.63)

δt·δxxul[n] = 1
2TX2 (ul+1[n+ 1]− 2ul[n+ 1] + ul−1[n+ 1]−

− ul+1[n− 1] + 2ul[n− 1]− ul−1[n− 1])
(3.64)

Expressions (3.63) and (3.64) present mixed operators applied to a grid function ul[n].
The important difference is the use of forward, i.e. unknown future values n + 1 in
(3.64) (Fig. 3.44). Such operators lead to implicit schemes that involve linear system
solution techniques, but often result in better behaving, more stable models.

a)

n− 1

n

n+ 1

l − 1 l l + 1

T
im

e
st
ep

Grid index

b)

n− 1

n

n+ 1

l − 1 l l + 1

T
im

e
st
ep

Grid index

Figure 3.44. Stencils of two variants of operators approximating mixed spatial-temporal
derivatives: δt−δxx (a) and δt·δxx (b); black dots symbolise grid points used for approxima-

tion, and a gray circle indicates the approximated point

2D Spatial Operators

Two-dimensional spatial shift operators in Cartesian coordinates assume the fol-
lowing form [61]

ex+ul,m[n] = ul+1,m[n] ey+ul,m[n] = ul,m+1[n]
ex−ul,m[n] = ul−1,m[n] ey−ul,m[n] = ul,m−1[n]

(3.65)

Shift operators are used to define forward, backward and centred difference operators
approximating the first spatial derivative in Cartesian coordinates [61]

δx+ ,
1
Xx

(ex+ − 1) ∼=
∂

∂x
δy+ ,

1
Xy

(ey+ − 1) ∼=
∂

∂y

δx− ,
1
Xx

(1− ex−) ∼=
∂

∂x
δy− ,

1
Xy

(1− ey−) ∼=
∂

∂y

δx· ,
1

2Xx
(ex+ − ex−) ∼=

∂

∂x
δy· ,

1
2Xy

(ey+ − ey−) ∼=
∂

∂y

(3.66)
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Two-dimensional averaging operators, as well as operators approximating second
derivatives ∂2

∂x2 , ∂2

∂y2 , ∂2

∂x∂y , and other combined operators are defined in a similar
manner.

In polar coordinates shift operators are given by [61]

er+ul,m[n] = ul+1,m[n] eθ+ul,m[n] = ul,m+1[n]
er−ul,m[n] = ul−1,m[n] eθ−ul,m[n] = ul,m−1[n]

(3.67)

which leads to the following forms of difference operators approximating spatial deriva-
tives [61]

δr+ ,
1
Xr

(er+ − 1) ∼=
∂

∂r
δθ+ ,

1
Xθ

(eθ+ − 1) ∼=
∂

∂θ

δr− ,
1
Xr

(1− er−) ∼=
∂

∂r
δθ− ,

1
Xθ

(1− eθ−) ∼=
∂

∂θ

δr· ,
1

2Xr
(er+ − er−) ∼=

∂

∂r
δθ· ,

1
2Xθ

(eθ+ − eθ−) ∼=
∂

∂θ

(3.68)

Apart from operators approximated by (3.66) and (3.68) two derivative operators
working in two spatial dimensions are crucial for physical modelling synthesis. The
first is the Laplacian, in Cartesian coordinates defined as

∆u = ∂2u

∂x2 + ∂2u

∂y2 (3.69)

and in polar coordinates

∆u = 1
r

∂

∂r

(
r
∂u

∂r

)
+ 1
r2 + ∂2u

∂θ2 (3.70)

The second is the bi-Laplacian, also referred to as the biharmonic operator [61]

∆∆u = ∂4u

∂x4 + 2 ∂4u

∂x2∂y2 + ∂4u

∂y4 (3.71)

For the purpose of sound synthesis Laplacian in Cartesian coordinates is usually
approximated using a five-point operator that either uses grid points adjacent to the
centre [61]

δ∆� = δxx + δyy (3.72)

or uses grid points adjacent diagonally [61]

δ∆� = δxx + δyy + X2

2 δxxδyy (3.73)

Both can be combined into a nine-point operator with a free parameter α [61]

δ∆α = αδ∆� + (1− α)δ∆� (3.74)
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which might be adjusted to control isotropy. Similarly, various approximations of
bi-Laplacian are possible, from a basic one

δ∆�∆� , δ∆�δ∆� (3.75)

to more elaborate parametrised combinations. Stencils of Laplacian and bi-Laplacian
approximations are presented in Figure 3.45.

a) b) c) d)

Figure 3.45. Stencils of three variants of operators approximating Laplacian, δ∆� (a), δ∆�

(b), and δ∆α (c), and an approximation of bi-Laplacian δ∆�∆� (d); black dots symbolise
grid points used for approximation, and a gray circle indicates the approximated point

Discrete approximation of the Laplacian in polar coordinates may be given by [61]

δ∆◦u = 1
r
δr+ ((µr−r) δr−u) + 1

r2 δθθu (3.76)

where δθθ = δθ+δθ−. A different form is required for a centre point, where l = 0 [61]

δ∆◦u0,0 = 4
NθX2

r

Nθ−1∑
m=0

(u1,m − u0,0) (3.77)

where Nθ is the total number of grid points with the same radius8.
Bi-Laplacian in polar coordinates can be approximated using the following dif-

ference operator [61]

δ∆◦,∆◦ul,m = δ∆◦δ∆◦ul,m 2 ≤ l ≤ Nr − 2 (3.78)

Again, a different form is required at the grid centre (l = 0) and in points around
it (l = 1) [61]

δ∆◦,∆◦u0,0 = 16
3NθX4

r

Nθ−1∑
m=0

(u2,m − 4u1,m + 3u0,0) (3.79)

δ∆◦,∆◦u1,m = 4
NθX2

r

Nθ−1∑
m=0

δ∆◦u1,m − δ∆◦u0,0 (3.80)

8The domain is periodic, i.e. looped in the θ dimension, thus grid points with indices m and
(m mod Nθ) are the same.
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Points Beyond Grid

Difference operators make use of values in adjacent points to calculate approxima-
tion at some grid location. Examples of stencils are shown in Figures 3.44 and 3.45.
However, a grid is finite and on or near its ends, depending on stencil, some required
points do not exist. Such values have to be obtained using boundary conditions. The
conditions depend on modelled element, but some very common and simple cases are
conditions of Dirichlet type and Neumann type.

A good example is the operator δxx approximating second derivative in 1D (3.49),
used in many finite difference schemes based on the wave equation. When applied to
a grid function ul it uses locations (l − 1), l, and (l + 1)

δxxul = 1
X2 (ul+1 − 2ul + ul−1) (3.81)

If the domain size is N , then the grid contains elements [0, 1, . . . , N − 1]. Approxi-
mations for grid points in the range of [1, . . . , N − 2] are easily obtained, but in l = 0
and in l = (N − 1) locations from outside grid, l = −1 and l = N respectively, are
required. Bilbao refers to such points as virtual or image grid points (Fig. 3.46).

a)

u−1 u0 u1 uN−2 uN−1 uN

0 0

Grid
x

b)

u−1 u0 u1 uN−2 uN−1 uN

Grid
x

Figure 3.46. Points beyond grid, or virtual grid points, required by a second spatial
derivative difference operator δxx; gray box and black dots represent a 1D spatial grid and
grid points; operator stencil for points u0 and uN−1 on both grid ends is marked with black
frames; gray dots represent virtual points; in (a) values outside grid are set to 0, according
to Dirichlet conditions; in (b) values are copied from appropriate points inside, according to
Neumann conditions with first derivative approximated by centred difference operator δx·

Dirichlet-type boundary conditions set values of grid function outside a grid to
zero or constant. They can represent either a fixed string end or an open end of
a pipe. In this particular case it is simply u−1 = 0 and uN = 0, and therefore

δxxu0 = 1
X2 (u1 − 2u0)

δxxuN−1 = 1
X2 (−2uN−1 + uN−2)

(3.82)
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Neumann-type boundary conditions set first spatial derivative to zero outside
a grid: ∂

∂xu−1 = 0 and ∂
∂xuN = 0. It may be associated to a closed end of a pipe,

or to rather abstract case of a string end able to move only in a transverse direction.
If the first derivative is approximated with the centred difference operator (3.60) it
yields u−1 = u1 and uN = uN−2, leading to

δxxu0 = 2
X2 (u1 − u0)

δxxuN−1 = 2
X2 (−uN−1 + uN−2)

(3.83)

Other first derivative approximations are also possible, although they may result in
different expressions for virtual grid points.

In a 2D grid function ul,m with Nx and Ny grid points in x and y dimension
respectively, Dirichlet conditions are applied similarly to the 1D case. Function values
for points outside a grid are set to zero for l < 0, l > (Nx−1),m < 0, andm > (Ny−1).
A more interesting case involves Neumann conditions and 5-point Laplacian operator
δ∆� (3.74). On the edges the condition is

δx−u0,m = 0 δx+uNx−1,m = 0
δy−ul,0 = 0 δy+ul,Ny−1 = 0

(3.84)

This modifies the expression for the Laplacian on the edge (l = 0), considering
u−1,m = u0,m

δ∆�u0,m = 1
X2 (u0,m+1 + u0,m−1 + u1,m − 3u0,m) (3.85)

Expressions for the remaining edges are similarly obtained, though corners need to
be considered separately, for instance in l = 0 and m = 0

δ∆�u0,0 = 1
X2 (u0,1 + u1,0 − 2u0,0) (3.86)

Wider operator stencils introduce a larger number of virtual grid points. Such
cases require more boundary conditions [61].

3.2.1.3. Input and Output Operators

Output Operators

In the most basic situation one chooses a single point from within a FD grid
used for physical modelling synthesis, and collects its values in subsequent time steps
to produce an output waveform. A point value in a single step becomes one signal
sample. Any number of such points may be observed to form separate output channels.
However, an output may have to be taken from a position between grid points, or
– and it is a particularly interesting case – the output is moving. In the latter case
many intermediate positions between grid points may need to be observed in order
to avoid discontinuous changes in the output produced. Such values can be obtained
through interpolation.
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In some cases it may be enough to simply truncate position of the observation
point. For 1D problem and grid function ul at a fixed point in time, and observation
point xo, a leftward truncation is carried out as follows

lo =
⌊xo
X

⌋
(3.87)

where b·c is the floor function. Therefore the simplest interpolation operator is given
by [61]

I0(xo)ul = ulo (3.88)

An improved operator applies linear interpolation and is defined as [61]

I1(xo)ul = (1− αo)ulo + αoulo+1 (3.89)

where αo is the remainder of truncation

αo = xo
X
− lo (3.90)

Further improvements are possible if necessary, such as Lagrange cubic interpola-
tion [61]

I3(xo)ul =αo(αo − 1)(αo − 2)
−6 ulo−1 + (αo − 1)(αo + 1)(αo − 2)

2 ulo+

+ αo(αo + 1)(αo − 2)
−2 ulo+1 + αo(αo + 1)(αo − 1)

6 ulo+2

(3.91)

Operator I0 requires only one grid point to work, while I1 uses two, and I3 as much
as four, as shown in Figure 3.47.

(lo − 1)X loX (lo + 1)X (lo + 2)X
x0

I0(xo)ul

w0 w1

I1(xo)ul

w−1

w0 w1

w2

I3(xo)ul

Figure 3.47. Three interpolation operators over a one-dimensional grid: truncation I0
(red), linear I1 (blue), and cubic I3 (green); coefficients wi represent grid point weights,

according to (3.89) and (3.91)
Source: author’s elaboration, based on Bilbao [61]

In a 2D problem a grid function ul,m is truncated in both dimensions

lo =
⌊
xo
Xx

⌋
mo =

⌊
yo
Xy

⌋
(3.92)
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The simplest interpolation operator is defined as [61]

I0(xo, yo)ul,m = ulo,mo (3.93)

Bilinear interpolation operator assumes the following form [61]

I1(xo, yo)ul,m =(1− αx,o)(1− αy,o)ulo,mo + (1− αx,o)αy,oulo,mo+1+
+ αx,o(1− αy,o)ulo+1,mo + αx,oαy,oulo+1,mo+1

(3.94)

where αx,o and αy,o are remainders of truncation

αx,o = xo
Xx
− lo αy,o = yo

Xy
−mo (3.95)

Some systems may require interpolation of entire grid. For two 1D grid functions,
ul and vm, with different grid point spacings, xl = lXu and xm = mXv, and assuming
Xv ≤ Xu, the upsampling operation is performed using interpolant Ip of order p
according to the following expression

vm = Ip(xm)ul (3.96)

which may be symbolised as [61]

v = IXu→Xv,pu (3.97)

For the purpose of downsampling one may use a conjugate interpolant [61]

I∗Xv→Xu,p = Xu

Xv
ITXu→Xv,p (3.98)

Symbol IXu→Xv,p represents a rectangular matrix with size and contents depending
on boundary conditions.

Input Operators

Just like an instrument modelled needs to produce output, it has to receive an
input as well. Two most obvious situations are excitation and interconnection. In
the first one a distributed element, such as a string, has to be excited to produce
a sound. In the second one two distributed elements are interconnected, like a string
and a soundboard. In both situations an input may be described in terms of its
location and spatial distribution.

The most basic distribution for 1D problems can be modelled with a Dirac delta
function δ(x − xi), where the input is located in a single point xi obtained through
truncation

li =
⌊xi
X

⌋
(3.99)

The distribution of an input is therefore expressed as the following grid function [61]

Jl,0(xi) =


1
X

l = li

0 l 6= li

(3.100)

and may also be referred to as spreading operator [61].
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Higher order 1D spreading operators use the fractional part αi, analogous to the
remainder αo in interpolation operators (3.90)

αi = xi
X
− li (3.101)

Linear spreading distribution has the following form [61]

Jl,1(xi) = 1
X


0 l < li

(1− αi) l = li

αi l = li + 1
0 l > li + 1

(3.102)

A smoother, cubic spreading distribution is defined as [61]

Jl,3(xi) = 1
X



0 l < li − 1
− 1

6αi(αi − 1)(αi − 2) l = li − 1
1
2 (αi − 1)(αi + 1)(αi − 2) l = li

− 1
2αi(αi + 1)(αi − 2) l = li + 1

1
6αi(αi + 1)(αi − 1) l = li + 2

0 l > li + 2

(3.103)

For the purpose of spreading operators in 2D problems truncation and fractional
parts are expressed as

li =
⌊
xi
Xx

⌋
mi =

⌊
yi
Xy

⌋
(3.104)

αx,i = xi
Xx
− li αy,i = yi

Xy
−mi (3.105)

The first and second order 2D spreading grid functions assume the following forms [61]

Jl,m,0(xi, yi) =


1

XxXy
l = li, m = mi

0 elsewhere
(3.106)

Jl,m,1(xi, yi) = 1
XxXy



(1− αx,i)(1− αy,i) l = li, m = mi

(1− αx,i)αy,i l = li, m = mi + 1
αx,i(1− αy,i) l = li + 1, m = mi

αx,iαy,i l = li + 1, m = mi + 1
0 elsewhere

(3.107)
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3.2.1.4. Simplified Ideal String
The most basic model of a string is based on 1D wave equation

∂2u

∂t2
= c2

∂2u

∂x2 (3.108)

In case of a string, u(x, t) represents the string displacement, and c is the transverse
wave velocity, given as

c =

√
T0

ρA
(3.109)

where T0 represents the string tension, ρ is its density, and A it the area of its cross-
section. Such model does not include effects associated with loss or stiffness, nor
coupling with excitation element, such as hammer.

For the purpose of simulation it is convenient to substitute x with a scaled, di-
mensionless coordinate x̃ [61]

x̃ = x

L
(3.110)

where L is the length of a string, and c with scaled γ

γ = c

L
(3.111)

With x̃ and γ the wave equation assumes the following form

∂2u

∂t2
= γ2 ∂

2u

∂x̃2 (3.112)

In further expressions containing γ symbol, tilde will be omitted, and x will be as-
sumed scaled.

The wave equation (3.112) may be approximated with the following finite differ-
ence scheme [61]

δttul[n] = γ2δxxul[n] (3.113)

where δtt and δxx are difference operators, as in (3.49) and (3.81). The scheme can
be expanded as follows

1
T 2 (ul[n+ 1]− 2ul[n] + ul[n− 1]) = γ2

X2 (ul+1[n]− 2ul[n] + ul−1[n]) (3.114)

By introducing a parameter referred to as the Courant number [61]

λ ,
γT

X
(3.115)

(3.114) changes into a recursion

ul[n+ 1] = 2(1− λ2)ul[n] + λ2(ul−1[n] + ul+1[n])− ul[n− 1] (3.116)
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n− 1

n

n+ 1

l − 2 l − 1 l l + 1 l + 2

Time
step

Grid index

Figure 3.48. A stencil of finite difference scheme given by (3.116); computed grid point
is indicated by a gray circle, points used by the scheme are represented by black dots; new
value in step (n+1) depends on two previous time steps: three locations, left (l−1), middle

l, and right (l + 1) are used in step n, and only middle one in step (n− 1)

Stencil of the scheme (3.116) is shown in Figure 3.48.
The most basic boundary condition for a string is of a Dirichlet type, applied on

both ends of a grid. It represents a string fixed on both ends. Values of grid function
in virtual grid points are therefore set to zero. No additional condition is required
due to scheme (3.116) being of second order in space. Though it is not the only choice
for a string. Bilbao mentions also lossy boundary conditions. Such conditions for the
left string end assume the form [61]

∂

∂t
u(0, t) = α

∂

∂x
u(0, t) (3.117)

where α > 0 is some chosen constant.
The scheme is second order in time, therefore it requires two initial conditions,

such as [61]

u(x, 0) = u0(x)
∂

∂t
u(x, 0) = v0(x)

(3.118)

Initial conditions may be utilised as an excitation of a string model. For an
idealised strike condition initial displacement u0(x) can be set to zero, and initial
velocity v0(x) to some spatial distribution. An idealised pluck condition may be
modelled conversely, with initial velocity set to zero, and initial displacement set to
a spatial distribution. As Bilbao points out, one of common choices for a distribution
is the triangular function [61]

ctri(x) =


c0
x0
x 0 ≤ x ≤ x0

c0
x0 − 1(x− 1) x0 < x ≤ 1

(3.119)
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Another such choice is the raised cosine function [61]

crc(x) =


c0
2

(
1 + cos

(
π(x− x0)
xhw

))
|x− x0|≤ xhw

0 |x− x0|> xhw

(3.120)

where c0 is the peak displacement located at x0, and xhw is the half-width of a pulse.
For such a simple string model a choice of initial conditions is the primary means

of timbre control. Detailed relationship between characteristics of an initial condition
distribution and resultant signal spectrum is widely discussed in musical acoustics
[191, 47, 92]. Both distributions are shown in Figure 3.49 with spectra produced
when a distribution is applied as ‘plucked’ condition, i.e. it generates values of u0(x).
Figure 3.50 presents a time evolution for both distributions, each applied as plucked
and struck initial condition for the wave equation (3.108). Apart from altering initial
conditions parameters, additional timbre adjustments may be carried out by moving
readout position along a string (Fig. 3.51).

Modelling an excitation through initial conditions is not close enough to physical
behaviour for more advanced models. In such models excitation is implemented in
a scheme through a term representing an applied force.

A basic mechanism to control fundamental frequency f0, and hence pitch of a signal
produced by scheme (3.116) is to adjust the value of γ. From (3.111), and since for
an ideal string f0 is produced by the lowest mode of length 2L, one obtains

γ = 2f0 (3.121)

A finite difference scheme produces only an approximation to a solution of real
wave equation. Its behaviour may be analysed using various methods. An extensive
discussion of two such methods and their application to numerous finite difference
schemes is given by Bilbao [61]. In case of scheme (3.116) stability is obtained when

λ ≤ 1 (3.122)

which is the Courant–Friedrichs–Lewy (CFL) condition [140]. Since the scheme is
explicit, i.e. it calculates future state from current and previous states, the right side
of the inequality has a value of 1.

Approximation errors introduced by finite difference schemes usually cause phase
and group velocity to differ from values given by a continuous model. The extent of
such difference is referred to as numerical dispersion and in distributed systems it
may have a consequence of warping component frequencies in produced signal [61].
In case of scheme (3.116) numerical dispersion does not occur if λ = 1. Therefore, it
is advantageous to get as close as possible to this value. Since λ relates time step T
with grid spacing X for a given γ (3.115), and in digital sound processing time step
is usually fixed by a given sampling frequency, once a new γ value is set, a new grid
spacing X should be established. As a consequence, grid size may change (Fig. 3.52).

Expression (3.113) is a simple, but not the only possible finite difference scheme
approximating 1D wave equation. Though it is often the best solution due to its prop-
erty of being exact for λ = 1, other, more elaborate schemes, discussed by Dablain,
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Noye, Tuomela, and Bilbao [408, 147, 409, 565, 59], can be of use for designing dif-
ference schemes representing more complex systems.

Figure 3.49. Examples of spatial distributions used to set initial conditions for ideal
plucking or striking of a string: triangular (a), and raised cosine with various half-width
values, xhw = 0.4 (b), xhw = 0.2 (c), and xhw = 0.05 (d); plots (e–f) present signal spectra

obtained when a respective distribution is applied to pluck a string tuned for 110 Hz
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Two specific schemes introduce a parameter that allows to control their properties.
In the first one identity is extended using controlled amount of centred averaging
operator (α + (1 − α)µx·) [61]

δttul[n] = γ2(α+ (1− α)µx·)δxxul[n] (3.123)

where α is the free parameter.

Figure 3.50. Time evolution of the wave equation solution for two types of initial condi-
tions, each with two spatial distributions: triangle (blue), and raised cosine (red); in both
cases f0 = 110 Hz and x0 = 0.7; for raised cosine xhw = 0.2; for a plucked condition initial
peak displacement u0 = 1 and initial peak velocity v0 = 0; for a struck condition initial

peak displacement u0 = 0 and initial peak velocity v0 = 950
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Figure 3.51. Spectral evolution of a signal produced by 880 Hz string scheme (3.116) for
raised cosine plucked initial condition with xhw = 0.1 and x0 = 0.7; the evolution is caused

by linear shift of readout position from 0 to L
2 using linear interpolation (3.89)

T = 1
fs

N =
⌊

1
γT

⌋

X = 1
N

λ = γT

X

variables
T : sampling period

fs: sampling frequency

N : number of spatial grid points

γ : scaled wave velocity

X : spatial sampling interval

λ : Courant number

Figure 3.52. Method of setting grid parameters in scheme (3.116) aimed at satisfying CFL
condition as close to 1 as possible; the assumption is that sampling period is fixed by chosen
sampling frequency, hence grid tuning is applied to spatial sampling interval and number of

spatial grid points
Source: author’s elaboration, based on Bilbao [61]

Stencil of such scheme is wider then the one from (3.113) – it uses two points
on each side of approximated grid point (Fig. 3.53a), therefore it requires additional
numerical boundary condition.
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Analysis of the scheme brings condition for the α parameter, as well as condition
for λ, which now is related to α [61]

λ ≤


√

8(1− α) 1
2 ≤ α ≤

3
4

1√
2α− 1

α ≥ 3
4

(3.124)

If α = 1 scheme (3.123) transforms into (3.113).

a)

n− 1

n

n+ 1

l − 2 l − 1 l l + 1 l + 2

T
im
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ep

Grid index

b)

n− 1
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n+ 1

l − 2 l − 1 l l + 1 l + 2
T
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e
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Grid index

Figure 3.53. A stencil of finite difference scheme (3.123) (a) and (3.123) (b); black dots
symbolise grid points used for approximation; a gray circle indicates the approximated point

A different approach is represented by an implicit scheme [61]

(θ + (1− θ)µx·)δttul[n] = γ2δxxul[n] (3.125)

where θ is a free parameter. If θ = 1 scheme (3.125) transforms into (3.113). For
other values scheme is implicit – it couples three adjacent grid point values in future
step (n+ 1) (Fig. 3.53b) – and requires linear system solution techniques [61]. There
are, however, fast techniques, such as the Thomas algorithm [549] that do not require
full matrix inversion and can be applied in this particular case. The free parameter
is bounded by condition θ ≥ 1

2 , and λ is related to θ [61]

λ ≤
√

2θ − 1 (3.126)

Implicit schemes, such as the one given by (3.125) allow λ to become larger then
1 for larger θ. Therefore, when operating with the same sampling frequency, implicit
schemes allow for lower numerical dispersion than explicit schemes and are generally
more stable [61].

A very simple model, like an ideal string, allows some degree of control:
• pitch through wave velocity,
• dynamics through excitation parameters,
• and timbre, mostly through excitation parameters, but also by choosing readout

position.
Even though a number of controllable quantities may seem small, it can be mapped
to a larger number of physical properties. E.g. wave velocity is controlled through
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the scaled γ parameter which includes string length L (3.111), and the velocity it-
self is calculated from a given string tension, density, and thickness (3.109). Such
model, however, is not the most interesting synthesis target. It lacks properties of
real strings that make their sound and its control distinct and appealing. Two of
them are damping and stiffness, and they can be introduced by extending (3.108)
by additional terms.

3.2.1.5. Damped Stiff String
The simplest model of a string with dissipation is given by the following ex-

pression [61]

∂2u

∂t2
= γ2 ∂

2u

∂x2 − 2σ0
∂u

∂t
(3.127)

where σ0 is a non-negative constant. An appropriate finite difference scheme may be
obtained by extending (3.113) [61]

δttul[n] = γ2δxxul[n]− 2σ0δt·ul[n] (3.128)

which results in the following recursion

ul[n+ 1] = 2
1 + σ0T

(
(1− λ2)ul[n] + λ2

2 (ul−1[n] + ul+1[n])
)
−

− 1− σ0T

1 + σ0T
ul[n− 1]

(3.129)

As of physical interpretation, constant σ0 may be responsible for various phenom-
ena, such as radiation or internal losses. The effect is frequency independent, though
it causes dispersive wave propagation (Fig. 3.54). Considering σ0 as one of control
parameters it is convenient to express it in relation to 60 dB decay time T60 [61]

T60 = 6 ln(10)
σ0

(3.130)

Strings in musical instruments demonstrate a small degree of stiffness which
causes a slight inharmonicity in produced spectra. The effect is particularly audible
in piano [47]. A basic model of string with stiffness may be given by adding fourth
order term to the wave equation [568]

∂2u

∂t2
= γ2 ∂

2u

∂x2 − κ
2 ∂

4u

∂x4 (3.131)

where κ is the stiffness parameter. It is defined as [61]

κ =

√
EI

ρAL4 (3.132)

where E is the Young’s modulus, I is the moment of inertia, ρ is the material density,
A is the area of cross-section, and L is the length.
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Figure 3.54. State of a 110 Hz string modelled by (3.129) after 2 seconds of simulation for
different values of σ0 loss parameter; initial condition was an ideal pluck with raised cosine
distribution, xhw = 0.1 and x0 = 0.7; in order to compare shape of the displacement, the

amplitude is normalised to 1 throughout all values of σ0

The most direct approach to design a finite difference scheme for a stiff string will
result with the following explicit scheme [61]

δttul[n] = γ2δxxul[n]− κ2δxxxxul[n] (3.133)

The stability condition that relates spatial and temporal grid spacing assumes the
following form [61]

X ≥

√
γ2T 2 +

√
γ4T 4 + 16κ2T 2

2 (3.134)

which constitutes a minimum spatial grid spacing for a given sampling frequency. The
effect of altering parameter κ is shown in Figure 3.55.

As an alternative, Bilbao gives an example of implicit θ-type scheme [61]

(θ + (1− θ)µx·) δttul[n] = γ2δxxul[n]− κ2δxxxxul[n] (3.135)

though he states that it is more difficult to establish a value of θ that would be
satisfactory in the entire frequency spectrum than in case of (3.125).

More realistic string model should not only include losses and stiffness, as given
by (3.127) and (3.131), but also some kind of frequency dependence for the losses.
Although natural spectral evolution of vibrating string may be rather complex, it
is a realistic assumption that loss increases with frequency. Such behaviour may be
modelled with the following partial differential equation [50]

∂2u

∂t2
= γ2 ∂

2u

∂x2 − κ
2 ∂

4u

∂x4 − 2σ0
∂u

∂t
+ 2σ1

∂3u

∂t∂x2 (3.136)
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Figure 3.55. Spectrum of a signal produced by a 110 Hz string modelled using (3.133)
with different values of stiffness parameter κ; stiffness causes detuning (raising) of partial
frequencies; initial condition was an ideal pluck with raised cosine distribution, xhw = 0.1
and x0 = 0.7; each value of κ required recalculation of spatial grid size according to (3.134)

A practical guide for establishing both loss parameters, σ0 and σ1, is given by
Bilbao, under the assumption of small losses. The parameters in question are set on
the basis of two decay times T60 specified for two selected frequencies f1 < f2 [61]

σ0 = 6 ln(10)
ξ(f2)− ξ(f1)

(
ξ(f2)
T60(f1) −

ξ(f1)
T60(f2)

)
σ1 = 6 ln(10)

ξ(f2)− ξ(f1)

(
− 1
T60(f1) + 1

T60(f2)

) (3.137)

where ξ is defined as

ξ(f) = −γ
2 +

√
γ4 + 16κ2π2f2

2κ2 (3.138)

One explicit differential scheme that approximates (3.136), assumes the following
form, as given by Bilbao [61]

δttul[n] = γ2δxxul[n]− κ2δxxxxul[n]− 2σ0δt·ul[n] + 2σ1δt−δxxul[n] (3.139)
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A change of operator δt− to δt· in the mixed derivative term makes the scheme im-
plicit [61]

δttul[n] = γ2δxxul[n]− κ2δxxxxul[n]− 2σ0δt·ul[n] + 2σ1δt·δxxul[n] (3.140)

The result of simulation using the explicit scheme is presented in Figure 3.56.

Figure 3.56. Recording of a real guitar string E4 compared to the result of simulation of
a stiff string with frequency dependent loss obtained using explicit scheme (3.139) for raised
cosine plucked initial condition with xhw = 0.3 and x0 = 0.25; loss parameters were set to

T60 = 8 s at f = 20 Hz and T60 = 0.15 s at f = 10 kHz, and inharmonicity κ = 2.05
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Stencil of difference schemes that include fourth order term makes it necessary to
provide additional boundary conditions. For a clamped string it is

u = ∂u

∂x
= 0 (3.141)

and in case of numerical approximation on the left end of a string:

u = δx+u0 = 0 (3.142)

3.2.1.6. String Excitation
In majority of string instruments a string is excited by bowing, striking, or pluck-

ing. Excitation by bowing has been studied since Helmholtz [47, 191], and is still
a subject of active research [359, 610, 352, 353, 200, 93].

For an ideal string excited by bowing in a single location xi, the wave equation
needs to be expanded into [61]

∂2u

∂t2
= γ2 ∂

2u

∂x2 − δ(x− xi)F̃Bφ(vrel) (3.143)

where:
vrel = ∂u(xi)

∂t
− vB (3.144)

F̃B = F̃B(t) = FB(t)
ms

≥ 0 is the bow force divided by the string mass, vB = vB(t) is
the bow velocity, φ is the characteristic of friction, and δ(x − xi) is the Dirac delta
centred at xi. Excitation location may also change over time, i.e. xi = xi(t).

Characteristic φ has to satisfy the following conditions [61]

φ(η)η ≥ 0 or sgn(φ(η)) = sgn(η) (3.145)

which ensures its passivity, and it has to be bounded

|φ| ≤ 1 (3.146)

Typically, friction characteristic is antisymmetric about η = 0 and includes two
regimes, responsible for sticking and sliding. The former is represented by a steep
positive slope in the centre. The latter, outside of the former, is represented by
a softer negative slope. Bilbao gives three examples of such functions [61], as presented
in Figure 3.57. The first one has a hard transition

φ(η) = sgn(η)e−α|η| (3.147)

the second one is similar, but limiting value of sliding friction is non-zero

φ(η) = sgn(η)(ε+ (1− ε)e−α|η|) (3.148)

and the last one has a soft transition

φ(η) =
√

2αηe−αη
2+ 1

2 (3.149)

where the parameters α > 0, and 0 < ε < 1.
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Expression (3.143) may be approximated with the following finite difference
scheme [61]

δttul[n] = γ2δxxul[n]− J(xi[n])F̃B [n]φ(rrel)
vrel = I(xi[n])δt·ul[n]− vB [n]

(3.150)

where F̃B [n] > 0 and vB [n] are time series that may originate from a controller.
Interpolation operator I is used to establish string velocity in a bowing point, and
spreading operator J allows to distribute bow force over a string. In addition to CFL
condition, another one is required to ensure uniqueness of the solution [61]

λ ≤ 2γ
−max(FB)min(φ′) (3.151)

Even though the scheme is implicit, it can be updated explicitly, once the relative
velocity vrel has been established.

Figure 3.57. Three examples of friction characteristics, given by (3.147) (a), (3.148) (b),
and (3.149) (c), for three values of α parameter, and ε = 0.3

Source: author’s elaboration, based on Bilbao [61]

The model of a bowed string may be further extended. Gillian [206] and Bavu [42]
investigated torsional wave propagation. Pitteroff and Woodhouse studied a case of
bow contact area [437]. Both extensions have been investigated in the context of
sound synthesis by Serafin et al. [508, 507, 506].
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Excitation by striking a string with a mallet or hammer can be modelled on the
basis of a power law [108, 61]

F (u) = ωα+1
c sgn(u) |u|α (3.152)

where the non-linear exponent α and stiffness parameter ωc are established through
measurements of real instruments or various laboratory test stands [420].

Figure 3.58. Force profiles (a–c) and respective spectra (d–f) for a hammer striking a string
with three different initial velocities: 0.5 m

s
(a), 1.5 m

s
(b), and 5 m

s
(c); initial distance

between colliding objects was set to 0.001 of string length; simulation was carried out using
combination of two implicit schemes: for a stiff string with frequency dependent loss (3.139)
and for a string coupled with hammer (3.162) and (3.163); hammer parameters were set,
after Bilbao [61], to: M = 0.75, ωH = 0.75, α = 2.5, and its spatial profile was approximated
by a raised cosine distribution with xhw = 0.05 and xc = 0.12; string parameters were set

to: f0 = 262 Hz, κ = 5.27, and loss to T60 = 10 s at 100 Hz and T60 = 8 s at 1000 Hz

If collision model is linear, contact time between a string and striking object
does not depend on striking velocity. In such model striking velocity affects only
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signal amplitude. If a model is non-linear, contact duration depends on velocity,
which causes alteration of sound timbre (Fig. 3.58), characteristic for many string
instruments.

The collision is one-sided, i.e. the force acts only if the displacement is positive,
which may be indicated with the following notation

[F (u)]+ =
{

0 u ≤ 0
F (u) u > 0

(3.153)

A hammer striking an ideal string with power law characteristic may be expressed
as [61]

ρA
∂2u

∂t2
= T0

∂2u

∂x2 + ε(x)F (3.154)

where ρ is the string density, A is the area of string cross-section, T0 is the string
tension, and ε(x) is the spatial profile of a hammer. The force F assumes the following
form [61]

F = −MH
d2uH
dt2 = KH

(
[uH − 〈ε, u〉D]+

)α
(3.155)

where uH is the hammer position over a non-displaced string, MH is the hammer
mass, and KH is its stiffness parameter. Parameter α is usually set between 1.5 and
3.5 [539]. Operation 〈ε, u〉D indicates the inner product over a spatial domain D, in
this particular case a string, and is defined as [61]

〈p[n], q[n]〉D =
∑
l∈D

Xpl[n]ql[n] (3.156)

where p[n] and q[n] are grid functions, and the result of the operation is a time series.
The accompanying norm is defined as [61]

‖p[n]‖D=
√
〈p[n], p[n]〉D ≥ 0 (3.157)

For simulation purposes it is more convenient to apply spatial scaling analogous
to (3.110) and (3.111), which sets the domain to the unit interval D = U, and to
introduce two parameters. The first one

M = MH

ρAL
(3.158)

is the ratio of two colliding masses, hammer and string. The second one

ωH =
(
KH

MH

) 1
1+α

(3.159)
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also characterises a hammer and has a meaning similar to frequency. Using these,
(3.154) assumes the following form

∂2u

∂t2
= γ2 ∂

2u

∂x2 + ε(x)MF̃ (3.160)

and the scaled force is expressed as

F̃ = −d2uH
dt2 = ωα+1

H

(
[uH − 〈ε, u〉U]+

)α
(3.161)

The system described by (3.160) and (3.161) may be approximated using the
following explicit scheme [61]

δttul[n] = γ2δxxul[n] + εMF̃ (3.162)

F̃ = −δttuH [n] = ωα+1
H

([
uH [n]− 〈ε, ul[n]〉UN

]+)α (3.163)

where the domain UN = [0, 1, . . . , N ]. A simulation that presents the effect of a com-
bination of explicit collision scheme and scheme for a stiff string with frequency de-
pendent loss has been illustrated in Figure 3.58, with respective parameters.

A semi-implicit scheme, differing from the explicit one in the force part [61]

F̃ = −δttuH [n] =

= ωα+1
H

([
uH [n]− 〈ε, ul[n]〉UN

]+)α−1
µt·
(
uH [n]− 〈ε, ul[n]〉UN

) (3.164)

can be utilised to avoid problems with numerical oscillation that may emerge while
using a purely explicit scheme [61].

As in case of bow, more sophisticated models of collision between a mallet or
a hammer and a string exist, and may be applied. For instance, it is possible to
enhance the model with an effect of hysteresis [539]. Further discussion regarding
modelling collisions of hammers and strings can be found in works of Hall [229, 230].

3.2.1.7. String Model Refinements
A string model with loss and stiffness is still a very basic one, and may be further

refined. Firstly, it can be supplemented with additional elements, or integrated into
more complex systems. Secondly, mechanisms adapted from musical and structural
acoustics help to design new, or to improve existing models, so that they imitate the
physical original in greater detail. Therefore, they are able to produce a larger set of
characteristic effects, often utilised by performing musicians.

In the largest part of its playing range, except the lowest bass notes, piano strings
are struck simultaneously in triplets or pairs tuned in unison. It is a source of some
distinctive auditory effects, and can be quite simply simulated. The most important
property of a string triplet is its non-ideal unison. The unison is slightly detuned,
of the order of single cents [47], which causes beating and takes part in forming of
a characteristic compound decay curve due to impedance-related effects9 [191].

9The final decay rate is several times lesser then the initial decay rate.
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The simplest model of a string unison involves a system ofM partial differential
equations, for instance, 1D wave equations

∂2uq
∂t2

= (γq)2 ∂
2uq
∂x2 q = 1, . . . ,M (3.165)

whereM is the number of strings, and uq is the transverse displacement of q-th string.
All strings are assumed to be of equal length, and since γ is related to fundamental
frequency, unison detuning is simulated by varying values of γq. Bilbao proposes the
following expression [61]

γq = 21+ (2q−1−M)D
2400(M−1) f0 q = 1, . . . ,M (3.166)

where D is the pitch difference in cents between the highest and the lowest-pitched
string within the unison.

Expression (3.165) may be approximated with the following finite difference
scheme [61]

δttuq,l[n] = (γq)2
δxxuq,l[n] q = 1, . . . ,M (3.167)

Stability condition, such as CFL, has to be calculated for each string separately,
though it will result in slightly different grid spacings. Alternatively, and it is the
simpler solution, the greatest value of grid spacing Xmax can be assumed for the
whole unison. It will, however, cause all but one string to work away from Courant
limit, reducing bandwidth of their signals.

The model of unison needs to be supplemented with hammer interaction [61]

∂2uq
∂t2

= (γq)2 ∂
2uq
∂x2 − 2σ0

∂uq
∂t

+ εq(x)MqF̃q q = 1, . . . ,M (3.168)

d2uH
dt2 = −

∑
q

F̃q F̃q = ωα+1
H

([
uH [n]− 〈εq, uq,l[n]〉U

]+)α (3.169)

A simple loss with parameter σ0 has been added, so that the effect of compound decay
curve might be observed. Finally, the output of the unison model may be obtained
through a simple sum at location xo using interpolation operator of a chosen order [61]

uo =
M∑
q=1

I(xo,q)uq (3.170)

A comparison between a signal produced by one string and a three-string unison is
shown in Figure 3.59.

Physical sound synthesis may be applied to simulate special performance tech-
niques, such as preparation of piano. The preparation involves attaching – or
putting close to strings – various objects, so that they come in contact when the
string vibrates. The purpose of the procedure is to obtain new sound qualities from
known instruments.
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Figure 3.59. A comparison between output signal produced by one string and a three-string
unison with characteristic compound decay curve; simulation was carried out using a model
given by (3.168) and (3.169); simulation parameters were set to: average f0 = 220 Hz,
string detuning D = 5 ct, loss T60 = 7 s, hammer mass ratio M = 0.01, hammer stiffness
ωH = 2500, α = 2.5; hammer spatial profile was approximated by a raised cosine distribution

with xhw = 0.05 and xc = 0.12; output was obtained at xo = 0.3

The basis for the model of prepared string may be the following expression [61]

∂2u

∂t2
= γ2 ∂

2u

∂x2 − 2σ0
∂u

∂t
+ δ(x− xP )F̃ (3.171)

where δ(x − xP ) is a Dirac delta function centred in xP , so that attached element
is localised in a single point of string, and again, the force is scaled, i.e. F̃ = F

ms
,

where ms is the string mass. The force term is responsible for a type of preparation.
It may assume the following form [61]

F̃ = −ω2
0u(xP )− ω4

1 (u(xP ))3 − 2σP
∂u(xP )
∂t

(3.172)

where the first term represents a linear spring, the second – a cubic non-linear spring,
and the last – a damping [61]. In such form it may be considered a model of wedged
rubber.
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This basic model may be approximated with the following finite difference
scheme [61]

δttul[n] = γ2δxxul[n]− 2σ0δt·ul[n] + Jp(xP )F̃ (3.173)

F̃ =− ω2
0µt·η[n]− ω4

1η[n]2µt·η[n]− 2σP δt·η[n]
η[n] = Ip(xP )ul[n]

(3.174)

where Ip is the p-th order interpolation operator, and Jp is the p-th order spreading
operator. As Bilbao points out, the result of such system is strictly dissipative, even
though the system is not linear [61]. It may not be clear how to solve a simultaneous
dependence of (3.173) and (3.174) on u[n + 1]. Bilbao proposes a solution shown in
Figure 3.60.

take an inner product of (3.173) with Jp(xP )

η[n] = Ip(xP )ul[n], ζ = Ip(xP )δxxul[n],

δttη[n] = γ2ζ − 2σ0δt·η[n] + ‖Jp(xP )‖2UN F̃

ζ known in (n + 1), solve directly for η[n + 1]

a = 1 + σ0T + XT 2‖Jp(xP )‖2UN

(
ω2

0
2 + ω4

1η[n]2

2 + σp
T

)

b = −1 + σ0T − XT 2‖Jp(xP )‖2UN

(
ω2

0
2 + ω4

1η[n]2

2 − σp
T

)

η[n + 1] = 1
a

(
γ2T 2ζ + 2η[n]

)
+ b

a
η[n − 1]

F̃ [n] known, update (3.173) explicitly

Figure 3.60. Method of solving a simultaneous dependence on u[n + 1] in (3.173) and
(3.174)

Source: author’s elaboration, based on Bilbao [61]

If one considers a simplified force term from (3.172) with ω1 = 0 and σP = 0,
the CFL λ < 1 remains the stability condition for grid points other than lP . In lP
a stronger condition is required [61]

X

2 (1− λ2)− T 2ω2
0

8 > 0 (3.175)
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Further stability considerations can be found in works of Bilbao [61] and Raben-
stein [453].

Another kind of preparation involves rattling elements. Beginning over with
(3.171) the force term now can be written as [61]

F̃ =


−ωα+1

R

(
u(xP )− uR − 1

2ε
)α

u(xP )− uR ≥ 1
2ε

0 |u(xP )− uR|< 1
2ε

ωα+1
R

(
uR − u(xP )− 1

2ε
)α

u(xP )− uR ≤ 1
2ε

(3.176)

∂2uR
∂t2

= −MF̃ (3.177)

where uR is the distance between the centre of rattling element and the string rest
position at location xP , ε is the length of rattle, ωR is the stiffness parameter, α is
the stiffness exponent, and M is the mass ratio of string to rattle.

A linear string model does not reproduce an interesting effect that occurs under
large amplitudes of vibration – a pitch glide, also referred to as tension modulation
[579, 558, 183]. Large amplitudes can also be a source of another effect, referred to
as phantom partials [129, 33]. The effect may be observed when coupling between
transverse and longitudinal vibration causes instability in string motion, resulting in
beating.

The simplest model of a string suitable for handling large amplitudes is the
Kirchhoff–Carrier model [295, 101, 400, 17]

ρA
∂2u

∂t2
=

T0 + EA

2L

L∫
0

(
∂u

∂x

)2
dx

 ∂2u

∂x2 (3.178)

where ρ is the density of string material, T0 is the string tension, E is the Young’s
modulus, A is the area of string cross-section, and L is the string length. The model
has been utilised in the analysis of non-linear phenomena [163, 164, 272, 482], in
musical acoustics [215, 331], and in sound synthesis [184, 62, 423]. Due to dependence
of response on the amplitude, scaling of the system involves not only coordinates
(3.110), but also the dependent variable

ũ = u

L
(3.179)

though as was the case of linear string, tilde symbol will be omitted in scaled system,
which assumes the following form [61]

∂2u

∂t2
= γ2G

∂2u

∂x2 (3.180)

where

G = 1 + α2

2

∥∥∥∥∂u∂x
∥∥∥∥2

U
(3.181)
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γ = 1
L

√
T0

ρA
(3.182)

α =
√
EA

T0
(3.183)

Parameter α is responsible for the strength of stiffness in relation to string tension.
Similarly to the linear string, a loss term can be added to the equation [61]

∂2u

∂t2
= γ2G

∂2u

∂x2 − 2σ0
∂u

∂t
(3.184)

Non-linearity depends on the amplitude, which is gradually decreased by loss. An
auditory result of this behaviour is a downward pitch-glide.

The Kirchhoff–Carrier system with loss can be approximated with the following
finite difference scheme [61]

δttul[n] = γ2gδxx − 2σ0δt·ul[n] (3.185)

where a scalar time series g is the approximation of G, and under the assumption of
fixed boundary conditions it may be expressed in the explicit form [61]

g = 1 +
1 + α2

2 ‖δx+ul[n]‖2UN

1 + γ2T 2α2

4 ‖δxxul[n]‖2UN

(3.186)

An underline or overline added to the domain symbol represents a removal of bound-
ary points

UN = [0, 1, . . . , N − 1]
UN = [1, 2, . . . , N ]
UN = [1, 2, . . . , N − 1]

(3.187)

A behaviour of the Kirchhoff–Carrier system approximated using a scheme given
by (3.185) and (3.186) without loss is presented in Figure 3.61. A pitch glide effect
produced by the Kirchhoff–Carrier system with added linear loss term is presented
in Figure 3.62.

Reproduction of the phantom partials effect requires a more complex model than
the Kirchhoff–Carrier equation [32] – one that includes both longitudinal and trans-
verse motion [391, 568]. In such model a growing excitation amplitude causes an
increase in number and strength of inharmonic partials. The most prominent of these
components are referred to as phantom partials [129]. Principles governing their ac-
tual frequencies were studied by Bank [32].

For the purpose of sound synthesis Bilbao proposes the following model [61]

ρA
∂2u

∂t2
= EA

∂2u

∂x2 − (EA− T0) ∂
∂x

(
∂Φ
∂q

)
ρA

∂2ζ

∂t2
= EA

∂2ζ

∂x2 − (EA− T0) ∂
∂x

(
∂Φ
∂p

) (3.188)
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where u(x, t) is the transverse string displacement, ζ(x, t) is the longitudinal string
displacement, auxiliary variables p and q are defined as

p = ∂ζ

∂x
q = ∂u

∂x
(3.189)

and the function Φ, coupling both equations, is expressed as:

Φ =
√

(1 + p)2 + q2 − 1− p (3.190)

The remaining parameters (ρ, A, E, and T0) are the same as in the Kirchhoff–Carrier
equation (3.178).

Figure 3.61. Signal produced by the Kirchhoff–Carrier model (3.184) approximated by
(3.185) and (3.186) for different values of peak initial displacement c0; simulation parameters
were set to: γ = 400, α = 10, λ = 0.7, and the initial displacement was triangular, centred

at xc = 0.5
Source: author’s elaboration, based on Bilbao [61]
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Using a scaling principle similar to the one applied in case of the Kirchhoff–Carrier
equation, the system transforms into [61]

∂2u

∂t2
= γ2α2 ∂

2u

∂x2 − γ
2(α2 − 1) ∂

∂x

(
∂Φ
∂q

)
∂2ζ

∂t2
= γ2α2 ∂

2ζ

∂x2 − γ
2(α2 − 1) ∂

∂x

(
∂Φ
∂p

) (3.191)

Other, more general models can also be applied [400, 599, 311].

Figure 3.62. Spectrogram illustrating a pitch glide effect produced by the Kirchhoff–
Carrier model with linear loss term (3.185) and (3.186); simulation parameters were set to:
γ = 400, α = 10, λ = 0.7, T60 = 2 s; the initial displacement was a plucked raised cosine,

xc = 0.8 and xhw = 0.1
Source: author’s elaboration, based on Bilbao [61]

Model from (3.191) requires a careful choices while designing an appropriate fi-
nite difference scheme, due to conflicting stability conditions. Bilbao proposes several
approximations [61], though in order to obtain satisfactory results, without extensive
dispersion, it is necessary to use distinct grids for longitudinal and transverse dis-
placements, Xζ and Xu respectively, and connect them through interpolation. The
approximation assumes the following form [61]

δttul[n] = γ2δxxul[n] + γ2α
2 − 1
2 δx+

(
q2µt·q + 2qµttp

)
δttζm[n] = γ2α2δxxζm[n] + γ2α

2 − 1
2 δx+I∗Xu→Xζ ,p(qµt·q)

(3.192)

where functions p and q are given as

p = δx−IXζ→Xu,pζ q = δx−u (3.193)
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Symbols IXζ→Xu,p and I∗Xu→Xζ ,p represent upsampling interpolant and its downsam-
pling complex conjugate of order p, as defined in (3.97) and (3.98).

Models presented up to this point assume a transverse string motion to be planar.
In real instruments the motion is more complex and in time can become non-planar,
which leads to the effect of whirling [272, 421, 483], where the energy is transferred
between two string polarisations. Modelling of the phenomenon requires representing
the transverse displacement by a vector holding two components orthogonal to the
string axis. The effect has been studied by Gough [215].

3.2.1.8. Bar
Vibrating elements of numerous musical instruments may be idealised as bars.

Principles of bar vibrations have been extensively studied [391, 219, 191], and various
models have been proposed [219, 403]. For instance, in cases of non-thin bars the
linear Timoshenko model of beam vibration may be an appropriate choice, yet for
sound synthesis purposes modelling may start with transverse vibrations of a basic,
thin, ideal, uniform bar. Bilbao states, that such bar can be described in the simplest
way with the Euler–Bernoulli model which in a lossless case assumes the following
form [61]

ρA
∂2u

∂t2
= −EI ∂

4u

∂x4 (3.194)

where ρ is the density of a bar material, A is the area of its cross-section, E is the
Young’s modulus, and I is the moment of inertia. In the ideal bar these quantities
are constants.

For the convenience of implementation, the model can be scaled using the same
principle that was applied in the case of a string (3.110), which results in the following
form [61]

∂2u

∂t2
= −κ2 ∂

4u

∂x4 (3.195)

where all constants are combined in one stiffness parameter κ, defined as for the stiff
string (3.132).

Contrary to wave equation, where the wavenumber scales directly with frequency,
in case of bar the frequency scales with the square of the wavenumber. It is a cause
of dispersion – components with larger wavenumber travel faster.

While it was sufficient for a string to assume fixed boundary conditions, a bar can
be ended in various manners, leading to the following pairs of conditions [61]

u = ∂u

∂x
= 0 clamped

u = ∂2u

∂x2 = 0 simply supported

∂2u

∂x2 = ∂3u

∂x3 = 0 free

(3.196)
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A simple explicit finite difference scheme for the ideal bar may be written as [61]

δttul[n] = −κ2δxxxxul[n] (3.197)

and in the form of recursion

ul[n+ 1] = (2− 6µ2)ul[n] + 4µ2(ul+1[n] + ul−1[n])−
− µ2(ul−2[n] + ul+2[n])− ul[n− 1]

(3.198)

where the parameter µ is defined as

µ , κ
T

X2 (3.199)

The role of µ is similar to λ in the wave equation. It is used to define stability
condition [61]

µ ≤ 1
2 −→ T ≤ X2

2κ (3.200)

An implicit θ-scheme allows to maximise bandwidth of produced signal [61]

(θ + (1− θ)µx·)δttul[n] = −κ2δxxxxul[n] (3.201)

and it has the following stability condition [61]

θ ≥ 1
2 µ ≤

√
2θ − 1

2 (3.202)

It is not uncommon in musical instruments that the assumption of uniform bar
cross-section does not hold. One example is the marimba with arch-cut bars [191].
In such cases not only the cross-section area A, but also the moment of inertia I are
functions of thickness, varying with x [61]

ρA(x)∂
2u

∂t2
= − ∂2

∂x2

(
EI(x)∂

2u

∂x2

)
(3.203)

If the cross-section is rectangular, then the area can be expressed as

A = bH0φ(x) (3.204)

and the moment of inertia as

I = 1
12bH

3
0φ

3 (3.205)

where b is the width of a bar, H0 is the reference thickness, and φ(x) is the variation
around H0.

In scaled variables (3.203) assumes the following form

φ
∂2u

∂t2
= −κ2

0
∂2

∂x2

(
φ3 ∂

2u

∂x2

)
(3.206)
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where
κ2

0 = EH2
0

12ρL4 (3.207)

Bar described by (3.206) requires the following modification to the formulation of free
boundary condition [61]

∂2u

∂x2 = ∂

∂x

(
φ3 ∂

2u

∂x2

)
= 0 (3.208)

An application of a simple finite difference scheme based directly on (3.206) leads
to extreme dispersion and serious decrease in bandwidth of produced signal for any
but the smallest variations of cross-section area. Instead, Bilbao suggests to apply
stretched coordinate α(x) accommodating cross-section variations [61]

α(x) = 1
αav

x∫
0

1√
φ(η)

dη (3.209)

where

αav =
1∫

0

1√
φ(η)

dη (3.210)

In α coordinate (3.206) transforms into [61]

φ
3
2
∂2u

∂t2
= − κ2

0
α4
av

∂

∂α

(
φ−

1
2
∂

∂α

(
φ

5
2
∂

∂α

(
φ−

1
2
∂

∂α

)))
(3.211)

which allows to design the following finite difference scheme [61][
φ

3
2

]
δttul[n] = − κ2

0
α4
av

δα+

(
µα−φ

− 1
2 δα−

(
φ

5
2 δα+

(
µα−φ

− 1
2 δα−ul[n]

)))
(3.212)

where [φ 3
2 ] is the discrete approximation to φ 3

2 . Bilbao gives the following stability
condition for the scheme [61]

µ = Tκ0

X2 ≤
α2
av

2 min


√√√√√√

[
φ

3
2

]
µα+

((
µα−φ

5
2

)(
µα−φ−

1
2

)2
)
 ≈ α2

av

2 (3.213)

As a further improvement, Chaigne and Doutaut propose an implicit scheme [108].
In order to simulate the pitch glide effect similar to that occurring in string, a non-

linear bar model is required [224]. In scaled form it is expressed as [61]

∂2u

∂t2
= −κ2 ∂

4u

∂x4 + γ2
l

2

∥∥∥∥∂u∂x
∥∥∥∥2

U

∂2u

∂x2 − 2σ0
∂u

∂t
(3.214)
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where
γ2
l = E

ρL2 (3.215)

The system may be approximated using the following finite difference scheme [61]

δttul[n] = −κ2δxxxxul[n]+ γ2
l

2 〈δx+ul[n], µt·δx+ul[n]〉UN δxxul[n]−2σ0δt·ul[n] (3.216)

3.2.1.9. Acoustic Tube
An acoustic tube is an enclosure with length in a single coordinate x significantly

greater than in the others. Apart from the material properties of the enclosed air,
a behaviour of such object depends also on the function S(x) describing the area of
its cross-section (Fig. 3.63).

x

x = 0 x = L

S(0) S(x)

Excitation Radiation

Figure 3.63. A 1D acoustic tube

The model can be based on linearisation of the equations of fluid dynamics [61]

S

ρc2
∂p

∂t
= −∂u

∂x

ρ

S

∂u

∂t
= −∂p

∂x

(3.217)

where p(x, t) is the pressure, u(x, t) is the velocity, ρ is the density, and c is the wave
speed. The actual model is referred to as Webster’s equation [61]

S
∂2Ψ
∂t2

= c2
∂

∂x

(
S
∂Ψ
∂x

)
(3.218)

where
p = ρ

∂Ψ
∂t

u = −S ∂Ψ
∂x

(3.219)

The model assumes linearity, as well as variations in u, p, and Ψ to be of a scale
larger than the tube width [48]. An equivalent form of the Webster’s equation with
constant coefficient at the second spatial derivative can be written as [61]

∂2Φ
∂t2

= c2
(
∂2Φ
∂x2 − a(x)Φ

)
(3.220)
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where

Φ =
√
SΨ a(x) =

∂2S

∂x2 S −
1
2

(
∂S

∂x

)2

2S2 (3.221)

Scaling the Webster’s equation involves scaling x according to (3.110), with the
cross-section surface area given by

S̃ = S(x)
S0

(3.222)

where S0 is the reference surface area. It is often convenient to assume it to be
the area of the excitation end of a tube: S0 = S(0), which implies S̃(0) = 1. The
dependent variables are scaled according to

p̃ = p

ρc
ũ = u

cS0
(3.223)

After skipping tildes, scaled system (3.217) assumes the following form [61]

S
∂p

∂t
= −γ ∂u

∂x
1
S

∂u

∂t
= −γ ∂p

∂x
x ∈ U

(3.224)

where γ is given by (3.111). With

Ψ̃ = Ψ
cL

Φ̃ = Φ
cL
√
S0

(3.225)

the Webster’s equation can be scaled as well [61]

S
∂2Ψ
∂t2

= γ2 ∂

∂x

(
S
∂Ψ
∂x

)
∂2Φ
∂t2

= γ2
(
∂2Φ
∂x2 − a(x)Φ

)
x ∈ U

(3.226)

where
p = 1

γ

∂Ψ
∂t

u = −S ∂Ψ
∂x

(3.227)

As a convention in sound synthesis, left end of a tube, at x = 0, is regarded as
closed one with excitation mechanism [61]. Therefore Neumann boundary condition
may be applied

∂

∂x
Ψ(0, t) = 0 (3.228)
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Right end is considered as radiating, and in the simplest approach it may be modelled
as an open end, with Dirichlet boundary condition

∂

∂t
Ψ(1, t) = 0 (3.229)

In a more complex approach one may include the effect of inertia and loss, which
brings the model closer to real instruments [61]

∂

∂x
Ψ(1, t) = −α1

∂

∂t
Ψ(1, t)− α2Ψ(1, t) (3.230)

Parameters α1 and α2 have to be adjusted to a particular tube. For a termination on
an infinite plane they may be calculated according to the following formula [22]

α1 = 1
2(0.8216)2γ

α2 = L

0.8216
√
S0S(1)π−1

(3.231)

More details regarding boundary conditions for acoustic tubes along with expressions
for α1 and α2 covering different types of tubes can be found in works of Rabiner and
Schafer [456], and Bilbao [61].

Webster’s equation may be approximated using the following finite difference
scheme [581, 61]

[S]δttΨ = γ2δx+ ((µx−S)(δx−Ψ)) (3.232)

where the grid function [S]l is an approximation to the continuous function S(x),
and the grid function Sl represents sampled values of the function S(x). The scheme
can be expanded as follows

Ψl[n+ 1] =λ2(Sl+1 + Sl)
2[S]l

Ψl+1[n] + λ2(Sl + Sl−1)
2[S]l

Ψl−1[n]+

+
(

2− λ2(Sl+1 + 2Sl + Sl−1)
2[S]l

)
Ψl[n]−Ψl[n− 1]

(3.233)

3.2.1.10. Reed Excitation Mechanism
One of common excitation mechanisms in wind instruments is the reed. Model

of reed and bore interaction has been discussed by McIntyre et al. [360], further
investigated by Barjau et al. [34], and implemented in sound synthesis by Guillemain
et al. [222, 223]. Other approaches have been proposed by Bilbao [59, 60], Avanzini
and Rocchesso [25], and Dalmont et al. [148].

The single reed (Fig. 3.64) may be modelled as a lumped linear oscillator that
is driven by drop of pressure across the mouthpiece. The equation of motion may
be written as [61]

d2y

dt2 + 2σ0
dy
dt + ω2

0(u−H0)− ωα+1
1

Hα−1
0

(
|[y]−|

)α = −Srp∆

Mr
(3.234)
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where y is the reed displacement in relation to equilibrium position H0, Mr is the
reed mass, Sr is the effective reed surface area, σ0 is the damping parameter, ω0
is the resonant frequency, ω1 is responsible for the repelling force in the collision
between reed and mouthpiece for y < 0, α is the power law non-linearity exponent,
and [y]− = 1

2 (y − |y|).

0

H0

y
0 x

pm
pin

um uinur

Figure 3.64. A single reed model
Source: author’s elaboration, based on Bilbao [61]

Bernoulli’s law relates the pressure difference across the mouthpiece [61]

p∆ = pm − pin (3.235)

where pm is the mouth pressure, and pin is the pressure at the acoustic tube entrance,
to the flow in the mouthpiece um [61]

um = w[y]+
√

2|p∆|
ρ

sgn(p∆) (3.236)

where w is the reed channel width, and [y]+ = 1
2 (y + |y|). The flow is subject to

a conservation law [61]

uin = um − ur (3.237)

where uin is the flow which enters the tube, and ur depends on the reed displace-
ment [61]

ur = Sr
dy
dt (3.238)

The following scaling allows to couple reed model with an acoustic tube modelled
by Webster’s equation [61]

ỹ = y

H0
− 1 p̃ = p

ρc2
ũ = u

cS0
(3.239)
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where u is any velocity variable, p is any pressure variable, c is the wave speed, ρ is
the air density, and S0 is the cross-section of left tube entrance. The reed model with
scaled variables is described by the following system [61]

d2y

dt2 + 2σ0
dy
dt + ω2

0y − ωα+1
1

(
|[y + 1]−|

)α = −Qp∆

p∆ = pm − pin
um = R[y + 1]+

√
|p∆|sgn(p∆)

uin = um − ur

ur = S dy
dt

(3.240)

where
Q = ρc2Sr

MrH0
R =

√
2wH0

S0
S = SrH0

cS0
(3.241)

The following semi-implicit finite difference scheme may be used to approximate
system (3.240) [61]

δtty[n] + 2σ0δt·y[n] + ω2
0µt·y[n]−

− ωα+1
1 (µt·(y[n] + 1))

(
|[y[n] + 1]−|

)α−1 = −Qp∆
(3.242)

and
ur = Sδt·y[n] (3.243)

The remaining members of the system do not include time differentiation, therefore
they can be calculated directly. Connection between the reed model and the Webster’s
equation in x = 0 can be performed in the following manner [61]

pin = 1
γ
δt·Ψ0 uin = −δx·Ψ0 (3.244)

Despite complexity of the system coupled withWebster’s equation, Bilbao presents the
implementation that allows to update it explicitly [61] through appropriately chosen
order of computations and application of selected difference operator identities.

In the lumped reed model mouth pressure pm is usually regarded as user-controlled
external data source, preferably coming from some form of physical controller. Its
value has an impact not only on the signal amplitude, but also on timbre due to the
effect referred to as reed beating [290, 586, 61], originating from collision between the
reed and the mouthpiece. Equilibrium displacement H0 can also be user-controlled,
and related to embouchure force. If its rate of change is slow, and so is the rate of
change of parameters given in (3.241), the model (3.240) can be still applied. By
experimenting with various input parameter settings even such simple model is able
to produce not only a pitched sound, but also a set of various effects, such as squeak,
warble, or even sounds similar to multiphonics [28]. The one-mass model however,
is too simple to reproduce reed bending. Such behaviour requires a simulation to be
carried out using distributed reed models [26].
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3.2.1.11. Toneholes in Acoustic Tube
The basic mechanism of controlling pitch in woodwind instruments is a set of

toneholes which can be left open, stay closed, or be partially closed. Toneholes may
be considered branched side-tubes [61], and in the simplest approach they are defined
by two parameters: the radius b and the height τ (Fig. 3.65). Fundamental research
on toneholes was carried out by Benade [45, 46]. Tonehole is usually modelled through
analogy to electrical N -port, as an impedance or scattering matrix that links pressures
and volume velocities [287, 288, 289, 404, 405, 173]. Such models were applied in
methods based on digital waveguides and wave digital filters [575, 491, 527, 587].
A tonehole can also be modelled as a lumped element with mass and stiffness, directly
in time domain [174]. Another approach involves multiple convolutions with reflection
functions from toneholes [356] and feedback to the reed [35].

τ

b
a

Figure 3.65. A cross-section of a woodwind instrument bore with a tonehole; τ is the
height of the tonehole, b is the radius of the tonehole, and a is the radius of the instrument

bore cross-section area
Source: author’s elaboration, based on Bilbao [61]

A basic circuit representation of the tonehole is the two-port with impedances
1
2Za(s) and Zs(s) on series branches and on shunt branch, respectively. The remaining
variables include Laplace transforms of pressures on the left and right side of the
tonehole, p̂− and p̂+, and Laplace transforms of volume velocities, û− and û+. All
variables are considered scaled and dimensionless.

Pressure and velocity drops can be calculated as [61]

p̂diff = p̂+ − p̂− = −ε(x)Za2 (û+ + û−) (3.245)

ûdiff = û+ − û− = −ε(x) 1
2Zs + 1

2Za
(p̂+ + p̂−) (3.246)

where ε(x) is a distribution with unit area and peak in the tonehole location. Assum-
ing spatial continuity of pressures and velocities, (3.245) and (3.246) can be simplified
to [61]
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p̂diff = −ε(x)Zaû (3.247)

ûdiff = −ε(x) 1
Zs + 1

4Za
p̂ (3.248)

Both drop values can be used in system (3.224) after applying Laplace transforma-
tion [61]

Ssp̂ = −γ ∂û
∂x
− γε(x)
Zs + 1

4Za
p̂

s

S
û = −γ ∂p̂

∂x
− γε(x)Zaû

(3.249)

Impedances Za and Zs can be calculated according to Keefe’s tonehole model [288]

Za(s) = −sξ
o,c
a

γST
open and closed tonehole (3.250)

Zs =


1
ST

coth
(
sξ

γ

)
closed tonehole

sξe
γST

open tonehole
(3.251)

where ST is the ratio of the area of tonehole cross-section to the area of bore cross-
section at its left end, and ξ is the ratio of the tonehole height τ to the length of tube L
[288, 289, 587]. The model lacks certain details, such as dependence of effective length
on the frequency or loss term, which are discussed by Keefe [288], Ducasse [174], or
Bilbao [61].

Za can be substituted to the second expression in (3.249), and the result can be
transformed back to the time domain. The effect is the following partial differential
equation [61]

1
S∗

∂u

∂t
= −γ ∂p

∂x
where S∗(x) = S(x)

1− S(x)ξaε(x)
ST

(3.252)

The area function S∗(x) equals S(x) everywhere except near the peak of ε(x), i.e. in
the surroundings of the tonehole. (3.252) can be solved exactly by choosing velocity
potential Ψ, such as that [61]

u = −S∗ ∂Ψ
∂x

p = 1
γ

∂Ψ
∂t

(3.253)

Series impedance Zs may be approximated as [61]

Zs =


γ

sξST
closed tonehole

sξe
γST

open tonehole
(3.254)
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Closed tonehole behaves like a stiffness, and open – like a mass. The first expression
in (3.249) can now be transformed into [61]

Ssp̂ = −γ ∂û
∂x
− γε(x)
a1s+ a2

s

p̂ (3.255)

where

a1 =


− ξca

4γST
closed

ξe − 1
4ξ
c
a

γST
open

a2 =


γ

ξST
closed

0 open
(3.256)

With the use of (3.253), after an inverse Laplace transformation, a coupled system
that describes a connection between a tonehole and a bore can be formulated [61]

S
∂2Ψ
∂t2

= γ2 ∂

∂x

(
S∗
∂Ψ
∂x

)
− ε(x)dm

dt

a1
d2m

dt2 + a2m = γ

〈
∂Ψ
∂t
, ε

〉
U

(3.257)

Function m(t) stores energy in the lumped element.
A more convenient for implementation purposes, yet greatly simplified tonehole

model, has been used by van Walstijn and Scavone [491, 587]. In this approach
Zs = 0, and both, open and closed toneholes are handled together by combining mass
and stiffness in parallel

Zs =
(
φγST
sξe

+ (1− φ)sξST
γ

)−1
(3.258)

where 0 ≤ φ ≤ 1 is the parameter that controls opening (φ = 1) and closing (φ = 0)
of the tonehole. Obviously it can take intermediate values as well, and gradually
change over time to reproduce various fingering effects, including multiphonics and
note transitions. Without Za(s) the area function S∗ = S. If the ε(x) distribution
is approximated with Dirac delta function δ(x− xT ) centred at the tonehole location
xT , the Webster’s equation can be written as [61]

S
∂2Ψ
∂t2

= γ2 ∂

∂x

(
S
∂Ψ
∂x

)
− δ(x− xT )m

m = φγ2ST
ξe

Ψ + (1− φ)ξST
∂2Ψ
∂t2

(3.259)
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A finite difference approximation for the system given by (3.259) has been proposed
by Bilbao [61]

µxxSδttΨ =γ2δx+ ((µx−S)δx−Ψ)− Jp(xT )m

m =φγ2ST
ξe

(αIp(xT )Ψ + (1− α)µt·Ip(xT )Ψ) +

+ (1− φ)ξST δttIp(xT )Ψ

(3.260)

where interpolation (Ip(xT )) and spreading (Jp(xT )) operators allow to position the
tonehole at any chosen location, and parameter α allows to control the behaviour of
the simulation. The stability condition is [61]

λ ≤ 1 α ≤ 1
2 (3.261)

3.2.1.12. Other Wind Instruments
Single-reed instruments have been studied and simulated more frequently than

other wind instruments, though a number of studies involve double-reed and brass
instruments, as well as flutes and recorders. Double-reed mechanisms require mod-
els that are better at handling non-linear flow effects [12, 591, 222, 11]. In brass
instruments a valve formed by player’s lips opens at high pressures, unlike in reed
instruments, where a reed valve is shut by high pressure [47, 191]. Synthesis of brass
sounds can be carried out in a manner similar to reed instruments [2, 478, 593, 594]. In
some cases however, high blowing pressures resulting in shock waves may require mod-
els of non-linear wave propagation [237, 394, 592]. Horns with wider flares may also
require going beyond one-dimensional models [407]. Turbulent flow makes synthesis
of flute and recorder sounds more difficult, and models applied in sound synthesis are
either significantly simplified [360, 127, 574, 589, 572, 590], or are far from operation
in real time [3].

3.2.1.13. Membrane
The simplest model of a vibrating membrane is the wave equation in two di-

mensions
∂2u

∂t2
= c2∆u (3.262)

where c is the wave speed, and ∆ is the Laplacian operator as in (3.69) or (3.70).
Scaling of 2D wave equation is carried out similarly to 1D case, with γ given by (3.111)

∂2u

∂t2
= γ2∆u (3.263)

though the characteristic length L has to be chosen differently. One possible choice
for Cartesian coordinates is to set it to [61]

L =
√
|D| (3.264)
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With such choice of L, (3.263) is defined over a region of unit area. For simulations
in polar coordinates a convenient choice is to set L = R [61].

A basic, ideal initial conditions are similar to the case of 1D wave equation, i.e.

u(x, y, 0) = u0(x, y) (pluck)
∂

∂t
u(x, y, 0) = v0(x, y) (strike)

(3.265)

Both, u0 and v0, may be modelled with the raised cosine distribution, which in 2D
assumes the following form [61]

crc(x, y) =


c0
2

(
1 + cos

(
πr

rhw

))
r ≤ rhw

0 r > rhw

(3.266)

where r =
√

(x− x0)2 + (y − y0)2, c0 is the peak amplitude, rhw is the half-width,
and (x0, y0) is the peak position.

The most basic finite difference approximation for the 2D wave equation, in Carte-
sian coordinates with Laplacian approximated by a five-point operator (3.72), can be
written as [61]

δttul,m[n] = γ2δ∆�ul,m[n] (3.267)

The scheme expands to the following recursion

ul,m[n+ 1] =λ2 (ul+1,m[n] + ul−1,m[n] + ul,m+1[n] + ul,m−1[n]) +
+ 2(1− 2λ2)ul,m[n]− ul,m[n− 1]

(3.268)

Assuming equal grid spacing in both spatial dimensions, i.e. Xx = Xy, the Courant
number λ, similarly to the 1D case, is defined as in (3.115). Stability condition for
the scheme is [61]

λ ≤ 1√
2

(3.269)

At the limit (λ = 2− 1
2 ), (3.268) simplifies by losing term with ul,m[n].

Scheme (3.267) has the following first-order accurate boundary conditions (for the
case of lower boundaries)

u0,m≥0 = 0 ul≥0,0 = 0 (Dirichlet)
δx−u0,m≥0 = 0 δx−ul≥0,0 = 0 (Neumann)

(3.270)

Second-order accurate conditions can be formulated using centred difference oper-
ators.

As an alternative, one can utilise a parametrised scheme [61] by approximating
Laplacian with nine-point operator (3.74)

δttul,m[n] = γ2δ∆αul,m[n] = γ2 (αδ∆� + (1− α)δ∆�)ul,m[n] (3.271)
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For α = 1 (3.271) reduces to (3.267). Stability condition is given by [61]

α ≥ 0 λ ≤ min
(

1, 1√
2α

)
(3.272)

Parameter α allows to control dispersion characteristics of the scheme – examples
with various settings can be found in the work of Bilbao [61].

The third variant of the approximation is a compact implicit scheme [61], ex-
pressed as

δttul,m[n] = γ2
(

1 + T 2(1− θ)
2 δtt

)
δ∆αul,m[n] (3.273)

This scheme has two parameters: α from nine-point Laplacian approximation, and
the additional one – θ. Stability condition is given by [61]

α ≥ 0


λ ≤

√√√√√min
(

1, 1
2α

)
√

2θ − 1
θ >

1
2

λ unconstrained θ ≤ 1
2

(3.274)

while θ is not constrained. By adjusting parameter values, the implicit scheme allows
for much closer match to the ideal phase velocity [61]. More schemes for 2D wave
equation can be found in works of Bilbao, Strikwerda, and Kowalczyk [59, 538, 307].

The most common membranes in percussion instruments are circular, therefore it
is useful to consider the 2D wave equation in polar coordinates. If the equation is
defined over the unit circle, i.e. a circle with radius R = 1, and scaling is as follows

γ = c

R
(3.275)

then the scaled 2D wave equation in polar coordinates assumes the following form [61]

∂2u

∂t2
= γ2

(
1
r

∂

∂r

(
r
∂u

∂r

)
+ 1
r2
∂2u

∂θ2

)
(3.276)

The simplest explicit finite difference scheme for (3.276) is given by [61]

δttul,m[n] = γ2δ∆◦ul,m[n] (3.277)

where δ∆◦ is the operator approximating Laplacian as in (3.76). However, such explicit
scheme is not particularly well suited for sound synthesis purposes, unless applied at
extremely high sampling frequency. As Bilbao points out [61], its frequency band-
width is severely limited, and simulation results display extreme numerical dispersion.
Better results can be obtained by applying a parametrised implicit scheme [61]

(1 + γ2T 2αδ∆◦)δttul,m[n] = γ2δ∆◦ul,m[n] (3.278)
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Scheme (3.278) has the following stability condition [61]

4
(
α+ 1

4
)
γ2T 2

X2
r

(
1 + 1

X2
θ

)
≤ 1 (3.279)

which is required for α ≥ − 1
4 . For other values of the parameter the scheme is

unconditionally stable.

3.2.1.14. Plate
2D wave equation may be a basis for a simple model of a membrane. A plate

has an inherent stiffness, therefore it requires another equation as a model basis. An
uniform, thin, isotropic plate can be simulated using the Kirchhoff model [391]

ρH
∂2u

∂t2
= −D∆∆u (3.280)

where ρ is the plate material density, and H is the plate thickness. Parameter D,
sometimes referred to as flexural rigidity, is defined as [61]

D = EH3

12(1− ν2) (3.281)

where E is the Young’s modulus, and ν < 1
2 is the Poisson’s ratio.

After scaling similar to one applied in the case of a membrane, the Kirchhoff plate
model changes to [61]

∂2u

∂t2
= −κ2∆∆u (3.282)

where
κ2 = D

ρHL4 (3.283)

Clamped and simply supported boundary conditions can be adapted directly from
the bar model (3.196), though lossless free boundary condition is different, depends
on ν, and assumes the following form [61]

∂2u

∂x2 + ν
∂2u

∂y2 = ∂3u

∂x3 + (2− ν) ∂3u

∂x∂y2 = 0 (3.284)

An additional corner condition emerges if a plate is free at a corner [61]

∂2u

∂x∂y
|x=0,y=0= 0 (3.285)

Various finite difference schemes for rectangular plates can be found in the work
of Szilard [544]. One of the most basic schemes for the Kirchhoff plate can be written
as [61]

δttul,m[n] = −κ2δ∆�,∆�ul,m[n] (3.286)
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If grid spacing is equal in both dimensions, i.e. Xx = Xy = X, the scheme can be
rewritten as the following recursion

ul,m[n+ 1] = (2− 20µ2)ul,m[n]+
+ 8µ2(ul,m+1[n] + ul,m−1[n] + ul+1,m[n] + ul−1,m[n])−
− 2µ2(ul+1,m+1[n] + ul+1,m−1[n] + ul−1,m+1[n] + ul−1,m−1[n])−
− µ2(ul,m+2[n] + ul,m−2[n] + ul+2,m[n] + ul−2,m[n])− ul,m[n− 1]

(3.287)
where

µ = κT

X2 (3.288)

The scheme is stable for µ ≤ 1
4 [61], which is more conveniently written as

X ≥ 2
√
κT (3.289)

The scheme (3.286) has the following lossless numerical boundary conditions

u0,m = δx−u0,m = 0 clamped
u0,m = δxxu0,m = 0 simply supported

(δxx + νδyy)u0,m = δx− (δxx + (2− ν)δyy)u0,m = 0 free
δx−y−u0,0 = 0 corner, free

(3.290)

Due to audible dispersion effects introduced by scheme (3.286), higher-pitched
plates may be modelled more accurately with an implicit scheme instead. An example
of such scheme, with two parameters, α and φ, is given by Bilbao [61](

1 + αTκδ∆� + φT 2κ2δ∆�,∆�
)
δttul,m[n] = −κ2δ∆�,∆�ul,m[n] (3.291)

As was the case of a string, a plate model may be refined by including terms
responsible for loss and tension. A basic variant of such model assumes the form as
presented hereunder [61]

∂2u

∂t2
= −κ2∆∆u+ γ2∆u− 2σ0

∂u

∂t
+ 2σ1∆∂u

∂t
(3.292)

and its explicit approximation is given by the following scheme [61]

δttul,m[n] =− κ2δ∆�,∆�ul,m[n] + γ2δ∆�ul,m[n]−
− 2σ0δt·ul,m[n] + 2σ1δt−δ∆�ul,m[n]

(3.293)

A plate can be excited in a way similar to string excitation, i.e. by a mallet or
a bow. The excitation is added to the model through inclusion of force term with
a spatial distribution. Such model for a plate with loss, but with no tension, may
be written as [61]

∂2u

∂t2
= −κ2∆∆u− 2σ0

∂u

∂t
+ 2σ1∆∂u

∂t
+ ε(x, y)F̃ (3.294)
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where ε(x, t) is the force spatial distribution, for instance, the Dirac delta or raised
cosine, and F̃ = F̃ (t) is the force divided by the mass of a plate. A simple example
of a finite difference scheme that approximates (3.294) may assume the following
form [61]

δttul,m[n] =− κ2δ∆�,∆�ul,m[n]− 2σ0δt·ul,m[n]+
+ 2σ1δt−δ∆�ul,m[n] + Jp(xi, yi)F̃

(3.295)

where (xi, yi) is the excitation position, and Jp is the p-th order spreading operator.
The scheme is explicit due to use of backward difference operator δt− in connection
with Laplacian approximation. It can be changed to centred difference operator at
a cost of making the scheme implicit.

A mallet-like object striking a plate [109, 314], or a membrane [461, 313], may be
modelled with the following force term [61]

F̃ = −Md2uM
dt2 = ω1+α

M

(
[uM − 〈ε, u〉D]+

)α
(3.296)

where uM is the vertical position of the mallet,M is the mallet to plate mass ratio,
ωM is the mallet stiffness parameter, α is the stiffness exponent, and [·]+ operation is
defined as in (3.153). Bilbao proposes to approximate the model with the following
semi-implicit scheme [61]

F̃ = −MδttuM [n] =

= ω1+α
M µt· (uM [n]− Ip(xi, yi)ul,m[n])

(
[uM − Ip(xi, yi)ul,m[n]]+

)α−1 (3.297)

where Ip is the p-th order interpolation operator. In a simpler, although slightly less
realistic approach, there is no coupling between models of plate an mallet. The exci-
tation function can be specified directly in the scheme, e.g. in the form of a pulse [61]

F̃ (t) =


F̃max

2

(
1− cos

(
2π(t− t0)
Texc

))
t0 ≤ t ≤ t0 + Texc

0 otherwise
(3.298)

where F̃max is the peak force, Texc is the duration of pulse, and t0 is the start time
of the pulse.

Circular plates in percussion instruments can be modelled in polar coordinates.
The base equation is the same as for the Cartesian coordinates (3.282), however the
bi-Laplacian operator is different (3.78), and scaling leads to a different expression
for parameter κ

κ2 = D

ρHR4 (3.299)
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where R is the radius of the circular plate. The boundary conditions are given by [61]

u = ∂u

∂r
= 0 clamped

u = ∂2u

∂r2 + ν
∂u

∂r
+ ν

∂2u

∂θ2 = 0 simply supported

∂2u

∂r2 + ν
∂u

∂r
+ ν

∂2u

∂θ2 =

= ∂3u

∂r3 + ∂2u

∂r2 −
∂u

∂r
+ (ν − 3)∂

2u

∂θ2 + (2− ν) ∂3u

∂r∂θ2 = 0 free

(3.300)

and if a plate is clamped within a small ε distance from its centre, as in some cymbals,
additional condition emerges [61]

u = ∂u

∂r
= 0 at r = ε (3.301)

Due to high numerical dispersion and reduced bandwidth of explicit finite dif-
ference schemes for plates simulated in polar coordinates, Bilbao advises the use of
a parametrised implicit one instead [61]

(1 + ακ2T 2δ∆◦,∆◦)δttul,m[n] = −κ2δ∆◦,∆◦ul,m[n] (3.302)

The first-order accurate conservative boundary conditions for the free edge can be
expressed as [61]

((µr+r)δ∆◦ − (1− ν)δr+ − (1− ν)δθθ)uNr−1,m = 0
((µr+r)δr+δ∆◦ + (1− ν)δr+δθθ − (1− ν)δθθ)uNr−1,m = 0

(3.303)

where Nr is the number of grid points in r dimension, and corresponding grid range
is l ∈ [0, Nr − 1]. Second-order accurate conditions can be found in the work of
Bilbao [61], and shall be implemented for high values of κ. Additional clamped centre
condition may be assumed as [61]

u0,0 = u1,m = 0 for all m (3.304)

The scheme is unconditionally stable for α > 1
4 , but for other values stability de-

pends on the centre point update scheme. Hence the conditions assume the following
common form [61]

2
√

1− 4ακT
X2
r

(
1 + 1

Ch2
θ

)
≤ 1, (3.305)

where C = 1 for the free, and C = 4 for the clamped centre.
High amplitudes of plate vibrations cause non-linear behaviour and characteristic

auditory effects [479]. Some of the effects, such as pitch glide, can be reproduced
with a relatively simple model, like the Berger’s equation [54, 460], which has been
exploited in sound synthesis [433]. Other effects however, for instance generation of
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subharmonics or growth of energy in high-frequency range, require more elaborate
models. One of such models is the plate model of von Kármán [403, 397]

ρH
∂2u

∂t2
= −D∆∆u+ L(Φ, u) ∆∆Φ = −EH2 L(u, u) (3.306)

where Φ(x, y, t) is the Airy stress function, and the non-linear operator L in Cartesian
coordinates, working on two functions, u(x, y) and v(x, y), is defined as [466]

L(u, v) = ∂2u

∂x2
∂2v

∂y2 + ∂2u

∂y2
∂2v

∂x2 − 2 ∂2u

∂x∂y

∂2v

∂x∂y
(3.307)

Scaling (3.306) involves not only spatial coordinates, i.e. x̃ = x
L , ỹ = y

L , L =
√
|D|,

but also removing dimensionality from u and Φ, i.e. ũ = u
u0

and Φ̃ = Φ
Φ0

. For the
synthesis purposes coefficients u0 and Φ0 may be chosen so as to reduce the number
of parameters in equations

Φ0 = D u0 = H√
6(1− ν2)

(3.308)

Such choice leads to the following scaled form of the von Kármán plate model equa-
tion [61]

∂2u

∂t2
= −κ2∆∆u+ κ2L(Φ, u) ∆∆Φ = −L(u, u) (3.309)

Discussion on boundary conditions for the model (3.309), particularly concerning
non-obvious conditions for Φ, can be found in works of Bilbao [61], Muradova [397],
Ilanko [261], Chien [114], and Geveci [205]. Some interpretations can be also found
in publications of Schaeffer [493] and Horn [245]. Lossless conditions from the linear
plate can be applied, however Φ requires a separate set of two conditions on the edge.
The following set may be utilised for clamped and simply supported boundary [61]

Φ = ∂Φ
∂x

= 0 (3.310)

in connection with appropriate condition for u. It may also be utilised for the free
condition, although in this case it is more common to use higher derivatives of Φ [61].

Excitation and loss in the von Kármán model are introduced similarly to the
linear case [61]

∂2u

∂t2
= −κ2∆∆u+ κ2L(Φ, u)− 2σ0

∂u

∂t
+ 2σ1∆∂u

∂t
+ εF̃ (t)

∆∆Φ = −L(u, u)
(3.311)

One of many possible finite difference schemes for the model (3.311) assumes the
following form [61]

δttul,m[n] =− κ2δ∆�,∆�ul,m[n] + κ2 [L(Φl,m[n], ul,m[n]]−
− 2σ0δt·ul,m[n] + 2σ1δ∆�δt−ul,m[n] + εF̃

δ∆�,∆�Φ =− [L(ul,m[n], ul,m[n])]
(3.312)
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where [L] is an unspecified second-order accurate approximation to the non-linear
term. One of its possible approximations is given by [61]

l(u, v) = δxxuδyyv + δyyuδxxv − 2µx−µy−(δx+y+uδx+y+v) (3.313)

Assuming [L] = l, the scheme requires to solve a linear system for the second equation,
but the first one is updated explicitly.

Further improvements of plate models may include simulation of plate curvature.
Shell models are discussed in detail by Leissa [332], however instead of finite difference
schemes a better solution for such cases is the finite element method. Difference
schemes may be applied in cases of simple spherical curvatures, as an extension to
the von Kármán model [550].

3.2.2. Networks of Lumped Elements
Lumped models employ networks of elements characterised by lumped parameters.

The elements include masses connected by springs and damping elements, also referred
to as dashpots. Networks can be formed into strings, membranes or other kinds of
structures. The freedom of structure design makes lumped networks particularly well-
suited for quasi-physical synthesis. A network can propagate a wave, and the sound
output is produced by time integration. Such approach may be considered appropriate
when dimensions of a modelled physical object are small compared to wavelength of
a vibration, which imposes an upper-frequency and physical size validity limits for
a model in question [526].

Initial attempts to apply the principle of ideal masses, springs, and dampers, con-
nected into a network as a means to synthesize sound, were carried out by Cadoz et
al. [96]. A development of CORDIS and CORDIS-ANIMA synthesis environments
followed [95, 545], the latter intended for modelling of objects in two and three dimen-
sions. The systems were among first large attempts at real-time physical modelling
synthesis. They advanced over time, and the latest versions apart from producing
sound, can visualise movements of lumped elements, and provide haptic feedback.

3.2.2.1. Lumped Elements
Method implemented in CORDIS considers three basic lumped elements [96, 557].

Inertial behaviour of elements is modelled on the basis of Newton’s laws, using ordi-
nary differential equations. An element of mass is described by

F = m
∂2x

∂t2
(3.314)

A spring is given by

F1 = F2 = −K(x1 − x2) (3.315)

Finally, a damper, or an element of impedance, is described as follows

F1 = F2 = −Z
(
∂x1

∂t
− ∂x2

∂t

)
(3.316)
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where F is the force that drives the mass, F1 and F2 are the forces at both ends of
the spring or the damper, K is the spring coefficient, and Z is the friction coefficient.

In a discrete form, with derivatives approximated by first order backward differ-
ences, (3.314) is given by [557]

F [n] = m(x[n]− 2x[n− 1] + x[n− 2]) (3.317)

(3.315) is approximated by [557]

F1[n] = F2[n] = −K(x1[n]− x2[n]) (3.318)

and (3.316) transforms into [557]

F1[n] = F2[n] = −Z(x1[n]− x1[n− 1]− x2[n] + x2[n− 1]) (3.319)

A parallel connection of a spring and damper, which may represent non-linear
contact forces, is referred to as the conditional link, defined as

F1 = F2 = −K(x1 − x2)− Z
(
∂x1

∂t
− ∂x2

∂t

)
(3.320)

Its discrete approximation assumes the following form [557]

F1[n] =F2[n] = −K(x1[n]− x2[n])−
− Z(x1[n]− x1[n− 1]− x2[n] + x2[n− 1])

(3.321)

3.2.2.2. Operation
Time integration of a working network is performed with an audio sampling fre-

quency, or greater, not unlike in the finite difference method. The entire model is
relatively simple. For instance, a network of N masses connected through N −1 links
is capable of reproducing N harmonics [557]. Among other physical modelling meth-
ods, networks of lumped elements may be less accurate, yet more flexible in terms of
defining various vibrating structures, not necessary having a physical counterpart.

3.2.3. Modal Synthesis
A formulation of the modal synthesis method originates from IRCAM [7, 6]. The

method is based on the assumption that a sound-producing object may be modelled
as a set of coupled, vibrating substructures, such as bodies, bridges, acoustic tubes,
membranes, plates, or bells, described by modal data [557]. Substructures respond to
excitations, and their coupled connections allow the energy to be distributed through-
out the whole set. It is possible to apply the method to model arbitrarily complex
structures, yet rapidly increasing computational cost makes simulation of more elab-
orate models impractical. Modal synthesis has been implemented first in the MO-
SAIC system [390], and later in Modalys software [180]. It is still actively developed
[65, 618, 87].
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3.2.3.1. Model Data
There are two sets of data that describe modelled substructure [557, 61]. The

first set contains modal shapes, frequencies, and damping coefficients of resonant
modes. The second one is the excitation data, such as initial conditions, locations
and functions of excitations, or readout locations. Modal data, which is the solution
of an eigenvalue problem, is obtained prior to the actual synthesis process, in either
analytical or experimental way. The analytical way involves a PDE system that has to
consider geometry, material properties, and boundary conditions. The experimental
way, involving measurements with excitation and pickup devices, may be applied in
case of more complex structures, where accurate analysis would be impossible. Modal
data is stored in the shape matrix that describes relative displacements of structure
points, where columns represent contributions of particular modes to a displacement.
A single mode may be considered a second-order resonator, and all modes work in
parallel [557].

3.2.3.2. Synthesis Process
With the shape matrix established, the actual synthesis process is carried out using

initial conditions and the excitation data. For a structure consisting of N points the
instantaneous velocity of a k-th point is given by [6]

∂uk,n+1

∂t
=

N∑
m=1

Φk,m

P∑
l=1

Φl,iFext,l,n+1 + ∂φm,t
∂t

1
T
− ω2

mφm,t

1
T

+ 2ωmξm + ω2
m∆t

(3.322)

where Φk,m is the contribution of them-th mode to the displacement of k-th structure
point, Fext,l,n+1 is the external force on point l, T is the time step, and m-th mode
data is represented by the angular velocity ωm, damping coefficient ξm, and instan-
taneous deflection φm. Thus the synthesis process relies on an evolution of weighted
combination of modal functions.

In case of wind instruments, where flows need to be calculated, external forces
Fext,l,n+1 are replaced with external flows Uext,l,n+1, and the result is multiplied by
the air density ρ0

pk,t+1 = ρ0
∂uk,n+1

∂t
(3.323)

External forces can originate from initial excitation data, and thus be known, but
some of them may originate from coupling between structures, often non-linear. For
instance, an interaction between the reed and the air column may be expressed as [6]

Uext,0,t+1 = B 3
√

(pm,t+1 − p0,t+1)2ξ4 + S0ξt+1 open reed

Uext,0,t+1 = 0 ξt+1 = 0 closed reed
(3.324)

where Uext,0 is the flow entering the bore, pm and p0 are the pressure values at the
mouth and the bore, respectively, ξ is the reed position, B is the Backus constant,
and S0ξ is the additional flow related to the reed displacement.
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Number of equations required depends on the modelled acoustical system and
its division into substructures. For instance, a tube with a reed mouthpiece and M
toneholes, with substructures interacting on the basis of flow conservation, requires
(M + 1) equations (3.322).

3.2.3.3. Output

A sound output at a given time is obtained by projecting modal functions through
inner products onto an observation state – the simplest one is a delta function [61].
The output waveform is generated in time domain. Individual modes are described by
scalar second-order ODEs, and solution is obtained using time-integration techniques.
Modal synthesis may be considered a numerical method for a diagonalised linear
problem [61], therefore a state cannot be directly observed, unlike in direct time-
domain methods. In modal synthesis the observation is carried out through reversal
of the diagonalisation, i.e. the projection. As a consequence, a straightforward way
to implement variable location of excitation or readout, which allowed to produce
interesting effects in direct time-domain method, is not available in modal method.

3.2.4. Karplus–Strong Synthesis

Inclusion of Karplus–Strong (KS) synthesis into a group of physical modelling
methods may be arguable. Roads [470] points to its principle based on a digital delay
line, connecting it to the waveguide method, which is undoubtedly physical. Bilbao
[61] or Tolonen et al. [557], contrarily, assign it either within abstract, or wavetable
methods, respectively, due to lack of immediate physical interpretation offered for the
computations performed. Regardless, here it is discussed among physical methods, as
a direct predecessor, or a very early, incomplete formulation of a waveguide synthesis.
Correspondence to a physical object has been later provided by Jaffe and Smith [264].

Karplus–Strong synthesis [286] is a method of producing sounds that closely re-
semble a plucked string. The sound production mechanism is based on a digital delay
line in a feedback configuration, with signal modified in each pass of the loop, as
shown in Figure 3.66. The delay line is implemented as a wavetable, although it
does not store a fixed waveform. In a typical configuration wavetable data is initially
random. During synthesis it is recirculated, and terminated with a low order digital
filter, usually low-pass. In the most basic implementation the filter simply averages
successive samples. The filter causes the evolution of a signal produced, imitating the
evolution of a plucked string sound, with spectrally rich, bright, impulse-like begin-
ning, and gradually decaying harmonics, finally ending with a single tone. Tolonen
et al. [557] examine the frequency response of the KS algorithm and point out, that
it may be considered a comb filter.

In view of properties of a signal produced, Karplus–Strong is an extremely efficient
method. The operations involved in signal production are additions and multiplica-
tions required by a digital filter, and shifting of wavetable data. If the latter is
implemented as a circular buffer, only a single variable pointing to the instantaneous
beginning of a data needs to be shifted.
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Filling the wavetable with random values has an interesting side-effect. If the
initial data is not a copy of previous excitation, but is actually randomised for each
note, the timbre and evolution will subtly differ from note to note. It is uncommon
in simple digital methods, yet typical for acoustic or analogue instruments.

N -sample delay line (wavetable)

Modifier

Noise generator

Output

Switch

Figure 3.66. A general principle of Karplus–Strong algorithm for synthesis of a plucked
string; after the wavetable has been initialised with random values, it is recirculated and

modified

3.2.4.1. Basic Control
Looped operation and fixed length of the delay line result in a periodic signal.

Its fundamental frequency is determined by the wavetable length N and sampling
frequency fs

f0 = fs
N

(3.325)

The same parameter N controls the decay time. Smaller values make contents of the
wavetable being filtered more frequently, thus shortening the decay.

3.2.4.2. Plucked Strings and Drums
Figure 3.67 presents two basic variants of KS method. The first one produces

sounds resembling plucked strings [557], and is given by the following expression

u[n] = 1
2(u[n−N ] + u[n−N − 1]) (3.326)

where N is the length of a wavetable. Drum-like sounds can be produced using the
second configuration, that introduces random probability 0 ≤ b ≤ 1, referred to as
the blend factor [557]

u[n] =


1
2(u[n−N ] + u[n−N − 1]) r < b

−1
2(u[n−N ] + u[n−N − 1]) r ≥ b

(3.327)

where 0 ≤ r ≤ 1 is a random number with uniform distribution. If b = 1 the second
configuration is reduced to the first one. Drum-like sounds are produced if b = 1

2 . In
this case signal is aperiodic, and N controls its decay time only. A resonant drum
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can be simulated by initialising the wavetable with a constant value instead of noise.
Finally, setting b = 0 results in signal negation every N + 1

2 samples. In effect, pitch
is shifted an octave downwards, and spectrum has only odd harmonics [470].

a)

digital delay line z−N

z−1

1
2

Output

b)

digital delay line z−N

z−1

1
2+ or –

probability b

Output

Figure 3.67. Two basic variants of the Karplus–Strong method: a) plucked string;
b) drum-like instrument

Source: author’s elaboration, based on Roads [470] and Tolonen et al. [557]

3.2.4.3. Decay Stretching
In both configurations decay time is controlled by table length N . This relation

can be decoupled using the decay stretching technique [470]. The output signal is
produced according to the following formula

u[n] =


u[n−N ] r <

(
1− 1

s

)
1
2(u[n−N ] + u[n−N − 1]) r <

1
s

(3.328)

where s is the stretch factor. For s = 1 normal averaging is performed, and decay
time is determined by N . However, decreasing s allows some number of samples not
to be averaged, allowing to compensate for decay shortening. For values close to zero,
very long sounds can be produced.

3.2.5. Waveguide Synthesis
Waveguide synthesis, initially formulated by Smith [520, 522, 524], is a method

based on digital filter design and scattering theory [526]. Its basic form is one of the
most efficient solutions among approaches based on physical modelling. The initial
design was aimed at modelling instruments with one-dimensional vibrating element,
which includes stringed, woodwinds, and many brass instruments. The model relies on
a lossless wave equation (3.108) in a one-dimensional, linear, homogeneous medium,
with lumped excitation elements, i.e. bows, hammers, or reeds, connected through
scattering junctions in power conserving matrix operations [61].

3.2.5.1. Digital Waveguide
The key concept relies upon the d’Alembert’s solution to the wave equation [557],

with a linear combination of two non-interacting waves travelling left and right:
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uL(x− ct) and uR(x+ ct). The solution is implemented as a digital waveguide with
discrete variables

x→ xl = lX t→ tn = nT (3.329)

related by

c = X

T
(3.330)

where X is the spatial step and T is the time step. One can define

u+[n] = uR(nT ) u−[n] = uL(nT ) (3.331)

which allows to write the solution in the following form [557]

u(xl, tn) = uR(tn −
xl
c

) + uL(tn + xl
c

) =

= uR(T (n− l)) + uL(T (n+ l)) = u+[n− l] + u−[n+ l]
(3.332)

The waveguide, shown in Figure 3.68, consists of two l-sample digital delay lines
u+[n − l] and u−[n + l]. Its physical output is obtained by summing a chosen point
of both delay lines. By applying fractional delay filters [569, 312] it is possible to
obtain values associated with non-integer positions. Waveguide operation requires no
arithmetic, only shifts, thus the process is very efficient.

u+[n− l]

u−[n+ l]

u+[n]

u−[n]

uk[n]

l-sample digital delay line

l-sample digital delay line

x = 0 x = k x = lcT

Figure 3.68. A digital waveguide with an observation point in k
Source: author’s elaboration, based on Smith [522]

As Bilbao points out [61], waveguide synthesis has been inspired by Karplus–
Strong method, and became a fully-fledged physical modelling method after two con-
ceptual advancements: the association between a wavetable index and a position on
a physical medium, and showing that data propagated through delay lines behave like
travelling wave solutions to the wave equation, with their sum producing a physical
quantity, i.e. displacement or pressure.

A subset of waveguide models is based on a different delay line configuration. It
is referred to as a single delay loop, and it shares several features with Karplus–
Strong method. As the name suggests, it is based on a single delay line, and on
combining transfer functions of various model elements. The latter is valid due to
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linearity and time-invariance of the waveguide. In comparison to a conventional pair
of delay lines, the length of a single delay line is doubled, so that a total length of
a looped part remains unchanged. Above-mentioned operations may be accompanied
by further simplifications of the model, such as consolidating losses and discarding
elements that would produce less salient auditory effects.

3.2.5.2. Dispersion, Damping, and Other Effects
Even though equation (3.332) represents only a lossless propagation, the waveg-

uide method is able to simulate various effects through application of more elaborate
filter blocks [61]. Two of commonly simulated phenomena are frequency-dependent
damping, and dispersion [526].

Damping can be implemented by introducing a frequency-dependent gain factor
G(ω) to attenuate travelling waves [522, 526]. For the sake of efficiency, and due to
linear, time-invariant character of the waveguide, gain does not have to be introduced
between every unit delay. It can be consolidated into Gk(ω), and inserted before the
observation point.

Implementation of dispersion involves introducing an all-pass filter Hk(ω) before
the observation point. Such filter approximates the effect of dispersion for a given
length of the delay line, and can be efficiently designed as a series of one-pole all-pass
filters [583]. Other design methods, leading to more accurate instrument simulations,
have been considered as well [315, 1].

Another category of effects is related to pitch. For instance, Lagrange interpolation
allows to perform fine-tuning of pitch and produce the effect of glissando [284]. Similar
effect can be reproduced by applying all-pass fractional delay filters [569]. Välimäki,
Tolonen, Karjalainen, and Erkut [579, 558, 183] developed techniques allowing to
produce a pitch glide effect caused by non-linear behaviour, referred to as tension
modulation.

A basic 1D wave equation produces periodic, harmonic signals, while acoustic
instruments often manifest some degree of inharmonicity, which is both, a pitch and
timbre related effect. A considerable degree of inharmonicity can be handled by
applying banded waveguides [186, 187].

An attempt at reproducing timbre of acoustic instruments can be carried out by
supplementing a model of vibrating element with a model of instrument body. It is
efficiently applied in the commuted waveguide synthesis (CWS) [523, 285]. The
method relies on division of sound production process into excitation, vibration of
e.g. a string, and radiation by a body. All three can be interpreted as linear transfer
functions excited by an impulse. The output is obtained by convolving respective
impulse responses. Application of linear filters allows to commute the elements, and
convolve excitation with body into a single impulse response. A number of such
responses, representing various excitation characteristics, can be stored in wavetables,
and applied to excite a string, with regards to a specific context [557].

3.2.5.3. Scattering Junction
More complex model configurations require connections between multiple waveg-

uides, inputs and outputs. Such kind of operation is performed by scattering junc-
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tions that connect N pairs of inputs and outputs with given impedances Ri. Values
of wave variables vi in the junction point are equal

vS = v1 = . . . = vN (3.333)

and the sum of string forces or tube flows is zero

N∑
k=1

fk = 0 (3.334)

Considering two travelling waves

vk = v+
k + v−k fk = f+

k + f−k

f+
k = Rkv

+
k f−k = −Rkv−k

(3.335)

one can obtain wave value in the junction point according to

vS =
2
N∑
k=1

Rkv
+
k

N∑
k=1

Rk

(3.336)

and
v−k = vS − v+

k (3.337)

3.2.5.4. Examples of Waveguide Configurations
First implementations of waveguide synthesis modelled strings, and the basic

waveguide configuration for simulating a string vibration is presented in Figure 3.69.
A pair of waveguides is separated with a scattering junction used to connect an ex-
citation mechanism, such as a hammer or a plectrum. Both ends are terminated
with digital filters that model boundary terminations, coupling with resonator, or
with other strings. Output is read as a sum of values at the same position in both
delay lines.
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Figure 3.69. A basic waveguide model of a string; S represents a scattering operation, and
small boxes represent individual unit delays

Source: author’s elaboration, based on Bilbao [61]
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A typical configuration for woodwinds or brass, shown in Figure 3.70, involves
a waveguide that is broken up by scattering junctions representing toneholes. One
end of the waveguide is connected to the excitation mechanism, i.e. lip or reed model.
Output is produced on the other end, after a filter has been applied to model bell and
radiation effects. Conical bores can be modelled as well, for instance, by dividing them
into multiple waveguide segments representing different cross-section areas, referred
to by Roads as sampling in space [470].
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Figure 3.70. A basic waveguide model of a woodwind instrument; S represents a scattering
operation, and small boxes represent individual unit delays

Source: author’s elaboration, based on Bilbao [61]

A regular 2D or 3D network of digital waveguides is referred to as a waveguide
mesh. A 2D variant (Fig. 3.71), with bi-directional delay units between 4-port
scattering junctions, may simulate a membrane, while 3D structures can be applied
to model room acoustics. Similarly to FD simulations, wave propagation in regu-
lar waveguide meshes is dispersive, thus propagation speed and magnitude response
depend on both, the direction and the frequency. The effect can be attenuated by
modifying the waveguide formulation [557].
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Figure 3.71. A regular waveguide mesh for modelling a two dimensional membrane; S rep-
resents a scattering operation, and small boxes represent individual unit delays

Source: author’s elaboration, based on Bilbao [61]
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3.2.5.5. Applications

Early applications of the waveguide synthesis aimed at modelling acoustic plucked
strings. In addition to guitar [322, 323], other models included harpsichord [578],
kantele [184, 427], or guqin [428]. Some attempts have been made to simulate electric
guitar with distortion and feedback [542] as well as slapbass [459]. Models of struck
string include piano [528, 585] and clavichord [571]. Finally, introduction of waveguide
mesh allowed to simulate membranes [313].

Other than strings and membranes, models of woodwinds and brass have been
developed. The former include clarinet [519, 576, 238], flute [574] and organ pipe [145],
while the latter aim at simulating trombone [132, 394] and trumpet [165, 593, 592].
A relatively large group of models considers vocal and singing synthesis [131, 133, 395].

3.2.6. Other Physical Modelling Methods
It is possible to point physical modelling methods that are particularly convenient,

realistic, or efficient when applied to simulate specific instruments, or – more precisely
– certain elements of instruments. Therefore attempts have been made to combine
advantages of various modelling techniques in what is generally referred to as hybrid
methods [61]. Such attempts usually employ a modular approach [281, 577, 63] that
allow user of a synthesizer to interconnect elements of choice, thus designing a com-
pound instrument. Hybrids may combine objects simulated using various scattering
techniques, including filters and waveguides, with direct numerical simulations, such
as FD model approximations of lumped elements [584, 282, 283], and modal methods
[432, 453].

While simulations based on the finite difference method are the most common
in sound synthesis, time domain simulations can be performed using other methods
as well. A notable example, widely applied in mechanical engineering, is the finite
element method (FEM) [68, 137, 602, 143]. Regarding simulations of musical in-
struments, its key advantage is the ability to model complex geometric details. As of
disadvantages, compared to FD, FEM requires considerably more effort to establish
a simulation domain and divide it into elements (Fig. 3.72) in a way that would
allow to take full advantage of the method’s geometric modelling capabilities. FEM
has been successfully applied to model instruments for research purposes [461, 30],
although its sound synthesis applications are scarce so far [211].

Progress in computer technology facilitates advancement of numerical modelling
methods. Established methods are further developed, and new methods emerge. Even
though sound synthesis, and particularly its real-time, user controlled variant, im-
poses fairly strict conditions on the usability of a model, which needs to be extremely
efficient computationally, yet sufficiently realistic and convincing with regards to au-
ditory details, some of generic methods may be adapted for the purpose. Bilbao [61]
points to a group of methods referred to as spectral [560] or pseudospectral [192],
as particularly interesting, and capable of being applied to model musical instruments.
Using spectral methods, approximation to a PDE system at chosen location can be
obtained on the basis of the entire spatial domain, and not on the limited number of
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neighbouring locations, as was the case of FD. The solution is decomposed into a set
of basis functions [61, 347, 349], thus the method may be considered a generalisation
of modal synthesis. Depending on whether the error is minimised in a finite set of spa-
tial locations, or over the entire domain, two variants of the method exist. The former
is referred to as a collocation method, and the latter – a Galerkin method [349].
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x
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Figure 3.72. A quadrilateral (a) and triangular (b) division of a two-dimensional domain
into elements in FEM

Source: author’s elaboration, based on Kristiansen and Viggen [309]

Other than FDM, FEM, and spectral methods, attempts have been made to sim-
ulate certain instruments or their elements using the boundary element method
(BEM) [80, 425]. However, many interesting cases involving brass instruments and
flue pipes are non-linear and involve fluid mechanics, thus cannot be described well
enough using aforementioned methods. Such cases may be approached using lattice-
Boltzmann method [146] or finite volume methods [334]. Some attempts [3]
make use of a large eddy simulation (LES) method to model turbulent flows [413].



4. Phrase Assembling Synthesis:
a New Approach
to Music Reproduction

4.1. Sound Synthesis in Music Reproduction

Musical applications of sound synthesis encompass two general scenarios. The first
one is a real-time performance, and the second one – a reproduction of pre-entered
musical score. In the latter a performer has to be substituted with some kind of
mechanism or algorithm, which in majority of cases can be quite easily distinguished
from live performance. Reproduction however, has an advantage of prior knowledge
regarding music that is to be reproduced, which gives a hypothetical opportunity to
carry out an analysis of some sort in order to improve the result beyond a regular
playback of entered score.

Two major applications of synthesis in reproduction are computer-aided music
arrangement, and composition. Both involve entering some form of a symbolic musical
notation which is reproduced through a synthesizer either as a means to evaluate
created piece, later to be performed by live musicians, or as a final performance.
Particularly in arrangement tasks, a synthetic reproduction is often mixed with tracks
containing recordings of live performances with real instruments. If the synthesizer
part substitutes some acoustic instrument, it is vital that the imitation is as close to
the real counterpart as possible [486]. Only then it can constitute a reliable basis for
evaluation of composed work or mix well with recorded tracks.

Since early days of computer-aided music production, arrangers and composers
have tried various synthesis methods. Even FM method, which is considered today
a kind of archetype for synthetic sound, has been imitially developed with an imitation
of acoustic instruments in mind [116]. Additive, subtractive, wavetable, as well as
physical modelling methods, all of them had some advantages, however, over the years
it was the sampling that has become the method of choice. It faithfully reproduced
sounds of many musical instruments, though with some notable exceptions. At the
same time it was efficient, and its low complexity allowed a simultaneous synthesis
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of large ensembles. These two goals were hard to achieve simultaneously by other
methods. Recently a new generation of waveform-based methods, the concatenative
synthesis, is gaining attention due to its potential of addressing some shortcomings
of traditional sampling, such as reproduction of natural note transitions. However,
it is relatively new and not well tested, therefore only a small number of commercial
implementations is available so far.

4.1.1. Shortcomings of Sample-Based Methods
In many cases properly applied sample-based methods are able to produce output

that is extremely hard to distinguish from recordings of live performances with real
instruments. However some instruments, articulations, or performance styles are
still difficult to reproduce. In such situations the use of sound samples instead of
continuous recording of real instrument is clearly audible. Therefore, there is a place
for improvements.

Problems of Early Samplers

In early digital samplers the main concern was the memory capacity [470], which
lead to the issues regarding:

• quality of samples,
• contents of samples,
• and processing of samples.

Unlike earlier analogue tape samplers, digital instruments such as Fairlight CMI
Series I, with memory measured in kilobytes [470, 485], usually allowed to store only
a short recording that required processing to control its pitch and duration. In order
to produce required pitches the sample was transposed on demand, which was af-
fecting timbre: no formants were preserved, no instrument registers were reproduced,
and resampling-related distortions were occurring. Playback of longer notes required
looping, which caused audible, repeatable distortions as well. As of controlling timbre,
it was theoretically possible to sample various instrument articulations and dynamics
levels, though only later samplers allowed more convenient switching between sam-
ples, e.g. through velocity mapping. All these issues have been solved as soon as
larger memory became available and affordable.

Problems of Contemporary Samplers

The limiting factor shifted from a simple problem of memory capacity to more
fuzzy issues, such as:

• content quality,
• coherence within sample sets,
• management of samples,
• control over fine-details,
• and reproduction of note transitions.
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Sample Contents and Coherence

The first two issues depend on the process of sample preparation. With no memory
limitations samples can be recorded, processed and stored using virtually any sam-
pling frequency and bit depth – storage limitations have no impact on their quality.
What remains of quality affecting factors is the effect of the recording process, qual-
ity of recorded instruments, and skill of musicians performing during the recordings.
Therefore it is no more an issue of the synthesis method itself, but rather a matter
of cost and time available.

Virtually unlimited memory resources allow to diversify contents of samples. Not
only pitch multisampling is utilised, but it is common to sample instruments at differ-
ent dynamics levels, performing various articulations. To add more realism, accidental
sounds – produced by instruments under certain conditions – are also recorded to be
mixed with main samples. As an effect, even a single instrument can be represented
by an extremely large set of samples, with numbers reaching several thousands. These
samples have to be coherent in order to blend together well into a performance, with-
out oddly sounding ‘outliers’. Again, it is not a technical issue, but a matter of
controlling recording conditions and processing of recordings.

Sample Management

Not only preparing large sets of samples requires considerable amount of work, but
using such sets may also raise considerable problems. Sample management becomes
an issue when simple associations like key-pitch, or dynamics-velocity are not enough
to select a sample, and it is not apparent how to map particular samples to given
control events. One example may be a choice of a particular variant of staccato
articulation if the score contains only general ‘dot’ marks.

The issue may be resolved either by arduous hand-picking of samples for every
single note, which is not an uncommon practice, or by scripting the process, i.e. au-
tomating it by running a program written in a script language. The latter becomes
more available in contemporary samplers, though programming scripts requires knowl-
edge and skill from the user of synthesizer, while factory-provided scripts cover only
selected scenarios. Thus with more samples to choose from, sampling synthesizers
become less straightforward to use. Complex and sophisticated, they require more
effort to obtain satisfactory effect, even though the threshold of what is considered
satisfactory has considerably raised.

Fine Details Control

In the end, it was the advent of large, high-quality libraries of sound samples that
made the last two issues particularly apparent. An inherent problem of the sampling
method itself is caused by a discrete nature of sample sets. Playing back a sample
leaves not much of the sound qualities to be controlled, so the most common way of
changing a timbre is to switch to a different sample within a closed set. Such a limited
control over the sound consequently limits the possibilities of a musical expression1.

1In bowed string instruments and in wind instruments the sound is not only triggered, but also
controlled in a continuous manner, though a sound sample of such instrument is only triggered.
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Some implementations attempt to mitigate the problem by supplementing sam-
pling engine with elements of other, more flexible synthesis methods [485]. The most
common extension is an introduction of modifiers from subtractive synthesis – filters
and envelopes. Some effects can be added with modulation-based methods, and ad-
ditive resynthesis is being applied as a means to edit the sample from the ground,
though it requires considerable effort to work in such manner with real recordings.
There is however, a difference between modifying a square signal and a sound of cello.
The former is plain, without inherent variability. All details are created by modifiers.
In the latter the original source is complex and varies in time. Modifiers can introduce
some coarse changes, but are not precise enough to entirely remove most of original
features. Moreover, larger modifications applied to high quality samples are usually
audible and cause the output to sound less realistic.

Note Transitions

The last issue is one of the most serious, with no immediate countermeasures.
In its basic form sampling synthesis deals with separately recorded musical pitches.
Each has its own amplitude envelope that begins with an attack phase. A regular
procedure applied by a sampler to reproduce a melody, i.e. a sequence of pitches,
is to play back a sequence of samples. In general, this method proves sufficient for
instruments that produce various pitches by using separate vibrators. Such is the case
of e.g. a marimba, harp, pan-flute, or – to a slightly less degree – a piano. In these
instruments pitches are independent and there is no transition phase between them.

It is entirely different in case of bowed strings, or most of orchestra wind instru-
ments. Here, pitch transitions are audible, and depend on performance-related factors.
The issue is handled properly by physical modelling synthesis, but samplers do not
cover this aspect. As a result it is very rare for a sampler to play a smooth, fluent, and
natural strings or woodwinds phrase. More advanced samplers attempt to simulate
the effect of pitch transitions by employing signal modifiers. This includes modifi-
cation of amplitude envelopes and application of filters, like in subtractive synthesis
[485], or spectral analysis and control over separate partials using additive resynthesis
[470]. However, such operations may be audible, and the effect is not entirely natural,
particularly when operations are performed on high quality samples.

4.1.2. Issues of Concatenative Method
Concatenative synthesis addresses several issues of sampling method. While in

sampling sound samples have to be manually assigned to particular control events, in
concatenative method management of recordings is the inherent part of the method –
it is handled by a database system and dedicated algorithms applied in unit selection
stage. Sampling is not able to modify fine details of sound samples in order to
precisely shape the expression fitting the score reproduced. Concatenative synthesis
does not have to shape these details. It simply searches for units best matching score
context, and expressive details are preserved from the original recording [344]. Unlike
sampling, which operates on separate pitches, concatenative method can utilise units
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that include recorded natural note transitions, therefore it is able to produce fluent,
smooth phrases.

However two issues that in sampling method are taken care of by proper prepa-
ration of samples, in concatenative method cannot be addressed with similar ease,
namely:

• contents quality,
• and units coherence.

In addition, concatenative synthesis has its own set of issues, including:

• unit segmentation,
• complexity,
• reliability,
• computational cost,
• and artifacts caused by heavy signal processing.

Unit Contents and Coherence

There are several differences between a unit in concatenative synthesis and a sound
sample used in digital samplers. The fundamental one is generality of definition.
Samples are recordings triggered by selected control events, such as note-on message
in MIDI, and in musical applications they represent single notes. Units are recordings
that contain various levels of musical structures, from larger, like a sequence of pitches,
to smaller, like the attack phase of a single note [344]. Various implementations of
concatenative method utilise units of different levels. Units are not triggered, but
concatenated to produce a continuous waveform.

Due to well-defined nature of sample sets for sampling synthesizers, they are
planned, designed and produced purposefully. Contents of a set are known before-
hand, and depend on the instrument sampled, assumptions regarding multisampling,
as well as required performance techniques. Therefore a sound engineer is able to
assure appropriate recording conditions and final coherence within a whole set.

Units for concatenation can be obtained in various ways, but it is common to cut
them from previous recordings of whole musical performances. Such practice allows
to retain expressive features included in recordings, but leaves no control over the
recording process. Concatenated units may therefore sound slightly different due to
varying recording conditions, even if their musical features, such as pitch or timbre,
are well-matched.

Moreover, units do not have to form a complete set, i.e. not all pitches or tran-
sitions may be represented. If a structure or pitch is not represented in corpus, but
still has to be synthesized, it needs to be transformed from a unit that is closest to
the target [513, 505].

Automatic Unit Segmentation

Concatenative synthesis attempts to automate the procedure of obtaining units by
automatic segmentation of music recordings. Depending on particular implementation
various signal analysis tools and methods are applied. A common procedure is to align
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a pitch-contour of the recording to the score using dynamic time-warping algorithm
[532, 279, 20, 280, 398, 99, 13] or hidden Markov models [454]. Alternatively some
external software may be utilised, and a number of ready to use tools is available in
software toolkits such as MIR Toolbox [321].

However, all of mentioned solutions are prone to errors, except for the simplest
musical structures. They may be applied to perform an initial segmentation, but in the
end human verification and manual adjustments are required. And even combining
human supervision with automatic segmentation may be insufficient to accurately
locate boundaries between more fuzzy musical structures, e.g. the actual beginning
of a note in the middle of a smooth pitch sequence played by a woodwind instrument.
Such boundaries have to be approximated, which is a possible source of discontinuities
in the output signal.

Complexity, Reliability, and Computational Cost

Concatenative synthesis is one of the most complex among sound synthesis meth-
ods due to multi-stage design involving the use of advanced algorithms and depen-
dence on external tools. Units are obtained in complex automatic segmentation pro-
cess [502]. Unit description data is stored in a database system. Selection of units
involves database queries [501] as well as advanced cost-estimation [502] and optimal-
path-search algorithms [596]. Finally, selected units are considerably transformed to
match target features in time, frequency, and amplitude domain using signal pro-
cessing algorithms such as filtering, resampling, additive resynthesis [336] or phase
vocoder, and time granulation or pitch synchronous overlap add (PSOLA) [567].

As a consequence of method’s high complexity a proper implementation of concate-
native synthesis is difficult. It requires testing and balancing values for a considerable
number of parameters controlling component algorithms and tools. Furthermore, part
of these component elements are prone to errors. A significant source of such errors is
the intricate nature of input data, i.e. recordings of expressive musical performance or
high-level semantic descriptors. Another error source are misaligned working param-
eters, such as costs in optimisation algorithms. In effect concatenative synthesis may
be far less reliable than simpler, more straightforward methods, such as sampling.

Complexity and dependence on computationally-intensive algorithms has a serious
impact on time and processing power required to produce an output signal. It may
not seem vital in non-real-time applications, such as music reproduction from entered
score. However, in case of large, multi-instrument pieces, such as symphonic music
which may be of interest for composers, time required to produce output may be
a discriminating factor for a synthesizer. If it is to be used as an evaluation aid,
a user may want to hear a piece, then make some small changes, and hear it again.
Synthesis therefore needs to be practically instant, otherwise long wait periods will
be a distraction from work.

Signal Processing Artifacts

Depending on the size of corpus and diversity of units, it may be possible to
match some targets by simple selection and concatenation of units, though in most
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cases selected units will have to be transformed before. Transformation involves ap-
plying signal processing techniques which may introduce audible artifacts. Two of
most probable sources of such problems are pitch-shifting and time-stretching. Vari-
ous implementations of concatenative method utilise different algorithms to perform
these tasks.

A simple pitch-shifting through resampling, such as the one applied in early digital
samplers, is adequate only for relatively small shifts. The source of a problem here
is shifting of the whole spectral structure, including formants, which normally shall
remain in place. Shifts larger than a few semitones are usually perceived as unnatural.
In particular cases even one semitone may be a problem, e.g. on the boundary of
registers in instruments with very distinct register-related timbre changes. A possible
solution is to apply analysis and resynthesis, either additive or subtractive, and shift
partials selectively. This however, requires considerable knowledge regarding acoustics
of synthesized instruments, and in larger sets of units may become excessively labour-
intensive.

Note duration can be easily shortened, as long as it does not violate the attack
phase. The opposite operation involves more elaborate techniques. Two most com-
monly applied are granulation of time and PSOLA, and both lead to good results
as long as the note transformed is relatively steady. Problems arise if a lengthened
segment includes audible variability in time-domain of the oscillatory character, such
as vibrato or tremolo. Such phenomena usually have a narrow range of typical fre-
quencies, e.g. for a vibrato it is 5–7 Hz [385]. Time stretching may slow it down
outside of a normal range, which will be perceived as unnatural.

4.2. The Concept

The phrase assembling synthesis (PA) is an attempt to address selected issues
of sampling and concatenative methods, and provide another option for automatic
score-based reproduction of music. It is aimed primarily at symphonic performances
and concentrates on synthesizing fluent, natural phrases performed by individual or-
chestral instruments belonging to woodwinds and brass groups [445].

4.2.1. Motivation
Unlike strings, wind instruments in symphony orchestra perform their parts indi-

vidually. E.g. in a pair of oboes, each of them has a different score to play. It causes
features such as note transitions, articulation, or expression-evoked irregularities to be
much more pronounced than in group parts, such as strings, where these features are
bleary. Due to important role of expressive features performances of individual wind
instruments are difficult to reproduce in a realistic manner by sampling synthesizer.

The method of phrase assembling has been conceived as a result of study carried
out in the AGH University of Science and Technology and in the Academy of Music in
Kraków, concerning the perception of pitch intonation in symphony orchestra [439].
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During the research a simulator was employed to imitate errors in reproduction of
pitch by wind instruments in fragments of symphonic music. Parts of wind instru-
ments were reproduced by sampler. Ability of listeners to identify characteristics of
pitch detuning was significantly affected by the amount of sound features reproduced
by sampler [486].

A conclusion, that research related to perception of music can clearly utilise more
realistic synthesis, led to formulation of ideas and assumptions regarding improve-
ments and expansions to standard sampling method [157]. These constituted a basis
for a research project funded by the Polish National Science Center, entitled ‘Achiev-
ing sound realism in sampling synthesis of sound of symphony orchestra wind group’
(2012/05/B/HS2/03972), and carried out in the Academy of Music in Kraków.

4.2.2. Key Ideas
It is not a synthesizer alone that may introduce an artificial quality to music

reproduction. There are two stages where a music performance can lose its natural
qualities. First, when a real instrument is replaced with its synthetic counterpart, and
second, when a live performer is replaced with an automaton, such as the sequencer.
An automatic score reproduction seems to be the worst case scenario. Here both
replacements take place, and an automaton plays the synthesizer. However, score
reproduction scenario has an advantage that can be exploited. It is the availability
of a score before the performance starts.

Experienced users of sampling synthesizers are able to greatly improve quality of
the reproduction by hand-picking carefully selected samples from very large sample
collections. Selection is based on the context of a particular note within a score, as
well as on additional knowledge regarding performance technique of the reproduced
instrument. A match is further improved by adjusting sample parameters exposed by
the sampling engine. One of key ideas behind the phrase assembling method was to
automate this arduous and time consuming process.

Phrase assembling synthesis shall analyse the score before attempting to reproduce
it. Thus it would be able to select best matching samples and adjust reproduction
parameters according to a musical context. The process would not be unlike what
an experienced performer does when he prepares the piece, firstly analysing it, and
only then starting to play.

The second key idea regarded reproduction of note transitions and small-scale
irregularities caused by music expression. Sampling method does not handle these
tasks well, but concatenative synthesis prompts a solution in the form of rejecting
traditional single-pitch samples and using larger musical structures instead.

Alas, concatenative method has its own problems. In practical applications the
most important are its complexity and reliability, which in turn are strengths of sam-
pling. Therefore a decision was made to design a hybrid method combining selected
features of both, sampling and concatenative synthesis (Fig. 4.1). Table 4.1 presents
a collection of assumptions regarding how to address issues of both source methods
while designing a new derived one.
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Figure 4.1. Phrase assembling synthesis in relation to sampling and concatenative synthesis
methods

Table 4.1. Issues of sampling and concatenative methods attempted to be addressed
by the phrase assembling method

Issue Source method Assumed solution

Content quality Sampling and
concatenative

Studio recording and processing of all the sam-
ples within a corpus

Sample or unit
coherence

Sampling and
concatenative

Purposefully recorded and processed samples
instead of units cut from recorded performances

Management of
samples

Sampling Automatic selection of samples based on con-
text of musical score

Fine-detail con-
trol

Sampling
Samples containing recordings of larger musical
structures (motif-level) with inherent expres-
sion

Reproduction of
note transitions

Sampling Concatenation of multi-pitch samples on a sus-
tain phase of a note

Automatic seg-
mentation

Concatenative Purposefully recorded and processed samples of
well-defined content

Complexity Concatenative
No database system, no external programs and
tools, engine closer to sampling than concate-
native synthesis

Reliability Concatenative
Significantly simplified matching samples to
target due to fixed and well-defined sample col-
lection

Computational
cost

Concatenative
Engine closer to sampling than concatenative
synthesis, simplified matching samples to tar-
get, no external tools

Signal processing
artifacts

Concatenative Avoiding excessive signal processing due to
large, purposefully designed sample collection
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4.2.3. Method Outline

The core of the PA method is based on three integral elements. These are:

• a set of sound samples,
• a set of rules,
• and a set of algorithms.

The samples contain recordings of either individual musical pitches or short sequences
of pitches, and form a corpus. The rules guide the following processes: score analysis,
matching of samples to score, and concatenation of samples into a phrase. Finally, the
algorithms analyse and process both, symbolic data and recordings, i.e. the musical
score as well as sound samples, according to rules.

The PA synthesis process has four stages (Fig. 4.2). It begins with a symbolic
musical score which is initially analysed to locate and separate consecutive musical
phrases. Further processing is carried out on a phrase basis. In the second stage
PA attempts to find a combination of samples from within its corpus that matches
a sequence of notes within a phrase. Third stage involves processing of samples,
i.e. cutting and concatenating them to form a reproduction of target phrase. In the
final, fourth stage, reproductions of consecutive phrases are composed into a complete
reproduction of the music represented by the score.

I

II

III

IV

Symbolic
score

Division
into phrases Phrase 1 score Phrase N score

Matching samples
to phrase 1

Matching samples
to phrase N

Sample processing
and concatenating

Sample processing
and concatenating

Phrase 1 waveform Phrase N waveform

Composition
of phrases

Output
waveform

Figure 4.2. Four stages of the phrase assembling synthesis
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4.2.4. Phrase
The name of phrase assembling method emphasises a prominent role of a phrase

as a central point in the PA synthesis process. Depending on a particular style
and historic period a phrase in music may be defined in a slightly different manner,
although in general it is a musical unit that conveys a musical thought. Targeting
wind instruments, PA refers to a more technical aspect of the term, according to
which a phrase is considered a section of musical piece performed fluently, without
break, i.e. ‘on one breath’. Therefore a phrase is broken by events such as pauses,
note repetitions, slur ends, or large jumps in melody [443].

From the perspective of sample-based method a phrase has an important feature:
it has only one full attack transient, in the beginning of a first note. Subsequent notes
are reached in a continuous manner, without attacks. Therefore in comparison to
a single note performed separately, notes within a phrase have incomplete amplitude
envelopes. They only have sustain phases present, and the remaining phases are either
absent or reduced. Such effect is hard to reproduce using samples representing single
notes only. Even after applying amplitude envelope to attenuate excess sections of
note, connections between notes are still missing.

PA method addresses the issue by using multi-pitch samples. Such samples contain
whole sequences of pitches with fluent transitions between. A phrase is analysed,
matched with a fitting sequence of overlapping samples (Fig. 4.3), and assembled by:
• starting with a sample that has the same beginning as a target phrase to reproduce

the first attack,
• and concatenating consecutive samples is such way, that the next one connects

with the previous on a sustain phase of a note common for both of them.

S1
S2 S3

Figure 4.3. Matching multi-pitch samples, marked by colour rectangles, to a phrase;
adjacent samples are overlapped on a pitch common for both of them

The most important aspect of the assembly method is the preservation of original,
recorded note transitions, attained by allowing concatenations to be carried out only
between transitions, on sustain phases.

Apart from the first sample which preserves its beginning, all subsequent samples
in the assembled phrase have their attacks cut, as well as samples preceding them
have their endings cut. If required, it is possible to further truncate a multi-pitch
sample and remove a number of pitches from its beginning or end. Unlike attack, in
case of most instruments release phase does not have very distinct features. Therefore
it is not necessary to include the original final release from the sample in the phrase
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and the phrase can end with a fade out applied to any sustain phase. Though in
instruments where it is necessary, the final release can be concatenated in the same
way as the initial attack. The assembly operation is depicted in Figure 4.4.

A D S T S T S T S T S T S R

A D S T S T S R

A D S T S R

A D S T S T S T S R

Sample 1

Sample 2

Sample 3

Phrase

Figure 4.4. Assembling a phrase out of multi-pitch samples; lighter segments symbolise
sustain phases (S), while darker segments symbolise transient phases, i.e. attack (A), decay
(D), release (R) and pitch transition (T); each sustain phase represents a single pitch within
a multi-pitch sample; samples are concatenated on common pitch using crossfade, symbolised

by a color gradient, while recorded pitch transitions are preserved

Clearly, not all notes within a musical piece are tightly connected and require
smooth transitions. There may be some separate notes as well as sequences to be per-
formed using detached articulation, such as detaché or staccato. For cases like these,
traditional sampling approach works fine, therefore for detached notes PA switches
to conventional single-pitch samples.

4.2.5. Signal Processing of Samples

PA attempts to reduce amount of signal processing applied to sound samples
during synthesis, in comparison to concatenative method. The most fundamental
difference is a complete elimination of pitch-shifting. It is achieved in a manner
similar to how conventional samplers apply pitch multisampling, i.e. by recording and
storing every possible pitch, though with multi-pitch samples it requires considerably
more effort.

PA utilises various types of multi-pitch samples, but it was assumed, that the
corpus has to be designed in such manner, that there is at least one way of assembling
any phrase playable for the instrument of choice. Therefore transition between any
pair of pitches up to the interval of perfect octave is represented in at least one multi-
pitch sample. Larger than octave jumps in melody are considered to break a phrase.
As a result the corpus becomes very large, but the necessity of pitch-shifting is avoided.
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Conventional music notation operates on discrete pitches2, thus it is possible to
store all pitch combinations. However, similar technique cannot be applied to note
durations. Recording all duration combinations in various tempos is infeasible, there-
fore it is necessary for PA to implement some time-stretching method. It is also
necessary to process amplitude of samples by applying envelopes. This however is
one of the simplest operations, common for nearly all sound synthesis methods, and
its performance impact is negligible.

4.2.6. Musical Expression
Music without expression is one of key indicators of synthetic reproductions, cre-

ated using a sequencer controlling a synthesizer. Even though sequencers evolve and
those more advanced are no longer simply reproducing notes in regular tempo, effect
of their work is still easily distinguished from live performances.

PA method, like concatenative synthesis, is not only a synthesizer of sound. It
synthesizes whole musical performances, thus combining synthesizer with elements of
sequencer – it arranges samples in time. PA attempts to reduce the gap between the
output of a synthesizer and the recording of a live musician by including expressive
features in its reproductions. Technically, these features are minute variations in note
durations, fine tuning of pitch, articulation, dynamics, and note connections. They
are not a part of the musical score, but are the result of a human performer’s way
of understanding and interpreting a musical piece: its tension and climaxes, as well
as its context and aims.

There are two different approaches to synthesizing musical reproductions with ex-
pressive features. Concatenative synthesis takes advantage of the expression present
in the recordings used as a basis for units, and attempts to preserve it in the synthe-
sized waveform. For other methods that operate on a pitch basis such approach is
impossible to employ, and what remains is to synthesize the expression. Producing
synthetic expression involves applying performance rules [199, 603, 84, 195] to modify
parameters controlling both, synthesizer and sequencer. A very basic example of such
rule may be the final ritardando, i.e. slowdown in the end of piece.

In PA both approaches are employed, although each one is applied on a different
level of musical structures [158]. Multi-pitch samples contain structures comparable
to short musical motifs. When performed by a live musician, such structures already
demonstrate some expressive features, i.e. ascending sequences may slightly accelerate
or become gradually louder, some intervals may be subtly detuned depending on
surrounding pitches, articulation may emphasise larger interval jumps, etc. These
expressive features are preserved in the output signal.

Phrase and higher level expression is simulated by PA method through a limited
set of performance rules. These rules control primarily tempo and dynamics, and
their envelopes in particular, shaping local and global climaxes. While low level
expression is stored within sample recordings and cannot be modified differently than

2There are exceptions, such as portamento-like performance techniques, but they are rare in
Classicism and Romanticism, which is the main scope of PA. If required, however, they can be
produced by pitch-shifting the closest sample.
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through switching to another sample, expression generated by performance rules can
be controlled by user of the synthesizer.

4.3. The Design

4.3.1. Input and Output
The phrase assembling synthesis is designed as a non-real-time method of synthe-

sizing music reproduction. It operates by taking a digital representation of a musical
score along with a set of additional control data defining selected aspects of per-
formance technique not included in score, and by transforming it into a waveform
(Fig. 4.5).

Score

Rule
settings

Phrase assembling
synthesis Waveform

Figure 4.5. Input and output data type in phrase assembling synthesis

Division of input into two separate data sources allows to produce various repro-
ductions out of a single score, simply by applying different rule settings. Through
rule settings a user can customise synthetic reproduction to represent a particular
performance style.

Details may depend on particular implementation, but it is assumed that the input
score is provided by a user in the LilyPond data format [406]. LilyPond is a music
engraving program published under the GNU General Public License [221], which is
distinct due to its way of working with score, not unlike the LaTeX typesetting system
[380]. A score is written in a human-readable text files and compiled into a chosen
graphical format or a MIDI file. Source text files are not only human-readable, but
the format it extremely convenient for further automatic processing of score, which
is the case of PA method.

LilyPond format has been chosen over the MIDI representation, which is conven-
tionally associated with synthesizers, due to its greatly enhanced capabilities to store
fine details of musical notation, including various articulations, dynamics, time signa-
ture and tempo, as well as key information with enharmonic, which can be vital for
producing expressive, realistic performance. It may be assumed that the format can
handle virtually any kind of information and markings that could be encountered in
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a musical score, apart maybe from some extremely vanguard graphics scores or other
customised modern notation. Such notation is not within a scope of PA though.

LilyPond represents notes with letters, octaves with apostrophes or commas, and
durations with numbers. Source code for a C-major scale is written in Listing 4.1.

Listing 4.1. A simple LilyPond code producing C-major scale
c’4 d’ e’ f’ | g’ a’ b’ c’’ \bar "||"

A more sophisticated example in Listing 4.2 contains articulation markings, dynamics,
and accidentals. The result of its compilation is presented in Figure 4.6.

Listing 4.2. LilyPond code with articulation, dynamics, and accidentals
\clef treble
\key a~\major
\time 3/4

e’8[( \< \p fis’] gis’[ a’] b’[ cis’’]) \! |
d’’4. cis’’8( \> b’[ ais’]) \! |
cis’’4( b’2) |
d’’4.-> cis’’8( b’[ ais’]) |
cis’’4. \< b’8( cis’’[ d’’]) |
fis’’4. e’’8( fis’’[ gis’’]) \! |
a’’[( \mf gis’’] fis’’[ e’’]) dis’’[-. cis’’]-. |
dis’’[( \> cis’’] b’[ a’]) gis’[-. fis’]-. \bar "|." |
cis’’8[( b’] a’[ gis’]) fis’[-. e’]-. \! \bar "|."

Figure 4.6. Example of a score generated by the LilyPond music engraving program

4.3.2. Samples and Descriptions
Unlike a conventional sampling synthesizer which may be considered an universal

sample replay tool and shall work with various sample collections, samples in PA
constitute an inherent part of the synthesis system. Processing algorithms assume,
and depend on particular sample contents. The content of a sample is described and
stored alongside a sample itself [445]. Description, available for each sample, covers
three areas: instrument, sequence of notes, and concatenation data (Fig. 4.7). Details
regarding description data is provided in Table 4.2.
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Figure 4.7. Types of information stored within a description of a sound sample

Table 4.2. Information contained within a description of a sound sample

Type Information

Instrument Name

Musical contents

Type of melodic figure
Starting pitch
Melody direction
Dynamics
Articulation
Tempo

Segmentation data Pitch boundaries
Sustain regions

Information regarding musical contents is essential for searching of samples match-
ing a phrase. There is a limited number of different melodic figures within multi-pitch
samples. Thus instead of describing samples using names of component notes, figure
identifiers are used instead, allowing to divide samples into groups. The same figure
within a group of samples can be played starting from a different pitch, and in two
directions, i.e. starting from each end of a sequence. Dynamics, articulation, and
tempo also have to be considered, so that a timbre aspect of a sample is matched as
well, and required duration correction is minimal.

Segmentation data is required for cutting samples and assembling them into
phrases. It includes a set of locations within a sound sample, each one represented
by index of a signal sample. With these the synthesizer is able to determine where
to cut a sample if only part of recorded pitch sequence is needed, and where is the
area safe to apply crossfade between adjacent samples.

Information regarding the instrument and musical contents is encoded into a file
path and file name of the sound sample itself. Segmentation data is stored in a sep-
arate file with the same name as the sample, but different extension. The reason for
such distribution of data is the efficiency concern. In concatenative synthesis units
have to be managed with a database system. In PA samples and descriptions form
a tree structure. During synthesis, when a sample with particular content is required,
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the content only needs to be expressed as a text and formulated in a particular order,
which immediately produces a path and file name of appropriate sound sample.

4.3.3. The Principle of Operation
Operation of the PA synthesizer is carried out in four stages, as shown in a simpli-

fied diagram in Figure 4.2. PA transforms a digital score into a waveform, therefore
it processes two kinds of data. Part of its operations involves symbolic processing
of score. The remaining part deals with signal processing of samples and final wave-
form [445]. Figure 4.8 presents a diagram illustrating essential operations performed
by the synthesizer.

Stage I

Initial part involves entirely symbolic operations. The score is processed to deter-
mine locations of phrases. This part of analysis is based on a set of phrasing rules
defining events that break the phrase [443]. Unless break condition emerges, consec-
utive notes read from the score are appended to the current phrase. Some phrases
may contain a single note, and in such cases synthesis is straightforward, since no
concatenation is required. Further operations, up to the point of composing phrase
waveforms into a waveform representing complete output signal, are carried out over
each phrase independently.

Stage II

During second stage a phrase is compared to the contents of corpus. Description
of a sample allows to decide whether it matches particular fragment. In most cases
more than one matching sample is available due to considering not only whole multi-
pitch samples but also their parts. Therefore, although there is always at least one
sequence of samples matching a phrase, it is also possible that more such sequences
are available. In such case the algorithm chooses the best one, e.g. the one requiring
the least concatenations [443]. A sequence of samples with cut positions specified is
the information carried to the next stage.

Stage III

In this stage symbolic data from score and sample descriptions is used to con-
trol operations involving actual signal data within samples during phrase assembling.
Samples are cut, their duration is modified if required, their amplitude around con-
catenation area is levelled, and they are positioned in appropriate locations in phrase
waveform. Areas of concatenation are potential sources of discontinuities and have to
be concealed. For this reason a cross-fade between adjacent samples is applied.

Simulation of musical expression involves introducing particular irregularities into
note durations and positions, as well as signal amplitude. It may also require to
select specific sample variants. These operations, controlled by performance rules,
are applied during phrase assembling.
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Figure 4.8. The principle of operation of phrase assembling synthesis
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Stage IV

The objective of the last stage is to compose separate waveforms containing all
assembled phrases into a single waveform – a complete reproduction of the synthesized
piece. Due to the fact, that by definition the only smooth connections are those within
phrases, and not those between them, no special concatenation of phrases is required.
Consecutive phrases are simply appended in the order specified by the score with
required gaps between. It is also here that performance rules are applied to shape
large-scale expressive features, such as global amplitude envelope or breaks between
phrases.

4.4. The Corpus

One of distinctive features of phrase assembling method is its corpus. It is a closed
and strictly defined collection of sound samples representing chosen wind instruments.
Contrary to open formula of corpora utilised in concatenative synthesis, closed and
defined set of samples in PA allows to greatly simplify their management and usage. It
does not require database systems, and due to known contents analysis and processing
of samples may be significantly limited, e.g. each sample has a well defined sequence
of pitches.

While concatenative method acquires units by segmentation of longer, continuous
recordings, not necessarily recorded for such purpose, samples for the corpus of PA
are prepared purposefully, with sequence for each sample performed and recorded
separately, which makes it similar to sampling. The fundamental difference in com-
parison to corpora used in sampling method is the use of multi-pitch samples as basic
melody building blocks.

4.4.1. Instruments
The corpus consists of samples representing ten wind instruments. Due to aiming

at reproduction of orchestral parts only, samples have been recorded for pitches used in
orchestral performances. Thus some extremely low or high pitches have been excluded.
The list of instruments with recorded pitch ranges has been specified in Table 4.3.

Future implementations of PA method may extend the list of instruments. How-
ever not all of such extensions would make sense. The method is particularly well
suited for reproducing individual instruments that play fluent melodic phrases. In
case of nearly all percussion instruments, as well as instruments with separate vibrat-
ing elements for every pitch, there are no benefits of natural note transitions, and PA
would simply perform as a conventional sampler. There may be a merit in adding
bowed strings, although not as a group, like they are used in symphony orchestra.
In a group performance two important advantages of PA are lessened due to the av-
eraging effect. Considering that performance has to vary among instruments within
a group, each instrument performs slightly different note transitions, and somewhat
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individually interprets musical expression. Moreover, a group of live musicians is
never perfectly synchronised. In effect note transitions become bleary, and expressive
features less distinct, with leads to a more uniform final effect.

Table 4.3. The list of instruments in the corpus of PA with recorded pitch ranges

Instrument Recorded range

Piccolo flute D5–C8
Flute C4–C7
Oboe B[3–G6

English horn E3–C6
Clarinet D3–G6
Bassoon B[1–D]5

French horn F]2–C6
Trumpet E3–B[5

Bass trombone B[1–B[4
Tuba D1–G]4

4.4.2. Structure
The corpus of PA consists of the following three parts:

• sound samples, i.e. PCM files containing recordings,
• accompanying text files containing descriptions,
• and directories in a strictly defined tree structure.

Both files, a sample and a description, share a common name, though with different
extension: ‘wav’ for the former, and ‘dat’ for the latter. All three parts, i.e. both
files and their location in directory tree, contain some information, as described in
Table 4.4.

Table 4.4. Distribution of information in the PA corpus

Element Information

File location Instrument, sample type, sample subtype
File name First pitch, dynamics, tempo, variant

Description file Segmentation data
PCM file Recording

The structure of corpus if reflected in its directory tree (Fig. 4.9). The highest-
level branch represents the instrument, the middle one – a type of sample, and the
lowest-level branch – a subtype. The same substructure is repeated in a branch
of each instrument. It consists of three types of samples: single-pitch, two-pitch

284



interval sequence, and tetrachord sequence. A particular type has the same number of
subtypes in each instrument branch, although the number of subtypes varies between
types.

Root

Instrument ...

Instrument 2

Type 3:
Tetrachord Subtype ...

Subtype 1

Type 2:
Interval Subtype ...

Subtype 1

Type 1:
Single-pitch Subtype ...

Subtype 1

Instrument 1

Type 3:
Tetrachord Subtype ...

Subtype 1

Type 2:
Interval Subtype ...

Subtype 1

Type 1:
Single-pitch Subtype ...

Subtype 1

Figure 4.9. The structure of the PA corpus directory tree

A subtype-level directory is the actual location of sample files. Each subtype has
a precisely defined interval structure, but samples within it represent different absolute
pitches and performance features. Thus a given interval sequence is recorded starting
from different pitches, and for each absolute pitch sequence there are sample variants
with different dynamics and tempo. Moreover, the most frequently used samples are
recorded in several variants with the same set of features, which is also indicated in
the file name. They can be used interchangeably to avoid repeatability characteristic
for digital samplers.
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4.4.3. Contents

PA has been designed with the objective of reproducing specific musical structures.
It aims at parts of wind instruments of symphony orchestra in compositions from the
periods of Classicism and Romanticism, as well as other music composed in similar
convention. A time frame given is related to the evolution of instrument design,
composition, and music theory. Periods prior to Classicism utilised different ensembles
and different tuning systems, while more recent approach to music composition, with
notable examples of punctualism [77, 381, 220] and sonorism [115, 172, 608], often
rejects conventional articulation and melodic structures entirely.

On the basis of assumption regarding musical structures PA aims to reproduce,
with prevalent role of scale and chord sequences separated by larger jumps in melody,
it has been concluded [441] that three types of units are sufficient to reproduce any
such melody, without making a corpus unnecessarily large. The respective types of
units are: a single pitch, a pair of pitches forming a melodic interval, and a sequence
of pitches forming a tetrachord.

4.4.3.1. Units
Single-Pitch Units

Units consisting of a single pitch represent various performance techniques, artic-
ulations, and dynamic levels, as well as long notes. This kind of samples has two
primary roles:

• detached articulations, such as variants of staccato or accents, are used in notes
outside of phrases,

• long vibrato and non-vibrato notes are utilised to extend duration of shorter notes
in sequences.

Moreover, special techniques such as ornaments may be introduced where the score
requires them. A full list of single-pitch units is presented in Table 4.5.

Interval Units

Interval samples are the recordings containing a sequence of two different pitches,
by definition forming a melodic interval. They are the fundamental and most universal
melody building blocks among all PA samples. Any melody can be reduced to a series
of intervals when no matching samples among these containing longer sequences can
be found.

Size of intervals in PA is limited to perfect octave due to the fact that larger
jumps are very rare inside continuous phrases. Each sequence is performed as a legato
pair of eighth notes in a given tempo (Tab. 4.6). The most often occurring intervals
are the minor and major second [139]. Due to this reason samples with intervals
of both seconds are recorded in several variants for each combination of dynamics,
tempo, and direction. They can be used interchangeably in order to make sample
repeatability less audible.
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Table 4.5. A full list of single-pitch units [443, 441]; if tempo is not marked, a note is
the shortest or the longest possible, depending on unit; if dynamics is not marked, it

depends on the performance technique represented by a particular unit

Subtype Dynamics Tempo Comment

Short staccato mp, f — —
Short staccato sforzato mp, f — —

Long sforzato — — —
Long non-vibrato mp, f — Also for extending note duration
Long vibrato mp, f — Also for extending note duration

Double staccato mp, f 120 BPM Four sixteenth notes
Full chromatic scale — fast Legato, ascending and descending

Long crescendo — 30 BPM Whole note value
Long diminuendo — 30 BPM Whole note value
Semitone mordent mp, f — Upper and lower

Whole tone mordent mp, f — Upper and lower
Semitone acciaccatura mp, f — Ascending and descending

Whole tone acciaccatura mp, f — Ascending and descending

Semitone trill mp, f — From main and from upper note
(alternate)

Whole tone trill mp, f — From main and from upper note
(alternate)

Table 4.6. Interval units [443, 441]; all combinations of features are present in corpus

Feature Value or description

Subtype From minor second to perfect octave
Pitch distance in semitones 1–12

Dynamics mp, f
Tempo [BPM] 60, 120

Direction Ascending, descending

Tetrachord Units

Third type of units contains tetrachords. They are the longest sequences of pitches
among samples used in PA. Tetrachord is a half of a musical scale, assuming the scale
is a seven-step type with the first step repeated an octave higher – as the eight one.
As such, tetrachord is a sequence of four pitches, each within an interval of second
from the previous one. Some tetrachords have the same interval structure despite
originating from different scales, and thus can be omitted.

In PA tetrachord units (Fig. 4.10, Tab. 4.7) are building blocks for longer scale-
like sequences. Such units need to be able to be overlapped into longer progressions, so
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that a scale crossing several octaves can be constructed. For that reason PA extends
lower tetrachord by one pitch, which allows to overlap lower and higher tetrachords
on a common pitch. Higher tetrachord overlaps to the lower one in the next octave
due to the structure of seven-step scale itself (Fig. 4.11).

Figure 4.10. Tetrachord units used by PA with initial note C4: a) major lower; b) major
upper; c) minor lower; d) natural minor upper; e) harmonic minor upper

Table 4.7. A list of tetrachord units [443, 441]

Subtype
Distances
between
pitches in
semitones

Dynamics Tempo [BPM] Pitch order

Major lower 2–2–1–2

mp, f 60, 120 Straight,
reversed

Major upper 2–2–1
Minor lower 2–1–2–2

Natural minor upper 1–2–2
Harmonic minor upper 1–3–1

Lower

Upper

Lower in next octave

Figure 4.11. Overlapping of 5-pitch and 4-pitch tetrachord units applied to produce longer
scale-like sequence

The reasoning behind introduction of tetrachord units in addition to intervals,
which can be used to build scale progressions as well, is a distinct expressive character
of longer ascending or descending sequences in interpretations of live musicians [84,
296], and frequent occurrence of such structures in melodies. This expressive trait
would be lacking in reproduction combined out of single intervals.
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4.4.3.2. Multisampling

Subdirectory representing a particular unit subtype stores a collection of samples
that differ in the following features:

• starting pitch,
• dynamics (if applicable),
• tempo (if applicable),
• variant (for the most common samples).

A fundamental feature of the PA corpus considering sample processing applied
during synthesis is the full pitch multisampling. PA synthesizer does not need to
transpose pitch of samples used to assemble a phrase, because every possible combi-
nation of pitches is recorded with a corresponding natural pitch transition.

Each subtype is recorded throughout a full range of pitches used in orchestral parts
of a particular instrument (Tab. 4.3). Unlike in multisampling of conventional single-
pitch samples, in multi-pitch samples a number of samples starting with different
pitches depends not only on the range of instrument, but on the ambitus of the musical
figure represented by the unit in question, e.g. there are less samples of large intervals
than of small ones, because the latter can start from higher pitches unavailable for
the former. This however has no effect on reproduction capability of the PA, as long
as all notes in the score reproduced are kept within the instrument range.

Tempo and dynamics in music are less discrete than the pitch, with fluent grada-
tions possible, therefore in case of these features multisampling had to be limited to
some arbitrarily chosen closed set of fixed values. In the first implementation of PA
two values are used in both cases: slow and fast tempo, i.e. 60 and 120 BPM, as well
as soft and loud dynamics, i.e. mp and f. In both cases impact on expression and
timbre resulting from switching from one value to the other is clearly pronounced, and
it would be difficult to convincingly simulate it with signal processing only. Milder
changes, however, can be obtained in such manner, therefore no intermediate values
have been recorded in order to maintain a reasonable size of corpus.

With current assumptions regarding multisampling as well as selection of pitch
sequences for multi-pitch samples, each of ten instruments in corpus is represented
with a collection of approximately 5000–6000 different sound samples.

4.4.4. Recordings

All of the sound samples for the PA corpus have been recorded specifically for this
purpose. Recordings have been carried out in the recording facilities of the Academy
of Music in Kraków as a part of the Polish National Science Center research project
no. 2012/05/B/HS2/03972. All instrument parts have been performed by the staff
of the Academy of Music.

For a prototype implementation of the PA method two stereo recording techniques
have been utilised [256]. A pair of DPA 4006 microphones was used in the A/B set-up,
and a pair of Schoeps 4V was used in the X-Y set-up. All relevant files are available in
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the corpus for the user to choose from. Sampling frequency has been set to 88.2 kHz
to leave an adequate headroom for signal processing.

4.4.5. Analysis and Preparation of Samples

In comparison to concatenative method, PA requires a relatively modest amount
of analysis and processing before a unit can be included in the corpus. Regarding in-
formation types mentioned in Table 4.2, all the instrument and music contents related
data is fully known beforehand. The only information that remains to be determined
is the third part – segmentation data, required for concatenation of samples. In par-
ticular, the data is a set of positions within a sound sample, expressed in signal sample
indices, which – with known sampling frequency – translates to time positions. The
set consists of boundaries between pitches within a sequence, and extent of sustain
regions corresponding with particular notes. However, even though the amount of
information needed to be extracted from recordings is significantly smaller than in
concatenative synthesis, the amount of recordings to process might be much larger.
Thus a fully manual approach to the task would be impractical, if not impossible,
and application of some algorithms to automate the process is necessary.

The goal of the analysis is not to determine f0 of the signal in question, but rather
to establish consecutive areas of constant pitch, representing notes in the recorded
sequence. An algorithm proposed by Pluta and Delekta [443] has been utilised in
the task with satisfactory results. The algorithm, presented in Figures 4.12–4.15, ap-
plies an autocorrelation method of f0 extraction [212] (Fig. 4.12), and supplements it
with pitch tracking, which uses a priori information regarding a sequence of pitches
expected in the analysed recording (Fig. 4.13–4.14). With known expected frequen-
cies, the algorithm adjusts f0 extraction parameters, including detection window and
minimal distance between peaks in autocorrelation.

Initially the window is small, and minimal peak distance is assumed large, however
if the process fails, both values are progressively loosened. Once detected, f0 is
compared to the current or next expected value. The algorithm attempts to take into
account common octave errors. In the end, areas where f0 has not been established,
but which are surrounded by areas with the same determined value of f0, are filled
in (Fig. 4.15). The result of the process is a list of coordinates that confine non-
overlapping areas of subsequent notes, that are separated by transition phases.

Even though the algorithm presented proved to be relatively robust considering
a very large set of samples analysed, it still fails to provide correct results in some
isolated cases, therefore requires human supervision. For some instruments the auto-
correlation may be substituted with a different f0 extraction method [178]. Alterna-
tively, an entirely different tool may be applied, such as the YIN algorithm [153, 152]
that estimates not only value of f0, but also aperiodicity and loudness.
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START

Pd = fs/(1.3 ∗ max(fe)),
WS = round(fs/min(fe)),
WJ = round(fs/20)),

uthr = 0.1 ∗ max(abs(u))

x1 = (first u >
uthr) + ceil(WS ∗Wmax/2),

x2 = (last u >
uthr) − ceil(WS ∗Wmax/2)

j = 0, s = 1, x = x1

A j = j + 1

f0[j] = −1, f [j] = 0,
t0[j] = x, d = Wmin

B

s1 = x − floor(d ∗ WS/2),
s2 = x + floor(d ∗ WS/2),

w[. . .] = u[s1 . . . s2]
c[. . .] = autocorrelation(w),

cr = 0

cr = cr + 1

[pval[. . .], parg[. . .]] =
findpeaks(c,MinPeakDist =

Pd/cr),
L = length(parg)

(L > 0) OR
(cr == 9)

C (L == 0) D

No

Yes

No
Yes

variables
u[. . .] : input, i.e. unit, sound

sample

fs : sampling frequency

fe[. . .]: sequence of expected
frequencies

WS : period of the lowest
pitch

Wmin : min. number of WS in
examined window

Wmax: max. number of WS in
examined window

Pd : min. peak distance for
autocorrelation

q : quarter-tone frequency
ratio (2(1/24))

WJ : window shift

uthr : signal threshold value

N : number of examined
windows

f [. . .] : output, i.e. values of
f0 for consecutive win-
dows

Figure 4.12. Pitch-regions finding algorithm, part 1 of 4: initialisation and autocorrelation
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C
found f0 candidate:
f0[j] = max(fs/parg)

(f0[j] < fe[s] ∗ q) OR
(f0[j] > fe[s]/q)

Lf = length(fe),
Sf = sum(f [1 . . . (j − 1)])

(s < Lf ) AND (j > 1)
AND (Sf == s)

(f0[j] < fe[s+ 1] ∗ q)
AND

(f0[j] > fe[s+ 1]/q)

(f0[j] < 2 ∗ fe[s] ∗ q)
AND

(f0[j] > 2 ∗ fe[s]/q)
s = s + 1

E F

No

Yes

Yes

No

Yes

No

Yes

No

Figure 4.13. Pitch-regions finding algorithm, part 2 of 4: pitch tracking and octave
checking
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E D

(s < Lf ) AND (j > 1)
AND (Sf == s)

(f0[j] < 2 ∗ fe[s+ 1] ∗ q)
AND

(f0[j] > 2 ∗ fe[s+ 1]/q)
d = d + 1

s = s + 1 (d <= Wmax)

F
pitch identified:
f [j] = s B

x = x + WJ

G (x > x2) A

Yes

No

Yes

No

Yes

No

Yes
No

Figure 4.14. Pitch-regions finding algorithm, part 3 of 4: pitch tracking and octave
checking
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G

fF [1 . . . length(fe)] = first oc-
currences of frequencies from fe

fL[1 . . . length(fe)] = last oc-
currences of frequencies from fe

i = 1

(fF [i] > 0) AND
(fL[i] > 0) f [fF [i] . . . fL[i]] = i

i = i + 1

(i <= length(fe))

STOP

Yes

No

Yes

No

Figure 4.15. Pitch-regions finding algorithm, part 4 of 4: filling gaps

4.5. Applied Techniques

Transition from a musical score to a waveform involves several levels of process-
ing. PA applies a number of algorithms and techniques to analyse a score and process
signal on a sample, phrase, and a final waveform level. In the score domain spe-
cialised algorithms are applied to segment input into phrases and to select matching
samples. Concatenation of samples makes use of a particular variant of crossfading
technique adjusted to deal with highly correlated signals. Another technique applied
on the sample level allows to control note durations. Even though multi-pitch samples
contain some low-level irregularities in performance attributed to musical expression,
higher-level expressive features have to be added on a phrase level. Therefore, while
assembling samples into a phrase, a set of performance rules is applied. Performance
rules can affect various parameters, but in PA two most important are envelopes
applied to dynamics and tempo.
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4.5.1. Musical Score Analysis

4.5.1.1. Score Segmentation Algorithm
The initial step of the PA synthesis is the segmentation of entire input score into

a sequence of musical phrases. The process may be considered as a series of decisions
regarding a type of connection between each consecutive pair of notes. If a particular
condition is met, a phrase is considered to be broken. Conditions are identified by
analysing a score and searching for events such as pauses, note repetitions, slur ends,
or large jumps in melody [443].

A LilyPond’s textual form of musical score (Listing 4.2) is well-suited for the
purpose of such analysis. All of the events sought for either emerge as an effect of
analysing immediate note neighbourhood, like in case of pause or repetition, or are
simply represented as an information attached to a note, like end of slur or detached
articulation.

A part of score segmentaiton algorithm is presented in Figure 4.16. A score is
represented by an array with each element being either a note or a pause. Element
value of 1 represents a note that begins a phrase. Value 0 represents a note that
continues a phrase. Separated notes are treated as one-note phrases.

4.5.1.2. Phrase Matching Algorithm
Once a score has been segmented into a sequence of phrases, another score pro-

cessing algorithm carries out a sample matching procedure (Fig. 4.17–4.19). During
this stage samples are represented by figures, i.e. symbolic sequences of notes that
describe musical contents of multi-pitch samples. One-note phrases are trivial and
require no further analysis. For longer phrases the algorithm finds all sequences of
figures that match a phrase, further referred to as solutions, and selects one of them.

Figures matched to a phrase do not have to be used as a whole. Partial figures,
with some notes removed from either end, can be used as well (Fig. 4.4). Informa-
tion regarding removed notes has to be attached to each figure within a sequence.
Therefore an algorithm stores a single solution in three arrays. The first one contains
identifiers of consecutive figures. The other two contain the first, and the last used
note of a respective figure. All three arrays are stored within a single, two-dimensional
array, where the second index allows to select type of information: a figure ID, its
first note used, and its last note used.

The initial task of the algorithm is to search for all figures that begin with at least
first two notes of the phrase, in order to reproduce the first note transition (Fig. 4.17).
Analysed figure is checked to determine how many consecutive phrase notes does it
match. For some short phrases even a single figure may match the whole phrase,
which concludes the algorithm, with the solution complete.

If some phrase notes are still not matched, another figure is searched for. A search
condition is that a figure includes the last matched note from a phrase, for overlapping
samples, and the first not matched one, so that the solution expands. In this stage
a solution starting with a given first figure can branch, i.e. have several alternative
second figures. Within each branch a second figure is checked like the first one, to
determine how many phrase notes does it match.
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START beginnings[. . .] = 0

beginnings[note] = 1 note = 1

next note
the same beginnings[note+1] = 1

slur start beginnings[note] = 1

slur end AND
not last note

beginnings[note+1] = 1

note = note+1

last note note = 2

after pause beginnings[note] = 1

note = note+1

last note STOP

Yes

No

Yes

No

Yes

No

No
Yes

Yes

No

No
Yes

Figure 4.16. A part of score segmentation algorithm, with three types of phrase-break
events recognised: note repeat, slur, and pause; array ‘beginnings’ represents all notes in

the input score; its elements set to 1 represent beginnings of a phrase
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START

only one note in
phrase STOP

N = 0, c = 0, d = 1
start search for ini-
tial matching figures:

i = 1

at least two notes in
figure AND first two
notes of figure and

phrase match

initial figure found:
N = N + 1
S[c][d][1] = i
S[c][d][2] = 1

i = i + 1

L = index of last figure
note matching phrase note

P [c] = L
S[c][d][3] = L

more figures A

Yes

No

Yes

No

Yes
No

variables
S[. . .][. . .][. . .]: array of solutions; first index – solution ID, second index – depth (position of

figure in matched sequence), third index – 1: figure ID, 2: first used note, 3:
last used note

P [. . .] : matching progress (last phrase note matched)

N : number of solutions found

b : currently processed branch

c : currently processed solution

d : depth

Figure 4.17. Algorithm matching a sequence of figures representing sound samples to
a phrase, part 1 of 3: initial figure
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If the solution is not complete yet (Fig. 4.18), matching and checking procedure
repeats as many times as required in each branch. In the following iterations of
the procedure solutions can branch further (Fig. 4.19). Finally, a set of candidate
solutions is prepared. Next stage of the algorithm concerns selecting the best one
among them.

A

N = c B

all solutions complete
(P [. . .] == phrase

length)
d = d + 1, k = 1

select solutions with the
lowest number of figures used C

choose one using the
longest sections of figures

solution:
figures = S[c][. . .][1]

first figure note = S[c][. . .][2]
last figure note = S[c][. . .][3]

STOP

No

Yes

Figure 4.18. Algorithm matching a sequence of figures representing sound samples to
a phrase, part 2 of 3: completing solutions

The best solution can be chosen according to various criteria. A simple assumption
might be that the phrase shall be assembled using as few samples as possible. Such
condition will lead to solutions with the lowest number of sample concatenations.
Furthermore, among solutions with the same number of required concatenations the
algorithm will prefer those that utilise the largest parts of its component samples
(Fig. 4.18). This shall allow to retain the most of low-level expressive features from
the recordings.

With such criteria the algorithm does not have to continue iterating to find all
matching solutions. It can simply stop after the first iteration where complete so-
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lutions emerge, which will make the process more efficient. Nevertheless, mentioned
criteria are not the only viable. It is even possible to select a random solution from
a complete set. Such approach might be reasonable in case of highly repetitive music,
and will lead to slight variations in repeated phrases.

C b = 0

i = 1 solution complete?

any two-note sequence
in figure match last note
of solution and next

note in phrase

M = index of figure note
matching last solution note

i = i + 1 b == 0

b = k
S[b][d][1] = i
S[b][d][2] = M

c = c + 1, b = c, S[b] = S[k]

P [b] = index of last phrase
note matched by figure note
S[b][d][3] = index of last figure
note matching phrase note

k = k + 1

B k > N

No
Yes

No

Yes

No

Yes

No
Yes

Figure 4.19. Algorithm matching a sequence of figures representing sound samples to
a phrase, part 3 of 3: branching
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4.5.2. Sound Samples Processing
In comparison to concatenative synthesis phrase assembling method requires far

less signal processing applied to sound samples. As a consequence of complete rep-
resentation of all required pitches and pitch transitions within the PA corpus, there
is no need to transpose samples or their parts. There is still, however, an issue of
concatenation of adjacent samples on a sustain phase of their common, overlapping
pitch – area of connection should be inaudible.

4.5.2.1. Concatenation
Samples are concatenated using a crossfade, which allows one sample to gradu-

ally transform into another one. However, such simple approach cannot be applied
directly due to a specific relation of connected signals. Both concatenated samples
contain recordings of exactly the same instrument, obtained under the same condi-
tions, and prepared in the same manner. Moreover, concatenation is performed on
a sustain phase of the same pitch, hence both samples have almost identical funda-
mental frequency. As a consequence, crossfade regions in both samples have a very
high correlation. A special attention has to be paid to relation of their phases, oth-
erwise it is likely that some cancellation will occur, resulting in a drop of amplitude
in the concatenation region.

track 1

track 2

cross-correlation

track 1

shifted track 2

envelopes

mix using envelopes output

maximum

shift value

shift

1. 2.

3. 4.

5. 6.

Figure 4.20. Phase-aligned crossfade

The issue can be addressed by applying phase alignment before the crossfade.
Schematic diagram of the operation is presented in Figure 4.20, while details of im-
plementation can be examined on the basis of the flowchart presented in Figure 4.21.
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START

m[1 . . . L] = 0,
t1[1 . . . L] = t2[1 . . . L] = 0,
e1[1 . . . L] = e2[1 . . . L] = 0,

x2 = x1 + xL − 1

initialise
arrays

t1[p1 . . . (p1 + L1 − 1)] =
t1[p1 . . . (p1 + L1 − 1)] + w1,
t2[p2 . . . (p2 + L2 − 1)] =
t2[p2 . . . (p2 + L2 − 1)] + w2

create
tracks

s1 = t1[x1 . . . x2],
s2 = t2[x1 . . . x2],

xc = CrossCorrelation(s1, s2, lmax),
[value, index] = max(xc),

ts = index

get time
shift

p2 = p2 + ts,
x1 = x1 + ts,

x2 = x1 + xL − 1

adjust
positions

t2[1 . . . L] = 0,
t2[p2 . . . (p2 + L2 − 1) =
t2[p2 . . . (p2 + L2 − 1) + w2

shift track 2

fin = [1 . . . xL]/xL,
fout = 1 − fin,

e1[x1 . . . x2] = fout,
e2[x1 . . . x2] = fin,

e1[1 . . . (x1 − 1)] = 1,
e2[(x2 + 1) . . . end] = 1

create
envelopes

v1 = rms(t1[x1 . . . (x1 + (fs/10)]),
v2 = rms(t2[(x2 − (fs/10)) . . . x2]),

a = v1/v2

get am-
plification

m = (t1[. . .] ∗ e1[. . .]) +
(a ∗ t2[. . .] ∗ e2[. . .]) mix tracks

STOP

variables
fs : sampling frequency

w1 : sound sample 1

w2 : sound sample 2

L1 : length of w1

L2 : length of w2

p1 : offset in w1

p2 : initial offset in w2

x1 : beginning of crossfade
region

xL : length of crossfade re-
gion

lmax: maximum lag for cross
correlation, set to
fs/20

t1 : track 1

t2 : track 2

fin : fade-in section

fout : fade-out section

e1 : envelope for track 1

e2 : envelope for track 2

m : mix of tracks

L : length if mix

Figure 4.21. Concatenation of samples with phase-aligned crossfade
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The idea is to time-shift the second sample in relation to the first one. Value
of the shift is determined on a basis of cross-correlation between both signals in
concatenated region – it is an abscissa of the first maximum of cross-correlation. The
shift makes both signals phase-aligned, and allows them to be directly crossfaded
with no amplitude distortion.

The adjustment is small enough not to impact the sensation of rhythm. In the
majority of cases it does not exceed 1 ms, and even in the extreme situations3 observed
values only approached 10 ms. A value considered to be the fastest perceptual musical
separation is 100 ms [339], therefore shift values applied by PA seem acceptable in
comparison.

All stages of the actual concatenation procedure applied in PA synthesis are pre-
sented in Figure 4.21. In the initial stage empty arrays of required length are allocated:
one for the mix, i.e. output signal, two for input tracks, containing positioned sam-
ples, and two for amplitude envelopes. Sound samples are positioned within their
tracks on the basis of required duration of concatenated note. In each track a cross-
fade area is determined, and two respective track sections are isolated for calculation
of cross-correlation. This provides the value of a time-shift, which is used to adjust
crossfade area position, and to shift the second track. Corrected position of the cross-
fade area allows to calculate amplitude envelopes for both tracks. In the flowchart
presented in Figure 4.21 envelopes are linear, though other can be applied as well.
Signal amplitudes in concatenated samples does not have to be equal. Therefore in
order to avoid producing an effect of short crescendo or diminuendo an amplitude
ratio is calculated and applied as a correction in the final mix stage.

The procedure has a number of parameters that can be adjusted. Firstly, it is
a matter of determining the extent of cross-fade area that would produce the least
audible effect. Secondly, even with relative position of both samples determined by the
rhythm, there is some space for choosing crossfade location. Thirdly, amplitude ratio
can be determined on the basis of a variously sized neighbourhood of concatenation
position. Considerations regarding usable values are discussed further in text.

4.5.2.2. Control of Duration
Both, PA and concatenative synthesis share an issue of note duration. Con-

catenated units contain sequences of pitches with inherent attributes of tempo and
rhythm, which define time intervals between note onsets. Unlike them, conventional
sampling has to deal with note duration only, and in contemporary implementations,
not restricted by memory limitations, it is handled simply by recording long enough
samples that only need to be faded out at some required point. A multi-pitch sample
usually needs to continue to a next pitch even after duration of some of its inner notes
has been altered. Therefore a simple fade-out does not suffice. One might try to apply
a multisampling approach to note durations, and store various rhythmic sequences
in various tempos. This however, is virtually infeasible. Even without it PA uses
approximately 5000–6000 samples per instrument. With duration multisampling this
number would increase by orders of magnitude, and even then duration would have to

3The worst case scenario considered was a shift of a half-period extent in signals with f0 = 50 Hz.
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be changed in relatively coarse steps. A more reasonable approach is to apply sample
processing at the time of concatenation, and change duration as required.

Sample duration may be changed using various signal processing methods, many of
which have been applied in implementations of concatenative synthesis, e.g. additive
resynthesis [336], phase vocoder [190, 300], time granulation [273] or PSOLA [567].
These however, might stretch or compress fine temporal structures related to musical
expression. In attempt to preserve expressive features present in recorded samples PA
uses another approach, based on concatenation and insertion of additional samples.

Duration control technique utilised in PA is schematically presented in Figure 4.22.
Both duration-related operations, shortening and lengthening, are based on concate-
nation, i.e. crossfading of samples after their phases have been aligned. Shortening is
simpler of the two. It requires only the original sample, which is concatenated with
its own copy, time-shifted backwards by a value of time difference between the initial
and target duration. In essence, shortening removes part of a sustain region.

Shorten Lengthen

Original sample

Sample

Shifted sample

Crossfaded: shorter

Sample

Inserted long sample

Shifted sample

Crossfaded: longer

Figure 4.22. Duration control technique utilised in PA; in order to shorten a sample
its copy is backwards shifted in time and concatenated with the original; lengthening uses
an additional long sample which is concatenated with both, the original, and its forward
time-shifted copy; concatenations involve crossfading, indicated by amplitude envelopes, and

phase alignment

Lengthening is similar, only the copy of a sample is shifted forwards in time. This,
however, leads to a problem. In cases of larger changes sample and its shifted copy
will have no common sustain area available for concatenation: an attack phase of
a copy can meet a release of an original, or there might even be a pause between
samples. Here an additional sample is introduced. It is selected from single-pitch
samples of long notes (Tab. 4.5), which are as long as possible, to perform using
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a given instrument. The sample is inserted to fill-in the gap between concatenation
areas of the original sample and its copy. Instead of one, two concatenations are
performed. The original is concatenated with the inserted sample. The result of this
operation has a very long sustain region, so that the copy of the initial sample can be
shifted as required and both, the result of the first concatenation and the shifted copy,
can be concatenated to produce longer note. Thus lengthening inserts an additional
segment of sustain region.

For the purpose of simplicity, Figure 4.22 presents the duration control technique
applied to a case of a conventional single-pitch sample. It is however a case of multi-
pitch samples where the technique is essential. The fundamental feature is the fact
that the only note segment affected by the technique is its sustain region, with re-
maining parts intact. Therefore neither initial attack, nor any of note transitions or
final release are altered. This allows to reproduce virtually any sequence of notes
with either constant or varying durations, while preserving original, fluent transitions
between pitches.

4.5.2.3. Tempo and Rhythm
In case of detached notes control over rhythm and tempo in PA does not differ from

a conventional sampling method. Single-pitch samples are placed in required positions
on a time axis, and their duration is adjusted if required. Short articulations, like
staccato, are already performed as short as possible, and often do not require an
adjustment. In majority of the remaining cases long samples of special performance
techniques are shortened.

Reproduction of rhythm and tempo using multi-pitch samples requires additional
effort. The corpus of PA stores multi-pitch sequences with equal rhythmic values,
but in different tempo variants (Tab. 4.6 and 4.7). Target tempo and rhythm are
reproduced in a three stage process (Fig. 4.23).

target tempo,
target rhythm,

expressive inforamtion
calculate note durations

sample variants v
in different tempos

for each v calculate
Mcv = max(cnv)

and select v
for min(Mcv)

adjust note dura-
tion in sample v

variables
n : note index within

a sample

v : tempo variant of
multi-pitch sample

cnv: size of correction
required for a given
note to reach target
duration

Figure 4.23. Reproduction of target rhythm and tempo using multi-pitch samples in PA

Initially, target durations for all notes within a phrase are calculated on the basis of
required tempo, rhythmic values, and additional expressive information. Afterwards,
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calculated durations are used to select a specific tempo variant of each multi-pitch
sample matched to a phrase. The selection criterion is minimisation of the largest
duration correction required for a particular sample. Finally, all note durations are
adjusted during concatenation of samples into a phrase.

4.5.3. Performance Rules

Between an idea of a composer and a perception of a listener music undergoes
a series of transformations. A score is only one of middle stages of this process. It
is a specification and substantiation of a musical piece, but at a cost of a significant
reduction of fine details. These details are filled in by a performer in a form of what
is referred to as the expression.

A performance produced by a sequencer that literally reproduces a score differs
from an expressive one by lack of certain kind of more or less subtle variations in
performance parameters appearing in both, small and large scale. Such variations can
affect note durations, fine tuning of pitch, dynamics, as well as articulation and note
transitions. In most part they are not random, but rather originate from performer’s
interpretation of musical figures, structures, and forms, as well as understanding of
course and gradation of musical tension and climaxes. Therefore they vary between
performers, and there is never a common agreement as to how exactly a particular
piece shall be performed.

Due to mostly indeterminate and fuzzy nature rules guiding expressive perfor-
mance pose a serious problem for automatic music reproduction. They are hard to
define and difficult to translate into a series of definite values that could be used to
control a synthesizer. Yet, an extensive research has been carried out to establish
quantitative description of this phenomenon, with the aim of introducing human-like
expression to automatic performances.

There are two fundamentally different approaches to the problem [158]. The first
one may be referred to as ‘analysis through synthesis’ [199]. In this approach the
analysis starts from a model based on observations and experiences of seasoned, pro-
fessional musicians. The model is applied to a set of examples that are evaluated
by a board of listeners. This allows to tune or modify the model. Such procedure
is iterated up to the point where the effect is satisfactory. The second approach
may be referred to as ‘analysis through measurement’ [195]. It attempts to design
a model by carrying out measurements of selected performance parameters in audio
or video recordings. Video allows to supplement observations with parameters regard-
ing player’s movements and gestures. Besides the two approaches some researchers
attempted to model expression by applying learning systems [82, 603, 604, 605] or
fuzzy logic [83].

A model of expressive performance is usually translated into a set of performance
rules which are precise enough to be applied to a music sequencer controlling a synthe-
sizer. The rules match a specific context of a note, i.e. melodic, rhythmic, harmonic,
or formal structures it belongs to, with defined variations of quantities characterising
a performance.

305



The PA method adapts and applies a subset of performance rules referred to as
the ‘KTH rule system’, developed by Bresin, Friberg and Sundberg [84, 195]. The
system is extensively documented with a set of algorithms and software tools read-
ily available in addition to the formulation of rules itself. KTH system divides rules
into several groups related to pitch context, duration and meter context, intonation,
phrasing, or synchronisation. The system has been designed to operate with conven-
tional sequencers and synthesizers that assemble a performance out of single notes.
In such case the rules are applied to signal amplitude, inter-onset duration (note
spacing), offset to onset duration (note duration), amplitude of vibrato, or deviation
from 12-TET tuning [195].

Due to differences between the PA and conventional synthesizers KTH rules had
to be modified and applied selectively. Much of small scale expressive features is
already present in recorded multi-pitch samples. It includes variations related to
ascending or descending melody in scale sequences, or note transitions in intervals.
Therefore some rules are obsolete. On the other hand, PA applies particular sample
processing techniques that provide additional set of control parameters. Hence the
set of quantities affected by the performance rules in PA consists of:

• pitch fine-tuning,
• signal amplitude,
• note duration,
• amplitude envelope,
• tempo envelope,
• and sample selection.

Quantities related to amplitude and duration are mentioned twice in the list. Once
directly, and once bound in amplitude or tempo envelope. In both cases, separate and
in envelope, control over the quantity is applied in similar manner, using the same
mechanisms. The difference regards the area of influence. A single variant affects
only a single note. An envelope shapes a larger musical structure, with more notes,
at once. The last position in the list takes the advantage of sample-based synthesis
multisampling feature. Particular performance techniques can be simply mapped to
a specific sample variant. An appropriate selection of sample does not have to depend
solely on the direct marking in score, but can also be affected by the context.

The rules are applied on the user request, and not all at the same time – some of
them are mutually exclusive. Most of the rules allow to control the extent of their
effect – from subtle to exaggerated, or inverted. Therefore a proper use is the matter
of user’s sense, though it is a simple matter to test various rule settings with the same
score and select the best performance on the basis of an effect, and not an assumption.

The PA selection of performance rules is listed in Table 4.8 and Table 4.9. The
first list includes a set of basic, general rules. The most fundamental is the ‘phras-
ing’ subset, and rules such as the phrase arch, the final ritardando, and the melody
accent, which shall be applied in almost any performance. Rules from the second
list are more discretionary. They partially overlap with expression already present in
recorded samples, e.g. the ‘intonation’ subset, and when additionally included, they
may actually harm the performance.
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Table 4.8. A list of basic performance rules that can be applied in PA synthesis
[158, 445], based on the KTH rule set [84] with modifications; abbreviated parameters
are as follows: pitch fine-tuning (PT), signal amplitude (SA), note duration (ND),

amplitude envelope (AE), tempo envelope (TE), and sample selection (SS)

Rule name Comment PT SA ND AE TE SS

Phrasing

Breath Small pauses between
phrases – – + – – +

Phrase arch Arch-like change in tempo
and signal amplitude – – – + + –

Final ritardando Slow down in the end of
a piece – – – – + –

High loud Signal amplitude propor-
tional to pitch – – – + – –

Metric accent Emphasise metrical struc-
ture – – – + + –

Melody accent Emphasise melody climax – – – + + –
Micro-level timing

Duration contrast Shorten short and
lengthen long notes – – – – + –

Faster up Increase tempo in ascend-
ing pitch sequence – – – – + –

Performance noise

Noise control Introduction of human-
like inaccuracies – – – + + +

Basic articulation

Legato and staccato Two basic changes from
normal articulation – – – – – +

Repetition Slight separation of re-
peated notes – – + – – +

The rules are configured in a semi-automatic way, i.e. in most cases the synthesizer
provides some default initial setting for the user to accept or modify. For instance, in
the phrase arch rule amplitude and tempo arches are defined by nodes, initially set
by the synthesizer on the basis of slurs and dynamics markings. Initial nodes can be
moved or removed, and new nodes can be added at will. Using nodal coordinates PA
calculates envelopes by application of shape-preserving interpolation with smooth first
derivative using piece-wise cubic Hermite interpolating polynomial. The envelopes are
used to control variations of respective parameters.
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Table 4.9. A list of additional performance rules that can be applied in PA synthesis
[158, 445], based on the KTH rule set [84] with modifications; abbreviated parameters
are as follows: pitch fine-tuning (PT), signal amplitude (SA), note duration (ND),

amplitude envelope (AE), tempo envelope (TE), and sample selection (SS)

Rule name Comment PT SA ND AE TE SS

Tension

Melodic charge Emphasise distance from
current chord – + – – – –

Harmonic charge Emphasise distance from
current key – + – – – –

Chromatic charge Emphasise sequences with
chromatic changes – – – + – –

Intonation

High sharp Stretch intervals according
to size + – – – – –

Mixed intonation

Tuning to harmonic con-
text in long chords, and to
melodic context in fast se-
quences

+ – – – – –

Synchronisation

Melodic sync
Synchronise notes in each
voice to the ‘collective voice’
(with notes from all voices)

– – – – + –

4.5.4. Phrase Envelopes
Some of fundamental performance rules, such as the phrase arch or final ritar-

dando, translate specific musical context into dynamics and tempo envelopes that
can span an entire phrase. These envelopes have to be considered already before con-
catenation of samples, so that concatenation parameters can be adjusted accordingly.

4.5.4.1. Dynamics Envelope
In live performance with acoustic instruments changes in dynamics require differ-

ent playing technique. Therefore apart from signal level, dynamics alters articulation
as well. Articulation, in turn, inherently affects sound timbre and attack phase of
a note, or note transitions in case of connected articulations. Due to composite effect
all but the simplest synthesizers supplement amplitude control in dynamics reproduc-
tion with other techniques, such as filtering or multisampling.

PA controls dynamics through continuous envelopes that can be shaped by single-
note events, but which in case of most phrases are the effect of supplementing musical
score markings with context-aware performance rules. Two mechanisms are utilised to
simulate the composite effect. Alterations associated with articulation, which are par-
ticularly pronounced in case of larger changes in dynamics, are handled by multisam-
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pling, i.e. selection of samples intentionally performed in given dynamics. Variations
in sound level are handled by imposing amplitude envelope on assembled phrase.

The details of the dynamics reproduction are presented in Figure 4.24. The first
mechanism is applied before concatenation of samples, during selection process. For
each single- or multi-pitch sample selected on the basis of pitch and duration param-
eters, PA chooses a variant with recorded dynamics closer to the target. In early
implementation two such variants are available: loud (f ) and quiet (mp). Phrase sec-
tions that are to be performed in any of high dynamics levels, i.e. mf and above, are
reproduced by the former variant, and the remaining ones – by the latter. Before con-
catenation sample levels are normalised using the root mean square (RMS) measure.
Equalised samples are concatenated during phrase assembling. Resultant phrase has
a globally flat amplitude envelope, but local, intra-sample expressive fluctuations are
preserved.

Different signal levels

Equalised signal levels

Flat dynamics

Dynamics arch

Sample variant
selection

Normalisation

Phrase
assembling

Dynamics
envelope

Score

Performance
rules

Figure 4.24. Reproduction of dynamics in PA
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Further processing is applied to the entire phrase waveform. Envelopes are cal-
culated on the basis of performance rules, which establish locations of nodal points
associated with climaxes, slurs, etc. Envelope functions are obtained through shape-
preserving interpolation with smooth first derivative using piece-wise cubic Hermite
interpolating polynomial, and applied to modulate amplitude of phrase waveforms.

4.5.4.2. Tempo Envelope

Tempo markings in score are very limited in comparison to fine details present
in live performances. It is often that musical pieces have only initial tempo marked,
with no additional information throughout the whole piece. On the other hand,
tempo envelope is one of more prominent expressive features and almost all types
of musical context introduce some kind of characteristic irregularities into rhythmic
sequences (Tab. 4.8). Therefore performance rules have a particularly important role
of reconstructing tempo envelope comparable to that present in live performances.

Tempo envelope is obtained in a way similar to dynamics envelope. Number and
locations of nodal points are determined using performance rules enabled by a user.
Continuous envelope functions are obtained through shape-preserving interpolation
with smooth first derivative using piece-wise cubic Hermite interpolating polynomial.
However, unlike amplitude, which can be controlled in continuous manner, tempo
is manifested through discrete note durations. Therefore envelopes are sampled on
a rhythmic unit based interval, and respective duration corrections are cumulated for
each subsequent note value (Fig. 4.25).

Initial tempo lattice

Tempo envelope

Unit-based corrections

Corrections accumulated
Warped tempo lattice

time

Figure 4.25. A schematic representation of calculation and accumulation of duration
corrections according to a tempo envelope; in this particular case a simple linear envelope

has been utilised; vertical black arrows represent note onsets

Corrections are implemented before assembling a phrase (Fig. 4.26). They are
applied as shifts to elements of initial tempo lattice, calculated on the basis of regular
tempo and note values. Warped lattice determines target durations of notes within
multi-pitch samples as well as placement of samples on the time axis. Finally, required
intra-sample cuts or insertions are applied during phrase assembling.
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Score: rhythm to perform

Initial tempo lattice

Performance rules

Tempo envelope

Warped tempo lattice

Intrinsic tempo in sample 1

Intrinsic tempo in sample 2

Tempo corrections

Cuts

Insertions

Figure 4.26. A schematic representation of tempo adjustment

4.6. Implementation

The phrase assembling sound synthesis method has been implemented in a proof-
of-concept software synthesis system [446]. Main purpose of the program is to test
different variants of particular algorithms and techniques, as well as to establish usable
ranges for parameter values [159]. Therefore a modular design has been assumed in
order to open the possibility for modifications and expansions. Due to its purpose the
interface of the program has to be oriented not only towards a human user, but also
towards automation and possibility to control it using other programs. Thus instead
of graphical user interface the control mechanism involves textual configuration files,
which enable interaction with both human, and supervising programs.

The program has been implemented using GNU Octave environment. Octave is
an open source software, released under GNU General Public License. It is aimed at
numerical computations and features a high-level, structured programming language.
The language is interpreted with commands either invoked directly from a command
line, or grouped in scripts for batch-processing. Octave environment is available for
all major computer operating systems, including BSD systems, Linux distributions,
MacOS, and Windows. There are attempts at running it under Android as well. It
has a comprehensible documentation and can be easily integrated with other software.

Considering requirements of phrase assembling method implementation, Octave
has a number of advantages. It is extensible, with a vast catalogue of available

311



modules, including signal processing related routines and algorithms, advanced text
processing facilities needed for interpretation of score files, as well as convenient tools
for data analysis and presentation. Moreover, its basic data structures are not single
variables, but arrays in the form of vectors or matrices, with most of operations and
functions working with arrays by default. As a consequence source code written in
Octave language is clear and concise. As of disadvantages, two are important. Firstly,
scripts are not standalone computer programs, but require Octave environment to
run, though there is a possibility to produce binary executable files. Secondly, as
a high-level interpreted language Octave is relatively slow. Both issues however, are
of secondary concern in a proof-of-concept implementation.

4.6.1. Overall Program Design

The PA synthesis program is modular and has been designed as a set of Octave
scripts. Some of them represent main system modules, while the remaining ones
are supplementary and implement various data and signal processing algorithms and
techniques, such as matching samples to a phrase, applying phase-aligned crossfade,
or calculating the amplitude envelope.

USER

Required interaction Facultative interaction

Musical
score

Performance
rules

Polyphony
settings

Divided
phrases

Concatenated
sequence data

Management
module

Score analysis
module

Figure matching
module

Waveform generator
module

Output waveform
(‘wav’ file)

Figure 4.27. An overview of the implementation of the phrase assembling synthesis
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Figure 4.27 presents a general overview of the PA method implementation. There
are four main modules, three of which are processing modules and have specified
tasks, while one referred to as the management module binds them all and serves as
an interface between the synthesizer and the user or another supervising program. Out
of processing modules the first executed is the score analysis module. It carries out
a preliminary score analysis, i.e. reads score from a file and divides it into a sequence
of phrases. Next one is the figure matching module. It is responsible for matching
a sequence of samples to each phrase and determining overlapping notes. The last
processing module is the waveform generator. It handles all of signal processing tasks
and produces the output in a form of a ‘wav’ file.

User has to provide three sets of data. The first is the score file. The second
consists performance rules settings, such as enabling of particular rules and values
of parameters. The third is required in case of synthesizing more than one voice to
be played simultaneously, and defines relations between voices. In addition to these
sets user can interact in the middle of the synthesis process and modify intermediate
synthesis parameters produced by processing modules. It includes division of score
into phrases, as well as sequences of samples matched to phrases. Both can be reviewed
and modified.

4.6.2. Modules

4.6.2.1. Score Analysis Module

The score analysis module has two tasks. The primary one is to divide a complete
score into sections representing consecutive phrases. The secondary one is to perform
pattern search in order to locate contexts where performance rules can be applied
such as phrase arch areas, ascending or descending melodic progressions, local and
global climaxes, changes of tempo or dynamics etc.

The analysis has several stages, presented in Figure 4.28. The initial step involves
syntax analysis performed on the raw score data read from file. This allows to recog-
nise various elements of musical notation. Some of these elements are irrelevant for
the purpose of synthesis. Mark-ups regarding e.g. a page formatting or some textual
information are discriminated in the following step. What remains is a solely musical
information that can be interpreted and transformed into a performance. In order to
avoid possible errors in further processing stages originating from score inconsisten-
cies, the module checks parity of ties and slurs. This closes a series of initial steps.

Initial steps prepare score data for the main task – the search for phrase breaks.
In the step that follows all the phrase breaking events are searched for, and a score
is divided into sections representing single phrases. All single, detached notes outside
of phrases are marked to be reproduced using conventional single-pitch samples. The
last stage is the pattern search aimed at locating various contexts for performance
rules. The output is a text file like the input, though it has a different structure that
reflects phrases and highlights context patterns. The output of the score analysis
module is also the input of the figure matching module.
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Score file

Syntax analysis

Markup discrimination

Correction of ties and slurs

Search for phrase breaks

Division into phrases

Search for context patterns

Score divided
into phrases

Figure 4.28. Execution flow diagram for the score analysis module

4.6.2.2. Figure Matching Module
In the figure matching module consecutive phrases are analysed and compared

with contents of the PA corpus to find a matching sequence of samples (Fig. 4.29).
A phrase is to be concatenated on ‘overlapping’ notes, common for adjacent samples.
Due to the possibility of using whole as well as partial samples, the first and the last
note of each sample used in a particular position within a sequence, i.e. its ‘cutting
spots’, are included in sequence data. They represent concatenation locations.

Score divided
into phrases

List of samples
with descriptions

Queuing separate
phrases for processing

Selection of best
matching samples

Determination of con-
catenation locations

Concatenated
sequence data

N
ex
t
ph

ra
se

Figure 4.29. Execution flow diagram for the figure matching module

The output is written into a single text file that contains a whole synthesized
piece, so it includes all phrases in order. The first section of the output file contains
a list of unique sound samples that will be required for synthesis. The second section
is a sequence of samples, which includes indices of respective samples and numbers
representing the first and the last note within a sample. Each sample that is to be
connected to the following one in a phrase is marked. Therefore lack of connection
marking denotes the end of a phrase and beginning of a next one. Each sample
has a target rhythm information attached. The file also contains the main tempo
information, as well as two envelopes: one for tempo, and one for dynamics.

Each phrase is processed separately. In current implementation they are processed
in sequence. However, in further implementations this step can be easily executed in
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parallel to efficiently exploit multi-core processing elements and reduce processing
time.

4.6.2.3. Waveform Generator Module
While score analysis and figure matching modules might by regarded as related to

sequencer tasks, the actual sound synthesis is carried out in the waveform generator
module. The module receives input from the figure matching module and uses it
to control cutting, processing, and concatenation of sound samples from the corpus.
The output is a waveform containing the instrument part. In case of polyphonic
synthesis, output consists of several files containing parallel instrument parts that can
be reproduced simultaneously or mixed into a single track. Tasks performed within
the waveform generator module are presented in Figure 4.30 in a form of graph with
directed edges illustrating precedence of operations.

Sequence
of samples

Main tempo and
tempo envelope

Tempo-related
performance rules

Sound
samples

Amplitude
envelope

Amplitude-related
performance rules

Tempo lattice
calculation

RMS normalisation

Final ampli-
tude envelope
calculation

Sample con-
catenation

Sample duration
adjustment

Amplitude enve-
lope application

Output
waveform

Figure 4.30. Execution flow diagram for the waveform generator module

Sound samples specified by the list in the input file are read, and their ampli-
tudes are normalised. Positions of samples within output waveform are determined
on the basis of the main tempo, the tempo envelope, and performance rules that can
affect tempo. They constitute a tempo lattice. Using the lattice duration of notes
within samples is adjusted to target duration through removing or inserting sections
of sustain phase. The lattice and the sequence of samples from the input data define
placement of adjusted samples in the output waveform. Positioned samples are con-
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catenated on overlapping notes of each connected pair by applying the phase-aligned
crossfade. Finally, assembled waveform is subjected to the amplitude envelope with
regards to score markings as well as all amplitude-relevant performance rules.

In current implementation all operations are performed in sequence. However,
as was the case of figure matching module, waveform generator consists of several
stages that could be executed in parallel for improved computational efficiency in
computers with multi-core processing elements. In the first place it is the processing
of separate samples prior to assembling them into phrases, i.e. normalisation and
duration adjustment. Additional parallelism is possible during concatenation, where
each crossfade section can be calculated separately, although phase-adjustments have
to be considered.

4.6.2.4. Management Module

The management module coordinates operation of the three processing modules
(Fig. 4.31) and interacts with a user or a supervising software through configuration
files. It controls launching of modules in appropriate order and assures correct data
interchange by receiving, checking and sending required information at each stage of
analysis and synthesis.

Score
file

List
of samples

Performance
rules selection
and settings

Polyphony
settings

Receive,
check, send

Receive,
check, send

Receive, check,
modify, send

Score anal-
ysis module

Score divided
into phrases

Figure match-
ing module

Sequence of
samples with
envelopes

Waveform gen-
erator module

Output
waveform

Management
module

Figure 4.31. Execution flow diagram for the management module
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If the synthesizer is used in polyphonic mode, where additional performance rules
need to be applied, the management module coordinates and synchronises voice pa-
rameters. In this case not only it relays data between the processing modules, but
it can modify relayed data as well. Modifications primarily affect tempo envelope,
which needs to be coherent in all voices playing together. Amplitude envelopes are
more independent, but some modifications are still required – voice amplitudes need
to be uniformed in contexts such as global climaxes or endings.

4.6.3. Program Parameters Adjustments

While the PA method is complete in terms of type and order of performed oper-
ations and applied algorithms, a final operational implementation requires a further,
experimental phase of development, with the objective of determining operational
parameters for consecutive processing stages. A number of initial experiments have
been carried out to establish values for the most fundamental procedures that allow
to produce undistorted and realistic performances [159, 445].

Majority of parameters which values need to be established regards the details
of concatenation operation, and particularly location and length of concatenation
region (Fig. 4.32).

Figure 4.32. Waveform of a single-pitch bassoon sample (a), a zoom on its attack and
decay region (b), and a two-pitch bassoon sample (c); sustain regions can be determined

only approximately
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The PA corpus consists of recordings of live performers using acoustic instru-
ments. While it is advantageous for reproduction of expression, it is also a source
of irregularities. Frequency-related, amplitude-related, and temporal parameters of
samples as well as their spectral characteristics are fluent, change gradually and usu-
ally non-monotonically, hampering precise segmentation. As a consequence contents
of samples demonstrate no exact pitch transition moment, and no clear boundaries
dividing particular notes into phases. A clear sustain phase is an idealisation and
may be encountered in purely synthetic instruments, where a line-segment envelope
approximation has been utilised to control amplitude. In sound of real instruments
phases like attack, decay, sustain or release are less distinct, if present at all. There-
fore segmentation, required by the PA method, has to be more or less arbitrary, with
no clear point of origin that could serve as an anchor for positioning concatenation
region (Fig. 4.32).

Other concerns regard control of duration, which has to be extensively utilised
throughout entire synthesized waveform, as well as form and details of amplitude en-
velope and extent of tempo envelope, both crucial for expressive performance. More-
over, an influence of additional background noise level has been studied, as well as
a number of minor adjustments and choices.

4.6.3.1. Listening Tests – Phase I
In the initial round of tests [159] a number of performances has been produced

using the PA synthesizer with different parameter settings on the basis of two mu-
sical excerpts presented in Figure 4.33. A part of flute from Dvořák’s symphony
includes expressive legato phrases with fluent note transitions occurring on various
intervals and note durations. They are preceded by a few detached notes in the ini-
tial section. The last phrase has marked gradual dynamics changes, crescendo and
diminuendo. This is a typical target music for the PA synthesis. A bassoon part from
Mozart’s symphony is different. It consists of mostly detached notes with only one
short phrase before the end that has fluent transitions. The excerpt includes large
duration contrasts, a few fast groups, several notes with short articulation, and one
special performance technique – a trill in the fourth bar.

Listeners were comparing pairs of performance variants that differed in selected
parameter or feature. They were instructed to choose a variant that was closer to live
performance within each pair. A single performance variant is referred to as a test
sample. Details of the test setting are presented in Table 4.10.

Table 4.11 presents detailed information regarding parameter changes introduced
into test samples. Changes affect main tempo of performance, length of region that
is cross-faded between adjacent samples, section of note considered its beginning and
end, as well as presence of phrase arch. Note beginning and end are two areas that
are excluded from crossfading, i.e. the remaining middle section is considered a sus-
tain region, allowed to be crossfaded. Phrase arch contains two separate arches, for
dynamics and tempo, that can be individually enabled or disabled. Out of 42 test
samples 21 are performances of Dvořák, and 21 of Mozart excerpt. For each excerpt
there is one variant assumed as a reference (No. 1 and 22), with parameter values
established on the basis of preliminary tests.
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a)

b)

Figure 4.33. Two excerpts of instrument parts from symphonic music selected for tests:
a) A. Dvořák Symphony No. 5 in F major Op. 76, Movement III – Trio, bars 285–292; b)

W.A. Mozart Symphony No. 35 in D major K. 385, Movement I, bars 1–5

Table 4.10. The setting in the phase I of the listening tests

Test participants 15 listeners including 10 experienced university ear training teach-
ers and 5 PhD student orchestra conductors

Procedure
Fixed sequence of pairs of test samples presented; forced choice
of one test sample from each pair; playback and repetition on de-
mand; procedure controlled automatically by a computer software

Listening conditions
Closed studio headphones (Beyerdynamic DT 770 Pro); sound
level set individually per listener; listeners allowed to take breaks
at any moment during the test

Signal presentation Diotic: 1-channel/mono samples presented simultaneously to each
ear

Test duration 50–120 minutes, in most cases approximately 70 minutes

Only one parameter was changed from reference value at a time. Each of tempo
variants were included in a test sequence only once. The remaining parameter variants
appeared twice each, with changed order, i.e. reference-first, and reference-second. In
total, each listener evaluated 80 pairs of samples, and the order of presentations was
always the same. Samples were grouped according to tested parameter.

The results are presented in Figures 4.34 and 4.35. Charts show percentage of
choices of either variant. A difference can be assumed significant (with a level of
significance α = 0.05 of a two-sided exact binomial test) if it is no lesser then 60
percentage points in case of tempo variant comparison and 40 percentage points in
remaining cases.

When choosing between tempo variants listeners opted against the fastest perfor-
mances, i.e. 117 BPM in case of Dvořák and 200 BPM in case of Mozart. The fastest
variant was rejected not only when compared to an average one, but when compared
to a fast, albeit slower one. Neither crossfade length variant was preferred in case of
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Mozart, with mostly detached notes, but in Dvořák, with its longer phrases, listeners
avoided short variants, i.e. up to 28 ms.

Table 4.11. Parameters of test samples used in the phase I of the listening tests;
abbreviated parameters are: tempo [BPM] (T), note beginning [ms], area excluded
from cross-fading (B), note ending [ms], area excluded from cross-fading (E), crossfade
length [ms] (X), presence of phrase arch – dynamics/tempo (P); ‘R’ represents values

that are the same as in the reference

Sample variants T B E X P No.

Dvořák
Reference 100 68 23 113 1/1 1

Tempo 60, 80,
117 R R R R 2–4

Cross-fade length R R R

6, 11,
28, 57,
85, 170,
283

R 5–11

Note beginning length R 23, 45,
91, 113 R R R 12–15

Note ending length R R 11, 45,
68 R R 16–18

Phrase arch presence R R R R
0/0,
0/1,
1/0

19–21

Mozart
Reference 150 68 23 113 0/0 22

Tempo
125,
175,
200

R R R R 23–25

Cross-fade length R R R

6, 11,
28, 57,
85, 170,
283

R 26–32

Note beginning length R 23, 45,
91, 113 R R R 33–36

Note ending length R R 11, 45,
68 R R 37–39

Phrase arch presence R R R R
0/1,
1/0,
1/1

40–42

Similarly, and possibly due to same reasons, no significant preference was observed
in Mozart piece for the length of note beginning and ending. In case of Dvořák listeners
preferred note beginning lasting 68 ms over both, longer and shorter values, and note

320



ending lasting 23 ms. Longer endings were avoided, but there is no clear preference
for 23 ms over shorter values. Interestingly, no preference was observed for either
variant of phrase arch in Dvořák piece, while a significant preference against the use
of tempo arch was observed in Mozart piece.

The results allowed to establish approximate range of working values for
concatenation-related parameters such as crossfade length and concatenation-
available area limited by note beginning and note ending lengths. They also reveal
a few places for improvement. Firstly, problems with the fastest tempo indicate that
either the corpus should contain a larger range of recorded tempos instead of current
two (60 and 120 BPM), or the concatenation-available area should be determined
more precisely. Secondly, phrase arch implementation used to control amplitude, and
particularly tempo envelope, requires adjustments.

Figure 4.34. Results of the first phase of the listening tests – a comparison of tempo
variants and crossfade lengths, after Delekta, Spałek and Pluta [159]
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Figure 4.35. Results of the first phase of the listening tests – a comparison of note
beginning lengths, note ending lentgths, and presence of phrase arch in dynamics (D) and

tempo (T), after Delekta, Spałek and Pluta [159]

Due to specific background of listeners, all of which were experienced and highly
skilled professional musicians, they were asked for a feedback. Three areas were
pointed out. Many opinions regarded articulation and accentuation, however they
were mutually contradictory. The second area of consideration regarded long notes,
which in evaluated performances were perceived as idle in comparison to how they are
performed by musicians. This points towards introducing an additional performance
rule, and has been considered for further study. The last area was of a different nature.
Listeners perceived as unnatural situation a perfect silence occurring between notes,
while instead they expected some kind of background noise. It has been considered
as a necessary addition for the waveform generator module.

4.6.3.2. Listening Tests – Phase II
Results obtained in the first phase of tests allowed to improve the PA synthesis

implementation by introducing modifications into selected parts of program and by
adjusting its parameters. The improvements included addition of background noise
to the synthesized sound, altering duration and amplitude envelopes applied in fade
sections, modification of tempo and amplitude envelopes used in phrase arches with
addition of emphasis rule for long notes, and fine tuning of pitches to 12-TET.
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The test was carried out using Dvořák piece from the first test phase due to
its more conclusive results compared to Mozart piece. Changes introduced to the
program were divided into six categories, as described in Table 4.12.

Table 4.12. Description of changes introduced before the phase II of the tests and
related sample variants used in the tests; symbols in the left column correspond with

symbols on the X-axis in Figure 4.36

Symbol Introduced change Sample variants

noise bg
Background noise presence and level; noise
recorded in a recording studio; noise level rela-
tive to the signal level, RMS

1: no background noise
(old)
2: noise level −45 dB
3: noise level −39 dB
4: noise level −33 dB

fade env Envelopes of fade-in, fade-out, and crossfade seg-
ments 1: cosine (‘s-curve’)

2: linear (old)
fade dur Fade-in and fade-out segment duration 1: in/out 20/80 ms (old)

2: 120/60 ms (softer on-
sets)

tmp arch

Presence of the new tempo phrase arch; com-
pared to the method applied in phase I the new
one introduces smaller (up to 3%) and smoother
tempo changes; a continuous envelope is calcu-
lated per rhythmic unit, and not per note, as was
the case in phase I

1: tempo arch present
2: no tempo variations

dyn arch

Presence of the new amplitude phrase arch; com-
pared to the method applied in phase I the new
one is smoother, calculated on the basis of smaller
number of nodal values, while the old one used
one node per note; an additional emphasis on
long notes is introduced in a form of crescendo
and subsequent diminuendo

1: dynamics arch
present
2: no variations in dy-
namics

tuning

Fine tuning of pitches to 12-TET system; with-
out tuning minute pitch discontinuities may oc-
cur on some crossfades; it is avoided by tuning,
although such procedure removes some expres-
sive information, such as tuning of leading notes
or special intervals

1: pitches tuned to
12-TET
2: originally recorded
tuning (old)

all

All changes introduced together; improvements
are represented by the following choices: noise
bg 2, fade env 1, fade dur 2, tmp arch 1, dyn
arch 1, tuning 1; the old variant is represented
by: noise bg 1, fade env 2, fade dur 1, tmp arch
and dyn arch in the from from phase I, tuning 2

1: all improvements
together
2: old (as in phase I)
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Effects of changes were individually compared to the previous program version.
Additionally, seventh category grouped all improvements together. Within each cat-
egory a pair of samples was prepared, one for the ‘old’, and one for the ‘new’ variant.
In case of background noise, which amount could be graded, four separate samples
were prepared. Test settings are described in Table 4.13.

Table 4.13. The setting in the phase II of the listening tests

Test participants
23 listeners, including violin, composition, and conducting stu-
dents, along with ear training teachers from the Academy of Music
in Kraków, as well as sound engineers and acousticians

Procedure
Presentation of a sequence of seven sample sets, as described in
Table 4.12; forced choice of the best sounding sample from each
set; playback and repetition on demand

Listening conditions
Speakers (near-field studio monitors) or closed studio headphones;
sound level set individually per listener; listeners allowed to take
breaks at any moment during the test

Signal presentation Diotic: 1-channel/mono samples presented simultaneously to each
ear

The number of test participants does not allow to deem results, which are presented
in Figure 4.36, as statistically significant at a confidence level of 0.95 [445]. The
last set (‘all’) representing implementation changes applied altogether and confronted
with the old variant is on the borderline, and becomes statistically significant at
a confidence level of 0.9.

Figure 4.36. Results of the second phase of the listening tests – a comparison between
variants for selected performance features, after Pluta, Spałek and Delekta [445]; symbols

of changed features appearing on the X-axis are described in Table 4.12
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Interestingly, results from the last set (‘all’) reveal listeners’ preference towards
the new variant, yet none of the changes seems to be responsible for such preference
while applied alone. The only other set that might provide significant result is the
one designated as ‘noise bg’, but it would require grouping of all background noise
level variants into the one ‘noise’ case compared to the variant with no background
noise. Therefore even though it is difficult to pinpoint exact improvement responsible
for attracting preference of listeners, it allows to set the entirely new ‘all’ variant as
a new default setting for the synthesizer implementation.

4.6.4. Evaluation

The PA method of sound synthesis has been designed mainly as an alternative to
sampling synthesis for the purpose of automatic reproduction of musical score. Even
though its implementation is still a work in progress and should not be considered
ready for immediate application, a small, less formal listening test has been carried
out to evaluate its current state in comparison with a commercial sampler.

Two sound samples have been produced, each one being a reproduction of the
same Dvořák piece that has been used in previous tests (Fig. 4.33a). One has been
reproduced by the PA implementation with all described improvements, and the other
one has been reproduced from a standard MIDI file by a sampler – the 70 GB version
of Independence Premium Library included in the Samplitude Pro X Suite DAW. 17
listeners participated in the test – musicians, acousticians, and sound engineers. Test
setting from the phase II of previous listening tests has been applied. Listeners were
asked to choose a better sounding variant.

8 listeners have chosen the PA variant, and 9 have chosen a sampler. PA method
might therefore be considered as an alternative to sampling, although its implemen-
tation clearly requires further refinement. As a more complex and more constraint
method PA should not only match, but surpass performance of sampler in order to
become its rational alternative.

4.7. Concluding Remarks

Automatic reproduction of musical score is one of key areas of sound synthesis
applications. Due to various shortcomings of synthesis methods currently utilised
there is still a place for alternatives. The phrase assembling method aims to be one of
such alternatives with a number of advantages over sampling, which is currently the
most common choice, as well as over the concatenative synthesis, recently acquiring
a growing acceptance. The formulation of the PA method along with details regarding
underlying techniques and algorithms has been presented. Conducted tests indicated
areas of possible improvement, so that the PA could become a viable alternative
for other sample-based methods. Apart from refining the implementation, it is also
possible to expand method capabilities to allow its wider application.
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4.7.1. Issues and Necessary Improvements

The most fundamental issue of the PA method, and the one that is a source of
the most noticeable distortions in the output signal, is the process of segmentation of
multi-pitch samples. In current implementation sustain regions are determined ap-
proximately, based on a set of generalised values obtained in listening tests. However,
only a precise segmentation into regions representing subsequent pitches and finding
sustain regions within each note will allow to avoid signal discontinuities. Trials and
application of descriptors adapted from the field of MIR, either based on a combi-
nation of fundamental frequency, amplitude, tonal/noise distinction, and transient
detection, or derived from higher level features, shall provide a more accurate and
robust solution [169].

Even though corpus of sound samples utilised by the PA is extensive, tests have
indicated that there is a need for more fine-grained tempo variants in order to reduce
larger modifications of note durations. This in turn, shall be accompanied by redesign
of the corpus in order to keep its size from expanding.

The final issue is the extent of the corpus itself, and specifically amount of work
required to prepare it. Apart from usual recording and processing, PA samples have
to be further processed and segmented. Even though it is a one-time operation per
corpus, in current state of development it still requires a considerable amount of
manual work or – in case of automated tasks, such as pitch segmentation – a human
supervision. Again, MIR assisted with techniques facilitated by contemporary sound
recording and processing tools might provide means for further automation to reduce
human interaction during the entire process. In turn, production of larger corpora
might become attainable. On the side of a recorded musician it shall speed up the
recording if the samples instead of being played separately are formed into one or
several study-like quasi-musical pieces containing all required figures and techniques.
This however would contribute to more sample processing, so it can be carried out
only when an efficient and reliable automation has been developed.

4.7.2. Further Development

The PA method has been developed with a clear, yet relatively narrow objective:
to reproduce scores of orchestral parts of wind instruments with particular attention
to fluent phrases and expressive features. This sole objective can be expanded in
various directions, opening a number of paths for further development. The list of
such directions includes:

• expansion into other instrument groups,
• tuning and automation of performance rules,
• selectable simulation of various performance styles,
• real-time performance,
• using elements of PA in hybrids with other synthesis methods,
• applying elements of PA outside the area of sound synthesis.
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Wind instruments are particularly well suited for simulation using the PA method.
In case of other instruments or groups of instruments benefits of the method are less
apparent, yet there may be a merit in synthesizing the whole orchestra or other en-
semble using the same method4. Therefore it is possible to expand the PA corpus to
string instrument groups and solo strings, as well as percussion instruments, grand
piano, harpsichord, organ, etc. The corpus however, is not the only modification
required. Due to various performance techniques in different instrument groups the
synthesis engine might require adjustments in concatenation method, and will defi-
nitely require changes in performance rules.

PA adapted a subset of performance rules from the KTH rule system even though
these rules were originally developed for conventional synthesis methods, where every
note is a separate event with the same control parameters. Rule settings and param-
eters were adjusted to PA in a series of trial and error experiments. Development
in this area may include testing of different rule sets, as well as complete removal of
the necessity to adjust rules manually through better automatic detection of various
levels of musical structures and contexts.

Current implementation aims at reproduction of orchestral parts of musical pieces
from specific periods. It does not attempt to handle older or modern music as well as
solo performances due to much broader spectrum of styles and performance features
required. Yet, PA may be applied to simulate different musical styles and periods as
well. It would require expansion of the sample corpus and definition of much larger
rule set. Moreover, the style should not be detected automatically, but rather selected
by the user as a preset. In this way the same piece could be performed differently
with distinctive expressive features, without a need to set all required performance
rules separately.

The PA is in its roots a non real-time synthesis method. One of its main features
is the score analysis stage, which requires access to the entire reproduced piece in
order to select fitting multi-pitch samples and to search for contexts for performance
rules. Though, as in case of concatenative synthesis, which is another non real-time
method with score analysis stage, there is a possibility to develop a real-time variant
of the PA method. Actually, there may be two different ways to introduce a real-time
control over a PA performance: the performer mode and the conductor mode.
The first one would allow to play anything by skipping almost all performance rules
which require a broader context, and by using only single note and interval samples.
As in case of monophonic synthesizers, there would be an initial distinction whether
a note played is detached or attached to the previous one5. In case of the latter an
interval sample would be concatenated to the currently sounding one, and otherwise
a single note sample would be reproduced. In the conductor mode the user would not
be able to play anything, but instead would control performance of a pre-analysed
score, with a fixed sequence of samples determined beforehand, and performance rules
initially set. Depending on the user interaction parameters such as tempo, dynamics,

4Even with separate vibrators for each produced pitch and lack of fluent note transitions, attack
segments may vary depending on the musical context, which is handled by the PA method.

5Such detection is typically based on the overlapping of pressed controller keys, i.e. whether
before the next key pressed the previous one has been released.
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and selected controls of performance rules would be altered during reproduction. Such
mode would be a useful training aid for conducting students, as well as an interesting
entertainment tool allowing a non-musician to control a virtual musician or ensemble.

Sound synthesizers, especially in commercial applications, rarely implement a sin-
gle, pure synthesis method. Instead it is common to create hybrids of various methods
to attenuate their deficiencies and complement methods selected as a base with fitting
elements from others, e.g. a sampler as a signal source with subtractive modifiers.
The most interesting hybrids of PA would be with additive and subtractive methods.
Additive resynthesis or subtractive phase vocoder could be used to assure a continuity
of two overlapped samples in concatenation region. Moreover, subtractive modifiers
or signal modulators could enhance PA control capabilities and allow to apply subtler
performance rules. This however could contradict expressive features already present
in recorded samples. Other way around, sampling synthesis could apply PA interval
samples and concatenation to produce fluent pitch transitions.

Finally, PA method can be taken apart and various combinations of its techniques
and algorithms can be applied in sound engineering, processing, or research. One of
the most obvious is the study of performance rules. Other could be a research of
various music-related perceptual phenomena, such as pitch intonation [439]. It would
require using a PA implementation as a basis, with required control capabilities added,
for instance, an arbitrary pitch shifting. In an entirely different approach, analysis
unit of the PA and its performance rules could be used as a basis for robotic musical
performance in connection with real acoustic instruments [555, 556].



5. Infeasible Instruments:
a Novel Means
for Music Performance

5.1. Synthesis Methods for Music Performance

A sound synthesizer may be considered a source of musical sounds non different
than any musical instrument. It has been reflected in naming conventions of contem-
porary audio software, where a synthesizer implemented as a computer program in
the form of a plug-in is referred to as a virtual instrument. However, synthesizers have
a distinct feature uncommon for most of other instruments – they allow to control
timbre of a sound in a more fundamental, broader, yet also more precise manner. In
effect they are able to imitate other sound sources.

The ability to imitate other instruments led to some degree of specification among
synthesis methods and synthesizers. One group of synthesizers attempts to accu-
rately recreate sound and control behaviour of existing instruments. The other group
aims at inventing new sounds. The latter group utilises various techniques, or even
abstract algorithms, in a process that is often dissimilar to the sound generation in
real instruments.

Clearly, only synthesizers from the first group may be utilised for music reproduc-
tion purposes if the score to be reproduced is written for a conventional instrument,
unless some instrumentation experiment is considered. This scenario has been dis-
cussed in previous chapters. In this chapter the point of interest is a live music per-
formance. Here synthesizers from both groups are utilised, but with slightly different
goals. The first group serves as a replacement for instruments or ensembles that would
be otherwise problematic to perform with, under given conditions. Synthesizers from
the second group are regarded as distinct instruments. Here all the control capabilities
as well as novelty and originality of produced sounds play the prominent role.
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5.1.1. Control and Timbre Capabilities

A timbre of sound generated by a synthesizer used for a real-time performance
may be controlled in two different manners. In the first one, main part of the process
is carried out prior to the performance, and only limited adjustments are possible
while performing. The reason is either complexity of control procedure or large num-
ber of parameters to control. In the second manner most part of timbre control is
carried out during the performance using dedicated controllers. This however requires
a synthesizer to facilitate a limited set of timbre control parameters, so that each of
them might be mapped onto a controller. Moreover, these parameters need to have
a clearly audible effect, so that they could be used as elements of a performance. While
in general the first manner might allow to obtain more complex, elaborate sounds,
the second one introduces a feature characteristic for the most expressive instruments,
such as violin or human voice, i.e. deep, performance-bound timbre variability.

Among the most widespread synthesis methods capable of real-time performance,
listed in Table 5.1, majority shares the ability to control timbre of sound during
musical performance. Two notable exceptions are additive synthesis and sampling,
each due to a different reason. While additive synthesis allows for very detailed
definition of timbre, it achieves it by tending to an immense set of parameters. Values
of most parameters alone have only a slight impact on the timbre. A performer
attempting to control timbre during a performance has to resort to a mechanism that
will group parameters and allow to control their larger subsets with single controllers.
Timbre control in sampling is essentially very simple, though it cannot be used to
create any new sound. Even after supplementing a sampler with a subtractive block
of signal modifiers, timbre is predominantly determined by features of an underlying
sound sample.

Two of the remaining methods, i.e. subtractive and FM, are considered the most
capable for real-time timbre control with audible, distinct effect, and relative ease of
obtaining new sounds. Here, a new problem might arise, depending on the experience
of the performer. It regards the meaning of parameters and their correspondence
to well-understood timbre features. Basic parameters of subtractive method, a filter
cut-off or centre frequency, are intuitive. However in more elaborate filters effect of
some parameters may be obscure. The same applies to FM parameters. As a result
control of these parameters might be carried out with less purpose, and more through
a trial and error method.

An interesting case is the physical modelling synthesis. Its timbre control mecha-
nism stands out from the remaining methods. Here, it is not a sound that is directly
controlled, but a model of instrument and its excitation. Parameters represent physi-
cal features of the instrument modelled, therefore are inherently intuitive, particularly
in connection with a controller that mimics control mechanisms of the simulated in-
strument. In such situation performer can utilise skills acquired with conventional
instrument. However, in its main form the physical modelling is not intended to cre-
ate new sounds. Instead, it attempts to recreate some physical original. Therefore it
is rarely considered a method of choice for the purpose of experimenting with novel
timbres. It is only a matter of changing a model, though. Either by modifying models
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of instruments, or by choosing entirely different objects as sound sources, one might
use physical modelling not to replicate, but to design new sounds.

Table 5.1. Feasibility of real-time sound timbre control in selected real-time synthesis
methods

Method Timbre control Real-time feasibility

Direct methods

Additive Amplitude and frequency en-
velopes for each partial

Requires intermediate solutions
to manage groups of partials

Subtractive
Selection of base waveform, fil-
ter cut-off or centre frequency,
remaining filter characteristics

Feasible

Wavetable

Selection of wavetables or their
sequence, filter cut-off or centre
frequency, remaining filter char-
acteristics

Feasible

Sampling Selection of sound sample
Coarse effect, otherwise requires
adaptation of signal modifiers
from subtractive method

Indirect methods

FM Modulation index, frequency ra-
tio, selection of algorithm Feasible

Waveshaping Input signal amplitude, shaping
function Feasible

Physical modelling Parameters of instrument model
and excitation technique Feasible

5.2. Infeasible Quasi-Physical Systems as Musical
Instruments

If physical modelling synthesis can be used to model and listen to various objects,
it may be taken a step further. A model is subject to the laws of physics only as much,
as its designer decides. Therefore one may discard or alter selected rules or principles
to model an imaginary, quasi-physical object that otherwise would be impossible to
design and build. Yet such infeasible instrument could still be excited to produce
a sound, and might retain enough of real physical features to control it in an intuitive
manner.
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5.2.1. Concept of Infeasible Instruments

Definition

The term infeasible instruments will be used in reference to models of musical
instruments, and sound producing objects in general, that cannot be built in real
world due to various reasons. Primarily, they might purposely discard or alter chosen
laws or principles of physics. They may operate in altered geometry, e.g. they may
be hyper-dimensional, exist in a space where some dimensions are looped or warped,
or in a space of otherwise altered structure. In a less abstract manner, they may be
impossible due to strength of materials, or other material properties. Finally, their
geometric or material properties may evolve while producing a sound to the extent
impossible for real instruments. Despite any of these properties they need to be able
to be modelled, excited to vibrate, and produce sound.

The Reasoning

From the perspective of mechanics or mechanical engineering, modelling of such
quasi-physical objects might seem pointless – in principle a model shall describe some
aspect of a real world. An object that does not exist cannot provide output data
to measure, therefore model of such object has no reference for validation or for
directing adjustments of its parameters.

However, from the perspective of sound synthesis such procedure is perfectly ra-
tional. The objective of a synthesizer applied in real-time musical performance is to
facilitate production and control of varied sounds that have useful musical properties.
In this case diverging from existing objects, and in consequence producing possibly
different, new sounds, is an advantage. Moreover, a person designing or altering an
object that possesses some known properties might use an intuition based on features
of real objects as a guideline. A consequence of making some object heavier or larger
is predictable. At the same time infeasibility of the instrument introduces some de-
gree of unpredictability to the process. It raises a question ‘how would it sound?’
and opens the filed for experiments.

5.2.2. Design Outline
By definition an infeasible instrument cannot exist in real world, therefore it is

a purely virtual one. It can be implemented as a system consisting of computer pro-
grams and physical controllers, requiring a computer to integrate all of its elements
(Fig. 5.1). The software layer performs three distinct functions and may be con-
veniently implemented as separate modules. Firstly, it runs the simulation of the
instrument. Secondly, it handles the data incoming from physical controllers. Fi-
nally, it manages data received from controllers, translates it to model parameters,
and interprets data incoming from a model to produce an output signal.

A modular design allows to distribute the software among several devices in order
to avoid compromises between computing capabilities and portability. Model opera-
tion shall be carried out using a high performance computing device. Communication

332



with controller implies its proximity, yet it does not require much computing power,
therefore a small, portable device would be adequate. Main part, communicating with
remaining two and producing output, needs to be connected to the audio system. All
modules can communicate over a computer network, with wireless connection pre-
ferred between the main and the controller program.

Depending on the instrument in question, there may be more models operating
in parallel, e.g. representing separate vibrating elements, that can be distributed
among larger number of computing devices. Similarly, more controllers and controller
programs can communicate with the main program. Large, complex models could
even be handled by several performers using separate controllers and instances of
a controller program.

Controller
program

Main
program

Model
operation

Physical
controllers

Control
gestures

Output
signal

Figure 5.1. Outline of an infeasible instrument implementation design

Consideration of Computing Cost

Quasi-physical models operate using the same techniques and principles as physical
models of instruments. In this aspect infeasible instruments shall be regarded as
a branch of physical modelling synthesis. One of more straightforward and flexible
methods that can be used for their modelling is the finite difference method. In
early days of digital sound synthesis such modelling was considered computationally
demanding, and in case of real-time operation waveguide synthesis was frequently
preferred instead. Later, faster computers allowed to run even relatively complex FD
schemes. Still, central processing units (CPUs) of personal computers can meet their
limits in case of models operating in more than two dimensions with larger grids, if
higher sampling frequency is required.

Large parts of FD schemes may operate in parallel though. Using modular ap-
proach the issue of processing power may be solved by carrying out model operation
on a device specialised in massively parallel tasks. Among several options three solu-
tions are the most feasible: multi-processor, multi-core systems, field-programmable
gate arrays (FPGAs), and graphics processing units (GPUs). The choice of particular
solution depends on the form of assumed implementation.
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Personal computers utilise multi-core processors, but actual multi-processor sys-
tems are a domain of large workstation computers, servers, or server farms. Such
systems, particularly server farms, can be scalable and custom-built to meet a spe-
cific requirement for processing power. It shall be possible to handle even a complex
model by adding sufficient number of computing nodes. It is however the least prac-
tical of the three solutions due to size and complexity of required infrastructure.
Larger systems have to operate in controlled environment, and can only be accessed
remotely, usually through a cloud service, which makes a synthesis process less reliable
in real-time performances. On the other hand, performance of smaller multi-processor
systems in parallel FD calculations can be matched by far more compact devices.

FPGA is an integrated circuit consisting of programmable logic blocks and re-
configurable interconnections. It can be configured after it has been manufactured,
using a hardware description language (HDL), after which it performs similarly to
application-specific integrated circuit (ASIC). In comparison to general purpose pro-
cessors FPGA-based solutions can be faster end more energy efficient. Application
of such circuits has been considered for various sound synthesis methods [412, 434]
including physical modelling either using waveguides [8] or FD schemes [392, 393].
However, application of FPGAs is limited. FPGA circuit is an additional hardware
element which is not a part of standard computer systems. It can only be applied in
synthesizers that are complete devices, specified in both, hardware and software lay-
ers. It cannot be used in purely software-based implementations, which is currently
the most common approach.

The issue of absence of FPGAs in computer systems makes the GPU solution the
most feasible of the three. All personal computers are equipped with some form of
GPU, either discrete, or integrated with CPU. These devices consist of many parallel
processing elements which can be applied to general purpose computing using ap-
propriate programming framework. In case of computations that can be formulated
as parallel problems GPUs frequently outperform CPUs. They have been applied in
implementations of various synthesis methods, including additive [490] and physical
modelling synthesis [530, 531, 254, 440, 63, 144, 442].

5.3. Real-Time FD Simulations Using GPUs

All contemporary computers are equipped with graphics processing units (GPUs).
Their original purpose was to take a part of CPU workload related to real-time ge-
ometry calculations and image processing while recreating three-dimensional visual
environments in video games. Evolving, they gained abilities to perform complex,
general purpose operations, but in contrast to CPUs, GPUs were parallel from the
very beginning due to specificity of rendering process they were initially aimed at.

Typically a GPU differs from a CPU by having a significantly larger number of
simpler cores. This difference can be exploited while designing computer software.
Tasks that can be carried out in parallel can be executed on GPUs, while those that
have to be performed in a serial manner can be left for less numerous, but faster cores
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of CPU. While all PCs and mobile devices are equipped with GPUs, their processing
capabilities vary far more than that of CPUs. Basic ones, meant primarily for office
computers, have a relatively small number of lower-clocked cores. In contrast, gaming-
oriented PCs are equipped with GPUs that are powerful, massively parallel processing
units, often characterised by electric power higher than accompanying CPUs.

5.3.1. GPU Programming Framework

GPUs started to be considered an option for general purpose programming in
the beginning of the 21st century. One of the first attempts at what has been re-
ferred to as GPGPU (General-Purpose GPU), carried out at Stanford University, was
a BrookGPU project and a Brook language, with initial reports dating back to 2003
[396, 201]. It had been mainly a research project, and was eventually replaced by two
frameworks: CUDA and OpenCL.

Both frameworks can be utilised to program sound synthesizers, though CUDA
has been more popular so far [530, 254, 63], possibly due to larger set of available
examples, tools, and libraries – either for algebra or signal processing. There are
however other important differences between CUDA and OpenCL that need to be
considered.

Firstly, CUDA is a proprietary framework, and works with hardware from one
GPU vendor only – Nvidia. While this shall lead to better optimised code, CUDA-
based software synthesizer would require a PC equipped with Nvidia GPU. On the
other hand, OpenCL is an open standard defined by Khronos Group. As such it
can be used with hardware from all major vendors, i.e. GPUs from AMD, Intel and
Nvidia. Virtually any PC has one of these GPUs, therefore OpenCL code may be
considered universally executable.

Secondly, CUDA is an implementation of GPGPU, and allows to program GPUs
only. It has the advantage of closer analogies between programming abstractions and
elements of GPU, leading to better understanding of processing operation. OpenCL
is more general. It aims at heterogeneous computing, i.e. combining processing
power of various processing units available, being it a CPU, GPU, DSP, or FPGA.
Such universality imposes more abstract nature of programming concepts required to
encompass wide variety of processing devices. In effect it is sometimes more difficult
to understand a connection between a programming abstraction and an element of
GPU. In return OpenCL allows to use all available computing devices simultaneously,
which in case of a standard PC allows to combine GPU and CPU, both handled by
the same source code.

There have been successful attempts at implementing real-time sound synthesis
based on FD schemes using OpenCL framework [440, 144, 442]. Considering its
capability to be executed on GPUs from all vendors, scalability through addition of
various available computing devices, and openness of the standard, OpenCL will be
considered the framework of choice in further deliberations.
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5.3.1.1. OpenCL Standard
The specification of OpenCL is divided into four parts, which are referred to as

models. They include [396, 201]:

• platform model describing the heterogeneous computer system,
• execution model representing queuing and execution of instructions on a platform,
• memory model defining hierarchy and interactions of OpenCL memory regions,
• programming model mapping a concurrency model onto a physical hardware.

Platform Model

Figure 5.2 presents the OpenCL platform model which describes a heterogeneous
system consisting of a host, OpenCL devices, compute units, and processing elements.
A platform includes a single host. The host is responsible for I/O operations and
can interact with external environment. It also interacts with one or more OpenCL
devices, also referred to as compute devices. A compute device is either a CPU, GPU,
DSP, FPGA, or other kind of processor supported by the OpenCL. It is divided into
compute units, which are subdivided into processing elements.
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Figure 5.2. An abstract architecture for devices defined by the OpenCL platform model;
the platform includes one host device and some number of OpenCL devices; each OpenCL
device includes compute units (CU), and each compute unit consists of some number of

processing elements (PE)
Source: author’s elaboration, based on Munshi et al. [396]

Execution Model

An OpenCL application is executed both on the host and the OpenCL devices.
The part executed on host is referred to as the host program. The OpenCL devices
execute the kernel, or a collection of kernels [396]. Kernels are written in the OpenCL
C programming language and are compiled by the OpenCL compiler. They usually
assume a form of functions operating on memory objects. The execution model defines
the way kernels are executed.
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A kernel is created on the host and submitted by the host program for execution to
the OpenCL device. A one-, two-, or three-dimensional integer index space, referred
to as the NDRange, is created by the OpenCL runtime, and each point within it
executes a single kernel instance. Such instance is referred to as the work-item
and can be identified using coordinates referred to as global ID. The coordinates
are represented by a tuple which size depends on dimensionality of the NDRange.
All work-items created by a common host command execute the same sequence of
instructions, though the actual work-item behaviour may vary due to branching or
different data.

Work-items are grouped into work-groups which evenly span the entire index
space, i.e. all work-groups are full and have the same size. Work-groups are identified
by a group ID. Work-items inside a single work-group are addressed by a local ID.
Therefore a work-item is identified either by a global ID or by a local and group ID
combination (Fig. 5.3). Only work-items within a common work-group are guaranteed
to execute concurrently on processing elements of a single compute unit and share
processor resources [396]. Outside of a single work-group the execution of kernels
may be serialised.
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Figure 5.3. NDRange, work-group, and work-item
Source: author’s elaboration, based on Munshi et al. [396]

Kernels are defined and executed in the environment referred to as context. The
context manages OpenCL devices used by the host, kernels, program objects consist-
ing of kernels source code and executables, as well as memory objects which OpenCL
devices operate on. While defining a context using an OpenCL API function, the host
program queries and chooses a device or its part that will execute kernel functions.
Once a device has been chosen the host program can prepare program objects. Source
code of kernels is loaded or dynamically generated, and built at runtime. Before ker-
nels can be executed the host program has to define memory objects for use with
a particular OpenCL device. Memory objects are moved between the host program
and OpenCL devices.

The host interacts with a selected OpenCL device by posting commands to the
command-queue. There are three command types: kernel execution, memory com-
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mands that handle data transfers, and synchronisation commands that allow to con-
trol kernels execution order. Queued commands can either execute in order, or out-
of-order. In the former case a command can only be started once a previous one
has been completed. In the latter case commands start in order, though they do
not wait for completion, and any synchronisation has to be explicitly enforced using
a mechanism of events. A single context can have multiple associated queues.

Memory Model

Two types of memory objects can be defined in OpenCL: buffer objects and image
objects. A buffer can be accessed through pointers, and it is possible to map data
structures onto buffers. Image objects are handled by dedicated functions and cannot
be accessed directly. OpenCL manages memory consisting of five regions (Fig. 5.4):

• host memory, only accessible by the host,
• global memory, which can be accessed in read and write mode by work-items

from all work-groups, although these operations may be cached, so it is not guar-
anteed that all work-items observe the same memory state,

• constant memory, which is a part of global memory only accessible in read
mode,

• local memory, restricted to a single work-group only, and shared by all work-
items within that group,

• private memory, only available to a single work-item.

OpenCL memory model is similar to arrangement utilised by modern GPUs. Even
though, it is not a simple one-to-one match. Actual physical representations of ab-
stract memory regions may depend not only on the underlying architecture of the
OpenCL device, but also on the program and data complexity. More details regard-
ing regions with an example of matching to a particular GPU can be found in work
of Gaster et al. [201].

The host is defined outside of the OpenCL, therefore its memory is separate from
memory of the OpenCL devices. If a data needs to be transferred between these
regions it requires an explicit copy or map command to be enqueued. Data transfer
functions are either blocking or not – the latter return immediately after a command
has been enqueued. Local memory values are consistent within a common work-
group at work-group synchronisation points. Global memory consistency cannot be
guaranteed between groups, although it is consistent for a single work-group at a work-
group barrier. Memory consistency between kernels is assured when in-order queue
signals completion of all work-items executing a given kernel. In case of out-of-order
queue, synchronisation points are required. They are forced by either command-queue
barriers, or explicitly through mechanism of events.

Programming Model

A programming model regards mapping of parallel algorithms onto OpenCL. The
problem may be approached in two ways: data-parallel or task-parallel. In data-
parallel model a single instruction sequence is concurrently applied to elements of
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a data structure. An important limitation is the lack of mechanism allowing to syn-
chronise work-items in different work-groups. In a single work-group synchronisation
is achieved through the use of work-group barrier – all work items have to encounter
a barrier instruction before any of them can process instructions that follow, and at
that point they are synchronised.

Host

OpenCL device memory

OpenCL device
Compute unit Compute unit

Processing
element

Processing
element

Processing
element

Processing
element

Host memory

Global and constant memory

Global and constant memory data chache

Local
memory
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Private
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Kernel-
wide
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Work-
group
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Work-
item
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Figure 5.4. OpenCL memory model
Source: author’s elaboration, based on Munshi et al. [396] and Gaster et al. [201]

NDRange and its division into work-groups can be defined automatically, which
is the implicit model, or by a programmer – in the explicit model of data parallelism.
Kernels that have no branch statements execute the same list of instructions, but on
a different data. Such model is referred to as the Single Instruction Multiple Data
(SIMD). If branches are present, work-items running the same kernel may execute
significantly different lists of instruction – it is the Singe Program Multiple Data
(SPMD) model. Both models are available in OpenCL. SPMD is more flexible, though
in some cases SIMD may be significantly more efficient.

While data parallelism is a default model, task parallelism is available as well.
A task is defined as a kernel executed by a single work-item only. Task parallelism
can be combined with out-of-order queues and events mechanism to efficiently manage
tasks which numbers far exceed number of compute units. Not all OpenCL platforms
support such mode though.
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5.3.1.2. Heterogeneous Computing

OpenCL goes beyond facilitating general-purpose computations on GPUs by al-
lowing to treat computer systems as heterogeneous platforms, consisting of various
computing devices, As a bare minimum, each contemporary computer has a CPU
and one or two GPUs1. Systems consisting of more CPUs and GPUs are not un-
common though, even as personal computers. In addition, various extension boards
or externally connected devices allow to supplement computer systems with DPSs,
FPGAs, or other kinds of processing units. Being an open standard, OpenCL can
utilise many of these devices.

What is important, by utilising mechanism of platforms, OpenCL allows a single
host program to dispatch kernels to various devices. It may be advantageous while
designing sound synthesizers based on finite-difference schemes. Separately vibrating
elements can be simulated not on one, but on all available computing devices, increas-
ing polyphonic capabilities. In a realistic scenario, one or two CPU cores may handle
the host program, user interface and controls, while remaining CPU cores and most
of GPU can be benchmarked to determine maximum number of vibrating elements
each of them can handle.

It is worth noting, than even without utilisation of GPU OpenCL provides a conve-
nient framework for programming multi-core CPUs in case of data-parallel problems
complying to SIMD and SPMD model, including FD schemes. Even in a class of
personal computers, contemporary high-end CPUs usually have at least eight, but
sometimes as much as thirty two cores. Such systems supplemented with one or
two powerful GPUs can handle complex models in real-time, while remaining rela-
tively affordable. Combining it with their reasonable portability and energy efficiency,
they are suitable for musical purposes, such as computing facility for a performance-
oriented synthesizer. Moreover, they are usually already a part of a recording or an
electronic music studio equipment.

5.3.1.3. OpenCL Framework Contents

The OpenCL framework has three components [396]:

• the platform API,
• the runtime API,
• the OpenCL programming language.

A system may have more than one platform available, and each platform may allow
to use more than one OpenCL device. Platform API manages platforms, determines
available OpenCL devices and their capabilities. Moreover, it defines the context used
to run an application. The runtime API handles command queues, manages memory,
and compiles OpenCL kernels. Kernels are written in the OpenCL C language, derived
from the ISO C99 language.

1One basic GPU is usually integrated with CPU, the second, more powerful one, is often added
as a separate board for a workstation or video games purpose.
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OpenCL Language

The language of kernels is based on C, but a specific subset of C features is not
available, i.e. recursive functions, pointers to functions, and bit fields. Standard
libraries are limited as well, but particulars depend on the platform and OpenCL
version. At the same time, the following set of features has been added:

• vector types and operations, which allows to exploit device parallelism,
• qualifiers to control address spaces related to memory regions,
• built-in functions with functionality necessary for OpenCL programs,
• atomic functions.

When stored as files, OpenCL sources are given ‘cl’ extension. A very basic exam-
ple of a kernel written in OpenCL C language is a parallel implementation of addition
of two vectors, presented in Listing 5.1.

Listing 5.1. OpenCL kernel for parallel addition of two vectors
__kernel void vectorAdd(__global const float *in1, __global const float ←↩

*in2, __global float *out)
{

int gID = get_global_id(0); // determine address within NDRange space
out[gID] = in1[gID] + in2[gID]; // perform addition of one element

}

Versions

As is the case of all actively developed programming frameworks, OpenCL con-
stantly evolves. For the moment of writing the newest version is 2.2, released in 2017.
Each version brings significant enhancements, particularly in productivity domain
regarding kernel language. For instance, since version 2.1 the OpenCL C++ kernel
language, based on C++14 standard, has been introduced, and version 2.2 expands
the set of its object-oriented features. Plans for future releases include converging
OpenCL and Vulkan into a single Vulkan API.

However, new features might, or might not be supported by already released pro-
cessing hardware. Moreover, supported version depends not only on hardware, but
also on the combination of operating system, driver, and platform software. For in-
stance, in Majnaro Linux 17.1 with kernel 4.17, AMD-APP software (version 1800.11)
supports OpenCL version 2.0, but only for AMD Radeon GPU, while Intel Core i5-
6600K CPU is compatible only with version 1.2, released in 2011. The same operating
system but with older GPU, namely Nvidia GeForce GT 750M, supports version 1.2
only, while OpenCL ICD loader can support even the newest one.

The bottom line is that new features may be used only if compatibility is not an
issue, i.e. a software designed will be executed on tested combination of hardware
and system software. Otherwise it is necessary to restrict designed program to one
of older, widely supported versions.
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5.3.2. Single String
Infeasible instruments share a core of their operation with real-time sound syn-

thesis based on physical modelling of normal instruments. Therefore details of their
design and implementation, including parallel computing on GPU, control, and real-
time operation, may be discussed using a more standard model. Such an introductory
model for FD schemes is typically a string.

5.3.2.1. The Model
An overly simple model with only a few adjustable parameters, such as a wave

equation with dissipation (3.127), does not provide much opportunities for expressive
control and makes a mediocre performance instrument. A more suitable example
would be served by a less basic model of a stiff string with frequency dependent
damping, interacting with a hammer. The model may be obtained by starting with
a stiff string given by (3.131), and supplementing it with terms containing two loss
parameters, as in (3.136). Hammer interaction can be modelled according to (3.160)
and (3.161). The resulting model, with variables scaled according to (3.110), assumes
the following form

∂2u

∂t2
= γ2 ∂

2u

∂x2 − κ
2 ∂

4u

∂x4 − 2σ0
∂u

∂t
+ 2σ1

∂3u

∂t∂x2 + ε(x)MF̃

F̃ = −d2uH
dt2 = ωα+1

H

(
[uH − 〈ε, u〉U]+

)α (5.1)

Parameters γ, κ, andM are defined in (3.111), (3.132), and (3.158), respectively.

5.3.2.2. Finite Difference Scheme
Amodel given by (5.1) can be approximated using the following explicit differential

scheme, which combines schemes (3.139), (3.162), and (3.163)

δttul[n] = γ2δxxul[n]− κ2δxxxxul[n]− 2σ0δt·ul[n] + 2σ1δt−δxxul[n] + εMF̃

F̃ = −δttuH [n] = ωα+1
H

([
uH [n]− 〈ε, ul[n]〉UN

]+)α (5.2)

String part of the scheme expands into

1
T 2 (ul[n+ 1]− 2ul[n] + ul[n− 1]) =

= γ2

X2 (ul+1[n]− 2ul[n] + ul−1[n])−

− κ2

X4 (ul+2[n]− 4ul+1[n] + 6ul[n]− 4ul−1[n] + ul−2[n])−

− σ0

T
(ul[n+ 1]− ul[n− 1]) +

+ 2σ1

TX2 (ul+1[n]− 2ul[n] + ul−1[n]− ul+1[n− 1] + 2ul[n− 1]− ul−1[n− 1]) +

+ εMF̃

(5.3)
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which results in the following recursion

ul[n+ 1] =
2
(
1− λ2 − 3κ2T 2X−4 − 2σ1TX

−2)
σ0T + 1 ul[n]+

+
λ2 + 2

(
2κ2T 2X−4 + σ1TX

−2)
σ0T + 1 (ul+1[n] + ul−1[n]) +

+ −κ
2T 2X−4

σ0T + 1 (ul+2[n] + ul−2[n]) +

+ −1 + σ0T + 4σ1TX
−2

σ0T + 1 ul[n− 1]+

+ −2σ1TX
−2

σ0T + 1 (ul+1[n− 1] + ul−1[n− 1]) + T 2

σ0T + 1εMF̃

(5.4)

A future grid point value is calculated using eight points from two time steps.
Values of five points, central as well as nearest and next neighbours, are required
from the current step. Three additional points, central and nearest neighbours, are
required from the previous one. Stencil of the scheme is presented in Figure 5.5.
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n+ 1

l − 2 l − 1 l l + 1 l + 2

T
im
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ep

Grid index

C1C3 C3C4 C4

C2C5 C5

Figure 5.5. A stencil of FD scheme (5.2); black dots symbolise grid points used for
approximation, and a gray circle indicates the approximated point; C-symbols indicate grid

point coefficients, as used in further presented host program (Listing 5.6)

The minimal value of spatial grid spacing X is related to temporal grid spacing
T by the stability condition (3.134), and depends on the stiffness parameter κ. T
is either directly equal to sampling frequency or related by a simple ratio, in case
the output signal is resampled. Therefore it is unlikely to change its value during
synthesis. Stiffness however has easily audible and interesting effect. It might be
useful to make it a user-controllable parameter, adjustable during a performance. In
effect, X will not only be determined when the model is initiated, but the stability
condition will have to be checked after each adjustment of κ to correct grid spacing
if required. Grid spacing affects the grid size as well. If a string is supposed to sound
during such changes, and string length is not supposed to change, its state has to be
preserved by interpolating values from the old grid to the new one.

The hammer is considered as a lumped element, and only later made spatial by
applying ε distribution. Therefore it is modelled as a simple oscillator with a force
term. In each step the force is calculated according to the second part of (5.2), and
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its value is used to update the hammer scheme, which may be expanded into

F̃ = − 1
T 2 (uH [n+ 1]− 2uH [n] + uH [n− 1]) (5.5)

leading to the following recursion

uH [n+ 1] = 2uH [n]− uH [n− 1]− F̃ T 2 (5.6)

The entire modelled system is simulated by iterating three stages, as presented in
Figure 5.6. In the first stage the hammer force is determined according to the second
line of (5.2), which involves comparison between the last hammer position and the
inner product of the ε distribution with a string state represented by its entire grid
function u in the current time step. Next, the hammer scheme is updated according
to (5.6). Finally, in the third step the same force value is utilised to update the
string scheme, as given by (5.4). Afterwards, data structures containing string grid
and hammer state in next, current, and previous steps are shifted, so that current
becomes previous, and next becomes current. This concludes a single step of the
simulation, and once all grid points have been updated, the procedure is iterated.
A user can interact with the simulation only after the whole step of the iteration has
been completed. A typical interaction is an instant change of hammer velocity, which
represents a strike attempt.

User-controlled parameters adjustment

I: Calculate hammer force F̃ according to (5.2)

II: Update hammer scheme and get uH [n + 1] from (5.6)

III: Update string scheme and get ul[n + 1] from (5.4)

Shift data structures: current → previous, next → current

Figure 5.6. A schematic overview of a single step of the simulation for a single grid point
l, based on the string and hammer model (5.2); all grid points need to be updated before

iterating

5.3.2.3. Implementation Considerations
It would be easy to write a serial implementation of the scheme (5.2), particu-

larly as a non-interactive script in GNU Octave or Matlab language, where ready
to use matrix operators are available. However, a parallel, controllable, real-time
implementation is significantly more complex, with the following issues to consider:
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• division of algorithm into parts that can, and that cannot be executed in parallel,
• synchronisation and access to neighbouring grid points,
• choice of a parallel programming model.

Regarding the first issue, it may be stated that due to grid-based nature of a model,
majority of required operations can be executed in parallel. All the grid can be up-
dated simultaneously, with grid points processed concurrently. There are exceptions
though. The first one is caused by an inner product while calculating the hammer
force. After parallel multiplication, a sum of all elements have to be determined,
which will momentarily reduce the number of active tasks. At this moment most part
of a processing device will not be utilised. The same applies to updating the hammer
scheme. The hammer is simulated by a single, lumped element, and there is no point
in calculating the same result in each processing element. The most computationally
demanding part, i.e. updating the string scheme, is parallel though.

The second issue involves the scheme stencil. A fully parallel task would not
depend on data from other tasks. However, in order to update value of a point
belonging to the string grid, it is necessary to use values of neighbouring grid points,
which are handled by separate tasks. Therefore, grid values have to be stored in
a memory region shared between all tasks updating the same grid. Moreover, all the
grid has to be synchronised – at a given moment the same time step n have to be
updated in all grid points.

The third issue has to be considered regarding choices of programming models
available in OpenCL. Out of two possible, grid-based FD scheme can be implemented
as data-parallel SPMD model. SIMD is not a valid option due to branching required
to implement parts where parallel algorithm reduces to a single active task, while
the remaining tasks wait for it to finish. Parallelism will be determined by the grid
size. NDRange will have a single dimension. The number of work-items needs to at
least match the size of grid, so that a single work-item handles a single grid point.
It may be rounded up to a size preferred by the computing device. Importantly,
all work-items have to belong to a single work-group. Thus they can utilise local
shared memory without a need for a kernel to exit and be dispatched again in order
to perform synchronisation after each time step.

Even though the simplest solution would be to allow a kernel to calculate only
a single time step and exit, which would eliminate the requirement for synchronisation
during kernel execution, and would allow to simultaneously use more than a single
work-group, dispatching a kernel has a significant overhead which slows down the
simulation considerably [442]. Therefore, for the sake of efficiency, in order for a kernel
to calculate a longer series of time steps in a single run, and thus producing not
a single signal sample but a whole buffer, synchronisation within work-items executing
the same kernel is required, and hence the requirement for a grid to fit in a single
work-group.

5.3.2.4. Program Design

An overview of the program implementation is presented in Figure 5.7. The pro-
gram has two parts. The first one, executed once, is responsible for various initiali-
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sation procedures, e.g. regarding OpenCL or audio engine. It is also here, where the
simulation framework is prepared, which includes initialising all parameters of the
model and preparing memory representations of modelled objects: string and ham-
mer. The order of operations is relevant due to dependence of later operations on the
parameters obtained in preceding ones. For instance, it is only possible to set the grid
size and spacing once both, OpenCL device capabilities and simulation parameters
are known. Grid size, in turn, is required to create grid arrays, etc.

Initialise variables

Query and select OpenCL device
Initialise 3 arrays and variables
(next, current, previous) for

string grids and hammer states

Read kernel source from file Calculate FD scheme coefficients

Initialise simulation parameters
and calculate derived parameters

Set up OpenCL: create con-
text and command queue,
build kernel from source

Determine stability condition, set
grid size and spacing accordingly Initialise audio engine

Calculate spatial dis-
tribution for excitation

Create, set, and enqueue OpenCL
memory buffers for grid, hammer
states, excitation distribution, sim-
ulation parameters, and output

KERNEL: Run simulation
until output buffer is filled Launch kernel

Wait for kernel to finish

Retrieve output buffer and
send it to audio engine

Check control events and change
simulation parameters accord-
ingly (e.g. strike a hammer)

Figure 5.7. A schematic overview of the execution flow diagram for the string and hammer
program implemented using OpenCL

The second part of the program contains its main loop. It starts by launching the
kernel and waits for it to finish calculations. Kernel runs the actual simulation on the
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OpenCL device for a number of steps given by a length of the audio buffer. Each step
of a simulation produces a single signal sample, which is obtained by reading value of
a grid point specified by readout location. Multi-channel output can be produced by
reading values from several points. Once the buffer is full, the host program retrieves
it and sends it to the audio device for reproduction. At this point any user-generated
control events may be handled in order to change simulation parameters. The most
important is activation of a hammer, which instantly resets its position and increases
velocity.

Values of grid function u, representing a state of string, are stored in a grid-sized
one-dimensional array. In case of a sound synthesizer which can work for a relatively
long time, it would be highly inefficient to store grid values for all previous time
steps2. The scheme (5.4), utilised in simulation, uses two preceding time steps to
calculate a new grid point value, therefore it is only necessary to store three steps
at a time. The program stores these three grids, ‘new’ (n + 1), ‘current’ (n), and
‘previous’ (n− 1), in a single, triple-sized array, aligned one after the other. For the
sake of efficiency they are utilised in a form of a circular buffer, i.e. the actual data
is not moved when the simulation progresses. Only the assignment of array parts is
updated (Fig. 5.8). Other data requiring similar updates, e.g. hammer states, is
handled in the same way.

Arrangement of grid functions in array:Simulation
step:
0

1

2

3

NewCurrentPrevious

New CurrentPrevious

NewCurrent Previous

NewCurrentPrevious

Figure 5.8. Operation of a circular buffer storing string grids representing three consecutive
time steps; when simulation progresses, part of an array representing a new grid becomes
current, and a current one becomes previous; their data is preserved in the same place, only
assignment of arrays changes; data from a grid formerly previous will not be needed further,

and in a next step it will be overwritten with data of a new grid

5.3.2.5. User-Controllable Instrument Parameters
One of main strengths of the physical modelling synthesis is control over model

parameters that represent features easily recognisable for a performer. A collection
of user-controllable parameters describing implemented string and hammer system is
presented in Table 5.2.

Change in any of parameters in question requires recalculation of a set of derived
parameters. Adjustments of some parameters, e.g. MR, may only require to recalculate

220 minutes of operation with 44100 Hz sample rate would produce approximately 5.3×107 signal
samples, and equal number of grids. For a grid consisting of 80 points represented by 4-byte float
type it would result in almost 17 GB of data.
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one or more FD scheme coefficients. However, there are also parameters, such as B,
that once changed, will require to adjust grid spacing and grid size. In order to
preserve string state during such adjustments, so that the instrument continues to
sound, albeit the sound itself changes, its grid functions will have to be interpolated.

Table 5.2. Synthesis-related simulation parameters that may be controlled by user-
generated events in the program simulating string struck with a hammer; initial values
provided do not represent any particular real-world instrument, but produce distinc-

tively pitched sound, and constitute a convenient starting point for adjustments

Symbol Type Initial value Parameter

SR int 44100 Sample rate [Hz]
xH0 float −0.001 Initial hammer-string distance
vH0 float 200.0 Initial hammer velocity
MR float 10.0 Hammer/string mass ratio
wH float 15000.0 Hammer stiffness parameter

alpha float 2.0 Hammer stiffness non-linearity exponent
B float 0.001 String inharmonicity
f0 float any String fundamental frequency [Hz]
ctr float 0.1 Location of striking centre (normalised)
wid float 0.05 Width of excitation distribution (normalised)
rp float 0.3 Readout location (normalised)
lf1 float 100.0 Loss parameter: low frequency [Hz]
lT1 float 10.0 Loss parameter: T60 for low frequency [s]
lf2 float 1000.0 Loss parameter: high frequency [Hz]
lT2 float 8.0 Loss parameter: T60 for high frequency [s]

5.3.2.6. Host Program
Parallel implementation of the string and hammer model is based on the OpenCL

framework, therefore it consists of the host program, and the kernel. The host program
has been written in the C language, with target platform being a Linux PC. A cross-
platform PortAudio library has been utilised as an audio engine. User-control has
been implemented as a separate program. The host program receives control data
over a network, through the User Datagram Protocol (UDP). This mechanism will
be discussed in further sections, though it will be omitted here, because it has no
relevance for the model implementation itself. Only selected fragments of source code
are included and discussed.

One of initial parts of the host program, presented in Listing 5.2, is responsible for
determining grid size. Every time any of parameters present in the following fragment
is adjusted, a grid size has to be recalculated. This in turn requires an update to all
values and data structures that depend on it, such as excitation distribution.
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Listing 5.2. Calculation of grid spacing and grid size on the basis of stability condition
cl_float X; // spatial grid spacing
int GridSize; // grid size (number of grid points)
int DomainSize; // domain size (with additional boundary points)
X = sqrt(((gamma*gamma*T*T) + sqrt((pow(gamma,4.0)*pow(T,4.0)) + ←↩

(16*K*K*T*T)))/2.0);
GridSize = floor(1.0/X);
X = 1.0/(cl_float)GridSize;
DomainSize = GridSize+2;

MAXGRID constant, set through #define preprocessor directive, represents maximum
value of a domain size rounded to the work-group size multiple preferred by the
computing device. It is established before compilation, using an assumed borderline
case, i.e. a combination of the lowest fundamental frequency and the lowest stiffness
parameter allowed to be set. Its primarily role is to allocate and align data arrays. An
alternative implementation could be based on dynamically allocated arrays, however
due to possibility of frequent grid size changes it would increase recalculation overhead
with no significant gains.

Loss parameters σ0 and σ1 are calculated according to (3.137), as in Listing 5.3,
on the basis of more intuitive time and frequency values.

Listing 5.3. Calculation of loss parameters
zeta1 = ((-1.0*gamma*gamma) + sqrt(pow(gamma,4.0) + ←↩

(4.0*K*K*(2.0*M_PI*lf1)*(2.0*M_PI*lf1))))/(2.0*K*K);
zeta2 = ((-1.0*gamma*gamma) + sqrt(pow(gamma,4.0) + ←↩

(4.0*K*K*(2.0*M_PI*lf2)*(2.0*M_PI*lf2))))/(2.0*K*K);
sig0 = 6.0*log(10.0) * ((-1.0*zeta2/lT1)+(zeta1/lT2))/(zeta1-zeta2);
sig1 = 6.0*log(10.0) * ((1.0/lT1)-(1.0/lT2))/(zeta1-zeta2);

Spatial distribution of excitation has been approximated with raised cosine func-
tion (3.120), as presented in Listing 5.4. It has an adjustable centre position and
width. The former parameter represents a striking point, while the latter is related
to the size of a hammer head. Other spatial distributions may be used as well, ei-
ther in form of analytical, or sampled functions. Though if excitation width is to be
adjustable, sampled functions would require interpolation.

Listing 5.4. Calculation of excitation distribution – raised cosine
cl_float rc[MAXGRID];
for (i=0; i<DomainSize; i++)
{

dist = sqrt(((((cl_float)i)*X) - ctr) * ((((cl_float)i)*X) - ctr));
if (dist-(wid/2.0)<0.0) rc[i] = 0.5*(1.0 + cos(2.0*M_PI*dist/wid));
else rc[i] = 0.0;

}
for (i=DomainSize; i<MAXGRID; i++) rc[i] = 0.0;
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As stated before, string and hammer states, u and uH respectively, are stored in
triple arrays and variables, for three simulation stages: new, current, and previous
(Listing 5.5). Values of array circ indicate which element of a triplet represents
a particular stage. The string is initialised to the rest position, i.e. its grid function is
filled with zeros. The hammer is set to striking state, therefore the synthesizer plays
at start. It can be prevented by setting all of uH to zeros.

Listing 5.5. Initialisation of storage for string grid and hammer state in three subse-
quent time steps

cl_float uH2; // previous hammer position for initialisation
cl_float uH1; // current hammer position for initialisation
cl_float uH[3]; // hammer states: next, current, previous
cl_float u[MAXGRID*3]; // string states (grids): next, current, previous
cl_float *out; // output buffer
cl_int circ[3]; // circular buffer pointer
circ[0] = 2; // next (n+1) buffer offset multiplier
circ[1] = 1; // current (n) buffer offset multiplier
circ[2] = 0; // previous (n-1) buffer offset multiplier
uH2 = xH0;
uH1 = xH0+(T*vH0);
out = (cl_float *)malloc(bufLen*sizeof(cl_float));
for (i=0; i<bufLen; i++) out[i] = 0.0;
for (i=0; i<(MAXGRID*3); i++) u[i] = 0.0;
uH[circ[0]] = 0.0;
uH[circ[1]] = uH1;
uH[circ[2]] = uH2;

Parameters used in the scheme update expression (5.4) are grouped into six scheme
coefficients, as presented in Listing 5.6. Five of them (C1–C5) are further assigned to
particular scheme stencil points (Fig. 5.5), and one to a force term (C6).

Listing 5.6. Calculation of string scheme coefficients
cl_float C1, C2, C3, C4, C5, C6;
C1 = (2.0 - (2.0*gamma*gamma*T*T/(X*X)) - (6.0*K*K*T*T/(X*X*X*X)) - ←↩

(4.0*sig1*T/(X*X))) / (1.0 + (sig0*T));
C2 = (-1.0 + (sig0*T) + (4.0*sig1*T/(X*X))) / (1.0 + (sig0*T));
C3 = ((gamma*gamma*T*T/(X*X)) + (4.0*K*K*T*T/(X*X*X*X)) + ←↩

(2.0*sig1*T/(X*X))) / (1.0 + (sig0*T));
C4 = (-1.0*K*K*T*T/(X*X*X*X)) / (1.0 + (sig0*T));
C5 = (-2.0*sig1*T/(X*X)) / (1.0 + (sig0*T));
C6 = (T*T*MR) / (1.0 + (sig0*T));
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Single variables that have to be sent to kernel are packed into two parameter
arrays, depending on type, float or int (Listing 5.7).

Listing 5.7. Packing of scheme parameters into arrays for sending to kernel
cl_float fpar[10]; // float type parameters
fpar[0] = T; fpar[1] = X; fpar[2] = wH; fpar[3] = alpha;
fpar[4] = C1; fpar[5] = C2; fpar[6] = C3;
fpar[7] = C4; fpar[8] = C5; fpar[9] = C6;
cl_int ipar[6]; // int type parameters
ipar[0] = circ[0]; ipar[1] = circ[1]; ipar[2] = circ[2];
ipar[3] = bufLen; ipar[4] = DomainSize; ipar[5] = rpi;

After setting the OpenCL computation environment by calling functions
clCreateContext, clCreateCommandQueue, and clCreateProgramWithSource, audio en-
gine is initialised, i.e. it is ready to receive buffers to play. Before the main loop
can start, OpenCL memory buffers have to be created, set as kernel arguments, and
filled with relevant data, as in Listing 5.8. The buffers include string grids u, ham-
mer states uH, excitation distribution rc, integer and floating point parameters (ipar
and fpar), and output out. All except the last one are two-directional, i.e. can be
written and read. The output though only needs to be read. Once buffers data have
been written, it is stored until release. It allows to run kernel code multiple times,
in a loop, without a need to retrieve and resend buffers in each pass. The data stays
in the OpenCL device memory between kernel runs, so next kernel continues with
a state of the model left by a previous one.

Listing 5.8. Setting memory buffers and kernel arguments
cl_mem bufferU = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

3*MAXGRID*sizeof(cl_float), NULL, &error);
cl_mem bufferUH = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

3*sizeof(cl_float), NULL, &error);
cl_mem bufferE = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

MAXGRID*sizeof(cl_float), NULL, &error);
cl_mem bufferI = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

6*sizeof(cl_int), NULL, &error);
cl_mem bufferF = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

10*sizeof(cl_float), NULL, &error);
cl_mem bufferO = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

bufLen*sizeof(cl_float), NULL, &error);

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&bufferU);
clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*)&bufferUH);
clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)&bufferE);
clSetKernelArg(kernel, 3, sizeof(cl_mem), (void*)&bufferI);
clSetKernelArg(kernel, 4, sizeof(cl_mem), (void*)&bufferF);
clSetKernelArg(kernel, 5, sizeof(cl_mem), (void*)&bufferO);
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if (clEnqueueWriteBuffer(commandQueue, bufferU, CL_TRUE, 0, ←↩
3*MAXGRID*sizeof(cl_float), u, 0, NULL, NULL)!=CL_SUCCESS) ←↩
printf("Write buffer error: u\n");

if (clEnqueueWriteBuffer(commandQueue, bufferUH, CL_TRUE, 0, ←↩
3*sizeof(cl_float), uH, 0, NULL, NULL)!=CL_SUCCESS) printf("Write ←↩
buffer error: uH\n");

if (clEnqueueWriteBuffer(commandQueue, bufferE, CL_TRUE, 0, ←↩
MAXGRID*sizeof(cl_float), rc, 0, NULL, NULL)!=CL_SUCCESS) ←↩
printf("Write buffer error: rc\n");

if (clEnqueueWriteBuffer(commandQueue, bufferI, CL_TRUE, 0, ←↩
6*sizeof(cl_int), ipar, 0, NULL, NULL)!=CL_SUCCESS) printf("Write ←↩
buffer error: ipar\n");

if (clEnqueueWriteBuffer(commandQueue, bufferF, CL_TRUE, 0, ←↩
10*sizeof(cl_float), fpar, 0, NULL, NULL)!=CL_SUCCESS) printf("Write ←↩
buffer error: fpar\n");

The main loop of the host program contains a kernel enqueue function, which
creates one-dimensional NDRange address space and runs a kernel in each of its
work-items. Size of both address spaces, local (locWGS) and global (globWGS), is set
to MAXGRID, so only one work-group is utilised. This allows work-items to share their
local memory and perform synchronisation on barriers. The second function enqueues
buffer read operation, which attempts to retrieve output signal from kernel in a block-
ing mode, set by the third argument (CL_TRUE value). A blocking read returns only
when the data is ready. Due to default ‘in order’ queue execution, the read will start
after the kernel has finished. Therefore the host program waits here for the OpenCL
device to finish the kernel.

Listing 5.9. Launching kernels and retrieving output
if (clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globWGS, locWGS, ←↩

0, NULL, NULL)!=CL_SUCCESS) printf("Enqueue kernel error\n");
if (clEnqueueReadBuffer(commandQueue, bufferO, CL_TRUE, 0, ←↩

bufLen*sizeof(cl_float), out, 0, NULL, NULL)!=CL_SUCCESS) ←↩
printf("Output retrieve error\n");

Once the output has been read into array out, the host program waits for the
audio engine to be ready to receive next buffer to play. When it is ready, out is sent
for playback, and the program continues. At this point host program receives and
interprets control data from a network connection. Depending on parameter which
needs to be adjusted, relevant data may be required to be read from, modified, and
written to the OpenCL device memory buffer with functions clEnqueueReadBuffer and
clEnqueueWriteBuffer. This concludes a single pass of the main loop.

The end-of-loop condition is triggered either by receiving ‘exit’ command from
the user, or by reaching previously set maximal simulation time. In the end, memory
objects are released using clReleaseMemObject function. All required audio-, network-,
and OpenCL-related termination procedures are carried out, dynamically allocated
memory is freed, and the program ends.
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Presented implementation, based on a standard main loop, is aimed towards op-
eration in modularised synthesis system, where it would run as a ‘headless’ engine,
or back-end. Control and user interaction are tasks of other modules, communicating
with the synthesis engine over a network. If all modules of the synthesizer were to be
integrated into a monolithic, interactive program, main loop design would be replaced
by a system of callback functions and events.

5.3.2.7. Kernel

The actual operation of a model is performed by the OpenCL kernel. The kernel
is enqueued to run on a number of work-items at least equal to the domain size,
which is a grid size increased by boundary points. Not all operations however, can
be performed in parallel, which is indicated in Figure 5.9. During these operations
unused work-items have to wait for the result, which is implemented using barrier
function which only returns, once all work-items have reached it.

Unpack parameters and set variables All

Copy string grids to local memory All

Calculate inner product of string
grid and excitation distribution Some

Update state of hammer One

Update state of string All

Get one output sample One

Shift circular buffers One

More steps to calculate

Copy string grids to global memory All

End kernel, return to host program

No

Yes

Figure 5.9. A schematic overview of the execution flow diagram for the OpenCL kernel
performing simulation of string and hammer; right column indicates work-item parallelism,

i.e. the number of work-items simultaneously performing given operation
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The kernel header (Listing 5.10) lists all of its arguments, which are consistent
with a fragment of the host program that assigns them with memory buffers (Listing
5.8). All arguments are pointers to arrays located in a global memory region.

Listing 5.10. Kernel header
__kernel void StringHammerSim(__global float* gu, __global float* uH, ←↩

__global float* exc, __global int* ipar, __global float* fpar, ←↩
__global float *out)

A work-item determines its address in the NDRange space using functions
get_global_id and get_local_id. In the string simulation the space is one-
dimensional. In the host program MAXGRID has been assumed equal to 256, and it
has been set as a fixed value in kernel. Majority of parameters packed by the host
program into ipar and fpar arrays are unpacked into private variables, separate for
each work-item. Remaining variables, i.e. pointers of a circular buffer c1–c3, local
copy of the string grid u[], hammer force fH, and tprod array used to calculate inner
product, have a local address space qualifier, which makes them shared between all
work-items.

Listing 5.11. Unpacking received simulation parameters and setting variables
int n, j, gid = get_global_id(0), lid = get_local_id(0);
local int c0;
local int c1;
local int c2;
int DomainSize = ipar[4];
int rpi = ipar[5];
int len = ipar[3];
local float u[256*3];
local float tprod[256];
local float fH;
float ip, t1, t2, t3, t4;
float T = fpar[0];
float X = fpar[1];
float wH = fpar[2];
float alpha = fpar[3];
float P1 = fpar[4];
float P2 = fpar[5];
float P3 = fpar[6];
float P4 = fpar[7];
float P5 = fpar[8];
float P6 = fpar[9];

In the beginning (Listing 5.12), the first work-item determines the state of circular
buffers left by previous run of the kernel. The remaining work-items wait on a barrier.
Afterwards, string grid state is copied from the global array gu to the local one. The
operation is parallel – each work-item copies only one array cell.
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Listing 5.12. Moving data to local memory
if (lid==0)
{

c0 = ipar[0]*DomainSize;
c1 = ipar[1]*DomainSize;
c2 = ipar[2]*DomainSize;

}
barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE);
u[lid+c0] = gu[lid+c0];
u[lid+c1] = gu[lid+c1];
u[lid+c2] = gu[lid+c2];
barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE);

In order to determine the hammer force, the kernel needs to calculate an inner
product (Listing 5.13). Its first phase, a cell-by-cell multiplication of two arrays and
a scalar X, is parallel, and the result is stored in tprod array. The second phase is
a calculation of a total sum of all array elements. It is performed in parallel, although
only part of work items can be utilised, organised in a proper binary tree, as shown in
Figure 5.10. Compared to serialised sum, such parallel algorithm reduces a number
of summation steps from (N − 1) to log2N , which in this particular case (N = 256)
translates to reduction by almost 97%.

Listing 5.13. Calculating inner product
if (lid<DomainSize) tprod[lid] = u[lid+c1]*exc[lid]*X;
else tprod[lid] = 0.0;
barrier(CLK_LOCAL_MEM_FENCE);
for (j=128; j>0; j/=2)
{

if (lid<j) tprod[lid] += tprod[lid+j];
barrier(CLK_LOCAL_MEM_FENCE);

}

Parallel sumsStep 1

Step 2

Step 3

Figure 5.10. Parallel calculation of total sum of array values
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In Listing 5.14 inner product is used to calculate the hammer force fH, and to
update hammer state uH using its FD scheme (5.6). There is one hammer and it
requires a few operations only, therefore it is handled by a single work-item, while
remaining ones have to wait on a barrier.

Listing 5.14. Updating state of the hammer
if (lid==0)
{

ip = tprod[0];
t1 = wH;
t2 = 1.0 + alpha;
t3 = uH[(c1/DomainSize)] - ip;
t4 = alpha;
if (t3>0) fH = pow(t1,t2)*pow(t3,t4);
else fH = 0.0;
uH[(c0/DomainSize)] = (2.0*uH[(c1/DomainSize)]) - uH[(c2/DomainSize)] - ←↩

(T*T*fH);
}
barrier(CLK_LOCAL_MEM_FENCE);

After the force has been calculated, all is ready to update a state of the string,
which is carried out by the code presented in Listing 5.15. In majority of cases
size of NDRange space will exceed grid size with additional boundary points. An
update is performed on the active part of the string, according to the string update
expression (5.4), with scheme coefficients calculated earlier in host program. After
update, a work-item corresponding to a grid element indicated by readout location
stores momentary value of a grid function in this point as a single signal sample.

Listing 5.15. Updating state of the string
if ((lid>1)&&(lid<(DomainSize-2)))
{

u[c0+lid] = (P1*u[c1+lid]) + (P2*u[c2+lid]) + ←↩
(P3*(u[c1+lid-1]+u[c1+lid+1]))

+ (P4*(u[c1+lid-2]+u[c1+lid+2])) + ←↩
(P5*(u[c2+lid-1]+u[c2+lid+1])) + (P6*exc[lid]*fH);

}
barrier(CLK_LOCAL_MEM_FENCE);
if (lid==rpi) out[n] = u[c0+rpi];
barrier(CLK_LOCAL_MEM_FENCE);

A single step of the simulation has been completed, but before continuing the the
next iteration, circular buffers have to be shifted, which is presented in Listing 5.16.
A single shift is carried out by a single work-item, with the rest waiting on a barrier.
Once buffer indicators have been shifted, the algorithm returns to calculating inner
product, with updated string and hammer states.
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Listing 5.16. Shifting circular buffers
if (lid==0)
{

c0 = (c0+DomainSize)%(3*DomainSize);
c1 = (c1+DomainSize)%(3*DomainSize);
c2 = (c2+DomainSize)%(3*DomainSize);

}
barrier(CLK_LOCAL_MEM_FENCE);

If the output buffer has been filled, the kernel needs to stop, so that data obtained
can be retrieved by the host program and sent to audio device to play. Befor exiting,
a reverse of kernel initial operations is performed, i.e. circular buffer as well as string
state are stored in global memory region (Listing 5.17), so that they will be accessible
in the next kernel run.

Listing 5.17. Moving data to global memory
if (lid==0)
{

ipar[0] = c0/DomainSize;
ipar[1] = c1/DomainSize;
ipar[2] = c2/DomainSize;

}
barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE);
gu[lid+c0] = u[lid+c0];
gu[lid+c1] = u[lid+c1];
gu[lid+c2] = u[lid+c2];
barrier(CLK_LOCAL_MEM_FENCE|CLK_GLOBAL_MEM_FENCE);

Performance of the simulation can be controlled by adjusting size of the output
buffer, i.e. number of time steps to calculate in each kernel run. The shorter the
buffer, the more fine-grained instrument control is achieved in the time domain, but
performance drops due to frequent dispatching the kernel and transferring data from
the OpenCL device. Large output buffers though, can lead to audible jumps in case
of parameters that are adjusted gradually during sound production, e.g. by sliders
on the controller.

5.3.3. Multiple Strings
If a simulation is carried out on a GPU, a single string will utilise only a small

part of its processing elements. A logical utilisation of the remaining ones would be
to simultaneously simulate larger set of strings, which is often the case of acoustic
instruments, such as the grand piano with approximately 230 strings typically struck
with 88 hammers.

The instrument implemented will not be a model of piano, but a more abstract,
multi-string instrument, with each separate string being struck with an individual
hammer. Each string will have a separate set of parameters, mirroring features of pre-
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viously implemented single string (Tab. 5.2), therefore each string would not only be
able to be tuned differently, but could also have distinct timbre-related characteristics.

Such instrument does not require modifications of the underlying FD model – it
may be considered a set of separate instruments, each one being a previously imple-
mented string with a hammer. They will be, however, updated simultaneously, in
order to mix their separate outputs into a single, common one.

5.3.3.1. Implementation Considerations

In case of a single string it was necessary to keep all of the string grid in a single
work-group. While simulating multiple strings that do not interact with each other,
every string will have a separate work-group assigned. Thus one string will share
a set of variables stored in local memory, e.g. a grid function, but these variables will
have separate instances for different strings. None of the algorithms applied needs
to be altered. Only data structures they operate on will be addressed in a more
complex manner.

5.3.3.2. Changes in Program Design

In order to accommodate a multiplied number of variables that needs to be grouped
on a string basis, the program has to switch from a collection of variables representing
a string, to a collection of arrays, representing a string set. Array index will identify
particular string, so that string-hammer system s will be described by parameters
xH0[s], vH0[s], MR[s], etc.

There will be still one, common output buffer sent to the audio engine to play,
but it will require mixing to prepare. Each string will produce its own output buffer.
Kernel will align these buffers into a single, one-dimensional array, where they will
be selectable by adding an offset – a multiple of output length – to the address. The
array will be retrieved by the host program, which will mix it (Fig. 5.11).
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Figure 5.11. Mixing outputs of individual strings
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It would be possible to mix outputs in kernel, by an OpenCL device, but host-side
leaves more flexibility. It is easy to define various mixing scenarios and produce e.g.
different channel arrangements, with adjustable amplifications and delays applied to
signals of separate strings.

5.3.3.3. Control Considerations
With multiple strings, each having relatively large set of parameters, control of

the instrument may be an issue. Therefore, even though the engine allows to control
everything separately, the implementation of control software may limit this function-
ality in favour of ergonomics. The most basic approach would be to differentiate only
a few selected parameters, such as fundamental frequency and damping, while leaving
the rest with a collective control, affecting all strings in the same way.

A much better, flexible approach should allow to switch between different control
mechanisms. In the first one, collective, a parameter adjustment would affect all
strings. The second, enabled on demand, would allow to control every feature of each
string separately, either through elaborate computer user interface, or by a large,
advanced controller. The third mechanism would allow to define functions, either
through expression, by drawing, or sampling, that would vary a parameter among
a string set in orderly manner.

An example of the last mechanism is tuning of strings to 12-TET system

f0[i] = 2
i+d
12 fref (5.7)

where i is the string index, fref is the fundamental frequency of a reference pitch, e.g.
442 Hz, and d is the interval in semitones from the reference pitch to the string with
index i = 0. Value of d is not limited to natural numbers – it may be represented by
any reasonably sized real number. Similar relations can be easily defined for damping
or hammer parameters.

5.3.3.4. Host Program
A general design of the host program does not vary significantly from the one string

case. Yet, there are differences in implementation of multiple strings which need to be
further discussed. Initially, the host program defines the number of simulated strings.
As shown in Listing 5.18, a preprocessor directive is utilised to facilitate creation of
adequately sized arrays of parameters for a string set.

Listing 5.18. Setting the number of strings
#define NSTR 12

Almost all model parameters are represented by arrays, as shown in the first part
of the Listing 5.19. Only a few, such as duration of simulation, or sampling rate, which
determines temporal grid interval, are common for all strings. During initialisation
some of parameter arrays are set to common values, e.g. xH0, while others, like f0,
are varied according to chosen expression.
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Listing 5.19. Setting parameters of a string set
int nstr = NSTR; // number of strings - a variable
cl_float xH0[NSTR]; // array: separate value for each string
// ...
cl_float dur = 300; // variable: common value for all strings

for (i=0; i<nstr; i++)
{

xH0[i] = -0.001;
// ...

}
f0[0] = 110.5;
for (i=1; i<nstr; i++) f0[i] = f0[i-1]*pow(2.0,(1.0/12.0));

Different string parameters imply that each string may have a different grid size.
It needs to be calculated separately, which is shown in Listing 5.20, where the only
parameter common to all strings is the sampling interval T. Remaining parameters
vary between strings and are stored in arrays.

Listing 5.20. Calculation of grid spacings for a set of strings
cl_float X[NSTR]; // spatial grid spacing
int GridSize[NSTR]; // grid size (number of grid points)
int DomainSize[NSTR]; // domain size (additional boundary points)
for (i=0; i<nstr; i++)
{

X[i] = sqrt(((gamma[i]*gamma[i]*T*T) + ←↩
sqrt((pow(gamma[i],4.0)*pow(T,4.0)) + (16*K[i]*K[i]*T*T)))/2.0);

GridSize[i] = floor(1.0/X[i]);
X[i] = 1.0/GridSize[i];
DomainSize[i] = GridSize[i]+2;

}

The excitation distribution (Listing 5.21) is again of the raised cosine shape. How-
ever, due to different grids, as well as possibly different widths and centre positions,
it is calculated and stored separately for each string. Distributions for particular
strings are aligned in a single one-dimensional array, and padded to MAXGRID. Such
data structure does not have to be reallocated in case of alterations to grid sizes.

Listing 5.21. Calculation of excitation distributions for a set of strings
cl_float rc[MAXGRID*NSTR];
for (j=0; j<nstr; j++)
{

for (i=0; i<DomainSize[j]; i++)
{

dist = sqrt(((((cl_float)i)*X[j])-ctr[j]) * ←↩
((((cl_float)i)*X[j])-ctr[j]));
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if (dist-(wid[j]/2.0)<0.0) rc[i+(MAXGRID*j)] = ←↩
0.5*(1.0+cos(2.0*M_PI*dist/wid[j]));

else rc[i] = 0.0;
}
for (i=DomainSize[j]; i<MAXGRID; i++) rc[i+(MAXGRID*j)] = 0.0;

}

An arrangement similar to the storage of excitation distribution is applied to
store string grids. It is a one-dimensional array, where grids of subsequent strings are
aligned and padded to MAXGRID. Output buffer out is arranged as in Figure 5.11. States
of hammers are stored in arrays as well. Initial values are set in loops (Listing 5.22).

Listing 5.22. Initialisation of storage for multiple string grids and states of hammers
cl_float uH2[NSTR], uH1[NSTR], uH[3*NSTR];
cl_float u[MAXGRID*3*NSTR]; // string states (grids): next, current, previous
cl_float *out; // output buffer
cl_int circ[3]; // circular buffer pointer
circ[0] = 2; // next (n+1) buffer offset multiplier
circ[1] = 1; // current (n) buffer offset multiplier
circ[2] = 0; // previous (n-1) buffer offset multiplier
for (i=0; i<nstr; i++)
{

uH2[i] = xH0[i];
uH1[i] = xH0[i]+(T*vH0[i]);

}
out = (cl_float *)malloc(nstr*bufLen*sizeof(cl_float));
for (i=0; i<(nstr*bufLen); i++) out[i] = 0.0;
for (i=0; i<(MAXGRID*3*nstr); i++) u[i] = 0.0;
for (i=0; i<nstr; i++)
{

uH[circ[0]+(i*3)] = 0.0;
uH[circ[1]+(i*3)] = uH1[i];
uH[circ[2]+(i*3)] = uH2[i];

}

Although the FD scheme remains unchanged in comparison to the single string
case, a separate set of scheme coefficients is required for each string. Therefore they are
stored in arrays C1[NSTR]–C6[NSTR] and are initialised in a loop using parameters from
arrays as well. Considerably increased number of parameters requires a modification
in the way they are packed for sending to kernel, which is presented in Listing 5.23.
The size of packed structure depends on the number of strings.

Listing 5.23. Packing of multiple scheme parameters into array for sending to kernel
cl_float fpar[1+(NSTR*9)]; // float parameters
fpar[0] = T;
for (i=0; i<nstr; i++)
{
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fpar[1+(i*9)] = X[i];
fpar[2+(i*9)] = wH[i];
fpar[3+(i*9)] = alpha[i];
fpar[4+(i*9)] = C1[i];
// ...
fpar[9+(i*9)] = C6[i];

}
cl_int ipar[4+(NSTR*2)]; // int parameters
ipar[0] = circ[0];
ipar[1] = circ[1];
ipar[2] = circ[2];
ipar[3] = bufLen;
for (i=0; i<nstr; i++)
{

ipar[4+(i*2)] = DomainSize[i];
ipar[5+(i*2)] = rpi[i];

}

An important change applies to the arrangement of the NDRange space, which in
case of multiple strings is two-dimensional. The first dimension is related to the grid
size as previously. The second one represents subsequent strings (Listing 5.24).

Listing 5.24. Setting size of the NDRange space
locWGS[0] = MAXGRID; // local: MAXGRID x 1
locWGS[1] = 1;
globWGS[0] = MAXGRID; // global: MAXGRID x nstr
globWGS[1] = nstr;

Due to arrangement of data in one-dimensional arrays, preparation of memory
buffers, assigning kernel arguments, and filling buffers with data has not been altered
significantly. Only the size of buffers has changed, due to dependence on the number
of strings, which is shown in Listing 5.25.

Listing 5.25. Setting memory buffers
cl_mem bufferU = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

nstr*3*MAXGRID*sizeof(cl_float), NULL, &error);
cl_mem bufferUH = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

nstr*3*sizeof(cl_float), NULL, &error);
cl_mem bufferE = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

nstr*MAXGRID*sizeof(cl_float), NULL, &error);
cl_mem bufferI = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

(4+(nstr*2))*sizeof(cl_int), NULL, &error);
cl_mem bufferF = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

(1+(nstr*9))*sizeof(cl_float), NULL, &error);
cl_mem bufferO = clCreateBuffer(context, CL_MEM_READ_WRITE, ←↩

nstr*bufLen*sizeof(cl_float), NULL, &error);
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In the main program loop the kernel is enqueued similarly (Listing 5.26), only
now the third parameter reflects two-dimensional structure of the NDRange space,
accommodating all strings. The last instruction mixes outputs of all simulated strings.

Listing 5.26. Launching kernels, retrieving output, and mixing string signals
if (clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL, globWGS, locWGS, ←↩

0, NULL, NULL)!=CL_SUCCESS) printf("Enqueue kernel error\n");
if (clEnqueueReadBuffer(commandQueue, bufferO, CL_TRUE, 0, ←↩

nstr*bufLen*sizeof(cl_float), out, 0, NULL, NULL)!=CL_SUCCESS) ←↩
printf("Output retrieve error\n");

for (i=0; i<bufLen; i++) for (j=1; j<nstr; j++) out[i] += out[i+(j*bufLen)];

5.3.3.5. Kernel
All the data sent between the host program and the kernel is kept in one-

dimensional arrays, where data regarding subsequent strings is aligned in sequence,
and padded if necessary. Therefore kernel header does not differ from the one string
variant. What differs, is the length of buffers and higher complexity of their inner
organisation.

A work-item checks three components of its address: one-dimensional local ID
and global ID along two dimensions. Address along the second dimension of global
ID is identified as a string ID, while the first dimension gives an index of a grid point,
as shown in Listing 5.27. Work-items sharing a local memory, i.e. belonging to the
same work-group, represent elements of the same string. Therefore local variables
and arrays, particularly local grid representation u, are defined as in the one string
case. Private variables representing simulation parameters are unpacked using string
ID, e.g. X=fpar[1+(sid*9)];, according to packing scheme shown in Listing 5.23.

Listing 5.27. Checking the address of a work-item in two-dimensional NDRange
int gid = get_global_id(0), lid = get_local_id(0); // grid point ID
int sid = get_global_id(1); // string ID

State of the circular buffers is determined as in the one string case, although with
multiple strings each string has its own copy of circular buffer indicator. Progress
of simulation is not synchronised between strings, therefore each copy of indicator is
shifted independently. By the end of the kernel run though, the same number of steps
will have been completed for each string, and the state of all copies will by the same.
Thus it is enough to save only the first copy into a global buffer before returning to
the host program. String grid data is copied from a global buffer to a local memory
with regards to string ID, as shown in Listing 5.28.

Listing 5.28. Moving grid data to local memory
u[lid+c0] = gu[lid+c0+(sid*3*256)];
u[lid+c1] = gu[lid+c1+(sid*3*256)];
u[lid+c2] = gu[lid+c2+(sid*3*256)];
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Calculation of the inner product does not change, although addressing elements
of excitation distribution has to include string ID, i.e. exc[lid+(sid*256)]. A work-
group shares a single string and a single hammer, therefore the hammer force is
calculated as in the one string case. Only the update of the hammer state, which is
stored in a global buffer, is altered (Listing 5.29).

Listing 5.29. Updating state of a single hammer
uH[(c0/DomainSize)+(sid*3)] = (2.0*uH[(c1/DomainSize)+(sid*3)]) - ←↩

uH[(c2/DomainSize)+(sid*3)] - (T*T*fH);

A part of kernel that updates a string uses local variables, thus it does not change
as well, with the exception of the aforementioned excitation distribution addressing.
Each updated string produces its own output, which is stored with an offset, as
shown in Listing 5.30.

Listing 5.30. Storing outputs of all strings
if (lid==rpi) out[n+(len*sid)] = u[c0+rpi];

Before progressing to the next time step, circular buffer indicators are shifted
as in the one string case, and kernel iterates to the next time step. Once number
of steps sufficient to fill the output buffer has been calculated, the loop is ended.
Circular buffer indicator and state of all strings are copied to the global memory
buffer, reversing the initial kernel operations.

5.3.4. Real-Time Control
Presented string model implementation, as well as implementations of models of

performance-oriented infeasible instruments, handle user control through an external
control module, as proposed in Figure 5.1.

5.3.4.1. Control Procedure Design
The design of the control procedure is presented in Figure 5.12. A user interacts

with a physical controller connected to a computer running a controller program.
The program connects over the network with a UDP server being a part of the host
program. After directing an output buffer for playback to the audio engine, the host
program checks for particular control sequences within incoming UDP data. Such
sequences are interpreted to obtain new values for given simulation parameter. Nec-
essary data is retrieved from the memory buffers, changes are applied, and adjusted
data is sent back to the buffers.

5.3.4.2. Controller Program Implementation
The controller program has been implemented using PureData (Pd) – an open

source, cross-platform visual programming language aimed at interactive computer
music. Pd is particularly well-suited for tasks involving various music-related control
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mechanisms [534]. It handles not only MIDI controllers, but also human interface
devices (HIDs) such as gamepads and joysticks, tablets, various sensors, audio input,
and even video input, which can be internally analysed to provide control parameters
(Fig. 5.12), e.g. to design an ad hoc theremin-like controller. The list is not closed.
Support for new devices may be relatively easily added due to the open source license,
rich documentation, and help of a large community of users and developers.

Controller program Host program

UDP
client

UDP
server

Physical
controllers

Control
gestures

Controller value

Control sequence

Control sequence

Parameter value

Main loop

Figure 5.12. Control procedure for the multi-string synthesizer

Four reasons for choosing Pd as an environment of the controller program are:

• wide variety of physical controllers handled, including MIDI and external sensors,
which allows to design intuitive control schemes for infeasible instruments,

• network capabilities, facilitating flexible communication with the OpenCL host
program running the synthesis engine in the modularised environment,

• cross-platform implementation, allowing to run the controller program on a wide
selection of devices, including mobile,

• open source license, allowing to freely modify and extend it, as well as integrate
it into a heterogeneous synthesis system.

Pd programs are referred to as ‘patches’, where objects either processing signals, or
performing operations on control data, are connected using virtual wires. The layout
and operation of a Pd program attempts to mimic a design and working principle of
modular synthesizers. The controller program, presented in Figure 5.13, makes use
of control data processing objects only. Such objects usually send an output value in
reaction to an input value, or a set of values. Outputs are located on the bottom,
and inputs – on the objects’ top edge.

The program performs two kinds of operations: it handles network connections,
and reads data produced by a controller. In presented case the controller is supposed
to be a MIDI device equipped with a velocity-sensitive keyboard and a number of
additional input devices such as rotary encoder knobs or sliders, that can be assigned
to parameters of the instrument model. A value originating from a physical controller
is wrapped into a control sequence consisting of a space-separated parameter symbol
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and value. Such sequence is sent through a network to the host program running
the synthesizer engine.

Bottom-right part of the patch contains connection and disconnection facilities.
It is possible to set IP address of the server, as well as port address it listens to on.
A ‘localhost’ is selected as a default. Once a ‘termination’ sequence is sent and received
by the host program, it breaks the main loop, and allows to close the synthesizer.

The remaining groups of objects handle the MIDI device. Specific controller values
assigned to ctlin (i.e. ‘control in’) objects are configured to comply with a particular
physical device, and are to be adjusted in case of its change. The program reacts to
key presses broken into two parameters, key index and velocity, as well as to pitch-
bend status, and positions of nine additional controllers. Each parameter has a control
sequence identifier assigned, which allows the host program to identify it.

Figure 5.13. An implementation of the controller program as a PureData patch running
under Pd-L2ork/Purr-Data distribution

5.3.4.3. Handling Control Events
The host program utilises a mechanism of network sockets and the UDP trans-

port layer protocol. Unlike in case of TCP, an UDP server handles incoming data
from all remote clients sequentially, through a single socket, without a need to create
child processes. Therefore it is possible to distribute control over several controller
programs, e.g. to handle spatially distributed control devices.
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UDP server is started in the initialisation part of the host program, as shown in
Listing 5.31. After required variables have been declared and initial values set, an
UDP socket is created. Function die simply prints an error message and exits the
program. Next, created socked is attempted to be bound to a port defined using
#define preprocessor directive.

Listing 5.31. Starting UDP server in host program
// variables
int s;
char buf0[BUFLEN], buf1[BUFLEN], buf2[BUFLEN];
struct timeval tv;
fd_set readfds;
struct sockaddr_in si_me, si_other;
// set
tv.tv_sec = 0;
tv.tv_usec = 0;
// create UDP socket
if ((s=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) die("socket");
fcntl(s, F_SETFL, O_NONBLOCK);
// fill structure with zeros
memset((char *) &si_me, 0, sizeof(si_me));
// set
si_me.sin_family = AF_INET;
si_me.sin_port = htons(PORT);
si_me.sin_addr.s_addr = htonl(INADDR_ANY);
// bind socket to port
if( bind(s , (struct sockaddr*)&si_me, sizeof(si_me) ) == -1) die("bind");
// initialise socket descriptor
FD_ZERO(&readfds);
FD_SET(s, &readfds);

In each pass of the main loop host program checks for an incoming data using
select function and handles it depending on its content, as shown in Listing 5.32.
Data received to a text buffer is attempted to be parsed, i.e. divided into parameter
identifier and value. If a special control string ‘terminator’ is found, the main loop
is broken. Otherwise a series of checks follow, one of which is shown in the listing.
Parameter p3 is recognised as a readout position. Related kernel buffer is read, and
readout position is changed for all strings – a seven-bit MIDI value is converted to
a normalised floating point variable. Afterwards, modified array of parameters over-
writes appropriate OpenCL buffer. Other parameters are adjusted in the same way.

Listing 5.32. Receiving and handling data
if (select(s+1, &readfds, NULL, NULL, &tv) == 1)
{

if ((recv_len = recvfrom(s, buf0, BUFLEN, 0, (struct sockaddr *) ←↩
&si_other, &slen)) == -1) printf("Error receiving packet");

if (sscanf(buf0, "%s %s" , buf1, buf2) == 2)
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{
if (strcmp(buf1, "terminator") == 0) break;
j = atoi(buf2);
// check for readout position change
if (strcmp(buf1, "p3") == 0)
{

if (clEnqueueReadBuffer(commandQueue, bufferI, CL_TRUE, 0, ←↩
(4+(nstr*2))*sizeof(cl_int), ipar, 0, NULL, NULL) != ←↩
CL_SUCCESS) printf("Error retrieving OpenCL buffer");

for (i=0; i<nstr; i++)
{

rp[i] = ((cl_float)j)/127.0;
rpi[i] = 1 + floor(GridSize[i]*rp[i]);
ipar[5+(i*2)] = rpi[i];

}
if (clEnqueueWriteBuffer(commandQueue, bufferI, CL_TRUE, 0, ←↩

(4+(nstr*2))*sizeof(cl_int), ipar, 0, NULL, NULL)!=CL_SUCCESS) ←↩
printf("Error writing OpenCL buffer");

}
// remaining checks ...

}
}

Readout position is one of parameters that require only a simple adjustment.
Some parameters though affect fundamental properties of the model, which triggers
a series of adjustments. One of such parameters is the string fundamental frequency.
It directly affects γ value, which in turn is used to calculate stability condition. Suf-
ficiently large change of the stability condition can alter value of spatial grid spacing
X and grid size N . Consequences are considerable. New excitation distribution array
has to be calculated. Current string grid has to be interpolated to the new one, with
different number of grid points. In addition, a large set of parameters and simulation
variables has to be recalculated, including loss parameters, readout location, scheme
coefficients, and circular buffer offsets. Such procedure though allows a string to con-
tinuously sound during parameter adjustments, which is a desirable feature, allowing
a user to perform various expressive parameter ‘glides’.

5.4. Hyper-Dimensional Objects

While describing vibrating objects it is a common approach to start with a simple,
one-dimensional case, and increase complexity by expanding it to two, and finally
three dimensions. It allows to draw analogies through pointing out similarities and
differences. In such manner a string may be compared to a membrane, etc. Obviously
comparisons end with three spatial dimensions.

Yet a musician experimenting with physical modelling synthesis might ask, while
designing models of strings or membranes: is it possible to extrapolate further? How
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would it sound if a hypothetical membrane had three, or better yet – four dimensions?
What kind of new sound features could emerge? Such question leads to the first,
and possibly the most spectacular group of infeasible instruments: hyper-dimensional
objects. Instruments of this group could not exist either by simply requiring more
than three spatial dimensions, or because increasing their initial dimensionality would
make them infeasible, such as a three-dimensional membrane.

5.4.1. Hyper-Membrane
One can define a N -dimensional hyper-membrane as a hypothetical object which:

• has N + 1 spatial dimensions, one of which is small, while the remaining N are
large in relation to the wavelength,

• is clamped along all of its boundaries,
• is stretched in N ‘large’ dimensions, which is a source of its elasticity,
• is excited and vibrates along (N + 1)-st ‘small’ dimension.

Such definition clearly makes even a three-dimensional membrane an infeasible
instrument, vibrating in a missing fourth spatial dimension. Moreover, due to required
clamping on all boundaries it would be inaccessible for any external excitation, nor
would it be able to radiate any vibration outside.

5.4.1.1. Basic Model
A mathematical N -dimensional hyper-membrane could be described simply by

a N -dimensional wave equation. Using scaled variables it can be written as

∂2u

∂t2
= γ2∆NDu (5.8)

or with a simple loss model

∂2u

∂t2
= γ2∆NDu− 2σ0

∂u

∂t
(5.9)

The equation is identical to the two-dimensional case (3.262), apart from the Lapla-
cian, which in a generalised N -dimensional case assumes the following form

∆NDu =
N∑
i=1

∂2u

∂x2
i

(5.10)

where xi are subsequent spatial coordinates, i.e. in two dimensional case x2 = y, and
the Laplacian assumes the form given in (3.69).

The model may be further expanded with features described in case of a string
and a two-dimensional membrane. It is possible to simulate frequency-dependent loss,
stiffness, or preparation through addition of springs and dampers. While theoretically
possible, an expansion of a non-linear model into more than two dimensions would
require considerably more effort, while audibility of its effects might be reduced by
phenomena originating from multi-dimensional approximation. Therefore so far only
the linear model has been implemented.
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5.4.1.2. Excitation

Out of various ways to excite a hyper-membrane, striking is the most straight-
forward and intuitive. Plucking and bowing might be implemented as well, however
their interpretation might be more confusing for a user of a synthesizer. As was the
case in one and two dimensions, spatial distribution of an excitation, either u0 or v0,
may be modelled with the raised cosine, which in N dimensions is given by

crc(x) =


c0
2

(
1 + cos

(
πrND

rhw

))
rND ≤ rhw

0 rND > rhw

(5.11)

where c0 is the peak displacement, rhw is the half-width of a pulse, and coordinates are
given by the vector x = (x1, x2, . . . , xN ). The N -dimensional distance is expressed as

rND =

√√√√ N∑
i=1

(xi − x0,i)2 (5.12)

where x0 = (x0,1, x0,2, . . . , x0,N ) is the peak position.

5.4.1.3. Finite Difference Scheme

Moving from one or two dimensions to a generalisedN -dimensional space, a spatial
index of a grid function will have to be supplemented with a N -component vector.
Therefore u = ul[n] = u(l1,ln,...,lN ), and li is a spatial index along dimension xi.

A model given by (5.9) can be approximated using the following explicit differential
scheme

δttul [n] = γ2δ∆NDul [n]− 2σ0δt·ul [n] (5.13)

Approximation of the N -dimensional Laplacian δ∆ND may be based on the five-point
operator used in two-dimensional cases (3.72), and use pairs of grid points adjacent
to the centre along each axis. Assuming equal grid spacing X in all dimensions, it
is expressed as

δ∆NDul [n] =
N∑
i=1

δxixiul [n] =

= 1
X2 (u(l1+1,l2,...,lN )[n] + u(l1−1,l2,...,lN )[n]+

+ u(l1,l2+1,...,lN )[n] + u(l1,l2−1,...,lN )[n] + . . .+
+ u(l1,l2,...,lN+1)[n] + u(l1,l2,...,lN−1)[n]− 2Nu(l1,l2,...,lN )[n])

(5.14)
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The scheme expands into

1
T 2 (u(l1,l2,...,lN )[n+ 1]− 2u(l1,l2,...,lN )[n] + u(l1,l2,...,lN )[n− 1]) =

= γ2

X2 (u(l1+1,l2,...,lN )[n] + u(l1−1,l2,...,lN )[n] + . . .+

+ u(l1,l2,...,lN+1)[n] + u(l1,l2,...,lN−1)[n]− 2Nu(l1,l2,...,lN )[n])−

− σ0

T
(u(l1,l2,...,lN )[n+ 1]− u(l1,l2,...,lN )[n− 1])

(5.15)

which results in the following recursion

u(l1,l2,...,lN )[n+ 1] =
2
(
1−Nλ2)
σ0T + 1 u(l1,l2,...,lN )[n]+

+ λ2

σ0T + 1(u(l1+1,l2,...,lN )[n] + u(l1−1,l2,...,lN )[n]+

+ . . .+ u(l1,l2,...,lN+1)[n] + u(l1,l2,...,lN−1)[n])+

+ σ0T − 1
σ0T + 1u(l1,l2,...,lN )[n− 1]

(5.16)

A future grid point value is calculated using (2N + 2) points from two time steps:
(2N + 1) from the current step, i.e. central and nearest neighbours along each axis,
and a central one from the previous step. Calculations require three coefficients: two
separate for both central points, and one common for all neighbours.

5.4.1.4. Stability
In case of a model without loss (5.8), a stability condition obtained through von

Neumann analysis [61] would be given by

λ ≤ 1√
N

→ X ≥ γT
√
N (5.17)

which allows to easily determine spatial grid spacing depending on the dimension-
ality N .

If a loss is introduced to the model through addition of parameter σ0 (5.9), use
of the following ansazt

ul [n] = zne
iX
∑N

j=1
ljβxj (5.18)

allows to write the characteristic polynomial for the scheme (5.16)

z + 1
σ0T + 1

(
4λ2

(
N∑
i=1

pxi

)
− 2
)

+ 1− σ0T

σ0T + 1z
−1 = 0 (5.19)

where pxi = sin2( 1
2βxiX). Roots of the polynomial are bounded by unity under the

same condition as in the case without loss (5.17).
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5.4.2. Model Implementation

5.4.2.1. Implementation Considerations
A general design and operation of a hyper-membrane synthesizer is similar to

the OpenCL implementation of the string model. A host program coordinates mem-
ory management, dispatches kernels, handles playback, and receives control from an
external module. A kernel runs the actual simulation. However, there are some
significant differences.

The first concern is the size of the N -dimensional grid. Its initialisation is pre-
sented in Listing 5.33, where the size is derived from the grid shape defined by a user
through setting domain aspect ratios epsilon related to the first dimension x1. As
was the case of string, grid spacing and size can be calculated using the stability
condition. Variable ND in the listing is the number of dimensions. T and X are the
temporal and spatial grid spacing, respectively.

Listing 5.33. Setting grid size and stability-related parameters
cl_float lambda = 1.0/sqrt((cl_float)ND); // Courant number
cl_float X = gamma*T/lambda; // initial grid spacing
int *Nx; // number of xn-subdivisions of spatial domain
Nx = (int *)malloc(ND*sizeof(int));
Nx[0] = (int)floor(sqrt(epsilon[0])/X);
for (i=1; i<ND; i++) Nx[i] = (int)floor(1.0/(sqrt(epsilon[i-1])*X));
X = sqrt(epsilon[0])/((cl_float)Nx[0]);
lambda = gamma*T/X; // recalculate Courant number
int *SX; // domain size in each of coordinates
SX = (int *)malloc(ND*sizeof(int));
for (i=0; i<ND; i++) SX[i] = Nx[i]+1;
int DS = SX[0]; // total number of elements in domain
for (i=1; i<ND; i++) DS *= SX[i];
int *XN; // temporary storage for N-dimensional coordinates
XN = (int *)malloc(ND*sizeof(int));

The OpenCL allows to implement parallel algorithms in multidimensional domains
as long as the number of dimensions does not exceed three. It is limited by the
arrangement of the NDRange. Therefore in order to implement an instrument model
with adjustable and not arbitrarily limited number of dimensions it was necessary to
design storage facility able to handle multiple dimensions, but fitting low-dimensional
memory buffers.

One-dimensional array is the most convenient, considering passing it as an ar-
gument to a function, and the most straightforward when converting from higher-
dimensional arrays. Thus it has been chosen to store grid data. Two functions,
presented in Listings 5.34 and 5.35, allow to convert between coordinates in N -
dimensional space and its flat, 1-dimensional representation. Arguments include the
number of dimensions, and a grid size stored in an array. Multi-dimensional coordi-
nates are stored in an array as well.
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Listing 5.34. Function performing conversion from N -dimensional to 1-dimensional
coordinates

static inline int to1D(int x[], int xdim[], int N)
{

// x[] coordinates (x1,x2,...,xN)
// xdim[] size of grid (x1len,x2len,...,xNlen)
// N number of dimensions
int i, xlin = x[0], dim = 1;
for (i=1; i<N; i++)
{

dim *= xdim[i-1];
xlin += x[i]*dim;

}
return xlin;

}

Listing 5.35. Function performing conversion from 1-dimensional to N -dimensional
coordinates

static inline void toND(int xlin, int x[], int xdim[], int N)
{

// xlin position in 1D array
// x[] returned coordinates (x1,x2,...,xN)
// xdim[] size of grid (x1len,x2len,...,xNlen)
// N number of dimensions
int i, xtmp = xlin, dim = 1;
for (i=0; i<N; i++) dim *= xdim[i];
for (i=N-1; i>=0; i--)
{

dim /= xdim[i];
x[i] = xtmp/dim;
xtmp %= dim;

}
return;

}

In order not to invoke the same calculations multiple times during kernel itera-
tions, an array containing 1-dimensional coordinates of neighbouring points along all
dimensions is prepared beforehand, as presented in Listing 5.36, at the expense of
additional memory usage.

Listing 5.36. Preparation of the array of neighbours
cl_int* coord = (cl_int*)malloc(2*ND*DS*sizeof(cl_int));
for (i=0; i<DS; i++)
{

toND(i,XN,SX,ND);
for (j=0; j<ND; j++)
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{
XN[j] = XN[j]-1;
coord[(2*ND*i)+(2*j)] = to1D(XN,SX,ND);
XN[j] = XN[j]+2;
coord[(2*ND*i)+(2*j)+1] = to1D(XN,SX,ND);
XN[j] = XN[j]-1;

}
}

The primary use of the coord array is to obtain one-dimensional addresses of points
belonging to the stencil, while updating the grid point value according to FD scheme
(5.37). Variables c0–c2 store grid offsets of next, current, and previous time steps.

Listing 5.37. Use of the array of neighbours in the kernel
tmp = 0.0;
for (j=0; j<ND; j++)
{

k = (2*ND*i)+(2*j);
tmp += u[c1+coord[k]] + u[c1+coord[k+1]];

}
u[c0+i] = (s1*tmp) + (s0*u[c1+i]) + (t0*u[c2+i]);

The final concern regards the relation of total number of grid points and work-
group size. In all practical cases the former will be larger than the latter. Therefore
it is not possible to directly apply approach from the string case, where the kernel
was internally synchronising work-items and calculating a whole audio buffer in a sin-
gle run. There are two solution, and either one can be applied depending on the
architecture and processing capabilities of the OpenCL device used for simulation.

According to the first solution each work-item calculates not one, but a larger
number of grid point values, consisting a subset of a spatial grid. Number of points
to calculate by a work-item is determined so as to limit number of work-items to
a single work-group, thus allowing for internal synchronisation. The second solution
involves external synchronisation. In this case number of work items matches the
number of grid points, preventing internal synchronisation, but a single run of the
kernel calculates only a single time step, after which an external synchronisation is
performed by returning to the host program.

The number of grid points grows exponentially while adding subsequent dimen-
sions, preventing from calculating higher-dimensional grids in real time. However, it
is realistic to expect higher capabilities for parallel processing in near future. Due
to problems with increasing clock frequencies, new generations of processing devices
are equipped with larger numbers of parallel units instead. New, massively paral-
lel GPUs are goaled much more towards general purpose computing, than graphics
processing only.

Before a sufficient hardware is available, it is possible to further increase dimen-
sionality in two ways. The first one is to sacrifice sound quality by either decreasing
sampling frequency or by increasing grid spacing only. Both lead to degradation in
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higher frequency region of produced signal spectra, yet they significantly reduce num-
ber of grid points. The second way is to investigate possibilities of synchronisation
across work-groups in OpenCL. By design, such synchronisation is not guaranteed,
mostly due to a diversity of underlying hardware layer. There are attempts though,
such as work of Sorensen et al. [529], to provide such synchronisation at a cost of
more restricted compatibility, i.e. to GPUs only. The method ports the XF barrier
[612] to the OpenCL, and utilises a master/slave model, where threads of a single
master work-group manage slave work-groups.

5.4.2.2. User-Controllable Instrument Parameters
A hyper-membrane implemented according to model (5.9) is a relatively abstract

instrument. Being based on a wave equation with a simple addition of a loss param-
eter, it has a limited set of properties that can be adjusted. However, it has a unique
advantage of ability to define and control its geometry.

A complete list of parameters a user can control is presented in Table 5.3. Some
features are described not by a single value, but by a vector. Such is the case of readout
location and location of excitation, both of which have to be sets of coordinates in
a N -dimensional space. An interesting case is the aspect ratio, which is the primary
timbre control mechanism. The shape of a domain is a hyperrectangle, also referred
to as a n-orthotope [141]. The aspect ratio relates grid size along each axis to the first
spatial dimension x1, thus it has (N − 1) components defining dimensions x2–xN .

Table 5.3. Synthesis-related simulation parameters that may be controlled by a user
in the hyper-membrane simulator

Parameter Type Components Real-time

Sample rate [Hz] int 1 No
Number of spatial dimensions N int 1 No
Domain aspect ratios related to x1 float N − 1 Yes
Wave speed γ float 1 Yes
Loss parameter T60 [s] float 1 Yes
Location of excitation centre (normalised) float N Yes
Width of excitation (normalised) float 1 Yes
Initial displacement float 1 Yes
Initial velocity float 1 Yes
Readout location (normalised) float N Yes

5.4.3. Example Signals
Figures 5.14 and 5.15 present examples of signals produced by hyper-membranes

using a parallel OpenCL implementation described in a previous subsection. The
main purpose is to observe the effect of geometry on the signal features. Due to effects
manifesting in both, spectral and temporal structure of a signal, data is presented in

375



a form of spectrograms. For the sake of comparison, other than geometric parameters
of simulations have been fixed, and are common for all examples. They are given
in Table 5.4.

Table 5.4. Common values of simulation parameters for signals presented in Fig-
ures 5.14 and 5.15

Parameter Value Comment

Sample rate [Hz] 32 kHz —
Wave speed γ 440 —
Loss parameter: T60 [s] 8 —
Normalised location of excitation centre 0.21 Same for all dimensions
Normalised width of excitation 0.15 —
Initial displacement 0 —
Initial velocity 1 —
Normalised readout location 0.3 Same for all dimensions

Figure 5.14 illustrates changes introduced by increasing a number of dimensions
in two cases. Membranes presented in the left column have a hyper-cubical shape,
i.e. all their aspect ratios are set to 1. Membranes in the right column have different,
randomly chosen ratios for each pair of dimensions, i.e. x2 : x1 = 1.91, x3 : x1 = 2.21,
x4 : x1 = 1.47, and x5 : x1 = 4.63. In both cases two effects dominate – one is directly
caused by geometry, while the other is the result of implementation.

The first effect is purely spectral. With increasing number of dimensions the
pattern of reflections grows in complexity, and it is more difficult to isolate individual
partials. In low-dimensional membranes they are less numerous and more distinct. In
four or five dimensions the energy is spread more evenly across spectrum. There are
more weaker, densely distributed partials. Perceptually, low-dimensional membranes
tend to invoke a stronger sensation of pitch or pitches not unlike a multiphonics effect.
Higher-dimensional membranes produce sounds with higher content of a noise-like
component. Frequencies and amplitudes of partials are affected in a general manner
by domain aspect ratios, which can be observed by comparing spectrograms in left
and right column of Figure 5.14. The ratio is a convenient parameter for a user,
who can adjust spectral structure changing geometry in real-time, and using auditory
feedback. One might attempt to obtain detailed signal features by finding analytic
solutions for the model, though the problem becomes significantly more complex in
higher dimensions. Moreover, such solutions would be inaccurate due to properties
of model implementation.

The implementation is the source of the second effect, which grows particularly
salient in higher-dimensional membranes, and causes the result of simulation to divert
from a purely analytical solution, or from a real object behaviour, if such object could
exist at all. The effect manifests itself in spectrograms as a series of curved arcs. Each
arc represents an individual reflection that has been warped by a strong numerical
dispersion.
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Figure 5.14. Signals produced by hyper-membranes; left column: membranes with all
aspect ratios equal; right column: different aspect ratios – details are given in text
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Figure 5.15. Signals produces by hyper-membranes with a single dimension of a different
size than the rest – details are provided in text
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Dispersive effects may appear even in two-dimensional cases, and are tradition-
ally regarded as undesirable phenomena due to distortions caused in produced signal.
Thus they are attenuated by applying different approximations for the Laplacian oper-
ator [61], e.g. a parametrised form (3.74) with a parameter adjusted in some optimisa-
tion procedure, instead of a form using adjacent grid points only (3.72). This however,
leads to significant increase in computations required to update a single grid point
in higher-dimensional models. While the simpler Laplacian approximation uses only
(2N + 1) grid points, the parametrised form needs as much as 3N . The former grows
linearly, the latter – exponentially. In two dimensions the difference is 5 and 9 points,
but in five dimensions it jumps to 11 and 243. In infeasible instruments however, the
consequence of dispersion shall not be regarded as undesirable. The reason is not only
a computational difficulty of its attenuation, but primarily a remarkably intriguing
auditory effect manifesting in higher-dimensional membranes. It may be regarded
as a case of emergence [533], where simple effects normally leading to distortions, in
a higher dimensional space produce complex structures in a spectro-temporal plane.

The emergence is particularly pronounced in a case illustrated by Figure 5.15,
where each membrane, either four or five-dimensional, has a single dimension that
largely differs in size from the remaining ones. First three rows represent membranes
that have all dimensions equal, except for the last, larger one. Its aspect ratio relative
to the others is indicated over each particular chart. The remaining ratios are set to
1. In the last row the situation is different: all aspect ratios are equal and set to 5.7,
therefore a single dimension is smaller than all others.

A particularly interesting phenomenon emerges when a single dimension is larger
than others. When a difference is small, dispersive arcs begin to show, stronger in
five dimensions. They become more distinct with increasing ratio, and finally in case
of the largest presented difference, arcs turn into a very complex, braid-like structure
audible as a rhythmic series of decaying pulses morphing into multi-pitch glides. The
structure is controllable through adjustment of aspect ratios. The last row case, with
a single dimension smaller, results in a mixture of arc-evoked glide effects and a fast
series of reflections, on the threshold of asperity. Again, it is more pronounced in
a five-dimensional variant.

5.4.3.1. Brief Evaluation
With several dimensions to manipulate, it is possible to combine reflection and

dispersion related effects, while adjusting frequencies and shapes of both. Yet, a de-
tailed relation between controllable values and effect characteristics remains to be
established. It is however already apparent, that hyper-membranes combine two sets
of features. Firstly, due to physical modelling synthesis background, they behave
predictably, e.g. with regards to excitation parameters. They can be struck either in
the middle, or near the edge, which would result in an auditory effect expected by
a musician. Change in excitation width brings intuitive spectral changes as well. Sec-
ondly, due to emergent behaviour of multi-dimensional dispersion, hyper-membranes
tend to produce complex spectro-temporal structures, which are controllable through
adjustment of geometric properties of a model. These two sets of features make the
hyper-membranes interesting candidates for performance instruments.
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5.4.4. Other Instruments

A membrane simulated using a wave equation is one of the simplest models that
may be regarded as a musical instrument, once it has been supplemented with a proper
control mechanism. Its simplicity, in case of Cartesian coordinates and Laplacian
approximation given by (5.10), allows for relatively easy introduction of additional
spatial dimensions which leads to emergence of new features. There is a cost of
such simplicity though, and it is a limited set of physically-relevant instrument or
performance parameters. Therefore, once enough computing power becomes available,
it shall be interesting to test more sophisticated models.

In presented case a very basic membrane excitation mechanism has been applied,
without actual simulation of the excitation element, and coupling it to the mem-
brane. Such mechanism is convenient for observation of model properties, allowing
to analyse features of a hyper-membrane alone. On the performance side, it provides
a basic set of parameters, such as excitation width, location, initial displacement, and
initial velocity, thus it can simulate both pluck and strike. However, different exci-
tation mechanisms shall provide much wider set of parameters, and could introduce
finer details into the signal. It is possible to apply a model of coupled hammer, as
described in case of the string simulation program. As a lumped element, it does
not depend on the membrane dimensionality. Excitation through bowing may be
simulated in a similar way. Higher number of dimensions provides more opportuni-
ties to experiment with spatial distribution of excitation, such as various multi-point
configurations. Moreover, one might vary excitation area, shape, and dimensionality.

In case of a string it was straightforward to improve a model by adding frequency-
dependent loss and stiffness. The former is possible, although due to spatial depen-
dence of the effect it requires use of the Laplacian combined with time derivative
operator, expanding stencil of a scheme. Introduction of stiffness may be achieved
by a simple expansion of Kirchhoff model (3.280) to arbitrary number of dimen-
sions. However, it involves use of the biharmonic operator, which would further
expand a scheme stencil. A stencil increases either linearly or exponentially with
dimensionality, depending on assumed approximations. Therefore, even though both
improvements are possible, it has to be considered that they effectively reduce achiev-
able dimensionality and grid size that can be simulated due to increasing amount of
calculations required for updating each grid point.

While multi-dimensionality alone allows hyper-membranes to produce signals with
interesting features, in all presented variants the instrument modelled was a hyper-
rectangle. Other shapes, either simple and regular, or including finer details, shall lead
to new signal features. The first choice would be to switch to a different coordinate
system, e.g. a spherical one. In N -dimensional space its coordinates include radius
and (N−1) angular coordinates, (N−2) of which range over [0, π], and one ranges over
[0, 2π]. Such system would be convenient for modelling of hyperspheres, also referred
to as n-spheres. Another choice might be a n-dimensional cylindrical coordinate
system.

In a different approach one might attempt to set various types of boundary points
not only on the edges of a domain, but in arbitrary positions. While this could
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raise legitimate doubts regarding mathematical and physical formality of such pro-
cedure, particularly with jagged edges produced by angular or curved borderlines in
sparse grids, it could provide a coarse way to delimit an arbitrary shape. Actually,
such functionality had already been implemented in the hyper-membrane program
through addition of a boundary mask. It is an array accompanying the grid, of the
same size and shape. Its values determine whether a certain grid point can vibrate,
or is clamped. Before updating a grid point, kernel simply checks the mask, and
performs update only if the point is not clamped. In cases of attempts to reproduce
finer shapes, such procedure shall produce considerably distortions, yet for simpler,
more general shapes and larger grids, it may lead to useful results. Arbitrary shapes
are considered to be handled with better results using different numerical methods,
such as finite element method (FEM). It is difficult, however, to generalise FEM into
higher-dimensional spaces, particularly regarding initial mesh generation. The prob-
lem requires further study. Once solved however, it will allow to freely shape and
play any conceivable multidimensional instrument.

5.5. Impossible Boundaries

When a model of an instrument is designed, a suitable grid function and bound-
aries are chosen in attempt to reproduce behaviour of the physical object. Yet mod-
elling facilities, consisting of data structures and implementations of algorithms for
their processing, may be approached in a less constrained manner, allowing to de-
sign infeasible instruments. One example of such approach are hypothetical hyper-
dimensional instruments discussed in the previous section. In a different approach
one might change a behaviour of domain boundaries. In simulations of existing in-
struments variants of clamped, free, or supported boundary conditions are usually
implemented. In a hypothetical model however, any kind of boundary behaviour
might be considered, even though only some could produce interesting, useful musi-
cal effects. Among many possibilities, looping of a boundary can be a foundation of
several promising properties, and will be discussed further.

5.5.1. Looped Boundaries

Three kinds of boundary behaviour have been studied, applied to membranes in
Cartesian coordinates:

• a bi-directional loop,
• a one-directional loop,
• a loop combined with a twist.

All these types have a common property: a boundary grid point is not considered
boundary. Instead, it has some other boundary grid point set as its neighbour in
this particular direction.
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5.5.1.1. Bi-Directional Loop
If a grid size in two dimensions p and q is given by Np and Nq, a grid point value is

given by ulp,lq , and coordinates along these dimensions assume values lp ∈ [0, Np− 1]
and lq ∈ [0, Nq − 1], then a bi-directional loop along a dimension p is applied by the
following substitution

u(−1,lq) , u(Np−1,lq)

u(Np,lq) , u(0,lq)
(5.20)

If Np = Nq, it is possible to set a perpendicular loop

u(−1,lq) , u(lq,Nq−1)

u(lp,Nq) , u(0,lp)
(5.21)

If Np 6= Nq a perpendicular loop would require an interpolation.
Out of all looped boundaries, a bi-directional type is the closest to real physi-

cal objects. Tension and stiffness apart, ring-shaped idiophones, though not widely
popular, might be considered as having such topology.

5.5.1.2. One-Dimensional Loop
Under the same assumptions, a one-directional loop in grid ulp,lq would be defined

by choosing only a single substitution from (5.20), and not applying the remaining
one. Thus waves crossing one edge would enter the grid on the opposing side, yet
waves reaching the opposite edge would encounter a normal boundary, and e.g. be
reflected. Such behaviour is unlikely to be encountered in macroscopic physical objects
made of conventional materials, like musical instruments.

5.5.1.3. Twisted Loop
While looping a grid along dimension p, a coordinate lq may be twisted. It is

accomplished using the following substitution

u(−1,lq) , u(Np−1,Nq−1−lq)

u(Np,lq) , u(0,Nq−1−lq)
(5.22)

In case of two-dimensional grids it would produce the Möbius strip. It has an
interesting property: being a one-sided surface, it has only a single boundary, and
double the length of the original, not twisted strip.

5.5.2. Implementation Details
Certain design choices in the hyper-membrane implementation make it well suited

to simulate looped boundaries with the wave equation almost directly, with only
a minor effort to define a grid loop. The program does not access neighbouring grid
points directly. Instead, it determines their coordinates for each grid point beforehand,
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and stores them in array of neighbours coord, as shown in Listing 5.36. Therefore,
one only needs to modify neighbour coordinates for selected boundary points. Such
operation, for a bi-directional twisted loop, is performed by the code in Listing 5.38,
which is inserted into the outer i-loop in the Listing 5.36. Grid coordinates in the
program range from 1 to SX[j]-2.

Listing 5.38. Creating a twisted loop by modification of neighbour coordinates for
boundary grid points

j = 0; // dimension
if (XN[j]==1)
{

XN[j] = SX[j]-2;
XN[j+1] = SX[j+1]-1-XN[j+1]; // twist
coord[(2*ND*i)+(2*j)] = to1D(XN,SX,ND);
XN[j+1] = SX[j+1]-1-XN[j+1];
XN[j] = 1;

}
if (XN[j]==SX[j]-2)
{

XN[j] = 1;
XN[j+1] = SX[j+1]-1-XN[j+1]; // twist
coord[(2*ND*i)+(2*j)+1] = to1D(XN,SX,ND);
XN[j+1] = SX[j+1]-1-XN[j+1];
XN[j] = SX[j]-2;

}

5.5.3. Selected Examples

A set of looped grids have been implemented as parallel OpenCL programs and
used to produce acoustic signals. Examples can be divided into three groups, de-
pending on the grid dimensionality and shape. In the first group, grid was a two-
dimensional rectangle, with aspect ratio x2 : x1 = 1.2. In the second, it was a two-
dimensional square. In the last one, grid was a three-dimensional rectangular cuboid,
with aspect ratios x2 : x1 = 1.2 and x3 : x1 = 1.5. The remaining simulation pa-
rameters were set according to Table 5.4, with the exception of sampling rate, which
was set to 44100 Hz.

5.5.3.1. Rectangle

Implemented rectangular grids are presented and described in Figure 5.16.
A ‘regualar’ variant contains no loops, and has simple clamped boundaries. Spectra
of signals produced by all implemented rectangular grids are shown in Figure 5.17.
Legends in charts refer to particular grid variants as enumerated in Figure 5.16, for
instance, ‘Rd’ stands for a rectangular grid with one-directional loop.
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a) b) c) d) e) f)

Figure 5.16. Rectangular grids: a) regular; b) bi-directional loop along x1; c) bi-directional
loop along x2; d) one-directional loop along x1; e) twisted bi-directional loop along x1;

f) twisted one-directional loop along x1

Figure 5.17. Spectra of signals produced by rectangular grids with loops; symbols in
legends refer to rectangular (R) grid variants as enumerated in Figure 5.16
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The most salient effect of applying a bi-directional grid loop is shift of part of
a spectral structure towards lower frequencies, while partials related to reflections from
unmodified boundary remain in place. This effectively corresponds to expanding the
grid in one dimension, although at virtually no computational cost. A two-dimensional
grid with two loops that can be enabled or disabled on demand is an effective way
of achieving control of pitch in a membranophone or idiophone model with a single
vibrating element. Compared to a loop alone, twisting a bi-directional loop leaves the
lowest partial in place, and does not alter an overall spectral envelope, but changes
the remaining partials. In effect, both loop variants are perceived as having the
same pitch, but different timbre, albeit of a comparable brightness. A one-directional
loop has much more subtle effect on a general spectral structure. Compared to a grid
without loop, it does not alter the lowest partial, and slight spectral changes only start
to appear in higher partials. The signal however acquires a very distinct component,
i.e. a temporal structure of dispersion-bound curved arches, manifesting primarily on
both sides of the quarter of sampling frequency. Therefore, while a bi-directional loop
may be applied as a pitch-switch, and a twisted loop may serve as a timbre switch,
then a one-directional loop can be applied as an effect adding a specific ‘texture’ on
a spectro-temporal plane.

5.5.3.2. Square

A square grid has been implemented in order to study the effect of a perpendicular
loop. Therefore only three square grid variants are compared, as shown in Figure 5.18.
Spectra of signals produced by square grids are shown in Figure 5.19. Again, legends
in charts refer to particular grid variants in Figure 5.18, for instance, ‘Sa’ stands for
a regular square grid.

a) b) c)

Figure 5.18. Square grids: a) regular; b) bi-directional straight loop; c) bi-directional
perpendicular loop

The effects discussed in case of a rectangular grid are valid in case of a square
one as well. It is worth noticing, that a straight bi-directional loop in a square
membrane makes the lower part of a spectrum almost harmonic. Consequently, a pitch
is not only getting lower, but also much more pronounced. A perpendicular bi-
directional loop shifts parts of spectrum, including the lowest partial, towards lower
frequencies. Moreover, a structure of several distinct, quasi-harmonic partials in lower
parts of spectrum is no longer present, with only a few stronger partials remaining.
As a consequence pitch saliency weakens as well.
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Figure 5.19. Spectra of signals produced by square grids with loops; symbols in legends
refer to square (S) grid variants as enumerated in Figure 5.18

5.5.3.3. Rectangular Cuboid
A three-dimensional grid provides more combinations of places where various loops

could be applied. The following cases have been selected for implementation:

a) regular,

b) bi-directional loop along x1,

c) bi-directional loops along x1 and x2,

d) bi-directional loop along x1 and one-directional loop along x2,

e) one-directional loop along x1 and bi-directional loop along x2,

f) one-directional loops along x1 and x2,

g) twisted bi-directional loops along x1 and x2.

Spectra of signals produced by grids in question are shown in Figure 5.20. Legends
in charts refer to particular grid variants from the list.

Principles observed in case of a two-dimensional rectangular grid are still valid
in a three-dimensional rectangular cuboid. However, there are more opportunities
to combine different features, such as lowering pitch through straight bi-directional
loop along one dimension, and adding spectro-temporal arches texture by applying
one-dimensional loop along another one. Two such textures with a different period
may be combined using two one-dimensional loops.
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Figure 5.20. Spectra of signals produced by three-dimensional grids with loops; symbols
in legends refer to cuboid (C) grid variants as enumerated in text

5.5.4. Further Study

Examples presented in the previous subsection represent only a small subset of
cases where a grid boundary has been looped. Even these cases can be studied further
in order to determine exact principles governing observed behaviour. Looped bound-
aries may be combined not only with clamped, but with other kinds of boundary
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conditions as well. Some effects might emerge only in cases of particular dimension-
ality or aspect ratios.

As a different approach, instead of looping a grid, one might attempt to design and
test entirely different boundary conditions, unlike these applied in models of physical
objects. Interesting models could be designed using different coordinate systems as
well. The most promising approach however, would be to carry out various topolog-
ical experiments by combining loops, hyper-dimensionality, and arbitrary boundary
locations.

Nevertheless, even a limited set of presented scenarios allows to supplement design
of infeasible instruments with a number of tools which have known properties when
applied to a wave equation approximated using a finite difference method. They can
be immediately implemented in sound synthesizers based on FD method to enhance
model-altering capabilities.

5.6. Evolving Instruments

If the aim of modelling an acoustic instrument is to reproduce its original opera-
tion, only in a digital form, a performer is usually provided with control features that
replicate what is available with the physical object. Features attributed to proper-
ties of a model such as material or geometry, are not considered controllable during
performance, as they would not be in a real instrument. However, when designing
an infeasible instrument, which does not have a real counterpart, any model feature
could be considered a performance parameter. Thus, one could play an instrument
that ‘shape-shifts’ or ‘transmutes’ during performance in a controllable way. A per-
former might make an instrument evolve and exploit it for musical purposes.

5.6.1. Evolution Parameters

Due to wide variety of available or prospective models and their increasing com-
plexity, a set of evolution control parameters is an open one. Some examples may be
given on the basis of hitherto presented models of string and hyper-membrane, im-
plemented in parallel using OpenCL. A complete list of model parameters for a string
and a hyper-membrane is provided in Tables 5.2 and 5.3, respectively. However, only
a subset of this list can be considered relevant choices. There are two conditions for
a valid evolution parameter:

• while adjusted, it has to produce a perceptible auditory effect,
• its impact on the output signal has to be of a continuous nature.

While the first condition is met by most of the parameters, the second one eliminates
a considerable amount of possibilities. Such is the case of hammer-related parameters
which can only manifest their impact during short periods of string contact. Adjust-
ments performed in between will affect the signal during next contact, thus the effect
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of change is not an evolution, but a discontinuous series of distinct sound events.
Clearly, the most useful parameters shall regard a vibrating element itself.

What is left in case of the string model is the string inharmonicity B related
to stiffness parameter κ (3.132), string fundamental frequency f0 related through
γ (3.121) and c (3.111) to its tension, thickness and mass (3.109), and finally loss
parameters σ0 and σ1 controlled through more intuitive lf1, lf2, lT1, and lT2 (3.137).
In case of the hyper-membrane a selection is very narrow, yet what remains, i.e.
domain aspect ratios xi, may prove particularly interesting, if not peculiar.

There remains an additional parameter that could be exploited if handled properly.
Bilbao describes a technique allowing to introduce temporal variations to a signal
produced by a string [61]. It involves continuous altering the location, i.e. the choice,
of a readout grid point. Various output operators, such as (3.89) or (3.91), apply
interpolation to make changes appear continuous. In case of a string the technique
is aimed at simulating movements of a musician and an instrument in relation to
a receiver, characteristic for bowed string instruments, particularly violin.

While the technique is a simple attempt to reproduce a real effect, it might be
expanded to an infeasible case of hyper-membrane. It may be considered a hybrid of
physical modelling and wave terrain method, only with terrain and orbit being not
two-, but higher-dimensional. An N -dimensional grid function, itself evolving, can
be regarded as a terrain, and a floating readout location – an orbit. Complex orbits,
such as N -dimensional variants of examples presented in Figure 2.30 can be applied.

5.6.2. Means of Control

Once an evolution parameter has been selected, there are several possibilities to
guide its variation:

• allow a user to adjust it directly through some form of a performance controller,
• apply a beforehand sampled function,
• use a function given by an expression,
• apply an envelope in a form of piecewise-linear approximation,
• control it by a low-frequency oscillator (LFO).

Variation through either one of two last positions may be considered a hybrid
variant of a source-modifier method: based on a physical-modelling, yet employing
subtractive-type modifiers. Like in the subtractive synthesis, a parameter is con-
stantly modified by an envelope or LFO, while the role of a user is to control the
modifier features, such as depth or frequency. Going further the way of source-modifier
methods, one could attempt a modular approach to control and parameters, though it
would require more complex models with larger sets of parameters. A selected evolu-
tion parameter could be related to a continuously-changing characteristic of a model
or some output-derived value. However, considering simple models, such as presented
strings and membranes, the first and two last options shall be of the greatest utility.
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5.6.3. Implementation Consideration

Main concern regarding alteration of model parameters has been stated while dis-
cussing implementation of a string model: adjustment of a single parameter involves
correcting other parameters as well. Even if it is not directly related, most cases lead
to necessity of creating a new grid in order for a model to remain near the stability
condition. State of a new grid has to closely match the previous one, if a sound is to
continue, which is exactly the case of evolving instruments. This may be accomplished
through interpolating between the old grid, and the new one.

Out of parameters mentioned as candidates for controlling model evolution, i.e.
string inharmonicity, aspect ratios in hyper-membrane, and readout location, only the
last one does not require calculation of a new grid. The second one involves it directly,
and the first one, inharmonicity, indirectly, due to stability condition readjustment.

OpenCL implementations of both, a stiff string model and a hyper-membrane,
relegate actual simulation from the host to the kernel, intended to run on a GPU.
For the sake of efficiency, on a single run kernel calculates not a single time step, that
would produce one signal sample only, but a series of samples filling an audio buffer.
The refresh rate of a control data might be much below the sample rate – it is updated
once per full buffer of signal samples. This might lead to audible discontinuities in
produced signal.

The simplest, even though not the most efficient way to address the issue, is to
decrease size of an audio buffer calculated in a single kernel run. This directly in-
creases frequency of control data updates, and reduces differences between subsequent
values of controlled parameter. A better solution may be applied if the parameter is
controlled by envelope or LFO. In such case it is possible to calculate intermediate
parameter values and send them to kernel as an array. Thus the kernel would use
subsequent, gradually changing values during a single run. This method can also be
combined with parameter controlled by a user directly. Instead of using one user-
provided parameter value per the entire run of a kernel, the program can determine
ratio of change from the previous to the new value, and produce a short envelope for
the span of a single kernel run.

It is to be considered though, that in case of most evolution parameters each up-
date requires a resize of the grid through N -dimensional interpolation. Not only it
increases amount of calculations considerably, thus has an impact on model perfor-
mance, but it also leads to signal degradation with each successive grid interpolation.

5.6.4. Selected Examples

5.6.4.1. Evolving Material Parameter

Evolution of material parameter has been applied to the model of a stiff string
with a loss given by (5.1). Inharmonicity has been chosen as the evolution parameter.
It varied within the range of [0.0001, 1.60001], and was controlled by 2 Hz sine LFO.
Model parameters were set according to Table 5.2, with the following exceptions:
SR=96 kHz, vH0=20, f0=110.5 Hz, lf1=1.3 kHz, and lf2=13 kHz. One-dimensional
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interpolation was performed using non-rounded Akima spline with natural boundary
conditions and non-rounded corner algorithm of Wodicka from the GNU Scientific
Library [9].

The result of simulation is presented in Figure 5.21. It may be compared to
the wah-wah effect due to periodically increasing signal bandwidth. However, inhar-
monicity evolution affects not only spectral envelope, but a spectral structure as well
– increasing bandwidth is accompanied by detuning of higher partials. Therefore the
auditory effect can be categorised not only as timbre-related, but as pitch-related
as well.

Figure 5.21. Spectrogram of a signal produced by evolving string model defined in (5.1),
with stiffness parameter modulated using 2 Hz sine; details are provided in text

5.6.4.2. Evolving Shape
Evolution of shape is presented on the simplest case of a 2D membrane given by

(5.9). 2D grid has a single aspect ratio and it has been used as the evolution param-
eter. Three signal variants have been produced. In two of them aspect ratio varied
within the range of [1.0, 2.0], and in the remaining one the range has been increased to
[1.0, 5.0]. Simulation parameters were set according to Table 5.4, with the exceptions
of SR=44.1 kHz. In two cases the parameter was controlled by a simple linear envelope
shifting from the larger to the smaller value, and in one it was controlled by 4 Hz sine
LFO. Two-dimensional interpolation was performed using bicubic method [294].

The results of simulation are presented in Figure 5.22. A very interesting spectral
behaviour may be observed in two cases of linear parameter adjustment. While adjust-
ing the shape, the overall grid size is attempted to be maintained. Therefore, with two
grid dimensions changing in opposite directions, some partials are shifted upwards,
and the remaining ones – downwards. The effect bears some auditory resemblance
to the Shepard–Risset glissando [465] occurring in both directions simultaneously.
Sine-modulated parameter produces a ‘spring-like’ auditory effect with an ambiguous
sensation of pitch direction.
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Figure 5.22. Spectra of signals produced by evolving 2D grids according to model (5.9);
grid aspect ratio either changes linearly (top plots), or is modulated using 4 Hz sine; details

are provided in text

5.6.4.3. Floating Readout

The third kind of instrument evolution, which is a hybrid of a quasi-physical model
and a waveterrain method, has been presented using a 3D hyper-membrane given by
(5.9) with output of the instrument obtained through a floating readout location. Due
to three dimensions of a grid, a three-dimensional ‘terrain’ scanning orbit has been
applied as well. A common choice of trajectory in case of 2D waveterrain synthesis
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is the Lissajous curve, therefore its three-dimensional variant, also referred to as the
Lissajous knot [73], has been used. It is given by the following expression

x1 = A1 sin(t)
x2 = A2 sin(n2t+ φ)
x3 = A3 sin(n3t+ ψ)

(5.23)

which can be easily generalised to arbitrary number of dimensions, thus it is well
suited as an orbit for hyper-membrane terrains. Parameter Ai controls spatial extent
of the figure in each dimension, while parameter ni allows to adjust its spatial density.
By adjusting size and adding offset to obtained coordinates it is possible to constrain
scanning to a limited part of terrain only. Figure 5.23 presents Lissajous knots applied
in the simulation.

Figure 5.23. Lissajous knots, as defined in (5.23), used in simulation: a) n2 = 2, n3 = 3;
b) n2 = 17, n3 = 11

Apart from floating readout location and sampling frequency set to 44.1 kHz,
simulation parameters were set as in rectangular cuboid in Figure 5.14. In order
to reduce discontinuities while changing the readout point, a trilinear interpolation
operator, equivalent to a bilinear variant from (3.94), has been applied on the basis
of eight grid points around exact observation location:

I1(x1,o, x2,o, x3,o)u(l1,l2,l3) =(1− α(x1,o))(1− α(x2,o))(1− α(x3,o))u(l1,o,l2,o,l3,o)+
+ α(x1,o)(1− α(x2,o))(1− α(x3,o))u(l1,o+1,l2,o,l3,o)+
+ (1− α(x1,o))α(x2,o)(1− α(x3,o))u(l1,o,l2,o+1,l3,o)+
+ (1− α(x1,o))(1− α(x2,o))α(x3,o)u(l1,o,l2,o,l3,o+1)+
+ (1− α(x1,o))α(x2,o)α(x3,o)u(l1,o,l2,o+1,l3,o+1)+
+ α(x1,o)(1− α(x2,o))α(x3,o)u(l1,o+1,l2,o,l3,o+1)+
+ α(x1,o)α(x2,o)(1− α(x3,o))u(l1,o+1,l2,o+1,l3,o)+
+ α(x1,o)α(x2,o)α(x3,o))u(l1,o+1,l2,o+1,l3,o+1)

(5.24)
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where (x1,o, x2,o, x3,o) are the observation coordinates, u(l1,l2,l3) is the grid function,
(l1,o, l2,o, l3,o) are the coordinates of a grid point obtained by truncation of the ob-
servation coordinates, and α(xi,o) is the fractional part of the observation point along
i-th coordinate. Expression (5.24) can be easily extended to arbitrary number of
dimensions, although number of grid points required for approximation will grow
exponentially.

Three cases of readout evolution have been compared to a fixed readout location.
They are presented in Figure 5.24. Depending on location of observation point, am-
plitudes of different signal partials are reduced. Therefore a floating readout location
has an effect of a filter-bank with time-varying parameters.

Figure 5.24. Signals produced by a 3D hyper-membrane with readout location floating
along Lissajous knot: a) fixed location; b) 1

10 of figure period per full signal duration with
n2 = 2, n3 = 3; c) full period per signal duration with n2 = 2, n3 = 3; d) full period with

n2 = 17, n3 = 11
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Auditory effect strongly depends on the frequency of terrain scanning. Slow
changes (Fig. 5.24b) produce gradually evolving spectra. Moderate changes introduce
a temporal structure of a rhythmic character. Finally, fast changes have a character
of tremolo-like amplitude modulation with varying brightness, or a spectro-temporal
texture. The important features of the effect are convenient control over its scale
by adjusting a few orbit parameters, and its diverse character oscillating between
timbre, rhythm and pitch sensation.

5.6.5. Further Study
Clearly, three types of instrument evolution presented, i.e. its shape, material,

or orientation towards observation point, do not exhaust possible scenarios of instru-
ments that change over the course of produced sound. In cases of bowed strings or
wind instrument models it might be worth to explore evolution of excitation con-
trolled through parameters normally fixed during a performance. In another scenario
chosen simulation principle could be gradually altered. For instance, one could apply
boundary conditions that have controllable parameters. Such is the case of Robin
conditions [225], sometimes referred to as impedance boundary conditions, which are
weighted linear combination of a Dirichlet and Neumann type.

Scenarios presented are far from being completely studied as well. Even in models
as simple as hitherto discussed, some material parameters remain to be studied, e.g.
loss-related ones. More complex, realistic models would provide new parameters.
Evolution of shape or geometry may be applied to boundary loops, e.g. with looped
edges shifted in relation to each other. Alternatively, one might explore the effect
of evolving boundary mask. Floating observation point may employ various kinds of
orbits apart from presented Lissajous knots, not only given by arithmetic formula,
but e.g. sampled or otherwise user-defined.

5.7. Concluding Remarks

A concept of infeasible instruments is aimed at development of sound synthesis
techniques for real-time performance that combine simple, meaningful control facilities
and sound production mechanisms of acoustic instruments with synthetic abilities to
design and create new sounds and expressive effects. While the concept is open, an
approach based on finite difference method has been discussed in more details. As
one of physical modelling methods, FD schemes can approximate behaviour of real
instruments or predict behaviour of instruments that, due to various reasons, cannot
exist. Some of these infeasible objects can produce complex signals, containing various
detailed structures that are controlled through a relatively small parameter set that
can be intuitively mapped onto an instrument-like musical controller.

Three cases of instrument infeasibility has been proposed an studied. The first
one is based on increasing dimensionality of vibrating elements, which combined with
artifacts of numerical approximation leads to emergent behaviour and production of
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detailed spectro-temporal structures, efficiently controlled with conveniently limited
set of parameters. The second case alters operation of domain boundaries through
setting boundary loops. Finally, the third case involves performance-time alteration
and control over parameters of simulation that could not be controlled by a performer
in acoustic instruments. Each of these cases produces specific auditory effect that
may be considered as a building block and combined with others to ‘design’ a sound
possessing desirable qualities.

Physical modelling of musical instruments may require a considerable amount of
processing power in order to achieve real-time synthesis capabilities. Therefore an
approach based on a hybrid, parallel implementation of FD schemes using CPUs and
GPUs through the OpenCL framework, has been presented. Some of more complex,
particularly higher-dimensional models may be beyond capabilities of current PC
hardware, yet with recent progress aimed primarily at parallel processing, the limit
of what is possible to simulate in real time is pushed away.

Promising effects of introductory simulations and improving facilities for imple-
mentation of complex physical models allows to initiate a broader research towards
design of infeasible instruments, as well as their direct musical applications.



6. Conclusions of the Monograph

The objective of the monograph was to present current state of sound synthesis
methods as well as to highlight the author’s contribution into the filed of sound
synthesis, in the form of two new synthesis methods: phrase assembling synthesis,
and infeasible instruments. The most important results are summarised below.

In the first chapter distinctive features of sound synthesis have been discussed in
comparison to traditional musical instruments. A new definition of sound synthesis
have been formulated. A taxonomy of synthesis methods has been proposed, with
a new division into direct and indirect methods, using a criterion of presence of
an intermediate model or idea between the control parameters and parameters of
produced signal.

In the second chapter a survey of direct methods of sound synthesis has been
carried out, including spectral and waveform based techniques. Presented methods
include additive, subtractive, wavetable, sampling, granular, and concatenative syn-
thesis. New developments in additive synthesis have been presented. Concatenative
synthesis has been given a detailed review, due to lack of such review in to date liter-
ature concerning sound synthesis in general, and due to features shared with author’s
method of phrase assembling synthesis.

In the third chapter indirect methods of sound synthesis have been presented.
Discussed methods include abstract and physical modelling methods. The former
include frequency modulation, waveshaping, and a collection of non-standard syn-
thesis techniques. The latter consist of finite difference approximations, networks of
lumped elements, modal synthesis, Karplus–Strong and waveguide synthesis, as well
as a set of various emerging techniques. Finite difference approximations have been
given a more thorough review, with many ready to use approximation schemes, as
a foundation of infeasible instruments.

The fourth chapter concerns the first of two methods proposed by the author: the
phrase assembling synthesis. In the initial part of the chapter two synthesis methods
commonly applied to score reproduction purposes have been presented. Their features
have been compared, and their issues analysed. The issues allowed to formulate
assumptions regarding a new method, aiming at solving selected problems. The most
important of indicated issues are the inability of sampling synthesis to reproduce
natural note transitions, management and usage of large collections of samples, as
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well as complexity and dependence on external tools on the part of the concatenative
synthesis. The concept of the author’s proposition of solving or attenuating these
issues has been presented. It relies on recording a large collection of multi-pitch
samples that represent all pitch transitions possible in a given instrument reproducing
an orchestral part. The samples are connected into phrases on common notes using
phase aligned crossfade. Samples contain low level expressive musical features. High
level expressive features are imposed on the output signal through the application of
performance rules. Selection of samples and rules is based on prior automatic score
analysis. All the designed algorithms and techniques regarding assembling of phrases
have been presented and discussed in detail. The method has been implemented as
a set of GNU Octave scripts, and tested in order to adjust algorithms parameters.
Test results have been provided in the final sections of the chapter.

The second method proposed by the author, the infeasible instruments synthesis,
has been presented in the fifth chapter. The chapter has stated the requirements for
real-time performance methods with flexible timbre control capabilities. Next, the
concept of infeasible instrument has been formulated: it is a model of musical instru-
ment, or a sound producing object in general, that cannot be built in real world due
to various reasons. Such instrument shall retain enough of real object’s characteristics
in order to be controlled in a meaningful, intuitive manner by a performer. At the
same time, introduced modifications shall lead to production of new, distinctive, and
musically appealing sounds. Operation of infeasible instruments involves performing
a finite difference simulation. Such simulations may be computationally demanding,
therefore the author has presented a detailed discussion regarding the implementation
of the method on the graphics processing units, which allows to design more complex
models in comparison to calculations performed on the CPU only. The program has
been implemented in the C programming language with the OpenCL framework for
the GPU computing. It has been supplemented with a networked controller program
implemented in PureData environment. Several infeasible instruments have been pre-
sented in subsequent sections, including hyper-membranes, membranes with various
periodic boundaries, as well as instruments having selected properties changing over
time. Features of all models have been discussed, with regards to certain musical
characteristics. The concept is open, and more models, applying different principles,
may be designed on the basis of presented framework.

Both methods have been presented in the context of current synthesis methods.
Their features, advantages, and issues have been discussed. The scope of details
presented, with either algorithms provided in the form of flow charts, or selected
sections of source code presented and discussed, should allow to replicate and expand
the designs by interested researchers or sound engineers. Thus the author hopes to
contribute to the field of sound synthesis, and sound engineering in general.
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