
Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie

Wydziaª Matematyki Stosowanej

Katedra Analizy Matematycznej, Matematyki Obliczeniowej

i Metod Probabilistycznych

Rozprawa doktorska

Optimal algorithms for solving

stochastic initial-value problems with

jumps

Andrzej Kaªu»a

Promotor: dr hab. Paweª Przybyªowicz, prof. AGH

Kraków 2020

I dedicate this work to my wife Joanna

and my daughter Maja for their support,

understanding and patience.

To my supervisor Professor Paweª

Przybyªowicz for the guidance, direction,

encouragement, and advice.

Contents

Streszczenie . 4

Abstract . 5

Introduction . 6

Symbols . 12

Chapter 1. General description of the problem and aim of the thesis . 15

Chapter 2. Global approximation of solutions of scalar SDEs with
jumps . 19

2.1. The setting . 19

2.2. Algorithm based on path-independent adaptive step-size control 21

2.2.1. Description of the method and its asymptotic performance 21

2.2.2. Derivative-free version of the path-independent adaptive step-size control . 32

2.3. Lower Bounds . 37

Chapter 3. Global approximation of solutions of multidimensional
SDEs with jumps . 38

3.1. The setting . 38

3.2. Algorithm based on equidistant mesh . 41

3.2.1. Description of the method and its asymptotic performance 41

Chapter 4. Basics information about CUDA C programming language
and numerical experiments . 53

4.1. An introduction to CUDA C programming language 54

4.1.1. Basic notation and de�nitions . 54

4.1.2. Di�erences between C/C++ and CUDA C 58

4.1.3. CUDA thread hierarchy . 60

4.1.4. Management of parallel threads . 63

4.1.5. Memory allocation . 66

4.1.6. Examples from numerical linear algebra . 69

4.2. Implementation of algorithm X̄Lin−M
kn

in CUDA C 71

4.3. Numerical experiments . 76

4.3.1. Problems . 76

4.3.2. Error criterion . 78

4.3.3. Results of numerical experiments . 79

Chapter 5. Conclusions and future work . 90

5.1. Summary of results . 90

5.2. Open problems . 90

Appendix A. Basic information on stochastic processes and stochastic
di�erential equations . 92

2

Contents

A.1.Random variables and conditional expectation 92

A.2.Basic fact from the theory of stochastic processes 97

A.3.Stochastic integration with respect to square integrable martingale 100

A.4.Stochastic di�erential equations . 106

A.5.Random elements with values in Banach spaces 110

A.6.Auxiliary results . 111

A.6.1. Properties of Frobenius norm . 111

A.6.2. Grönwall's inequality . 112

Appendix B. Time-continuous Milstein approximation 113

B.1.Time-continuous Milstein approximation for system of SDEs 113

B.1.1. Proof of Theorem B.1 . 132

B.2.Time-continuous Milstein approximation for system of SDEs under jump

commutative condition . 134

B.3.Derivative free time-continuous Milstein approximation for system of SDEs

under jump commutative conditions . 136

B.3.1. Proof of Theorem B.13 . 140

B.4.Properties of stochastic processes on given interval and discretization 145

Bibliography . 161

3

Streszczenie

W rozprawie zajmujemy si¦ problemem aproksymacji stochastycznych równa«

ró»niczkowych nast¦puj¡cej postaci{
dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) + c(t,X(t−))dN(t), t ∈ [0, T],

X(0) = x0,

gdzie T > 0, N = {N(t)}t∈[0,T] jest jednowymiarowym niejednorodnym procesem

Poissona z intensywno±ci¡ λ, W = {W (t)}t∈[0,T] jest mw-wymiarowym procesem

Wienera. Rozprawa skªada si¦ z trzech gªównych cz¦±ci.

W pierwszej cz¦±ci rozwa»amy problem skalarny z jednowymiarowym procesem

Wienera. Analizujemy w niej algorytm oparty na adaptacyjnej kontroli dªugo±ci kroku

caªkowania. Bazuj¡c na kawaªkami liniowej interpolacji warto±ci schematu Milsteina

obliczonego w punktach wyznaczonej siatki, otrzymujemy aproksymacj¦ rozwi¡zania.

W tej cz¦±ci rozprawy analizujemy równie» bª¡d metody nie u»ywaj¡cej warto±ci

pochodnych cz¡stkowych wspóªczynnika dyfuzji. Dla obu metod wyznaczamy dokªadne

tempo zbie»no±ci wraz z postaci¡ staªych asymptotycznych. Ponadto uzyskane wyniki

implikuj¡ optymalno±¢ zde�niowanych algorytmów w rozwa»anych klasach metod.

W kolejnej cz¦±ci rozprawy rozwa»ane s¡ ukªady stochastycznych równa«

ró»niczkowych ze skokami w przypadku wielowymiarowego procesu Wienera.

Jak w poprzedniej cz¦±ci rozprawy do aproksymacji rozwi¡zania wykorzystujemy

interpolacj¦ kawaªkami liniow¡ warto±ci schematu Milsteina obliczonego w punktach

siatki jednostajnej. Ponownie pokazujemy dokªadne tempo zbie»no±ci zde�niowanego

algorytmu wraz z postaci¡ staªej asymptotycznej. Udowadniamy ponadto odpowiednio

oszacowania z doªu na bª¡d, z których wynika optymalno±¢ skonstruowanej metody.

W trzeciej cz¦±ci pracy prezentujemy krótkie wprowadzenie do j¦zyka

programowania CUDA C wraz z efektywn¡ implementacj¡ algorytmu optymalnego

z drugiej cz¦±ci rozprawy. Przedstawiamy równie» wyniki przeprowadzonych

eksperymentów numerycznych.

Sªowa kluczowe

Analityczna zªo»ono±¢ obliczeniowa, stochastyczne równania ró»niczkowe ze

skokami, informacja standardowa, n-ty bª ¡d minimalny, asymptotycznie

optymalana metoda, CUDA C

4

Abstract

In the thesis we study the problem of approximation of solutions of stochastic

di�erential equations of the form{
dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) + c(t,X(t−))dN(t), t ∈ [0, T],

X(0) = x0,

where T > 0, and N = {N(t)}t∈[0,T] is a one-dimensional non�homogeneous Poisson

process, with intensity function λ, and W = {W (t)}t∈[0,T] is a mw-dimensional Wiener

process. The thesis consists of three main parts.

In the �rst part of thesis we investigate the scalar problem with mw = 1. We

analyze algorithm based on path-independent adaptive step-size control. The method

computes the adaptive discretization and next it uses a piecewise linear interpolation

of the classical Milstein steps performed at the computed sampling points. We also

analyze derivative-free version of this method. For the both methods we investigate

the exact rate of convergence of the nth errors together with the asymptotic constants.

Moreover, it turns out that the both methods are asymptotically optimal in certain

class of algorithms.

In the second part of the thesis we investigate the systems of SDEs with mw > 1.

We provide a construction of a suitable algorithm that is based on equidistant

discretization. At the sampling points the method uses a piecewise linear interpolation

of the classical Milstein steps. Again we show the exact rate of convergence of the

de�ned method together with the asymptotic constants. We also provide corresponding

sharp lower bounds which imply that the constructed method is asymptotically

optimal.

In the third part of thesis we present introduction to CUDA C programming

language together with e�cient implementation of the optimal algorithm from the

part two of the thesis. We also show numerical results that con�rm our theoretical

�ndings.

Key words

Information-Based Complexity, stochastic di�erential equation with jumps,

standard information, nth minimal error, asymptotically optimal method,

CUDA C

5

Introduction

Over the last years the number of publications devoted to stochastic problems,

including the approximation of solutions of stochastic di�erential equations (SDEs)

with jumps, has increased dramatically. One of the possibility which causes this

behavior is the fact that the demand for this type of modeling is rapidly increasing.

The areas where such SDEs problems �nd applications are for example, �nancial

mathematics, physics, biology, and engineering, see [11, 19, 39, 61, 78]. The discussed

equations often do not have analytical solutions and the use of e�cient approximate

methods is a necessity.

The �rst monograph which investigates to the topic of approximation of SDEs is

[31] (new release [32]). Authors describe construction of algorithms based on Itô-Taylor

expansions. Additionally, the authors investigate rate of convergence of the proposed

algorithms for the strong approximation (where we approximate trajectories of

solutions) and the weak approximation (where we approximate moments of solutions).

Another main reference which investigates stochastic problems is [39]. Authors,

apart from the results known from the monograph [31], investigate approximation of

deterministic problems using probabilistic methods. They also investigate stochastic

di�erential equations in presence of small noise and stochastic Hamiltonian systems.

In both monographs authors focused on �nding upper bounds for error of considered

algorithms and the stability of the considered methods. The optimality of presented

schemes was not discussed. Another main monograph dealing with SDEs with jumps is

[61]. Authors concentrate on designing and analysing of discrete-time approximations

for SDEs with jumps. Authors present theoretical background for SDEs with jumps

motivated by several application from �nance. They analyze stochastic expansion for

a di�erent order of schemes. They also investigate strong and weak approximation and

derivative-free schemes.

Information Based Complexity (IBC) is a branch of numerical analysis, which deals

with complexity of problems where information is partial, priced, and sometimes noisy.

Partial means that multiple problems may share the same information, priced means

that the cost of an algorithm is directly connected with the number and precision of

6

Introduction

observations, and noisy corresponds to some corruption for the observed values. One

of the main tasks of IBC is giving answers about the minimal cost that is needed for

solving a problem with the error at most ε, such minimal cost is called ε-complexity.

Similarly, the problem of the nth minimal error in a given class of algorithms is also

considered. The nth minimal error is de�ned as a minimal error of an algorithm that

can be reached in a class of algorithms with a cost at most n. In this work we are

interested in �nding essential sharp lower and upper bounds for the nth minimal error

in the context of stochastic problems. It should be stressed that the nth minimal error

corresponds to the problem, not to particular algorithm.

As a cornerstone and a kind of determinant that still determines the paradigms

of studying computational problems in terms of their computational complexity, we

can mention two books [80] and [79]. As a continuity of those, we can distinguish

[46], where authors consider problems in the multidimensional case and analyzing

the impact of the dimension on the complexity of a problem. The main problems

considered in IBC are �nding methods for solving mathematical problems such as

approximation of functions (for example [53, 55�57,60]), integration (for example [54,

55,58]), optimal approximation of ordinary (for example [20�22]), partial (for example

[12,59,85]), integral di�erential equations (for example [13,84]), stochastic integration

(for example [10,14,23,63�65]), approximation of stochastic di�erential equations (for

example [7,8,16,30,33,43�45,66�73,75,76]). We can highlight di�rent types of model of

computations, the worst-case, asymptotic, average, randomized, and quantum settings.

The problems with noisy information are also considered, for example [23,40�42,50�53].

In parallel to the development of theory there is a huge development of hardware

which allows to prepare suitable algorithms which can compute solutions in acceptable

time. Parallel computation, during the several decades, has been more and more

popular in the world of computations. There are also a lot of problems which

need parallel computation to get the solution in a reasonable time. Primary goal of

parallel computation is to improve application's performance. Mathematical problems,

for example approximation of stochastic di�erential equations, require simulations

of huge number of independent trajectories, and it makes this type of problems

computationally costly. Multiprocessing is a natural tool which can be applied

to solve this issues. By employing CUDA technology and dedicated programming

language CUDA C, we can create applications of high performance, which solve

mathematical problems e�ciently, e.g. matrix multiplication or approximation of

stochastic problems. For example the documents [4, 28, 47, 74] contain a lot of

7

Introduction

information about the CUDA C programming language, together with examples, which

can help to create applications.

In the thesis we deal with the global approximation of solutions of systems of

stochastic di�erential equations (SDEs) of the following form{
dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) + c(t,X(t−))dN(t), t ∈ [0, T],

X(0) = x0, x0 ∈ Rd
(1)

where T > 0, and N = {N(t)}t∈[0,T] is a one-dimensional non�homogeneous Poisson

process and W = {W (t)}t∈[0,T] is a mw-dimensional Wiener process. There are a lot of

positions in the literature which consider optimal approximation of solutions of SDEs

driven only by the Wiener process. In that case both upper and lower bounds on error

were established for the strong approximation, see, for example, [17,18,44,67,68].

(a) 1-dimensional case (b) 2-dimensional case

Figure 1: Examples of SDEs trajectories.

For a more complex problems, which also contain the jump term, suitable

approximation schemes were provided, and upper bounds on their errors discussed.

For example, the monograph [61] and in the articles [9, 15, 16, 34, 35] authors deal

with the jump-di�usion SDEs. However, according to our best knowledge, till now

there are only few papers that establish asymptotic lower bounds and exact rate of

convergence of the minimal errors for the global approximation of the scalar SDEs

with jumps, see [24, 69, 70, 72], and there are no articles addresing this problem in

multidimensional case. In [69] the author considers the pure jump SDEs (1), i.e., b ≡ 0

and c = c(t), while in [70] the general multiplicative case (1) is investigated. In [72]

author provides a construction of a method based on path-dependent adaptive step-size

control for global approximation of jump�di�usion SDEs. The discretization points and

8

Introduction

their number are chosen in adaptive way with respect to trajectories of the driving

Poisson and Wiener processes. We also refer to [7], where the authors investigate the

optimal rate of convergence for the problem of approximating stochastic integrals of

regular functions with respect to a homogeneous Poisson process. In [70,71] a suitable

method has been de�ned and showed to be optimal. However, the optimal non-uniform

discretization of the interval [0, T] is de�ned in a non-constructive way. Therefore,

the practical use of the method is highly limited. In the paper [24] authors show an

implementable method based on path-independent adaptive step-size control that still

preserves optimality properties. Such methods were constructed in pure Wiener case

in several papers [18,44]. Howewer those methods were hard to implement.

In this thesis we present results based on [24] for the scalar case with mw = 1 and

also not yet published results for the multi-dimensional case where with mw > 1. In

both cases we assume that di�usion and jump coe�cients satisfy the jump commutative

conditions (see page 20. or 39.). Method constructed for the one-dimensional case is

based on the path-independent adaptive step-size control. The method assumes that

the step-size is adjusted at each step, but the adjustment is done independently of

behavior of particulat trajectory. Roughly speaking it is adapted to the mean behavior

of W and N . In a multidimensional case we analyze the exact rate of convergence of

piecewise linear interpolation of the classical Milstein steps performed at equidistant

discretization points. The main contributions of the thesis are

� construction and analysis of method based on path-independent adaptive step-size

control for scalar SDEs with jumps driven by Wiener and Poisson processes,

� construction and analysis of method based on equidistant discretization for system

of SDEs with jumps driven by Wiener and Poisson processes,

� establishing optimality of the considered methods,

� implementation of developed algorithms in CUDA C programming language.

The structure of the thesis is organized as follows. In Chapter 1 we show a

short introduction to the computational model. In Chapter 2 we present de�nition

of algorithm based on path-independent adaptive step-size control. The method

computes the adaptive discretization and next it uses a piecewise linear interpolation

of the classical Milstein steps performed at the computed sampling points. The

construction of algorithm is computer implementable. We denote it by X̄Lin−M∗.

We also investigate a derivative free version X̄df−Lin−M∗ =
{
X̄df−Lin−M∗
kn

}
of this

algorithm. Both methods compute the adaptive discretization and then use a

9

Introduction

piecewise linear interpolation of the classical Milstein steps performed at the computed

sampling points. Moreover, by the results of [70], the algorithms X̄Lin−M∗ and

X̄df−Lin−M∗ =
{
X̄df−Lin−M∗
kn

}
are asymptotically optimal.

The main results of this chapter are Theorem 2.4 and Theorem 2.6 which states

that for the method X̄Lin−M∗ and X̄df−Lin−M∗ we have that error behaves like

lim
n→+∞

k1/2
n ·

(
E

T∫
0

∣∣X(t)− X̄Lin−M∗
kn

(t)
∣∣2dt

)1/2

=
1√
6

T∫
0

(
E(Y(t))

)1/2

dt, (2)

lim
n→+∞

k1/2
n ·

(
E

T∫
0

∣∣X(t)− X̄df−Lin−M∗
kn

(t)
∣∣2dt

)1/2

=
1√
6

T∫
0

(
E(Y(t))

)1/2

dt, (3)

where Y(t) = |b(t,X(t))|2 + λ(t) · |c(t,X(t))|2 and kn is the number of evaluations of

the Poisson and Wiener processes. The number kn is also adapted to the di�usion and

jump coe�cients, and to the intensity function λ. For the both methods we investigate

the exact rate of convergence of the nth errors together with the asymptotic constants.

Moreover, it turns out that the both methods are asymptotically optimal in certain

class of algorithms. It means that nth minimal error behaves like Θ(n−1/2) in the

considered class of algorithms (see Theorem 2.8).

Chapter 3 is dedicated to analyzis of the classical Milstein algorithm based on

equidistant discretization for system of SDEs with jumps with multidimensional

Wiener process. We construct an implementable algorithm, denoted by

X̄Lin−M∗ =
{
X̄Lin−M∗
n

}
and we stress its ease in implementation. The method

uses a piecewise linear interpolation of the classical Milstein steps performed

at the sampling points. The main results of this chapter are Theorem 3.1 and

Theorem 3.2, which imply the optimality of method X̄Lin−M∗ in some class of

algorithms (Theorem 3.4). By the Theorems we have that for the method X̄Lin−M∗

the following estimations hold

lim
n→+∞

n1/2 ·

(
E

T∫
0

∥∥X(t)− X̄Lin−M∗
n (t)

∥∥2
dt

)1/2

=

√
T

6

(T∫
0

E(Y(t))dt

)1/2

, (4)

where Y(t) = ‖b(t,X(t))‖2
F +λ(t) · ‖c(t,X(t))‖2

F , n is the number of evaluations of the

Poisson and Wiener processes. For method we investigate the exact rate of convergence

of the nth errors together with the asymptotic constants. Moreover, it turns out that

method is asymptotically optimal and the nth minimal error behaves like Θ(n−1/2) in

a considered class of algorithms.

10

Introduction

In Chapter 4 we present simple notation and basic information about technology of

CUDA and CUDA C programming language. We show simple introduction to CUDA

C, which allows reader to understand the implementation of algorithm form Chapter

2. At the end of this section we show results from numerical experiments performed

for algorithms from Chapter 2 and 3, which con�rm theoretical results.

In Chapter 5 we simply conclude results and de�ne open problem corresponding

to considered problems.

Appendix A contains a theoretical background about random variables, stochastic

processes, martingales, Itô integration with the respect to semi-martingales, stochastic

di�erential equations, and other useful facts.

Finally Appendix B contains proofs of main Theorems and Lemmas, which are

useful in proving of main results of thesis presented in Chapter 2 and 3. Most of given

facts in this section were provided by us. As a main result in this section we can listed

proofs of Theorem B.1 and Theorem B.13 which say about boundary and convergence

of Milstein approximation in space L2(Ω×[0, T]) for Time Continuous Milstein Scheme

and derivative free version. A similar result has been justi�ed in Theorem 6.4.1 in [61],

however, under slightly stronger assumptions. In particular, in this thesis we do not

assume the existence of continuous partial derivative ∂f/∂t for f ∈ {a, b, c} and we

do not assume any Lipschitz conditions for the second order partial derivatives of

f = f(t, y), f ∈ {a, b, c}, with respect to y. Moreover, we consider non-homogeneous

Poisson process, while in [61] in Theorem 6.4.1 has been shown only for homogeneous

counting processes.

11

Symbols

N = {1, 2, 3, . . .} : set of natural numbers

N0 = N ∪ {0} : set of natural numbers with zero

R = (−∞,+∞) : set of real numbers

R+ = (0,+∞) : set of non negative real numbers

Rd : d-dimensional euclidean space

(a, b]d : d-dimensional interval given by

(a, b]× . . . × (a, b]

| · | : absolute value

‖ · ‖2 : second euclidean norm

‖ · ‖F : Frobenius matrix norm

xn ↑ ∞ : increasing to in�nity sequence of xn

max(a, b) = a ∨ b : maximum of a, b ∈ R
min(a, b) = a ∧ b : minimum of a, b ∈ R
y = (y1, . . . , yd)

T : column vector y ∈ Rd with ith component xi

ej = (0, . . . , 0, 1, 0, . . . , 0)T : ej ∈ Rd, j ∈ {1, . . . , d} vector where non-zero
element is on the jth place

α · y = y · α = (αy1, . . . , αyd)
T for y ∈ Rd, α ∈ R

A = [ai,j]d,ki,j=1 = [ai]
d
i=1 = [aj]kj=1 : (k × d)-matrix A with ijth component ai,j,

ith row ai and jth column aj

F ,G,H : collections of events, σ-algebras

(Ω,F ,P) : probability space

X, Y : real valued random variable

E(Y) : expected value of Y

E(Y | G) : conditional expectation of Y under G

τ, σ : stopping time{
Ft
}
t≥0

: �ltration

σ(Y) : σ-algebra generated by random variable Y

σ(A) : σ-algebra generated by collection A

F ∨ G = σ(F ∪ G)

12

Symbols

F ⊗ G = σ({F ×G : F ∈ F , G ∈ G})
L2(Ω,F ,P) = L2(Ω) space of square integrable

random variables

‖X‖L2(Ω) :=
(
E|X|2

)1/2
: norm of X in L2(Ω)

L2(Ω× [0, T],F ⊗B([0, T]),P⊗ λ1) = L2(Ω× [0, T]) space of square integrable

stochastic processes

‖Y ‖L2(Ω×[0,T]) :=

(
E

T∫
0

|Y (t)|2dt

)1/2

: norm of X in L2(Ω× [0, T])

N(µ, σ) : normal distribution with mean µ

and standard deviation σ

Poiss(λ) : Poisson distribution with intensivity λ

m(t) =
t∫

0

λ(s)ds, for t > 0

Λ(t, s) = m(t)−m(s) for t, s ∈ [0, T]

‖ · ‖∞ : supremum norm of a function

ω̄(f, δ) = sup
t,s∈[0,T],|t−s|≤δ

|f(t)− f(s)|, δ ∈ [0,+∞)

modulus of continuity for a continuous

function f : [0, T]→ R,
∂|α|f
∂yα

: α ∈ Nd
0 where |α| =

∑d
i=1 αi

∂yα = ∂yα1
1 . . . ∂yαdd

a.s. : almost surely

For a function f, g : R→ R
f(x) = O(g(x)) : ∃x0∈R∃c1>0∀x>x0 |f(x)| 6 C|g(x)|
f(x) = Ω(g(x)) : ∃x0∈R∃c1>0∀x>x0 |f(x)| > C|g(x)|
f(x) = Θ(g(x)) : f(x) = O(g(x)) and f(x) = Ω(g(x))

13

Symbols

For a function f : [0, T]× Rd → Rd, h > 0

∂f
∂xi

(t, x) =
(
∂f1
∂xi

(t, x), . . . , ∂fd
∂xi

(t, x)
)T

∂2f
∂xi∂xk

(t, x) =
(

∂2f1
∂xi∂xk

(t, x), . . . , ∂2fd
∂xi∂xk

(t, x)
)T

∇xf(t, x) =

∂f1
∂x1

(t, x) ∂f1
∂x2

(t, x) . . . ∂f1
∂xd

(t, x)
∂f2
∂x1

(t, x) ∂f2
∂x2

(t, x) . . . ∂f2
∂xd

(t, x)
...

...
. . .

...
∂fd
∂x1

(t, x) ∂fd
∂x2

(t, x) . . . ∂fd
∂xd

(t, x),

∇̃x,hf(t, x) =

f1(t,x+h·e1)−f1(t,x)

h
f1(t,x+h·e2)−f1(t,x)

h
. . . f1(t,x+hed)−f1(t,x)

h
f2(t,x+h·e1)−f2(t,x)

h
f2(t,x+h·e2)−f2(t,x)

h
. . . f2(t,x+h·ed)−f1(t,x)

h
...

...
. . .

...
fd(t,x+h·e1)−fd(t,x)

h
fd(t,x+h·e2)−fd(t,x)

h
. . . fd(t,x+h·ed)−fd(t,x)

h

Let f : [0, T] × Rd → Rd, b : [0, T] × Rd → Rd×mw and c : [0, T] × Rd → Rd. For

k ∈ {1, . . . ,mw}, (t, x) ∈ [0, T]× Rd, h > 0 we use the following notation

Lkf(t, x) = ∇xf(t, x) · bk(t, x)

Lk,hf(t, x) = ∇̃x,hf(t, x) · bk(t, x)

L−1f(t, x) = f(t, x+ c(t, x))− f(t, x).

If d = mw = 1 we write

L1f(t, x) = b(t, x) · ∂f
∂x

(t, x)

L1,hf(t, x) = f(t,x+h)−f(t,x)
h

· b(t, x)

Additionally, all constants that appear in the estimations will depend only on the

parameters of the problem and T , unless it is clearly stated otherwise. Moreover, to

simplify nomenclature and numbers of di�erent symbols we assume, that the same

symbol can be used to indicate di�erent constants. As we consider only asymptotic

case, the exact value of constants is not investigated.

14

Chapter 1

General description of the problem

and aim of the thesis

The aim of this thesis is to present a construction of optimal algorithms for the

global approximation of solutions of d -dimensional system of stochastic di�erential

equations (SDEs) of the following form{
dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) + c(t,X(t−))dN(t), t ∈ [0, T],

X(0) = x0,
(1.1)

where T > 0, and N = {N(t)}t∈[0,T] is a one-dimensional non�homogeneous Poisson

process, with intensity function λ, and W = {W (t)}t∈[0,T] is a mw-dimensional Wiener

process.

First, we will investigate the problem of approximating solutions of scalar stochastic

di�erential equations (1.1) where d = mw = 1. Then, we will focus on d -dimensional

system of stochastic di�erential equations (1.1), where d > 1 driven by mw (mw > 1)

independent Wiener processes.

Let (Ω,F ,P) be a probability space for both stochastic processes (see

Appendix A.2). Both problems will be considered in special classes of functions

a, b, c, λ. Let us know that our problem can be de�ned as a �ve-elements vector

(a, b, c, λ, x0).

Information

In our model of computation, we assume that we do not have the complete

knowledge about realizations of Wiener and Poisson processes on considered interval

15

[0,T]. Instead, we can use only partial and standard information of evaluations of the

Poisson and Wiener processes Nn(N,W), where Nn(N,W) : Ω → Rn·(mw+1) is given

as vector of evaluation of processes in given sampling points.

Nn(N,W) :=
[
N(t1,n), N(t2,n), . . . , N(tn,n),W (t1,n),W (t2,n), . . . ,W (tn,n)

]
, (1.2)

where points ti,n for i ∈ {0, 1, . . . , n} belong to partition of interval [0, T] given by

∆n = {t0,n, t1,n, . . . , tn,n}, 0 = t0,n < t1,n < . . . < tn,n = T. (1.3)

We denote by

N(N,W) =
{
Nn(N,W)

}
n∈N (1.4)

the sequence of vectors Nn(N,W), where each provides standard information of the

Poisson and Wiener processes.

For a single process Z ∈ {N,W,W1, . . . ,Wmw} we use the notation

Nn(Z) :=
[
Z(t1,n), Z(t2,n), . . . , Z(tn,n)

]
.

It is important to know that N(0) = 0 and W (0) = 0̄. The information used to solve

a problem may be non-adaptive or adaptive. We say that information is non-adaptive

when we choose the points in advance (a priori). We say that the information is adaptive

when discretization points are not given in advance and every next point is calculated

using previous computations/observations. Especially the sequences of discretizations

∆̄ = {∆n}n∈N may depend on functions a, b, c, λ and on initial value x0. We also

assume, that discretization does not depend on trajectories of the processes N andW .

Information (1.2) uses the same evaluation points for all trajectories of the Poisson

and Wiener processes. Therefore, the information (1.4) about the processes N and W

is non-adaptive.

Algorithm

After computing the information Nn(N,W), we approximate solutions of our

problem by an element in solution space L2
(
[0, T];Rd

)
. We apply the algorithm which

is represented by Borel measurable mapping

ϕn : Rn·(mw+1) → L2([0, T];Rd), (1.5)

in order to obtain the nth approximation X̄n =
{
X̄n(t)

}
t∈[0,T]

in the following way

X̄n = ϕn(Nn(N,W)). (1.6)

16

It is important to have a tool which allows us to compare exact solutions and

approximations given by algorithms. In Appendix A.5 we discuss how to move between

spaces of solutions and approximation.

So any approximation method X̄ =
{
X̄n

}
n∈N can be de�ned by two sequences

ϕ̄ = {ϕn}n∈N, ∆̄ = {∆n}n∈N.
The nth cost of the method X̄ is de�ned as the total number of evaluations of N

and W used by the nth approximation X̄n. In literature the cost of algorithm is also

named cardinality of information. For considered in the thesis problem we de�ne nth

cost in the following way

costn(X̄) =

(mw + 1) · n, if b 6≡ 0 and c 6≡ 0,

mw · n, if b 6≡ 0 and c ≡ 0,

n, if b ≡ 0 and c 6≡ 0,

0, if b ≡ 0 and c ≡ 0.

Cost calculation does not include combinatoric cost, which is de�ned as a total

number of arithmetic operations used to calculate approximation. According to

literature, we assume that the cost of information is greater than the cost of arithmetic

operation. The class of all methods X̄ =
{
X̄n

}
n∈N, de�ned as above, is denoted by

χnoneq. Moreover, we consider the following subclass of χnoneq de�ned as

χeq =
{
X̄ ∈ χnoneq

∣∣∣ ∃n∗0=n∗0(X̄)∈N : ∀n>n∗0 ∆n =
{
iT/n : i = 0, 1, . . . , n

}}
.

Methods based on the sequence of equidistant discretizations (1.3) belong to the

class χeq, while methods that evaluate N and W at the same, possibly non-uniform,

sampling points belong to the class χnoneq. Of course, we have that χeq ⊂ χnoneq.

The nth minimal error

To measure and compare the quality of algorithms we need to de�ne speci�c

criteria. The nth error of a method X̄ =
{
X̄n

}
n∈N is de�ned as

en(X̄) = ‖X − X̄n‖L2(Ω×[0,T]) =
(
E

T∫
0

∥∥X(t)− X̄n(t)
∥∥2

dt
)1/2

.

It is an average error of approximation taken over the whole possible trajectories

dependent on realization of stochastic processesW and N . The nth minimal error (see,

for example, [80]), in the respective class of methods under consideration, is de�ned

by

e�(n) = inf
X̄∈χ�

en(X̄), � ∈ {eq, noneq}. (1.7)

17

Hence, (1.7) is the minimal possible error among all algorithms (from respective

class) that use n evaluation of N and W .

18

Chapter 2

Global approximation of solutions of

scalar SDEs with jumps

In this chapter we consider the problem of approximation of solutions of scalar

stochastic di�erential equations of the form (1.1), where T > 0, and N = {N(t)}t∈[0,T]

is a one-dimensional non�homogeneous Poisson process, and W = {W (t)}t∈[0,T] is a

one-dimensional Wiener process. This Chapter is based on the article [24].

2.1. The setting

Let T > 0 be a given real number and (Ω,F ,P) be a complete probability space.

We consider on it two independent processes a one-dimensional Wiener process

W =
{
W (t)

}
t∈[0,T]

,

and a one�dimensional non�homogeneous Poisson process

N =
{
N(t)

}
t∈[0,T]

,

with continuous intensity function λ = λ(t). Let us denote by
{
Ft
}
t∈[0,T]

the complete

�ltration, generated by the driving processes N and W .

Now we specify the assumptions about functions which build the problem (1.1).

For a given function f ∈ {a, b, c}, f : [0, T] × R → R, we assume that f satisfy the

following conditions

(A) f ∈ C0,2([0, T]× R).

19

2.1. The setting

(B) There exists K > 0 that for all t, s ∈ [0, T] and all y, z ∈ R,
(B1) |f(t, y)− f(t, z)| 6 K|y − z|,
(B2) |f(t, y)− f(s, y)| 6 K

(
1 + |y|

)
|t− s|,

(B3)
∣∣∣∂f∂y (t, y)− ∂f

∂y
(t, z)

∣∣∣6 K|y − z|.

(C) In addition, there exists K > 0 such that for a function f ∈ {b, c} for all t ∈ [0, T]

and y, z ∈ R ∣∣L1f(t, y)− L1f(t, z)
∣∣ 6 K|y − z|.

We will also assume that functions b and c satisfy the jump commutation condition

(assumption (D)).

(D) For all (t, y) ∈ [0, T]× R,
L−1b(t, y) = L1c(t, y). (2.1)

This condition will allow the calculation of stochastic integrals de�ned in (B.4). More

details about why we use this condition will be given in the next section where the

algorithm will be analyzed. We also refer to Chapter 6.3 in [61] where the condition

(2.1) is widely discussed.

Moreover for the intensity function λ : [0, T]→ (0,+∞) we assume that

(E) λ ∈ C([0, T]).

By Appendix A.4 and the fact that a, b, c and λ satisf (B1), (B2) and (E) the

problem (1.1) has a unique strong solution X = {X(t)}t∈[0,T] that is adapted to

�ltration
{
Ft
}
t∈[0,T]

and has càdlàg paths.

The following result characterizes the local mean square smoothness of the solution

X in terms of the following process

Y(t) =
∣∣b(t,X(t))

∣∣2 + λ(t) ·
∣∣c(t,X(t))

∣∣2, t ∈ [0, T]. (2.2)

Proposition 2.1 ([70]). Let us assume that the functions a, b, c and λ satisfy the

assumptions (B1), (B2) and (E). Then, we have for the solution X of problem (1.1)

for all t ∈ [0, T) that

lim
h→0+

‖X(t+ h)−X(t)‖L2(Ω)

h1/2
=
(
E(Y(t))

)1/2

.

Proposition 2.1 describes local mean square smoothness of the solution X.

This local smoothness re�ects in the exact rate of convergence of minimal errors

20

2.2. Algorithm based on path-independent adaptive step-size control

established in [70] and will be used for the construction of optimal methods based

on path-independent adaptive step-size control.

In order to characterize asymptotic lower bounds we de�ne

Cnoneq =
1√
6

T∫
0

(
E(Y(t))

)1/2

dt,

Ceq =

√
T

6
·

(T∫
0

E(Y(t))dt

)1/2

,

where the process
{
Y(t)

}
t∈[0,T]

is de�ned in (2.2). We have that

(i) 0 6 Cnoneq 6 Ceq,

(ii) Cnoneq = Ceq i� there exists γ > 0 such that for all t ∈ [0, T]

E
(
Y(t)

)
= γ,

(iii) Ceq = 0 i� Cnoneq = 0 i� b(t,X(t)) = 0 = c(t,X(t)) for all t ∈ [0, T] and almost

surely.

2.2. Algorithm based on path-independent adaptive

step-size control

In this section we present an implementable and asymptotically optimal algorithm

in the class χnoneq, which is based on the idea of adaptive step-size control. The step-size

control will use the same sampling points for every trajectory of stochastic processes

W and N , which means that it will be path-independent. Moreover, selection of mesh

points will be based on the local Hölder regularity (see Proposition 2.1). Because of

the fact that we do not know the precise value of E(Y(t)) for t ∈ [0, T], we have to

use suitable approximations. In addition, the adaptive sampling will be adjusted to

the regularity of the intensity function λ, described in the terms of its modulus of

continuity.

2.2.1. Description of the method and its asymptotic

performance

We de�ne the adaptive path-independent step-size control as follows.

21

2.2. Algorithm based on path-independent adaptive step-size control

STEP 0 Take an arbitrary strictly positive sequence {εn}n∈N such that

lim
n→+∞

εn = lim
n→+∞

(
n1/2 · εn

)−1
= lim

n→+∞
ε−1
n · ω̄(λ, T · (n · εn)−1) = 0, (2.3)

where ω̄ is the modulus of continuity for λ (see Remark 2.2).

STEP 1 Take any n ∈ N and let t̂0,n = 0, X̄M(t̂0,n) = x0. Set i := 0.

STEP 2 If t̂i,n ∈ [0, T) and X̄M(t̂i,n) are given then compute

t̂i+1,n = t̂i,n +
T

n ·max
{
εn,
(
E(YM(t̂i,n))

)1/2} , (2.4)

where

YM(t̂i,n) =
∣∣b(t̂i,n, X̄M(t̂i,n))

∣∣2 + λ(t̂i,n) ·
∣∣c(t̂i,n, X̄M(t̂i,n))

∣∣2.
If t̂i+1,n < T then compute

X̄M(t̂i+1,n) = X̄M(t̂i,n) + a(t̂i,n, X̄
M(t̂i,n)) · (t̂i+1,n − t̂i,n)

+ b(t̂i,n, X̄
M(t̂i,n)) · (W (t̂i+1,n)−W (t̂i,n))

+ c(t̂i,n, X̄
M(t̂i,n)) · (N(t̂i+1,n)−N(t̂i,n))

+ L1b(t̂i,n, X̄
M(t̂i,n)) · It̂i,n,t̂i+1,n

(W,W)

+ L−1c(t̂i,n, X̄
M(t̂i,n)) · It̂i,n,t̂i+1,n

(N,N) (2.5)

+ L−1b(t̂i,n, X̄
M(t̂i,n)) ·

(
It̂i,n,t̂i+1,n

(W,N) + It̂i,n,t̂i+1,n
(N,W)

)
,

take i := i+ 1 and GOTO STEP 2.

Else compute X̄M(T) by (2.5) with t̂i+1,n replaced by T .

STOP

Remark 2.2. If λ : [0, T]→ (0,+∞) is a Hölder function with the exponent % ∈ (0, 1]

then in STEP 0 we can take εn = n−%/(2(%+1)).

Now we analyze the algorithm and de�ne the stopping criterion. Then we prove

that the algorithm stops in a �nite number of steps. Let us de�ne

kn = min
{
i ∈ N | t̂i,n > T

}
, n ∈ N,

which is the total number of computed discretization points greater than t̂0,n = 0. The

end point T is attainable, since we have for all n ∈ N that

kn 6 dn(εn + Ĉ)e, (2.6)

for some Ĉ < +∞, where existence of Ĉ follows from the Fact 2.3.

22

2.2. Algorithm based on path-independent adaptive step-size control

Fact 2.3. Let n ∈ N and let us assume that there exists Mn ∈ N such that t̂j,n ∈ [0, T)

for all j = 0, 1, . . . ,Mn − 1. Then

t̂Mn,n >Mn ·
T

n(εn + Ĉ)
,

where Ĉ = K1

(
1 + C̄

)
·
(
1 + ‖λ‖1/2

∞
)
and C̄ is the constant from Theorem B.1.

Proof. Let us consider time-continuous Milstein approximation
{
X̃M
Mn

(t)
}
t∈[0,T]

based

on the mesh 0 = t̂0,n < t̂1,n < . . . < t̂Mn−1,n < T . Since X̄M(0) = X̃M
Mn

(0) = x0, we

have that

X̄M(t̂j,n) = X̃M
Mn

(t̂j,n), j = 0, 1, . . . ,Mn − 1.

Hence, by Theorem B.1 we have that

max
0≤j≤Mn−1

E
∣∣X̄M(t̂j,n)

∣∣2 6 C̄2,

which yields for j = 0, 1, . . . ,Mn − 1 that

max
{
εn,
(
E
(
YM(t̂j,n)

))1/2}
6 εn + Ĉ. (2.7)

Hence, by (2.4) and (2.7)

t̂Mn,n =
Mn−1∑
j=0

(t̂j+1,n − t̂j,n) >Mn ·
T

n(εn + Ĉ)
,

which ends the proof. �

Hence, if for a given n ∈ N we have that Mn = dn(εn + Ĉ)e then by Fact 2.3 we

get t̂Mn,n > T . This implies (2.6) and the fact that algorithm stops in a �nite number

of steps.

Now, running n through the natural numbers, we obtain the sequence of

discretizations ∆̂ =
{

∆̂kn

}
n∈N, where each ∆̂kn is de�ned as

∆̂kn =
{
t̂0,n, t̂1,n, . . . , t̂kn,n

}
, n ∈ N.

We have that t̂i,n < T for all i = 0, 1, . . . , kn−1 and t̂kn,n > T . Since we can observe the

Poisson and the Wiener processes only in interval [0, T], we de�ne the �nal sequence

of discretizations ∆̂∗ =
{

∆̂∗kn
}
n∈N by

∆̂∗kn =
(
∆̂kn \ {t̂kn,n}

)
∪ {T} =

{
t̂∗0,n, t̂

∗
1,n, . . . , t̂

∗
kn,n

}
, n ∈ N,

23

2.2. Algorithm based on path-independent adaptive step-size control

where t̂∗i,n = t̂i,n < T for all i = 0, 1, . . . , kn − 1 and t̂∗kn,n = T 6 t̂kn,n. So now we

observe processes only in given interval [0, T].

By X̄cM∗ =
{
X̄cM∗
kn

}
n∈N we denote the conditional Milstein method based on the

sequence of discretizations ∆̂∗, which is de�ned as

X̄cM∗
kn (t) = E

(
X̃M∗
kn (t) | N∗kn(N,W)

)
, t ∈ [0, T],

where
{
X̃M∗
kn

}
n∈N is a sequence of the time-continuous Milstein approximations

(B.2) � (B.3) based on
{

∆̂∗kn
}
n∈N and information

N∗kn(N,W) =
[
N(t̂∗1,n), N(t̂∗2,n), . . . , N(t̂∗kn,n),

W (t̂∗1,n),W (t̂∗2,n), . . . ,W (t̂∗kn,n)
]
. (2.8)

We also denote information with the respect to given process Z ∈ {N,W} as

N∗kn(Z) =
[
Z(t̂∗1,n), Z(t̂∗2,n), . . . , Z(t̂∗kn,n)

]
.

Following Lemma B.24, Lemma B.26, and Lemma B.27 (see also [70]) we can write

that

X̄cM∗
kn (t) = X̃M∗

kn (t̂∗i,n) + a(t̂∗i,n, X̃
M∗
kn (t̂∗i,n)) · (t− t̂∗i,n)

+ b(t̂∗i,n, X̃
M∗
kn (t̂∗i,n)) ·∆W ∗

i,n ·
t− t̂∗i,n

t̂∗i+1,n − t̂∗i,n

+ c(t̂∗i,n, X̃
M∗
kn (t̂∗i,n)) ·∆N∗i,n ·

Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)

+ L1b(t̂
∗
i,n, X̃

M∗
kn (t̂∗i,n)) · It̂∗i,n,t̂∗i+1,n

(W,W) ·

(
t− t̂∗i,n

t̂∗i+1,n − t̂∗i,n

)2

+ L−1b(t̂
∗
i,n, X̃

M∗
kn (t̂∗i,n)) ·∆N∗i,n ·∆W ∗

i,n

×
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)
·

t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

+ L−1c(t̂
∗
i,n, X̃

M∗
kn (t̂∗i,n)) · It̂∗i,n,t̂∗i+1,n

(N,N) ·

(
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)

)2

,

for t ∈ [t̂∗i,n, t̂
∗
i+1,n], i = 0, 1, . . . , kn − 1, X̄cM∗

kn
(0) = x0 and

∆W ∗
i,n = W (t∗i+1,n)−W (t∗i,n),

∆N∗i,n = N(t∗i+1,n)−N(t∗i,n).

24

2.2. Algorithm based on path-independent adaptive step-size control

Note that X̄cM∗
kn

has continuous trajectories and coincides with X̃M∗
kn

at the

discretization points. The disadvantage of this algorithm is the use of the

values of Λ. Hence, we also de�ne the piece-wise linear interpolation X̄Lin−M∗
kn

of the classical Milstein steps by

X̄Lin−M∗
kn

(t) =
X̃M∗
kn

(t̂∗i,n)(t̂∗i+1,n − t) + X̃M∗
kn

(t̂∗i+1,n)(t− t̂∗i,n)

t̂∗i+1,n − t̂∗i,n
,

for t ∈ [t̂∗i,n, t̂
∗
i+1,n], i = 0, 1, . . . , kn − 1. In general, the method X̄cM∗

kn
is not equal to

X̄Lin−M∗
kn

. In discretization points we have that values of methods are equal, it means

that

X̄Lin−M∗
kn

(t̂∗i,n) = X̄cM∗
kn (t̂∗i,n) = X̃M

kn (t̂∗i,n) = X̄M(t̂∗i,n).

However, as in [70] it is convenient to use the method X̄cM∗ =
{
X̄cM∗
kn

}
n∈N in order

to investigate the error of X̄Lin−M∗ =
{
X̄Lin−M∗
kn

}
n∈N. We show in the sequel that they

behave asymptotically in the same way. Moreover, for a �xed discretization ∆∗kn the

method X̄Lin−M∗
kn

does not evaluate Λ and it is implementable. If b 6= 0, c 6= 0 then

the both methods X̄cM∗
kn

and X̄Lin−M∗
kn

use 2kn values of the processes N and W at the

same time points.

The Theorem 2.4 states the asymptotic performance of the methods X̄cM∗ and

X̄Lin−M∗. The error is expressed as a function of the number kn of evaluations of the

processes W and N .

Theorem 2.4. Let us assume that the functions a, b, c and λ satisfy the assumptions

(A) � (E) and let X̄∗ ∈
{
X̄cM∗, X̄Lin−M∗}.

(i) We have that

lim
n→+∞

kn
n

=
1

T

T∫
0

(
E(Y(t))

)1/2

dt. (2.9)

(ii) If b 6≡ 0 and c 6≡ 0 then

lim
n→+∞

(2kn)1/2 · ekn(X̄∗) =
√

2 · Cnoneq, (2.10)

else

lim
n→+∞

k1/2
n · ekn(X̄∗) = Cnoneq. (2.11)

Proof. First note that for all n ∈ N

X̃M∗
kn (t̂∗i,n) = X̄M(t̂∗i,n), i = 0, 1, . . . , kn,

25

2.2. Algorithm based on path-independent adaptive step-size control

and

YM(t̂∗i,n) = YM(t̂i,n) = |b(U∗i,n)|2 + λ(t̂∗i,n) · |c(U∗i,n)|2, i = 0, 1, . . . , kn − 1, (2.12)

where U∗i,n := (t̂∗i,n, X̃
M∗
kn

(t̂∗i,n)). Let us de�ne

Sj,n :=
kn−1∑
i=0

max
{(

E(YM(t̂i,n))
)j/2

, εjn

}
· (t̂i+1,n − t̂i,n)j, (2.13)

S∗j,n :=
kn−1∑
i=0

max
{(

E(YM(t̂∗i,n))
)j/2

, εjn

}
· (t̂∗i+1,n − t̂∗i,n)j, (2.14)

for j ∈ {1, 2}, n ∈ N.
Firstly we prove (2.9). By de�nition of step in algorithm given by (2.4) we have

that

T 6
kn−1∑
i=0

(t̂i+1,n − t̂i,n) =
T

n

kn−1∑
i=0

1

max
{(

E(YM(t̂i,n))
)1/2

, εn

} 6 T · (n · εn)−1 · kn,

which gives

kn > n · εn,

for all n ∈ N. Hence, from (2.3)

lim
n→+∞

kn = +∞.

Since for all n ∈ N {
t̂0,n, t̂1,n, . . . , t̂kn−1,n

}
⊂ ∆̂kn ∩ ∆̂∗kn ,

by (2.4) and (2.12) we have that

|Sj,n − S∗j,n| 6 2 max
{(

E(YM(t̂kn−1,n))
)j/2

, εjn

}
· (t̂kn,n − t̂kn−1,n)j 6 2(T/n)j, (2.15)

for j ∈ {1, 2}. Furthermore, we have that for all n ∈ N

max
0≤i≤kn−1

(t̂∗i+1,n − t̂∗i,n) 6 max
0≤i≤kn−1

(t̂i+1,n − t̂i,n) 6 T · (n · εn)−1, (2.16)

and, from (2.3),

lim
n→+∞

max
0≤i≤kn−1

(t̂∗i+1,n − t̂∗i,n) = 0. (2.17)

Let

S̃∗j,n :=
kn−1∑
i=0

(
E(YM(t̂∗i,n))

)j/2
· (t̂∗i+1,n − t̂∗i,n)j, j ∈ {1, 2}.

26

2.2. Algorithm based on path-independent adaptive step-size control

We can write that

S̃∗1,n =
kn−1∑
i=0

(
E(Y(t̂∗i,n))

)1/2

· (t̂∗i+1,n − t̂∗i,n) + R̃∗1,n,

R̃∗1,n :=
kn−1∑
i=0

((
E(YM(t̂∗i,n))

)1/2

−
(
E(Y(t̂∗i,n))

)1/2
)
· (t̂∗i+1,n − t̂∗i,n).

By the Fact B.29 we have that [0, T] 3 t → E(Y(t)) is continuous, and by (2.17) it

follows that

lim
n→+∞

kn−1∑
i=0

(
E(Y(t̂∗i,n))

)1/2

· (t̂∗i+1,n − t̂∗i,n) =

T∫
0

(
E(Y(t))

)1/2

dt.

Then by the fact that for all x, y ∈ R, it holds that
∣∣|x|1/2 − |y|1/2∣∣ 6 ∣∣x − y∣∣1/2, we

have that

|R̃∗1,n| =

∣∣∣∣∣
kn−1∑
i=0

((
E(YM(t̂∗i,n))

)1/2 −
(
E(Y(t̂∗i,n))

)1/2
)
· (t̂∗i+1,n − t̂∗i,n)

∣∣∣∣∣
6

kn−1∑
i=0

∣∣∣E(YM(t̂∗i,n))− E(Y(t̂∗i,n))
∣∣∣1/2·(t̂∗i+1,n − t̂∗i,n).

By Lemma B.32 and Theorem B.1 we have that for i = 0, 1, . . . , kn − 1∣∣∣E(YM(t̂∗i,n))− E(Y(t̂∗i,n))
∣∣∣ 6 ∣∣∣E|b(U∗i,n)|2 − E|b(t̂∗i,n, X(t̂∗i,n))|2

∣∣∣
+ ‖λ‖∞ ·

∣∣∣E|c(U∗i,n)|2 − E|c(t̂∗i,n, X(t̂∗i,n))|2
∣∣∣

6 C · (1 + ‖λ‖∞) · sup
t∈[0,T]

∥∥X̃M∗
kn (t)−X(t)

∥∥
L2(Ω)

×
(

1 + sup
t∈[0,T]

∥∥X̃M∗
kn (t)

∥∥
L2(Ω)

+ sup
t∈[0,T]

∥∥X(t)
∥∥
L2(Ω)

)
6 C1 · max

0≤i≤kn−1
(t̂∗i+1,n − t̂∗i,n) 6 C1T · (n · εn)−1.

We obtain

|R̃∗1,n| 6 C2 · ε1/2
n · (n1/2 · εn)−1,

and, by (2.3),

lim
n→+∞

|R̃∗1,n| = 0.

Hence,

lim
n→+∞

S̃∗1,n =

T∫
0

(
E(Y(t))

)1/2

dt. (2.18)

27

2.2. Algorithm based on path-independent adaptive step-size control

By (2.14) we have

S̃∗1,n 6 S∗1,n 6 S̃∗1,n + T · εn,

which, together with (2.3) and (2.18), implies

lim
n→+∞

S∗1,n = lim
n→+∞

S̃∗1,n =

T∫
0

(
E(Y(t))

)1/2

dt.

Moreover, by (2.15) we have that

lim
n→+∞

S1,n = lim
n→+∞

S∗1,n =

T∫
0

(
E(Y(t))

)1/2

dt. (2.19)

Since

Sj,n = kn ·
(
T

n

)j
, j ∈ {1, 2},

by (2.19) we obtain

lim
n→+∞

kn ·
T

n
= lim

n→+∞
S1,n =

T∫
0

(
E(Y(t))

)1/2

dt < +∞, (2.20)

which gives (2.9). �

Now, we go to the proof of (2.10) and (2.11). By (2.20) we also have that

lim
n→+∞

kn · n−2 = 0. (2.21)

Hence, from (2.15) with j = 2, (2.20) and (2.21) we obtain

lim
n→+∞

kn · S∗2,n = lim
n→+∞

kn · S2,n = lim
n→+∞

(
kn ·

T

n

)2

=

(T∫
0

(
E(Y(t))

)1/2

dt

)2

. (2.22)

From (2.14) it follows that

kn ·S∗2,n−
kn
n
·εn ·T 2 6 kn ·S∗2,n−kn ·ε2

n ·
kn−1∑
i=0

(t̂∗i+1,n− t̂∗i,n)2 6 kn · S̃∗2,n 6 kn ·S∗2,n. (2.23)

Hence, from (2.3), (2.20), (2.22) and (2.23) we obtain

lim
n→+∞

kn · S̃∗2,n =

(T∫
0

(
E(Y(t))

)1/2

dt

)2

. (2.24)

By decomposition (B.61), estimation (B.67) and (2.16) we have that∣∣∣∥∥X̃M∗
kn − X̄

cM∗
kn

∥∥
L2(Ω×[0,T])

−
∥∥H̃M∗

kn

∥∥
L2(Ω×[0,T])

∣∣∣6 ∥∥R̃M∗
kn

∥∥
L2(Ω×[0,T])

6 C(n · εn)−1.

28

2.2. Algorithm based on path-independent adaptive step-size control

Let us de�ne

Ẑ∗n(t) := Z(t)− E
(
Z(t) | N̂∗kn(Z)

)
, Z ∈ {N,W}.

Then we have that

‖H̃M∗
kn ‖

2
L2(Ω×[0,T]) = E

(T∫
0

|H̃M∗
kn (t)|2dt

)
=

kn−1∑
i=0

t̂∗i+1,n∫
t̂∗i,n

E|H̃M∗
kn (t)|2dt

=
kn−1∑
i=0

t̂∗i+1,n∫
t̂∗i,n

E|b(U∗i,n) · Ŵ ∗
n(t) + c(U∗i,n) · N̂∗n(t)|2dt

=
kn−1∑
i=0

t̂∗i+1,n∫
t̂∗i,n

(
E|b(U∗i,n) · Ŵ ∗

n(t)|2 + E|c(U∗i,n) · N̂∗n(t)|2

+ 2 · E|b(U∗i,n) · c(U∗i,n) · Ŵ ∗
n(t) · N̂∗n(t)|

)
dt.

We have that b(U∗i,n), c(U∗i,n) are Ft̂∗i,n-measurable. For all t ∈ [t̂∗i,n, t̂
∗
i+1,n] the process

Ŵ ∗
n(t), N̂∗n(t) are independent of Ft̂∗i,n . This imply that

E|b(U∗i,n) · Ŵ ∗
n(t)|2 = E|b(U∗i,n)|2 · E|Ŵ ∗

n(t)|2, (2.25)

E|c(U∗i,n) · N̂∗n(t)|2 = E|c(U∗i,n)|2 · E|N̂∗n(t)|2. (2.26)

By the fact that b(U∗i,n) · c(U∗i,n) are Ft̂∗i,n-measurable and E|b(U∗i,n) · c(U∗i,n)| < +∞ (by

Hölder inequality and Theorem B.1) together with the fact that for all t ∈ [t̂∗i,n, t̂
∗
i+1,n]

Ŵ ∗
n(t) · N̂∗n(t) are independent of Ft̂∗i,n and Ŵ

∗
n(t), N̂∗n(t) are independent we have that

E|b(U∗i,n) · c(U∗i,n) · Ŵ ∗
n(t) · N̂∗n(t)| = E|b(U∗i,n) · c(U∗i,n)| · E|Ŵ ∗

n(t)| · E|N̂∗n(t)| = 0.

(2.27)

Finally, by (2.25), (2.26) and (2.27) we obtain

‖H̃M∗
kn ‖

2
L2(Ω×[0,T]) =

(
kn−1∑
i=0

t̂∗i+1,n∫
t̂∗i,n

E|b(U∗i,n)|2 · E|Ŵ ∗
n(t)|2 + E|c(U∗i,n)|2 · E|N̂∗n(t)|2dt

)1/2

.

By Lemma B.21 we can calculate that

t̂∗i+1,n∫
t̂∗i,n

E|Ŵ ∗
n(t)|2dt =

t̂∗i+1,n∫
t̂∗i,n

(t∗i+1,n − t)(t− t∗i,n)

(t∗i+1,n − t∗i,n)
dt =

1

6
(t̂∗i+1,n − t̂∗i,n)2. (2.28)

29

2.2. Algorithm based on path-independent adaptive step-size control

Then for i = 0, 1, . . . , kn − 1 and t ∈ (t̂∗i,n, t̂
∗
i+1,n) we de�ne

Hi,n(t) =
Λ(t, t̂∗i,n) · Λ(t̂∗i+1,n, t)

(t̂∗i+1,n − t)(t− t̂∗i,n)
.

Of course Hi,n ∈ C((t̂∗i,n, t̂
∗
i+1,n)) and it can be continuously extended to [t̂∗i,n, t̂

∗
i+1,n],

since

H(t̂∗i,n+) = λ(t̂∗i,n) · Λ(t̂∗i+1,nt̂
∗
i,n)/(t̂∗i+1,n − t̂∗i,n)

and

H(t̂∗i+1,n−) = λ(t̂∗i+1,n) · Λ(t̂∗i+1,n, t̂
∗
i,n)/(t̂∗i+1,n − t̂∗i,n)

are �nite. Therefore, by Lemma B.22 and from the mean value theorem we have that

t̂∗i+1,n∫
t̂∗i,n

E|N̂∗n(t)|2dt = Λ(t̂∗i+1,n, t̂
∗
i,n)−1 ·

t̂∗i+1,n∫
t̂∗i,n

Hi,n(t) · (t̂∗i+1,n − t) · (t− t̂∗i,n)dt

= Λ(t̂∗i+1,n, t̂
∗
i,n)−1 ·Hi,n(d̂∗i,n) ·

t̂∗i+1,n∫
t̂∗i,n

(t̂∗i+1,n − t) · (t− t̂∗i,n)dt

=
1

6

λ(α̂∗i,n)λ(β̂∗i,n)

λ(γ̂∗i,n)
· (t̂∗i+1,n − t̂∗i,n)2, (2.29)

for some d̂∗i,n, α̂
∗
i,n, β̂

∗
i,n, γ̂

∗
i,n ∈ [t̂∗i,n, t̂

∗
i+1,n], i = 0, 1, . . . , kn− 1. Now by (2.28) and (2.29)

we de�ne

Ŝ∗2,n =
kn−1∑
i=0

(
E|b(U∗i,n)|2 + E|c(U∗i,n)|2 ·

λ(α̂∗i,n)λ(β̂∗i,n)

λ(γ̂∗i,n)

)
· (t̂∗i+1,n − t̂∗i,n)2,

and of course we have that

k1/2
n ·

∥∥H̃M∗
kn

∥∥
L2(Ω×[0,T])

=

(
kn ·

kn−1∑
i=0

t̂∗i+1,n∫
t̂∗i,n

E|H̃M∗
kn (t)|2dt

)1/2

=

(
kn
6
· Ŝ∗2,n

)1/2

. (2.30)

Furthermore,

|kn · Ŝ∗2,n − kn · S̃∗2,n| 6 kn ·
kn−1∑
i=0

E|c(U∗i,n)|2 ·

∣∣∣∣∣λ(α̂∗i,n)λ(β̂∗i,n)

λ(γ̂∗i,n)
− λ(t̂∗i,n)

∣∣∣∣∣·(t̂∗i+1,n − t̂∗i,n)2

6 C · kn
n
· ε−1

n · ω̄(λ, T · (n · εn)−1). (2.31)

Hence, from (2.3), (2.20), (2.24) and (2.31) we obtain

lim
n→+∞

kn · Ŝ∗2,n = lim
n→+∞

kn · S̃∗2,n =

(T∫
0

(
E(Y(t))

)1/2

dt

)2

. (2.32)

30

2.2. Algorithm based on path-independent adaptive step-size control

Therefore, by (2.30) and (2.32) we obtain

lim
n→+∞

k1/2
n ·

∥∥H̃M∗
kn

∥∥
L2(Ω×[0,T])

= Cnoneq.

Since from (2.3) and (2.20) it follows that

lim
n→+∞

k1/2
n · (n · εn)−1 = lim

n→+∞

(
kn
n

)1/2

· (n1/2 · εn)−1 = 0, (2.33)

and we get

lim
n→+∞

k1/2
n ·

∥∥X̃M∗
kn − X̄

cM∗
kn

∥∥
L2(Ω×[0,T])

= lim
n→+∞

k1/2
n ·

∥∥H̃M∗
kn

∥∥
L2(Ω×[0,T])

= Cnoneq. (2.34)

Next, from Theorem B.1∣∣∣ekn(X̄cM∗)−
∥∥X̃M∗

kn − X̄
cM∗
kn

∥∥
L2(Ω×[0,T])

∣∣∣6 ekn(X̃M∗) 6 C · max
0≤i≤kn−1

(t̂∗i+1,n − t̂∗i,n)

6 CT (n · εn)−1. (2.35)

Hence, from (2.33), (2.34) and (2.35) we have that

lim
n→+∞

k1/2
n · ekn(X̄cM∗) = lim

n→+∞
k1/2
n ·

∥∥X̃M∗
kn − X̄

cM∗
kn

∥∥
L2(Ω×[0,T])

= Cnoneq,

which ends the proof in the case when X̄∗ = X̄cM∗. �

Now we analyze the error of X̄∗ = X̄Lin−M∗
kn

. Note that

R̄M∗
kn (t) := X̄cM∗

kn (t)− X̄Lin−M∗
kn

(t)

= c(U∗i,n) ·∆N∗i,n ·

(
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)
−

t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

)

+ L1b(U
∗
i,n) · It̂∗i,n,t̂∗i+1,n

(W,W) ·
(t− t̂∗i,n) · (t− t̂∗i+1,n)

(t̂∗i+1,n − t̂∗i,n)2

+ L−1b(U
∗
i,n) ·∆N∗i,n ·∆W ∗

i,n ·
t̂∗i,n − t

t̂∗i+1,n − t̂∗i,n
·

Λ(t̂∗i+1,n, t)

Λ(t̂∗i+1,n, t̂
∗
i,n)

+ L−1c(U
∗
i,n) · It̂∗i,n,t̂∗i+1,n

(N,N) ·

((
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)

)2

−
t− t̂∗i,n

t̂∗i+1,n − t̂∗i,n

)
,

for t ∈ [t̂∗i,n, t̂
∗
i+1,n], i = 0, 1, . . . , kn − 1. By the fact that c(U∗i,n), L1b(U

∗
i,n), L−1b(U

∗
i,n),

L−1c(U
∗
i,n) are Ft̂∗i,n-measurable and ∆N∗i,n,∆W

∗
i,n, It̂∗i,n,t̂∗i+1,n

(W,W), It̂∗i,n,t̂∗i+1,n
(N,N)

31

2.2. Algorithm based on path-independent adaptive step-size control

are independent of Ft̂∗i,n and ∆W ∗
i,n,∆N

∗
i,n are also independent. Together with

Lemma B.28 we have that

E|R̄M∗
kn (t)|2 6 E|c(U∗i,n)|2 · E|∆N∗i,n|2 ·

∣∣∣∣∣ Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)
−

t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

∣∣∣∣∣
2

+ E|L1b(U
∗
i,n)|2 · E|It̂∗i,n,t̂∗i+1,n

(W,W)|2 ·

∣∣∣∣∣(t− t̂∗i,n) · (t− t̂∗i+1,n)

(t̂∗i+1,n − t̂∗i,n)2

∣∣∣∣∣
2

+ E|L−1b(U
∗
i,n)|2 · E|∆N∗i,n|2 · E|∆W ∗

i,n|2 ·

∣∣∣∣∣ t̂∗i,n − t
t̂∗i+1,n − t̂∗i,n

·
Λ(t̂∗i+1,n, t)

Λ(t̂∗i+1,n, t̂
∗
i,n)

∣∣∣∣∣
2

+ E|L−1c(U
∗
i,n)|2 · E|It̂∗i,n,t̂∗i+1,n

(N,N)|2 ·

∣∣∣∣∣
(

Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)

)2

−
t− t̂∗i,n

t̂∗i+1,n − t̂∗i,n

∣∣∣∣∣
2

,

In addition, by (2.16) and Fact B.31 we have that∣∣∣∣∣ Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)
−

t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

∣∣∣∣∣ 6 C1 · sup
t,s∈[t̂∗i,n,t̂

∗
i+1,n]

|λ(t)− λ(s)| 6 C1 · ω̄(λ, T · (n · εn)−1),

(2.36)

for t ∈ [t̂∗i,n, t̂
∗
i+1,n], i = 0, 1, . . . , kn − 1.

By the Lemma B.28, Lemma B.2 and (2.36) we obtain the following estimation.

E|R̄M∗
kn (t)|2 6 C1 ·

(
ω̄(λ, T/(n · εn))

)2 ·
(
1 + (n · εn)−1

)
· (n · εn)−1

+ C2 · (n · εn)−2 ·
(
1 + (n · εn)−1

)
. (2.37)

Since, from (2.37), (2.21) and (2.33) we have∣∣∣k1/2
n · ekn(X̄Lin−M∗) − k1/2

n · ekn(X̄cM∗)
∣∣∣ 6 k1/2

n ·
∥∥R̄M∗

kn

∥∥
L2(Ω×[0,T])

6 C1 · ε−1
n · ω̄(λ, T/(n · εn)) ·

(
1 + (n · εn)−1

)1/2 · (kn/n)1/2 · ε1/2
n

+ C2 · k1/2
n /(n · εn) ·

(
1 + (n · εn)−1

)1/2
,

we get (2.10) and (2.11) for X̄∗ = X̄Lin−M∗. This ends the proof. �

2.2.2. Derivative-free version of the path-independent adaptive

step-size control

In this section we present the derivative-free version of the Milstein scheme,

which can be used for the path-independent adaptive step-size control and achieves

asymptotically the same rate of convergence as X̄Lin−M∗.

32

2.2. Algorithm based on path-independent adaptive step-size control

STEP 0 Take an arbitrary strictly positive sequence {εn}n∈N such that

lim
n→+∞

εn = lim
n→+∞

(n1/2 · εn)−1 = lim
n→+∞

ε−1
n · ω̄(λ, T · (n · εn)−1) = 0,

where ω̄ is the modulus of continuity for λ (see Remark 2.2).

STEP 1 Take any n ∈ N and let t̂0,n = 0, X̄M(t̂0,n) = x0. Set i := 0.

STEP 2 If t̂i,n ∈ [0, T) and X̄df−M(t̂i,n) are given then compute

t̂i+1,n = t̂i,n +
T

n ·max
{
εn,
(
E(Ydf−M(t̂i,n))

)1/2} , (2.38)

where

Ydf−M(t̂i,n) = |b(t̂i,n, X̄df−M(t̂i,n))|2 + λ(t̂i,n) · |c(t̂i,n, X̄df−M(t̂i,n))|2.

If t̂i+1,n < T , ĥi,n = t̂i+1,n − t̂i,n then compute

X̄df−M(t̂i+1,n) = X̄df−M(t̂i,n) + a(t̂i,n, X̄
df−M(t̂i,n)) · (t̂i+1,n − t̂i,n)

+ b(t̂i,n, X̄
df−M(t̂i,n)) · (W (t̂i+1,n)−W (t̂i,n))

+ c(t̂i,n, X̄
df−M(t̂i,n)) · (N(t̂i+1,n)−N(t̂i,n))

+ L1,ĥi
b(t̂i,n, X̄

df−M(t̂i,n)) · It̂i,n,t̂i+1,n
(W,W)

+ L−1c(t̂i,n, X̄
df−M(t̂i,n)) · It̂i,n,t̂i+1,n

(N,N) (2.39)

+ L−1b(t̂i,n, X̄
df−M(t̂i,n)) ·

(
It̂i,n,t̂i+1,n

(N,W) + It̂i,n,t̂i+1,n
(W,N)

)
,

take i := i+ 1 and GOTO STEP 2.

Else compute X̄df−M(T) by (2.39) with t̂i+1,n replaced by T .

STOP

The stopping criterion is de�ned in the same way as in previous algorithm and

kn = min
{
i ∈ N | t̂i,n > T

}
, n ∈ N,

which is the total number of computed discretization points greater than t̂0,n = 0. The

end point T is attainable, since we have for all n ∈ N that

kn 6 dn(εn + Ĉ)e, (2.40)

for some Ĉ < +∞, where existence of Ĉ follows from the Fact 2.5.

33

2.2. Algorithm based on path-independent adaptive step-size control

Fact 2.5. Let n ∈ N and let us assume that there exists Mn ∈ N such that t̂j,n ∈ [0, T)

for all j = 0, 1, . . . ,Mn − 1. Then

t̂Mn,n >Mn ·
T

n(εn + Ĉ)
,

where Ĉ = K1

(
1 + C̄

)
·
(
1 + ‖λ‖1/2

∞
)
and C̄ is the constant from Theorem B.13.

The proof of Fact 2.5 goes analogously as proof of Fact 2.3, so we skip it. Hence, if

for a given n ∈ N we have that Mn = dn(εn + Ĉ)e then by Fact 2.5 we get t̂Mn,n > T .

This implies (2.40) and the fact that algorithm stops in a �nite number of steps.

Again, we obtain two sequences of discretizations ∆̂ =
{

∆kn

}
n∈N and

∆̂∗ =
{

∆∗kn
}
n∈N and we de�ne the conditional derivative-free Milstein method

X̄df−cM∗ =
{
X̄df−cM∗
kn

}
n∈N as

X̄df−cM∗
kn

(t) = E
(
X̃df−M∗
kn

(t) | N∗kn(N,W)
)
, t ∈ [0, T],

where
{
X̃df−M∗
kn

}
n∈N is the sequence of time-continuous derivative-free Milstein

approximations (B.70) � (B.71) based on
{

∆̂∗kn
}
n∈N and vector of information

N∗kn(N,W) is as in (2.8). Followed by Lemma B.24, Lemma B.26, Lemma B.27 (see

also [70]) it follows that

X̄df−cM∗
kn

(t) = X̃df−M∗
kn

(t̂∗i,n) + a(t̂∗i,n, X̃
df−M∗
kn

(t̂∗i,n)) · (t− t̂∗i,n)

+ b(t̂∗i,n, X̃
df−M∗
kn

(t̂∗i,n)) ·∆W ∗
i,n ·

t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

+ c(t̂∗i,n, X̃
df−M∗
kn

(t̂∗i,n)) ·∆N∗i,n ·
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)

+ L1,ĥ∗i
b(t̂∗i,n, X̃

df−M∗
kn

(t̂∗i,n)) · It̂∗i,n,t̂∗i+1,n
(W,W)

×
(t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

)2

+ L−1b(t̂
∗
i,n, X̃

df−M∗
kn

(t̂∗i,n)) ·∆N∗i,n ·∆W ∗
i,n

×
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)
·

t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

+ L−1c(t̂
∗
i,n, X̃

df−M∗
kn

(t̂∗i,n)) · It̂∗i,n,t̂∗i+1,n
(N,N)

×
(Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)

)2

,

for t ∈ [t̂∗i,n, t̂
∗
i+1,n], i = 0, 1, . . . , kn − 1, ĥ∗i = t̂∗i+1,n − t̂∗i,n and X̄df−cM∗

kn
(0) = x0,

∆W ∗
i,n = W (t̂∗i+1,n)−W (t̂∗i,n),

34

2.2. Algorithm based on path-independent adaptive step-size control

∆N∗i,n = N(t̂∗i+1,n)−N(t̂∗i,n).

We also take the piecewise linear interpolation X̄Lin−M∗
kn

of the derivative-free Milstein

steps

X̄df−Lin−M∗
kn

(t) =
X̃df−M∗
kn

(t̂∗i,n)(t̂∗i+1,n − t) + X̃df−M∗
kn

(t̂∗i+1,n)(t− t̂∗i,n)

t̂∗i+1,n − t̂∗i,n
,

for t ∈ [t̂∗i,n, t̂
∗
i+1,n], i = 0, 1, . . . , kn − 1.

Due to Theorem B.13, (B.95) and the decomposition (B.90) we can repeat

argumentation from the proof of Fact 2.3 and Theorem 2.4 in order to obtain the

same asymptotic result for X̄df−cM∗ and X̄df−Lin−M∗.

Theorem 2.6. Let us assume that the functions a, b, c and λ satisfy the assumptions

(A) � (E) and let X̄∗ ∈
{
X̄df−cM∗, X̄df−Lin−M∗}.

(i) We have that

lim
n→+∞

kn
n

=
1

T

T∫
0

(
E(Y(t))

)1/2

dt. (2.41)

(ii) If b 6≡ 0 and c 6≡ 0 then

lim
n→+∞

(2kn)1/2 · ekn(X̄∗) =
√

2 · Cnoneq, (2.42)

else

lim
n→+∞

k1/2
n · ekn(X̄∗) = Cnoneq. (2.43)

Proof. The proof of (2.41) goes almost exactly in the same way as proof of (2.9). The

main change in the proof goes as follows. Change:

X̄cM
kn

into X̄df−cM
kn

,

X̃M∗
kn

into X̃df−M∗
kn

,

YM(t̂∗i,n) into Ydf−M(t̂∗i,n) ,

U∗i,n := (t̂∗i,n, X̃
M∗
kn

(t̂∗i,n)) into Udf∗
i,n := (t̂∗i,n, X̃

df−M∗
kn

(t̂∗i,n)).

Then we use de�nition of step given by (2.38) and Theorem B.13 instead of (2.4)

and Theorem B.1. Hence, �nally we obtain

lim
n→+∞

kn ·
T

n
=

T∫
0

(
E(Y(t))

)1/2

dt < +∞,

35

2.2. Algorithm based on path-independent adaptive step-size control

which gives (2.41). Using the same argumentation as in proofs of (2.10) and (2.11) we

have that

lim
n→+∞

k1/2
n · ekn(X̄df−cM∗) = lim

n→+∞
k1/2
n ·

∥∥X̃df−M∗
kn

− X̄df−cM∗
kn

∥∥
L2(Ω×[0,T])

= Cnoneq,

which ends the proof in the case when X̄∗ = X̄df−cM∗. �

Now we analyze the error of X̄∗ = X̄df−Lin−M∗
kn

. Note that in this case

R̄df−M∗
kn

(t) := X̄df−cM∗
kn

(t)− X̄df−Lin−M∗
kn

(t)

= c(Udf∗
i,n) ·∆N∗i,n ·

(
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)
−

t− t̂∗i,n
t̂∗i+1,n − t̂∗i,n

)

+ L1,ĥi,n
b(Udf∗

i,n) · It̂∗i,n,t̂∗i+1,n
(W,W) ·

(t− t̂∗i,n) · (t− t̂∗i+1,n)

(t̂∗i+1,n − t̂∗i,n)2

+ L−1b(U
df∗
i,n) ·∆N∗i,n ·∆W ∗

i,n ·
t̂∗i,n − t

t̂∗i+1,n − t̂∗i,n
·

Λ(t̂∗i+1,n, t)

Λ(t̂∗i+1,n, t̂
∗
i,n)

+ L−1c(U
df∗
i,n) · It̂∗i,n,t̂∗i+1,n

(N,N) ·

((
Λ(t, t̂∗i,n)

Λ(t̂∗i+1,n, t̂
∗
i,n)

)2

−
t− t̂∗i,n

t̂∗i+1,n − t̂∗i,n

)
,

for t ∈ [t̂∗i,n, t̂
∗
i+1,n], i = 0, 1, . . . , kn − 1. By the fact that c(Udf∗

i,n), L1,ĥi,n
b(Udf∗

i,n),

L−1b(U
df∗
i,n), L−1c(U

df∗
i,n) are Ft̂∗i,n-measurable and ∆N∗i,n, ∆W ∗

i,n, It̂∗i,n,t̂∗i+1,n
(W,W),

It̂∗i,n,t̂∗i+1,n
(N,N) are independent of Ft̂∗i,n and ∆W ∗

i,n,∆N
∗
i,n are also independent. Using

the same logic as in the case of (2.37) the only change is that we use L1,ĥi,n
b(Udf∗

i,n)

instead of L1b(U
df∗
i,n), which satis�es exactly the same assumptions, by Theorem B.13

and (B.77) we have that

E|R̄df−M∗
kn

(t)|2 6 C1 · (ω̄(λ, T/(n · εn)))2 · (1 + (n · εn)−1) · (n · εn)−1

+ C2 · (n · εn)−2 · (1 + (n · εn)−1). (2.44)

Since, from (2.44), lim
n→+∞

kn · n−2 = 0 and

lim
n→+∞

k1/2
n · (n · εn)−1 = lim

n→+∞

(
kn
n

)1/2

· (n1/2 · εn)−1 = 0,

then∣∣∣k1/2
n · ekn(X̄df−Lin−M∗)− k1/2

n · ekn(X̄df−cM∗)
∣∣∣ 6 k1/2

n ·
∥∥R̄df−M∗

kn

∥∥
L2(Ω×[0,T])

6 C1 · ε−1
n · ω̄(λ, T/(n · εn)) · (1 + (n · εn)−1)1/2 · (kn/n)1/2 · ε1/2

n

+ C2 · (k1/2
n /(n · εn)) · (1 + (n · εn)−1)1/2,

we obtain (2.42) and (2.43) for X̄∗ = X̄df−Lin−M∗. This ends the proof. �

36

2.3. Lower Bounds

We have the following result.

Theorem 2.7 ([72]). Let us assume that the mappings a, b, c, and λ satisfy the

assumptions (A) � (E). Let X̄ be an arbitrary method from χnoneq. Then

lim inf
n→+∞

(
costn(X̄)

)1/2 · en(X̄) > Cnoneq.

From Theorems 2.4, 2.6, and 2.7 we can obtain the following main result of this

chapter.

Theorem 2.8. We have that

lim
n→+∞

n1/2 · enoneq(n) = Cnoneq,

and the methods X̄Lin−M∗ and X̄df−Lin−M∗ are asymptotically optimal in the class

χnoneq .

Chapter 3

Global approximation of solutions of

multidimensional SDEs with jumps

In this section, not yet published, we consider the problem of approximation of

stochastic di�erential equations given by (1.1) where T > 0 and N =
{
N(t)

}
t∈[0,T]

is a one-dimensional non-homogeneous Poisson process, with intensity function λ,

and W =
{
W (t)

}
t∈[0,T]

is a mw-dimensional Wiener process. According to our best

knowledge these are �rst results in the case of multidimensional jump-di�usion SDEs.

3.1. The setting

Let T > 0 be a given real number, parameters d,mw ∈ N, and (Ω,F ,P) be

a complete probability space. We consider on this space independent processes a

mw-dimensional Wiener process

W =
{
W (t)

}
t∈[0,T]

,

W (t) =

W1(t)

W2(t)
...

Wmw(t)

 ,

and a one�dimensional non�homogeneous Poisson process

N =
{
N(t)

}
t∈[0,T]

, (3.1)

38

3.1. The setting

with intensity function λ = λ(t). Let us denote by
{
Ft
}
t∈[0,T]

the complete �ltration

generated by the driving processes N and W .

To simplify notation we use the same symbol ‖ · ‖ for both Frobenius and

Euclidean norm, and the meaning is clear from the context. In this chapter we always

use Frobenius norm for matrices and Euclidean norm for vectors. Let for function

f ∈ {a, b, c}, exists K > 0 such that

(Amd) f ∈ C0,2
(
[0, T]× Rd

)
.

(Bmd) For all t, s ∈ [0, T] and all y, z ∈ Rd

(B1md) ‖f(t, y)− f(t, z)‖ 6 K‖y − z‖,
(B2md) ‖f(t, y)− f(s, y)‖ 6 K

(
1 + ‖y‖

)
|t− s|,

(B3md)
∥∥∥ ∂f
∂yj

(t, y)− ∂f
∂yj

(t, z)
∥∥∥6 K‖y − z‖ for all j ∈ {1, . . . , d}.

(Cmd) There exists K > 0 such that for f ∈ {b1, . . . , bmw , c}, for all t ∈ [0, T], y, z ∈ Rd,

j ∈ {1, 2, . . . ,mw} we have

‖Ljf(t, y)− Ljf(t, z)‖ 6 K‖y − z‖.

The di�usion and the jump coe�cients satisfy the following jump commutativity

conditions.

(Dmd) For all (t, y) ∈ [0, T]× Rd, all j1, j2 ∈ {1, 2, . . . ,mw},

Lj1b
j2(t, y) = Lj2b

j1(t, y), (3.2)

Lj1c(t, y) = L−1b
j1(t, y). (3.3)

(Emd) For the intensity function λ : [0, T]→ R+ we assume that λ ∈ C
(
[0, T]

)
.

By Appendix A.4 and the fact that a, b, c and λ satisfying (B1md), (B2md), and

(Emd) the equation (1.1) has a unique strong solutionX = {X(t)}t∈[0,T] that is adapted

to
{
Ft
}
t∈[0,T]

and has càdlàg paths.

Condition (Dmd) will allow the calculation of stochastic integrals de�ned in (B.4).

More details about why we use this condition will be given in the next section, where

the algorithm will be analyzed. (We refer to Chapter 6.3 in [61], where the conditions

(3.2) and (3.3) are widely discussed.)

In order to characterize asymptotic behavior we de�ne constant

Ceq
md

=

√
T

6
·

(T∫
0

E(Y(t))dt

)1/2

,

39

3.1. The setting

where the process
{
Y(t)

}
t∈[0,T]

is de�ned as

Y(t) =
∥∥b(t,X(t))

∥∥2
+
∥∥c(t,X(t))

∥∥2 · λ(t), t ∈ [0, T].

Jump Commutative conditions

Before we present algorithm we would like to show examples of problems which

satisfy jump commutative conditions.

Let us consider the problem of the following form{
dXi(t) = rXi(t)dt+

∑mw

j=1 σ
i,jXi(t)dWj(t) + ciXi(t)dN(t), t ∈ [0, T],

Xi(0) > 0, i = 1, . . . , d.

In that case for x ∈ Rd we de�ne the functions

a(t, x) = r · x = r · (x1, . . . , xd)
T , (3.4)

b(t, x) = [σi,jxi]
d,mw

i,j=1, (3.5)

c(t, x) = (c1x1, . . . , c
dxd)

T . (3.6)

Let σi,j = σi,j(t) and ci = ci(t) for all j ∈ {1, 2, . . . ,mw} and

i ∈ {1, 2, . . . , d}. Let y ∈ Rd, then the functions de�ned by (3.5) and (3.6)

satisfy condition (Dmd).

We now justify the claim above. For all j1, j2 ∈ {1, 2, . . . ,mw} let us check the

equality Lj1b
j2(t, y) = Lj2b

j1(t, y)

Lj1b
j2(t, y) =

σ1,j2(t) 0 · · · 0

0 σ2,j2(t) · · · 0
...

...
. . .

...

0 0 · · · σd,j2(t)

 ·

σ1,j1(t)y1

σ2,j1(t)y2

...

σd,j1(t)yd

 =

σ1,j2(t)σ1,j1(t)y1

σ2,j2(t)σ2,j1(t)y2

...

σd,j2(t)σd,j1(t)yd

 ,

Lj2b
j1(t, y) =

σ1,j1(t) 0 · · · 0

0 σ2,j1(t) · · · 0
...

...
. . .

...

0 0 · · · σd,j1(t)

 ·

σ1,j2(t)y1

σ2,j2(t)y2

...

σd,j2(t)yd

 =

σ1,j1(t)σ1,j2(t)y1

σ2,j1(t)σ2,j2(t)y2

...

σd,j1(t)σd,j2(t)yd

 .

40

3.2. Algorithm based on equidistant mesh

This implies that Lj1b
j2(t, y) = Lj2b

j1(t, y). For all j1 ∈ {1, 2, . . . ,mw} let us check the

equality Lj1c(t, y) = L−1b
j1(t, y)

Lj1c(t, y) =

c1(t) 0 · · · 0

0 c2(t) · · · 0
...

...
. . .

...

0 0 · · · cd(t)

 ·

σ1,j1(t)y1

σ2,j1(t)y2

...

σd,j1(t)yd

 =

c1(t)σ1,j1(t)y1

c2(t)σ2,j1(t)y2

...

cd(t)σd,j1(t)yd

 ,

L−1b
j1(t, y) =

σ1,j1(t)(y1 + c1(t))y1)

σ2,j1(t)(y2 + c2(t))y2)
...

σd,j1(t)(yd + cd(t))yd)

−

σ1,j1(t)y1

σ2,j1(t)y2

...

σd,j1(t)yd

 =

c1(t)σ1,j1(t)y1

c2(t)σ2,j1(t)y2

...

cd(t)σd,j1(t)yd

 .

This implies that Lj1c(t, y) = L−1b
j1(t, y). That ends the proof of fact that problem

de�ned by functions (3.4) � (3.6) satisfy jump commutative conditions.

If

a(t, x) = r · x = r · (x1, . . . , xd)
T ,

b(t, x) = [σi,j]d,mw

i,j=1,

c(t, x) = (c1, . . . , cd)T .

It is easy to see that for all j1, j2 ∈ {1, 2, . . . ,mw} and for all (t, y) ∈ [0, T] × Rd

Lj1b
j2(t, y) = 0, L−1b

j1(t, y) = 0, and Lj1c(t, y) = 0. It means that in this case the

condition (Dmd) is also satis�ed. For more examples see also page 227 in [61].

3.2. Algorithm based on equidistant mesh

In this section we present an implementable and asymptotically optimal algorithm

in the class χeq, which is based on equidistant mesh.

3.2.1. Description of the method and its asymptotic

performance

We de�ne the algorithm based on equidistant mesh.

STEP 1 Take any n ∈ N and let t0,n = 0, X̄M(t0,n) = x0. Set i := 0.

STEP 2 If ti,n ∈ [0, T) and X̄M(ti,n) are given, then compute

ti+1,n = ti,n +
T

n
.

41

3.2. Algorithm based on equidistant mesh

If ti+1,n 6 T , then compute

X̄M(ti+1,n) = X̄M(ti,n) + a(ti,n, X̄
M(ti,n)) · (ti+1,n − ti,n)

+ b(ti,n, X̄
M(ti,n)) · (W (ti+1,n)−W (ti,n))

+ c(ti,n, X̄
M(ti,n)) · (N(ti+1,n)−N(ti,n))

+
1

2

mw∑
j1,j2=1

Lj1b
j2(ti,n, X̄

M(ti,n))

×
(
Iti,n,ti+1,n

(Wj1 ,Wj2) + Iti,n,ti+1,n
(Wj2 ,Wj1)

)
+ L−1c(ti,n, X̄

M(ti,n)) · Iti,n,ti+1,n
(N,N)

+
mw∑
j1=1

L−1b
j1(ti,n, X̄

M(ti,n)) ·
(
Iti,n,ti+1,n

(Wj1 , N) + Iti,n,ti+1,n
(N,Wj1)

)
,

take i := i+ 1 and GOTO STEP 2.

STOP

Running n through the natural numbers, we obtain the sequence of equidistant

discretizations ∆ =
{

∆n

}
n∈N, where

∆n =
{
t0,n, t1,n, . . . , tn,n

}
, n ∈ N.

We have that ti,n 6 T for all i = 0, 1, . . . , n. So we observe the Poisson and the Wiener

processes only in [0, T]. Here the de�nition of discretizations satis�es the assumptions

of the calculation model. By X̄cM∗ =
{
X̄cM
n

}
n∈N we denote the conditional Milstein

method based on the sequence of discretizations ∆, which is de�ned as

X̄cM
n (t) = E

(
X̃M
n (t) | Nn(N,W)

)
, t ∈ [0, T],

where
{
X̃M
n

}
n∈N is a sequence of the time-continuous Milstein approximations

(B.2) � (B.3) based on discretization
{

∆n

}
n∈N.

42

3.2. Algorithm based on equidistant mesh

By Lemma B.24 � B.27 we can calculate that X̄cM
n (t) is given by

X̄cM
n (t) = X̃M

n (ti,n) + a(ti,n, X̃
M
n (ti,n)) · (t− ti,n)

+ b(ti,n, X̃
M
n (ti,n)) ·∆Wi,n ·

t− ti,n
ti+1,n − ti,n

+ c(ti,n, X̃
M
n (ti,n)) ·∆Ni,n ·

Λ(t, ti,n)

Λ(ti+1,n, ti,n)

+
1

2

mw∑
j1,j2=1

Lj1b
j2(ti,n, X̃

M
n (ti,n))

×
(
Iti,n,ti+1,n

(Wj1 ,Wj2) + Iti,n,ti+1,n
(Wj2 ,Wj1)

)
·

(
t− ti,n

ti+1,n − ti,n

)2

+
mw∑
j1=1

L−1b
j1(ti,n, X̃

M
n (ti,n)) ·

(
Iti,n,ti+1,n

(Wj1 , N) + Iti,n,ti+1,n
(N,Wj1)

)
× Λ(t, ti,n)

Λ(ti+1,n, ti,n)
· t− ti,n
ti+1,n − ti,n

+ L−1c(ti,n, X̃
M
n (ti,n)) · Iti,n,ti+1,n

(N,N) ·

(
Λ(t, ti,n)

Λ(ti+1,n, ti,n)

)2

,

for t ∈ [ti,n, ti+1,n], i = 0, 1, . . . , n− 1 and X̄cM
n (0) = x0,

∆Wi,n = W (ti+1,n)−W (ti,n),

∆Ni,n = N(ti+1,n)−N(ti,n).

Note that X̄cM
n has continuous trajectories and coincides with X̃M

n at the

discretization points. The disadvantage of this algorithm is the usage of the values

of Λ. Hence, we also de�ne the piecewise linear interpolation X̄Lin−M
n of the classical

Milstein steps by

X̄Lin−M
n (t) =

X̃M
n (ti,n) · (ti+1,n − t) + X̃M

n (ti+1,n) · (t− ti,n)

ti+1,n − ti,n
,

for t ∈ [ti,n, ti+1,n], i = 0, 1, . . . , n − 1. In general, the method X̄cM
n is not equal to

X̄Lin−M
n , but in discretization points we have that for all i = 0, 1, . . . , n− 1

X̄Lin−M
n (ti,n) = X̄cM

n (ti,n) = X̃M
n (ti,n) = X̄M(ti,n).

However, it is convenient as in the scalar case to use the method X̄cM =
{
X̄cM
n

}
n∈N

in order to investigate the error of X̄Lin−M =
{
X̄Lin−M
n

}
n∈N. We show that they

behave asymptotically in the same way. Moreover, the method X̄Lin−M
n for any �xed

43

3.2. Algorithm based on equidistant mesh

discretization ∆n does not evaluate Λ, and it is implementable. Both methods X̄cM
n

and X̄Lin−M
n use (mw + 1) ·n values of the processes N and W , when b 6≡ 0 and c 6≡ 0.

We also have the following results. The proof of the following results go by using

the extension of the technique proposed by author of [44].

Theorem 3.1. Let us assume that the mappings a, b, c and λ satisfy the assumptions

(Amd) � (Emd). Let X̄ be an arbitrary method from χeq. Then we have the following

upper bounds.

(i) If b 6≡ 0 and c 6≡ 0 then

lim inf
n→+∞

(
costn(X̄)

)1/2 · en(X̄) > (mw + 1)1/2 · Ceq
md
. (3.7)

(ii) If b 6≡ 0 and c ≡ 0 then

lim inf
n→+∞

(
costn(X̄)

)1/2 · en(X̄) > (mw)1/2 · Ceq
md
. (3.8)

(iii) If b ≡ 0 and c 6≡ 0 then

lim inf
n→+∞

(
costn(X̄)

)1/2 · en(X̄) > Ceq
md
. (3.9)

Proof. We start with showing (3.7) in the case when b 6≡ 0 and c 6≡ 0. Let

X̄ =
{
X̄n

}
n∈N ∈ χeq be a method based on sequence of uniform discretizations

∆̄ =
{

∆eq
n

}
n∈N, where each ∆eq

n =
{
jT/n | j = 0, 1, . . . , n

}
. Therefore, we have

that for all i ∈ {0, 1, . . . , n− 1},

ti+1,n − ti,n =
T

n
. (3.10)

We denote by N(N,W) =
{
Nn(N,W)

}
n∈N, where each vector Nn(N,W) consists of

the values of N and W at ∆eq
n , i.e.,

Nn(N,W) =
[
N(t1,n), N(t2,n), . . . , N(tn,n),

W (t1,n),W (t2,n), . . . ,W (tn,n)
]
. (3.11)

Every X̄n uses information (3.11) about the processes N and W . Let us denote by{
X̃M
n

}
n∈N the sequence of continuous Milstein approximations (B.2) � (B.3) based on

the sequence of discretizations ∆̄ and which use the information N(N,W) about the

processes N and W . From Theorem B.1 and fact that we consider equidistant mesh

we have that ∥∥X − X̃M
n

∥∥
L2(Ω×[0,T])

6 C · n−1, (3.12)

44

3.2. Algorithm based on equidistant mesh

where the positive constant C does not depend on n. Moreover, let

Ẑn(t) = Z(t)− E
(
Z(t) | Nn(Z)

)
,

for Z ∈
{
N,W,W1, . . . ,Wmw

}
and t ∈ [0, T]. Note that for any t ∈ [ti,n, ti+1,n]

the random variable Ẑn(t) is a convex combination of Z(t) − Z(ti,n) and

−(Z(ti+1,n) − Z(t)). Hence, Ẑn(t) is independent of Fti,n for all t ∈ [ti,n, ti+1,n]

and the processes
{
N̂n(t)

}
t∈[0,T]

,
{
Ŵn(t)

}
t∈[0,T]

are independent. By the de�nition

of Wiener process we also have that E
(
Ŵj,n(t)

)
= 0. Moreover, random variable

N̂n(t) · Ŵj,n(t) for t ∈ [ti,n, ti+1,n] and j ∈ {1, . . . ,mw} are independent of Fti,n . For
almost all t ∈ [0, T] we have that

E
∥∥X̃M

n (t)− X̄M
n (t)

∥∥2
> E

∥∥X̃M
n (t)− E(X̃M

n (t) | Nn(N,W))
∥∥2
.

From (3.10), (3.12), (B.61) and Lemma B.11 we have that

en(X̄) >
∥∥X̄n − X̃M

n

∥∥
L2(Ω×[0,T])

−
∥∥X − X̃M

n

∥∥
L2(Ω×[0,T])

>
∥∥X̃M

n − E
(
X̃M
n | Nn(N,W)

)∥∥
L2(Ω×[0,T])

− C · n−1

>
∥∥H̃M

n + R̃M
n

∥∥
L2(Ω×[0,T])

− C · n−1

>
∥∥H̃M

n

∥∥
L2(Ω×[0,T])

− C · n−1. (3.13)

Let Ui,n = (ti,n, X̃
M
n (ti,n)), then we have that

∥∥H̃M
n

∥∥2

L2(Ω×[0,T])
=

T∫
0

E
∥∥H̃M

n (t)
∥∥2

dt

=
n−1∑
i=0

ti+1,n∫
ti,n

E
∥∥b(Ui,n) · Ŵn(t) + c(Ui,n) · N̂n(t)

∥∥2
dt.

For all i ∈ {0, 1, . . . , n− 1} and t ∈ [ti,n, ti+1,n] we have that

E
∥∥b(Ui,n) · Ŵn(t) + c(Ui,n) · N̂n(t)

∥∥2

= E
d∑

k=1

(
mw∑
j=1

bk,j(Ui,n) · Ŵj,n(t) + ck(Ui,n) · N̂n(t)

)2

= E
d∑

k=1

(
mw∑
j=1

bk,j(Ui,n) · Ŵj,n(t)

)2

+ 2 E
d∑

k=1

mw∑
j=1

bk,j(Ui,n) · Ŵj,n(t) · ck(Ui,n) · N̂n(t)

+ E
d∑

k=1

(
ck(Ui,n) · N̂n(t)

)2

. (3.14)

45

3.2. Algorithm based on equidistant mesh

By the fact that for all k ∈ {1, . . . , d} and j ∈ {1, . . . ,mw}, we have that

bk,j(Ui,n)·ck(Ui,n) are Fti,n measurable. Then by the Hölder inequality and Theorem B.1

we have that E
∣∣bk,j(Ui,n) · ck(Ui,n)

∣∣ <∞. So we obtain

E
(
bk,j(Ui,n) · Ŵj,n(t) · ck(Ui,n) · N̂n(t)

)
= E

(
bk,j(Ui,n) · ck(Ui,n)

)
· E
(
Ŵj,n(t) · N̂n(t)

)
= E

(
bk,j(Ui,n) · ck(Ui,n)

)
· E
(
Ŵj,n(t)

)
· E
(
N̂n(t)

)
= 0. (3.15)

By (3.14) and (3.15) we have that

∥∥H̃M
n

∥∥2

L2(Ω×[0,T])
=

n−1∑
i=0

ti+1,n∫
ti,n

(
E
∥∥b(Ui,n) · Ŵn(t)

∥∥2
+ E

∥∥c(Ui,n) · N̂n(t)
∥∥2
)

dt. (3.16)

By the fact that for all k ∈ {1, . . . , d} and j ∈ {1, . . . ,mw}, bk,j(Ui,n) and c(Ui,n) are

Fti,n-measurable. Processes N̂n, Ŵj,n are independent of Fti,n , so we have that

E
∥∥b(Ui,n) · Ŵn(t)

∥∥2
= E

(
d∑

k=1

(mw∑
j=1

bk,j(Ui,n) · Ŵj,n(t)
)2
)

=
d∑

k=1

mw∑
j=1

E
(
bk,j(Ui,n) · Ŵj,n(t)

)2

=
d∑

k=1

mw∑
j=1

E
(
bk,j(Ui,n)

)2 · E
(
Ŵj,n(t)

)2

=
mw∑
j=1

E
∥∥bj(Ui,n)

∥∥2 · E
(
Ŵj,n(t)

)2
, (3.17)

and

E
∥∥c(Ui,n) · N̂n(t)

∥∥2
= E‖c(Ui,n)‖2 · E

(
N̂n(t)

)2
. (3.18)

Finally, by (3.16) � (3.18) we have that

∥∥H̃M
n

∥∥2

L2(Ω×[0,T])
=

(
n−1∑
i=0

ti+1,n∫
ti,n

(mw∑
j=1

E
∥∥bj(Ui,n)

∥∥2 · E
(
Ŵj,n(t)

)2

+ E
∥∥c(Ui,n)

∥∥2 · E
(
N̂n(t)

)2
)

dt

)1/2

. (3.19)

Now, we analyze the asymptotic behavior of the �rst term in (3.19). From

Theorem B.20 we have that for all j ∈ {1, 2, . . . ,mw} (analogously like in (2.28))

it follows that
ti+1,n∫
ti,n

E
(
Ŵj,n(t)

)2
dt =

1

6
(ti+1,n − ti,n)2. (3.20)

46

3.2. Algorithm based on equidistant mesh

From Lemma B.32 we have that∣∣∣∣∣
n−1∑
i=0

E
∥∥b(Ui,n)

∥∥2 · T
n
−

n−1∑
i=0

E
∥∥b(ti,n, X(ti,n))

∥∥2 · T
n

∣∣∣∣∣ 6
6

n−1∑
i=0

∣∣∣E∥∥b(Ui,n)
∥∥2 − E

∥∥b(ti,n, X(ti,n))
∥∥2
∣∣∣ · T
n

6
n−1∑
i=0

mw∑
j=0

∣∣∣E∥∥bj(Ui,n)
∥∥2 − E

∥∥bj(ti,n, X(ti,n))
∥∥2
∣∣∣ · T
n

6
n−1∑
i=0

C ·
(

1 + sup
t∈[0,T]

∥∥X̃M
n (t)

∥∥
L2(Ω)

+ sup
t∈[0,T]

∥∥X(t)
∥∥
L2(Ω)

)
×
∥∥X̃M

n (ti,n)−X(ti,n)
∥∥
L2(Ω)

· T
n

6 C1/n. (3.21)

By (3.21) and by Fact B.30 we have that [0, T] 3 t → E
∥∥b(t,X(t))

∥∥2
is continuous,

we arrive that

lim
n→+∞

n−1∑
i=0

E
∥∥b(Ui,n)

∥∥2 · T
n

=

T∫
0

E
∥∥b(t,X(t))

∥∥2
dt (3.22)

The asymptotic behavior of the second term in (3.19) goes from the following

consideration. Analogously like in (2.29) we have that

ti+1,n∫
ti,n

E
(
N̂n(t)

)2
dt =

1

6

λ(αi,n)λ(βi,n)

λ(γi,n)
· (ti+1,n − ti,n)2, (3.23)

for some αi,n, βi,n, γi,n ∈ [ti,n, ti+1,n], i = 0, 1, . . . , n− 1.

47

3.2. Algorithm based on equidistant mesh

From Lemma B.32 we have that∣∣∣∣∣
n−1∑
i=0

λ(αi,n)λ(βi,n)

λ(γi,n)
· E
∥∥c(Ui,n)

∥∥2 · T
n
−

n−1∑
i=0

λ(ti,n) · E
∥∥c(ti,n, X(ti,n))

∥∥2 · T
n

∣∣∣∣∣ 6
6

n−1∑
i=0

∣∣∣∣∣λ(αi,n)λ(βi,n)

λ(γi,n)
· E
∥∥c(Ui,n)

∥∥2 − λ(ti,n) · E
∥∥c(ti,n, X(ti,n))

∥∥2

∣∣∣∣∣ · Tn
6

n−1∑
i=0

∣∣∣∣∣λ(αi,n)λ(βi,n)

λ(γi,n)

∣∣∣∣∣·∣∣∣E∥∥c(Ui,n)
∥∥2 − E

∥∥c(ti,n, X(ti,n))
∥∥2
∣∣∣ · T
n

+
n−1∑
i=0

∣∣∣λ(αi,n)λ(βi,n)

λ(γi,n)
− λ(ti,n)

∣∣∣·E∥∥c(ti,n, X(ti,n))
∥∥2 · T

n

6
n−1∑
i=0

C
(

1 + sup
t∈[0,T]

∥∥X̃M
n (t)

∥∥
L2(Ω)

+ sup
t∈[0,T]

∥∥X(t)
∥∥
L2(Ω)

)
×
∥∥X̃M

n (ti,n)−X(ti,n)
∥∥
L2(Ω)

· T
n

+ C2 · ‖1/λ‖∞ · ‖λ‖∞ ·
n−1∑
i=0

(
|λ(βi,n)− λ(ti,n)|

+ |λ(αi,n)− λ(γi,n)|
)
· T
n

6 C1/n+ C3 · ω̄(λ, T/n). (3.24)

By (3.24) and Fact B.30 we have that [0, T] 3 t→ λ(t) · E
∥∥c(t,X(t))

∥∥2
is continuous

and we arrive that

lim
n→+∞

n−1∑
i=0

λ(αi,n)λ(βi,n)

λ(γi,n)
· E‖c(Ui,n)‖2 · T

n
=

T∫
0

λ(t) · E‖c(t,X(t))‖2dt. (3.25)

By (3.13), (3.20), (3.23), (3.22), and (3.25) we have that

lim inf
n→+∞

n1/2 · e(X̄) > lim inf
n→+∞

n1/2
∥∥H̃M

n

∥∥
L2(Ω×[0,T])

= lim inf
n→+∞

n1/2

(
n−1∑
i=0

mw∑
j=1

E
∥∥bj(Ui,n)

∥∥2 · T
2

6n2

+ E‖c(Ui,n)‖2 · λ(αi,n)λ(βi,n)

λ(γi,n)
· T

2

6n2

)1/2

= lim inf
n→+∞

√
T

6

(
n−1∑
i=0

E
∥∥b(Ui,n)

∥∥2 · T
n

+
n−1∑
i=0

E
∥∥c(Ui,n)

∥∥2 · λ(αi,n)λ(βi,n)

λ(γi,n)
· T
n

)1/2

48

3.2. Algorithm based on equidistant mesh

=

√
T

6

(T∫
0

E
(∥∥b(t,X(t))

∥∥2
+
∥∥c(t,X(t))

∥∥2 · λ(t)
)

dt

)1/2

=

√
T

6

(T∫
0

E
(
Y(t)

)
dt

)1/2

. (3.26)

Therefore, by (3.26) we obtain

lim inf
n→+∞

(
costn(X̄)

)1/2 · en(X̄) > (mw + 1)1/2 · Ceq
md
,

which ends the proof of (3.7) in the case when b 6≡ 0 and c 6≡ 0.

If b 6≡ 0 and c ≡ 0 then costn(X̄) = mw · n which yield

lim inf
n→+∞

(
costn(X̄)

)1/2 · en(X̄) > (mw)1/2 · Ceq
md
.

If b ≡ 0 and c 6≡ 0 then costn(X̄) = n, which yield

lim inf
n→+∞

(
costn(X̄)

)1/2 · en(X̄) > Ceq
md
.

For b ≡ 0 and c ≡ 0 we obtain a trivial lower bound. That ends the proof. �

Theorem 3.2. Let us assume that the mappings a, b, c, and λ satisfy the assumptions

(Amd) � (Emd), then for X̄ ∈
{
X̄cM , X̄Lin−M} we have the following upper bounds.

(i) If b 6≡ 0 and c 6≡ 0 then

lim sup
n→+∞

(
costn(X̄)

)1/2 · en(X̄) 6 (mw + 1)1/2 · Ceq
md
. (3.27)

(ii) If b 6≡ 0 and c ≡ 0 then

lim sup
n→+∞

(
costn(X̄)

)1/2 · en(X̄) 6 (mw)1/2 · Ceq
md
. (3.28)

(iii) if b ≡ 0 and c 6≡ 0 then

lim sup
n→+∞

(
costn(X̄)

)1/2 · en(X̄) 6 Ceq
md
. (3.29)

Proof. Firstly we prove (3.27) � (3.29) for X̄cM . We have that

en(X̄cM) =
∥∥X − X̄cM

n

∥∥
L2(Ω×[0,T])

6
∥∥X − X̄M

n

∥∥
L2(Ω×[0,T])

+
∥∥X̄M

n − E
(
X̄M
n | Nn(W,N)

)∥∥
L2(Ω×[0,T])

6 Cn−1 +
∥∥H̃M

n

∥∥
L2(Ω×[0,T])

+
∥∥R̃M

n

∥∥
L2(Ω×[0,T])

6 Cn−1 +
∥∥H̃M

n

∥∥
L2(Ω×[0,T])

. (3.30)

49

3.2. Algorithm based on equidistant mesh

Follow by steps analogously as in proof of Theorem 3.1 we have that

lim sup
n→+∞

n1/2 · en(X̄cM) 6 lim sup
n→+∞

n1/2 ·
∥∥H̃M

n

∥∥
L2(Ω×[0,T])

= Ceq
md
. (3.31)

And then by (3.30) and (3.31) we have that

lim sup
n→+∞

(
costn(X̄cM)

)1/2 · en(X̄cM) 6 (mw + 1)1/2 · Ceq
md
.

That ends the proof of (3.27) in the case when b 6≡ 0 and c 6≡ 0.

If (b 6≡ 0 and c ≡ 0) then costn(X̄eq) = mw · n which yield

lim sup
n→+∞

(
costn(X̄cM)

)1/2 · en(X̄cM) 6 (mw)1/2 · Ceq
md
.

If (b ≡ 0 and c 6≡ 0) then costn(X̄eq) = n, which yield

lim sup
n→+∞

(
costn(X̄cM)

)1/2 · en(X̄cM) 6 Ceq
md
.

That ends the proof of (3.27) � (3.29) in a case of X̄ = X̄cM
n . �

Now we analyze the error of X̄ = X̄Lin−M
n . Note that

R̄M
n (t) := X̄cM

n (t)− X̄Lin−M
n (t)

= c(Ui,n) ·∆Ni,n ·

(
Λ(t, ti,n)

Λ(ti+1,n, ti,n)
− t− ti,n
ti+1,n − ti,n

)

+
1

2

mw∑
j1,j2=1

Lj1b
j2(Ui,n) ·

(
Iti,n,ti+1,n

(Wj1 ,Wj2) + Iti,n,ti+1,n
(Wj2 ,Wj1)

)
× (t− ti,n) · (t− ti+1,n)

(ti+1,n − ti,n)2

+
mw∑
j1=1

L−1b
j1(Ui,n) ·

(
Iti,n,ti+1,n

(Wj1 , N) + Iti,n,ti+1,n
(N,Wj1)

)
× ti,n − t
ti+1,n − ti,n

· Λ(ti+1,n, t)

Λ(ti+1,n, ti,n)

+ L−1c(Ui,n) · Iti,n,ti+1,n
(N,N) ·

((
Λ(t, ti,n)

Λ(ti+1,n, ti,n)

)2

− t− ti,n
ti+1,n − ti,n

)
,

for t ∈ [ti,n, ti+1,n], i = 0, 1, . . . , kn − 1. By the fact that c(Ui,n), Lj1b
j2(Ui,n),

L−1b
j1(Ui,n), L−1c(Ui,n) are Fti,n-measurable for all j1, j2 ∈ {1, . . . ,mw} and

50

3.2. Algorithm based on equidistant mesh

∆Ni,n, Iti,n,ti+1,n
(Wj1 ,Wj2), Iti,n,ti+1,n

(N,N), Iti,n,ti+1,n
(N,Wj1), Iti,n,ti+1,n

(Wj1 , N) are

independent of Fti,n . Together with Lemma B.28 we have that

E
∥∥R̄M

n (t)
∥∥2
6 E‖c(Ui,n)‖2 · E|∆Ni,n|2 ·

∣∣∣∣∣ Λ(t, ti,n)

Λ(ti+1,n, ti,n)
− t− ti,n
ti+1,n − ti,n

∣∣∣∣∣
2

+
1

2

mw∑
j1,j2=1

E‖Lj1bj2(Ui,n)‖2 · E
∣∣Iti,n,ti+1,n

(Wj1 ,Wj2) + Iti,n,ti+1,n
(Wj2 ,Wj1)

∣∣2
×

∣∣∣∣∣(t− ti,n) · (t− ti+1,n)

(ti+1,n − ti,n)2

∣∣∣∣∣
2

+
mw∑
j1=1

E‖L−1b
j1(Ui,n)‖2 · E

∣∣Iti,n,ti+1,n
(Wj1 , N) + Iti,n,ti+1,n

(N,Wj1)
∣∣2

×

∣∣∣∣∣ ti,n − t
ti+1,n − ti,n

· Λ(ti+1,n, t)

Λ(ti+1,n, ti,n)

∣∣∣∣∣
2

+ E‖L−1c(Ui,n)‖2 · E
∣∣Iti,n,ti+1,n

(N,N)
∣∣2

×

∣∣∣∣∣
(

Λ(t, ti,n)

Λ(ti+1,n, ti,n)

)2

− t− ti,n
ti+1,n − ti,n

∣∣∣∣∣
2

,

In addition, by Fact B.31 we have that∣∣∣∣∣ Λ(t, ti,n)

Λ(ti+1,n, ti,n)
− t− ti,n
ti+1,n − ti,n

∣∣∣∣∣ 6 C1 · sup
t,s∈[ti,n,ti+1,n]

|λ(t)− λ(s)| 6 C1 · ω̄(λ, T/n), (3.32)

for t ∈ [ti,n, ti+1,n], i = 0, 1, . . . , n − 1. By the Lemmas B.2 and B.28, and (3.32) we

have that

E
∥∥R̄M

n (t)
∥∥2
6 C1 ·

(
ω̄(λ, T/n)

)2 · (1 + n−1) · n−1

+ C2 · n−2 · (1 + n−1). (3.33)

Since, from (3.33) we have∣∣∣n1/2 · en(X̄Lin−M)− n1/2 · en(X̄cM)
∣∣∣ 6 n1/2 ·

∥∥R̄M
n

∥∥
L2(Ω×[0,T])

6 C1 · ω̄(λ, T/n) ·
(
1 + n−1

)1/2

+ C2 · n−1/2 ·
(
1 + n−1

)1/2
.

We obtain the same asymptotic behavior for X̄Lin−M like for the method X̄cM . So we

have that

lim sup
n→+∞

(
costn(X̄Lin−M)

)1/2 · en(X̄Lin−M) 6 (mw + 1)1/2 · Ceq
md
.

51

3.2. Algorithm based on equidistant mesh

This ends the proof of (3.27) in the case when b 6≡ 0 and c 6≡ 0.

If b 6≡ 0 and c ≡ 0 then costn(X̄Lin−M) = mw · n which yield

lim sup
n→+∞

(
costn(X̄Lin−M)

)1/2 · en(X̄cM) 6 m1/2
w · Ceq

md
.

If (b ≡ 0 and c 6≡ 0) then costn(X̄Lin−M) = n, which yield

lim sup
n→+∞

(
costn(X̄Lin−M)

)1/2 · en(X̄Lin−M) 6 Ceq
md
.

This ends the proof. �

From Theorems 3.1 and 3.2 we obtain the following results on the asymptotic

performance of the methods X̄cM and X̄Lin−M .

Theorem 3.3. Let us assume that the functions a, b, c and λ satisfy the assumptions

(Amd) � (Emd) and let X̄ ∈
{
X̄cM , X̄Lin−M}. Then we have the following estimations.

(i) If b 6≡ 0 and c 6≡ 0 then

lim
n→+∞

(
(mw + 1) · n

)1/2 · en(X̄) = (mw + 1)1/2 · Ceq
md
.

(ii) If b 6≡ 0 and c ≡ 0 then

lim
n→+∞

(mw · n)1/2 · en(X̄) = (mw)1/2 · Ceq
md
.

(iii) If b ≡ 0 and c 6≡ 0 then

lim
n→+∞

n1/2 · en(X̄) = Ceq
md
.

Finally, by Theorems 3.1 and 3.2 we get the asymptotic behavior of the nth minimal

error in the class χeq.

Theorem 3.4. We have that

lim
n→+∞

n1/2 · eeq(n) = Ceq
md
,

and the methods X̄Lin−M and X̄cM are asymptotically optimal in the class χeq.

52

Chapter 4

Basics information about CUDA C

programming language and numerical

experiments

Approximation of solutions of SDEs requires simulations of many independent

trajectories, what is computationally very demanding. Luckily, parallel computations

are becoming more and more popular and the architecture of the Graphics Processor

Unit (GPU) allows to signi�cantly decrease the time of computations. That was the

primary motivation to develop a CUDA C library. The library is dedicated to parallel

simulations on GPUs of many independent trajectories of solutions of system stochastic

di�erential equations with jumps. We named it by cuSTOCH. There is ongoing e�ort

to develop and document a stable code version which can be released. Code and

implementation are not the main subject of this thesis, but we mention it due to

the fact that the results of simulations presented in Section 4.3 were obtained based

on algorithms developed in CUDA C (then incorporated as a part of the library). In

order to better understand the code shown in Section 4.2, the Section 4.1 has been

developed. We show in Section 4.1 short introduction and basic tools of the CUDA C

programming language.

53

4.1. An introduction to CUDA C programming language

4.1. An introduction to CUDA C programming

language

In this section we present the programming tools of CUDA C, which are employed

in the library and simulations. We also assume that the reader has a basic knowledge

about programming, e.g. C/C++. For more details and speci�cation we recommend

[74] and documentation of CUDA C [47].

4.1.1. Basic notation and de�nitions

We start with introduction to CUDA C notations used in this work. We will

consider CPU and GPU (central processor unit and graphic processor unit), which

we can divide into two parts host and device. Host represents standard CPU together

with dedicated CPU memory RAM. By device we mean GPU which consists of several

parts. In the Figure 4.1 we show example of discussed architecture, where we have

one CPU and one GPU. As we can see in Figure 4.1, GPU consists of multiple

parts: various memory types and multiple processing units. Our description starts

with CUDA application components as a kind of abstract structure, then we describe

the processing unit. Finally, we describe types of memory.

As we simply describe CUDA C concept we should discuss three abstract structures

which build programs which are run on GPU. There are thread, block of threads (or

block) and grid. Thread is the smallest part of that structure. It is a single unit which

performs given operations. Threads build a block of threads which is an independent

copy of the kernel and is placed in the same stream processor. Locations in the same

block give threads possibility to communicate with each other by a special part of

memory. Multiply blocks are combined to bigger form in this structure, this form is

named grid. All blocks in the same grid have the same number of threads. More details

about de�nition of thread and block are presented in Section 4.1.3.

To understand the roots of the architecture, we present such a brief of history.

Graphics processing unit (GPU) is a type of computer chip that rapidly performs

speci�c mathematical calculations. The primary usage is for the purpose of rendering

images. In the early days of computing, CPU was performing these calculations but

when more graphics-intensive applications were developed, their demand put strain

on the CPU and degraded performance. GPUs were developed as a way to o�oad

those tasks from CPUs and free up processing power. Nowadays, graphics processors

are being adapted to share the work of CPUs and for example solve computation

54

4.1. An introduction to CUDA C programming language

Figure 4.1: CPU + GPU structure.

consuming tasks like molecular chemistry simulations or training deep neural networks

for AI applications. A GPU may be easily integrated with a CPU on the same circuit,

on a graphics card or in the motherboard in both personal computer or server. The

major players in the GPU market are NVIDIA, AMD, Intel, and ARM (recently

announced to be acquired by NVIDIA).

The last part that should be explained is the memory structure. Graphic cards are

equipped with several types of memory. Each of them are designed to perform di�erent

tasks. We summarize memory speci�cation in Tables 4.1, 4.2 we show comparison of

memory sizes. In Table 4.3 we present how to de�ne variables in selected types of

memory. We have the following memory types:

� register memory

It is the fastest type of memory available on the graphic card. Register memory

is used to store data by the threads. Stored data is accessible only by the thread

which wrote it into memory, and is available only for the lifetime of that thread.

� shared memory

This type of memory is more complex than register memory. Data stored there are

accessible to all threads within a block of threads. Variables are available until the

end of the block existence. This type of memory allows threads from one block of

threads to communicate and to share data between each other.

55

4.1. An introduction to CUDA C programming language

� constant memory

For the data that will not change over the lifetime of kernel execution we can use

constant memory. Available for a grid during lifetime of application.

� texture memory

It is one of the special types of memory. It is a variety of read-only memory on

device which is used to reduce memory tra�c in speci�c situations. Available for

grid during lifetime of application.

� local memory

Local memory has the same scope as registers, but the di�erence is that local

memory is slower than register memory. It is the largest part of available global

memory.

� global memory

This type of memory is the most universal. Device as well as host processes

can manage data stored here. Data is available during the lifetime of the host

application. This type of memory takes the biggest part of whole memory.

Type Read/write Scope Lifetime Speed

Global read/write grid application slow, but cached

Texture read only grid application
cache optimized for

2D/3D access pattern

Constant read only grid application
where constants and kernel

arguments are stored

Shared read/write block block fast

Local read/write thread thread

used when it does not �t in to

registers part of global memory

slow but cached

Registers read/write thread thread fast

Table 4.1: Summary of properties of particular types of variables

56

4.1. An introduction to CUDA C programming language

Type RTX 2080 Ti Titan V GTX 950M

Total global memory 10989 MB 12037 MB 2004 MB

Texture alignment 512 B 512 B 512 B

Total constant memory 64 KB 64 KB 64 KB

Total shared memory per block 48 KB 48 KB 48 KB

Total registers per block 64 KB 64 KB 64 KB

Table 4.2: Comparison of memory size

Type Declaration

Global __device__ int globalV

Texture see [82]

Constant __constant__ int constantV

Shared __shared__ int sharedV

Local int vArray[10]

Registers int v

Table 4.3: Declaration of individual types of variables

57

4.1. An introduction to CUDA C programming language

4.1.2. Di�erences between C/C++ and CUDA C

Now we discuss a simple example, which shows us the main di�erences between

C/C++ and CUDA C programming language.

#inc lude <s td i o . h>

#inc lude <cs td io>

#inc lude <c s td l i b >

#inc lude <iostream>

5

__host__ void CPUFunction () {

printf ("This func t i on i s invoke on CPU and run on the CPU") ;

}

10

__device__ void GPUFunction () {

printf ("This func t i on i s invoke on GPU and run on the GPU") ;

}

15

__global__ void kerne lFunct ion () {

printf ("This func t i on i s invoke g l o b a l l y and run on the GPU") ;

GPUFunction () ;

20 }

int main () {

CPUFunction () ;

25 kerne lFunct ion <<<1,1>>>() ;

cudaDeviceSynchronize () ;

}

//RESULTS:

30 //

// This func t i on i s invoke on CPU and run on the CPU

// This func t i on i s invoke g l o b a l l y and run on the GPU

// This func t i on i s invoke on GPU and run on the GPU

//

Listing 4.1.1: Comparision between C/C++ and CUDA C � main code and results

In the example we highlight fragments, which are especially important in the

context of CUDA C programming language. Firstly, we can see that CUDA C requires

quali�ers to the standard C/C++ function (lines 6, 10, 14 in Listing 4.1.1). There

are three di�erent quali�ers __global__, __host__, and __device__. It is a

mechanism which informs the compiler to know where a function will be compiled

to run. Now we describe each of them.

58

4.1. An introduction to CUDA C programming language

� __host__ void CPUFunction()

Function marked with a quali�er __host__ can be invoked only by host functions

and their executions is also on host. It means that the whole processes and

declarations included in the function are done in a host context.

� __device__ void GPUFunction()

The __device__ function can be invoked both by other __device__ and

__global__ function. Execution of this function is purely on the device. It means

that the whole processes and declarations included in the function are done in a

device context.

� __global__ void kernelFunction()

The __global__ function named also as kernel can be invoked (we say also that

'kernel is launched') by host code (for example, in main() function) but their

execution is on device. It means that the host timeline launches the kernel function,

but the whole calculations are performed on the device. The kernel function has

access to __device__ functons but does not have access to __host__ functions.

Another modi�cation is a special way of calling kernel function (line 21 in Listing 4.1.1)

� kernelFunction<<< 1, 1 >>>>();

In this line we specify execution con�guration parameters. Every time we launch

a kernel we have to de�ne the number of blocks as well as number of threads per

block. This con�guration looks like

<<< numberOfBlocks, numberOfThreadsPerBlock >>>

where these two parameters in one-dimensional case are of type int. This tool

allows to de�ne hierarchy of threads for the launched kernel. Con�guration as well

as threads hierarchy will be discussed in the Section 4.1.3 in more details.

The last novelty introduced in the example (line 22 in Listing 4.1.1) is a special

function which comes from run_time_api.h library (see [47]) .

� cudaDeviceSynchronize();

In a standard timeline generated by C/C++, kernels are launched as asynchronous

processes. It means that the host code continues execution without waiting for the

kernel to complete the tasks. It is needed to inform the compiler that the execution

should wait for the kernel to be completed. We inform the compiler that it will wait

with the function cudaDeviceSynchronize() used after the de�nition of the kernel.

What is more, calling this function may occur after several independent kernels.

59

4.1. An introduction to CUDA C programming language

4.1.3. CUDA thread hierarchy

De�nition of thread hierarchy can be speci�ed by user and it should be matched

to the problem. The grid and the thread blocks can be 1, 2 or 3-dimensional.

The choice of dimension depends on the problem that we want to solve. For

example, two-dimensional blocks of threads are used in matrix multiplication and

three-dimensional blocks of thread are always used in graphical simulations, where the

dimensions correspond to the de�nition of color representation, i.e. RGB (Red, Green,

Blue). It is also important to know that a 1-dimensional case means that the size of the

second and third dimension is equal to one. In our work we mostly use one-dimensional

case so we show more details about this case.

We present di�erent de�nitions of execution con�guration and we illustrate how we

can imagine these blocks and threads. To de�ne size of a block and number of threads in

each dimension we have to use structure which allows us to represent three-dimensional

vector type. The most common structure to de�ne the grid and block dimensions in

a kernel invocation is type dim3. It is an integer vector type object that comes from

vector_types.h (for more see [47]). In Figures 4.2 and 4.3 we show the structure of

the generated grid and blocks. For transparency, we use white rectangle in Figure 4.2

to represent threads in blocks. We can replace it by one of the thread structures from

Figure 4.3.

The structure of the launched kernel is not arbitrary. There are certain limits on the

number of blocks and threads in each block. First limit follows from the architectures of

available devices and should be less than 216−1, and the number of threads in block is

bounded by 210 − 1. We calculate the size of the grid as well as blocks by multiplying

individual dimensions. For example, we can run (1023, 1, 1) blocks of threads, but

(1024, 1, 1) is not available.

60

4.1. An introduction to CUDA C programming language

(a) One-dimensional grid with size (4,1,1).

(b) Two-dimensional grid with size (4,2,1).

(c) Three-dimensional grid with size (4,2,4).

Figure 4.2: Example of grid visualization.
61

4.1. An introduction to CUDA C programming language

(a) One-dimensional thread with size (4,1,1).

(b) two-dimensional thread with size (4,2,1).

(c) Three-dimensional thread with size (4,2,4).

Figure 4.3: Example of threads visualization.
62

4.1. An introduction to CUDA C programming language

Figure 4.4: CUDA thread hierarchy identi�cation of value of build in variables in grid.

We know how to de�ne a thread hierarchy. Another important topic is managing

the threads and blocks. CUDA technology gives us a built-in system which allows us

to manage threads and blocks during writing the program code. When we launch a

kernel in our program, this system generates built-in variables. We have:

� gridDim.∗ � returns total number of block in ∗-axis
� blockIdx.∗ � returns block ID in the ∗-axis of the block that is executing the given

blocks of code,

� blockDim.∗ � returns the block's dimension (i.e., the number of threads in a the

block in the ∗-axis),
� threadIdx.∗ � returns the thread ID in the ∗-axis of the thread that is being

executed by the particular block,

where ∗ ∈ {x, y, z} is a dimension coordination. In the Figure 4.4 we present

speci�cation of these variables when we launch a kernel with con�guration

<<< 4, 5 >>>.

4.1.4. Management of parallel threads

Each thread from one-dimensional block with one-dimensional structure of threads

can be identi�ed by the following expression

tid = threadIdx.x+ blockIdx.x · blockDim.x. (4.1)

So for the con�guration from Figure 4.4 (<<< 4, 5 >>>) we have that the tid

63

4.1. An introduction to CUDA C programming language

� in block 0 has a number from range 0 � 4,

� in block 1 has a number from range 5 � 9,

� in block 2 has a number from range 10 � 14,

� in block 3 has a number from range 15 � 19.

In Listing 4.1.2 we present code where we have three functions. Based on it we show

how to manage threads and blocks. We also present how to deal with the following

three cases

1. when we use less threads than de�ned in the grid,

2. when we use the same number of threads as de�ned in the grid,

3. when we perform more tasks than threads which are de�ned in the grid.

#inc lude <s td i o . h>

#inc lude <cs td io>

#inc lude <c s td l i b >

#inc lude <iostream>

5

__global__ void i dent i fyThread () {

int t i d = threadIdx . x + blockIdx . x * blockDim . x ;

printf ("Block ID : %d , Thread ID %d , TID : %d\n" , threadIdx . x , b lockIdx . x , t i d) ;

}

10

__global__ void lessThanThread (int N){

int t i d = threadIdx . x + blockIdx . x * blockDim . x ;

i f (t i d < N) {

printf ("Block ID : %d , Thread ID %d , TID : %d\n" , threadIdx . x , b lockIdx . x , t i d) ;

15 }

}

__global__ void moreThanThread (int N){

int t i d = threadIdx . x + blockIdx . x * blockDim . x ;

20 while (t i d < N) {

printf ("Block ID : %d , Thread ID %d , TID : %d\n" , threadIdx . x , b lockIdx . x , t i d) ;

t i d += blockDim . x * gridDim . x ;

}

}

25

int main () {

ident i fyThread <<<4,5>>>() ;

cudaDeviceSynchronize () ;

30 lessThanThread<<<4,5>>>(3) ;

cudaDeviceSynchronize () ;

lessThanThread<<<4,5>>>(40) ;

64

4.1. An introduction to CUDA C programming language

cudaDeviceSynchronize () ;

35

moreThanThread<<<4,5>>>(40) ;

cudaDeviceSynchronize () ;

}

Listing 4.1.2: Identi�cation and managing with possible scenarios � code.

In Listing 4.1.2 main function consists of evaluation of four functions, i.e.

1. identifyThread <<< 4, 5 >>> ();

This function prints information about blockId and threadId, and calculates

identi�cation numbers based on the equation (4.1).

2. lessThanThreadNumber <<< 4, 5 >>> (3);

The second function checks if the variable tid is less than a given parameter N

in this case N = 3. When condition is true, the function displays identi�cation

parameters.

3. lessThanThreadNumber <<< 4, 5 >>> (40);

Here the kernel was launched with con�guration <<< 4, 5 >>> which means that

we generate 20 threads in a grid. As a parameter we put number 40. This means

that each generated thread displays its message.

But what if we would like to run jobs with parameter larger than 20? Next function

gives us a solution to this problem.

4. moreThanThreadNumber <<< 4, 5 >>> (40);

In the last function from Listing 4.1.2 we have 'while' instead of 'if ' condition. At

the end of the while loop we increase the tid number by the total number of threads

in blocks. This allows us to call as many tasks as we give as a function parameter

in the case when we have less threads than the number of these tasks. We use

this method to generate cycles of work length. Moreover, the number of operations

that we want to perform, is not limited by the available number of threads. In the

Figure 4.5 we present a simple example where each task performed by the same

thread was colored by the thread's color.

65

4.1. An introduction to CUDA C programming language

Figure 4.5: CUDA thread hierarchy identi�cation of value of build in variables in grid

and performed tasks.

4.1.5. Memory allocation

When we conduct processing on GPU, but the used variables are kept in host's

memory, we spend much more time with connection between host and device. In

C to allocate memory we apply malloc() function. In CUDA C we use dedicated

functions cudaMalloc() and cudaMallocManaged(), which behave very similar to

function malloc().

� cudaMalloc(void** devPtr, size_t size)

This function behaves similar to the standard C function malloc(). The �rst

argument of function void** devPtr is a pointer to the allocated device memory.

The size in bytes of the allocated memory is given as a second parameter. Variable

type size_t is the unsigned integer type. The return type of this function is

cudaError_t for more details see [47].

� cudaMallocManaged(void** devPtr, size_t size, unsigned int �ags =

cudaMemAttachGlobal)

Allocates memory, that will be automatically managed by the Uni�ed Memory

system. Uni�ed Memory is a single memory address space accessible from any

processor in a system. This hardware/software technology allows applications to

66

4.1. An introduction to CUDA C programming language

allocate data that can be read or written from code running on either CPUs or

GPUs. First and second parameters are the same as in the previous function.

Parameter �ags must be either cudaMemAttachGlobal or cudaMemAttachHost.

The former allows any stream device to access memory. However, the latter does

not allow any stream on any device to access memory. The return type as well as

in the previous function is cudaError_t.

To support cudaError_t, we de�ne a simple function checkCuda(). This function

simply detects that the call has returned an error, and prints the associated error

message.

When we would like to use a function cudaMalloc() it is important to know a

function which allows us to copy our variables (part of memory) between di�erent

locations.

� cudaMemcpy (void* dst, const void* src, size_t count, cudaMemcpyKind kind)

This function as a �rst parameter takes the memory address. Source memory

address is given as the second parameter. As a third parameter we give size of

memory to copy in bytes. As a last parameter we give type of transfer which can

be one of directions

� HostToDevice � when we want to copy from host to device.

� DeviceToHost � when we want to copy from device to host.

� DeviceToDevice � when we want to copy from one device to another device.

� HostToHost � when we want to copy from one host to another host.

This function also returns cudaError_t type which we can handle. For more

speci�cation see [47].

In Listing 4.1.3 we present a simple example where we show how to use the

presented function to manage memory in the program.

#inc lude <s td i o . h>

#inc lude <a s s e r t . h>

inl ine cudaError_t checkCuda (cudaError_t r e s u l t) {

5 i f (r e s u l t != cudaSuccess) {

f p r i n t f (s tde r r , "CUDA Runtime Error : %s \n" , cudaGetErrorStr ing (r e s u l t)) ;

a s s e r t (r e s u l t == cudaSuccess) ;

}

return r e s u l t ;

10 }

__global__ void initArrayWithValue (f loat num, f loat *a , int N){

67

4.1. An introduction to CUDA C programming language

int t i d = threadIdx . x + blockIdx . x * blockDim . x ;

i f (t i d < N)

15 a [t i d] = num;

}

void disp layArray (f loat *a , int N){

for (int i = 0 ; i < N; ++i) {

20 printf ("%f , " , a [i]) ;

}

printf ("\n") ;

}

25

int main ()

{

// Number o f bytes o f an N = va lue s vec to r

const int N = 5 ;

30 s i ze_t s i z e = N * s i z e o f (f loat) ;

// A l l o ca t e memory f o r two vec to r s

f loat *a ;

f loat *b ;

35 checkCuda (cudaMallocManaged(&a , s i z e)) ;

checkCuda (cudaMalloc(&b , s i z e)) ;

// De f i n i t i o n o f b lock and thread s i z e

s i ze_t threadsPerBlock = 256 ;

40 s i ze_t numberOfBlocks = (N + threadsPerBlock = 1) / threadsPerBlock ;

// Ca l l GPU ve r s i on o f vec to r i n i t a l i z a t i o n

initArrayWithValue<<<numberOfBlocks , threadsPerBlock >>>(3, a , N) ;

initArrayWithValue<<<numberOfBlocks , threadsPerBlock >>>(4, b , N) ;

45

// Wait f o r the GPU to f i n i s h be f o r e proceed ing

checkCuda (cudaGetLastError ()) ;

checkCuda (cudaDeviceSynchronize ()) ;

50 // Dispaly array which was a l l o c a t e d by cudaMallocManaged ()

d i sp layArray (a , N) ;

/*

* // disp layArray (b , N) ;

55 *

* This execut ion o f d i sp layArray (b ,N) caused Memory e r r o r . I t i s

* becouse o f f a c t that host do not have acce s to dev i ce memory

* in t h i s s i t u a t i o n

*/

60

// Dispaly array which was a l l o c a t e d by cudaMalloc ()

f loat *cpu_b ;

68

4.1. An introduction to CUDA C programming language

cpu_b = (f loat *) mal loc (s i z e) ;

checkCuda (cudaMemcpy ((void *) cpu_b , b , s i z e , cudaMemcpyDeviceToHost)) ;

65

disp layArray (cpu_b , N) ;

// Wait f o r the GPU to f i n i s h be f o r e proceed ing

checkCuda (cudaGetLastError ()) ;

70 checkCuda (cudaDeviceSynchronize ()) ;

// Free a l l our a l l o c a t e d memory

checkCuda (cudaFree (a)) ;

checkCuda (cudaFree (b)) ;

75 f r e e (cpu_b) ;

}

//RESULTS:

// 3 .000000 , 3 .000000 , 3 .000000 , 3 .000000 , 3 .000000 ,

// 4 .000000 , 4 .000000 , 4 .000000 , 4 .000000 , 4 .000000 ,

Listing 4.1.3: Managing with memory between CPU and GPU

4.1.6. Examples from numerical linear algebra

To illustrate how to easily use CUDA C for known problems we present the

following example of linear algebra. In Listing 4.1.4 we show the program code which

is connected with matrix multiplication. Here large speed up can be observed. In this

example we present code for both CPU and GPU implementation of algorithms. At

the end of the program we also check performance in both cases.

#inc lude <s td i o . h>

#inc lude <a s s e r t . h>

inl ine cudaError_t checkCuda (cudaError_t r e s u l t) {

5 i f (r e s u l t != cudaSuccess) {

f p r i n t f (s tde r r , "CUDA Runtime Error : %s \n" , cudaGetErrorStr ing (r e s u l t)) ;

a s s e r t (r e s u l t == cudaSuccess) ;

}

return r e s u l t ;

10 }

__global__ void matrixMulGPU(int * a , int * b , int * c , int N){

int va l = 0 ;

int row = blockIdx . x * blockDim . x + threadIdx . x ;

15 int c o l = blockIdx . y * blockDim . y + threadIdx . y ;

i f (row < N && co l < N) {

for (int k = 0 ; k < N; k++){

va l += a [row * N + k] * b [k * N + co l] ;

}

69

4.1. An introduction to CUDA C programming language

20 c [row * N + co l] = va l ;

}

}

void matrixMulCPU(int * a , int * b , int * c , int N){

25 int va l = 0 ;

for (int row = 0 ; row < N; row++){

for (int c o l = 0 ; c o l < N; c o l++){

va l = 0 ;

for (int k = 0 ; k < N; ++k) {

30 va l += a [row * N + k] * b [k * N + co l] ;

}

c [row * N + co l] = va l ;

}

}

35 }

int main () {

// I n i t i a l i z e po in t e r to array

int *a , *b , *c_cpu , *c_gpu ;

40

// Number o f bytes o f an N x N matrix

int N = 64 ;

int s i z e = N * N * s i z e o f (int) ;

45 // Al l o ca t e memory

checkCuda (cudaMallocManaged(&a , s i z e)) ;

checkCuda (cudaMallocManaged(&b , s i z e)) ;

checkCuda (cudaMallocManaged(&c_cpu , s i z e)) ;

checkCuda (cudaMallocManaged(&c_gpu , s i z e)) ;

50

// I n i t i a l i z e both matrix with va lue s and ze ro s f o r r e s u l t s matr i ce s

for (int row = 0 ; row < N; row++){

for (int c o l = 0 ; c o l < N; c o l++){

a [row * N + co l] = row ;

55 b [row * N + co l] = co l + 2 ;

c_cpu [row * N + co l] = 0 ;

c_gpu [row * N + co l] = 0 ;

}

}

60

// De f i n i t i o n o f b lock and thread s i z e

dim3 threads_per_block (16 , 16 , 1) ; // A 16 x 16 block threads

dim3 number_of_blocks ((N / threads_per_block . x) + 1 , (N / threads_per_block . y) + 1 ,1) ;

65 // Cal l GPU ve r s i on o f matrix mu l t i p l i c a t i o n

matrixMulGPU<<<number_of_blocks , threads_per_block>>>(a , b , c_gpu , N) ;

// Wait f o r the GPU to f i n i s h be f o r e proceed ing

checkCuda (cudaGetLastError ()) ;

70

4.2. Implementation of algorithm X̄Lin−M
kn

in CUDA C

70 checkCuda (cudaDeviceSynchronize ()) ;

// Ca l l the CPU ve r s i on to check our work

matrixMulCPU(a , b , c_cpu , N) ;

75

// Compare the two answers to make sure they are equal

bool e r r o r = fa l se ;

for (int row = 0 ; row < N && ! e r r o r ; ++row) {

for (int c o l = 0 ; c o l < N && ! e r r o r ; ++co l) {

80 i f (c_cpu [row * N + co l] != c_gpu [row * N + co l]) {

printf ("FOUND ERROR at c[%d][%d] \ n" , row , c o l) ;

e r r o r = true ;

break ;

}

85 }

}

i f (! e r r o r) {

printf ("SUCCESS! Matrix are mu l t i p l i e d c o r r e c t l y . \ n") ;

90 }

// Free a l l our a l l o c a t e d memory

checkCuda (cudaFree (a)) ;

checkCuda (cudaFree (b)) ;

95 checkCuda (cudaFree (c_cpu)) ;

checkCuda (cudaFree (c_gpu)) ;

}

Listing 4.1.4: Matrix multiplication

4.2. Implementation of algorithm X̄Lin−M
kn

in CUDA C

In this section we present the full code of one of the algorithms considered in

Chapter 2. We divide full code into smallest part. It is because beter understanding

of problem.

71

4.2. Implementation of algorithm X̄Lin−M
kn

in CUDA C

De�nition of problem Speci�cation

double X0 = 0 . 1 ;

__device__ double X000 = 0 . 1 ;

__device__ double MI = 0 . 5 ;

__device__ double SIGMA = 1 . 0 ;

5 __device__ double PC = 1 ;

__device__ double LAMBDA = 1 ;

__device__ double a (double t , double x) { return MI * x ; }

10 __device__ double b(double t , double x) { return SIGMA * x ; }

__device__ double c (double t , double x) { return PC * x ; }

__device__ double a_(double t , double x) { return MI; }

15

__device__ double b_(double t , double x) { return SIGMA; }

__device__ double c_(double t , double x) { return PC; }

20 __device__ double L1b(double t , double x) { return b(t , x) * b_(t , x) ; }

__device__ double L1c (double t , double x) { return b(t , x) * c_(t , x) ; }

__device__ double L_1b(double t , double x) { return b(t , x + c (t , x)) = b(t , x) ; }

25

__device__ double L_1c(double t , double x) { return c (t , x + c (t , x)) = c (t , x) ; }

__device__ double lambda (double t) { return LAMBDA * t ; }

30 __device__ double intLambda (double t_1 , double t_2) { return LAMBDA * (t_2 = t_1) ; }

Listing 4.2.1: De�nition of problem Speci�cation.

Additional Functions

inl ine cudaError_t checkCuda (cudaError_t r e s u l t) {

i f (r e s u l t != cudaSuccess) {

f p r i n t f (s tde r r , "CUDA Runtime Error : %s \n" , cudaGetErrorStr ing (r e s u l t)) ;

a s s e r t (r e s u l t == cudaSuccess) ;

5 }

return r e s u l t ;

}

__global__ void i n i t S t a t e (f loat seed , curandState_t* s t a t e s , int s i z e) {

10 int t i d = blockIdx . x * blockDim . x + threadIdx . x ;

while (t i d < s i z e) {

curand_init (seed , t id , 0 , &s t a t e s [t i d]) ;

72

4.2. Implementation of algorithm X̄Lin−M
kn

in CUDA C

t i d += blockDim . x * gridDim . x ;

}

15 }

void compensate (double *App , double r e s u l t s , int s i z e) {

r e s u l t s =0;

20 for (int i =0; i < s i z e ; i++){

r e s u l t s += App [i] ;

}

}

25 void saveToFileArray (ofstream &o , double t , double *array , int s i z e) {

o << t << " ; " ;

for (int i = 0 ; i < s i z e ; i++){

o << array [i] << " ; " ;

}

30 o << "\n" ;

}

Listing 4.2.2: Additional Functions.

Main Algorithm

__device__ double milsteinCommutative (double t , double x , double dt ,

double dw, double dn) {

double r e s = x + a (t , x) * dt + b(t , x) * dw + c (t , x) * dn +

L1b(t , x) * (dw * dw = dt) / 2 + L_1c(t , x) * (dn * (dn = 1)) / 2 +

5 L_1b(t , x) * dw * dn ;

return r e s ;

}

__global__ void ca lcu lateApprox imat ion (double t , double t_prev ,

10 curandState_t* states_normal ,

curandState_t* s tates_poi s son ,

double *Xalg , int s i z e) {

int t i d = blockIdx . x * blockDim . x + threadIdx . x ;

register double s tep = (double) (t = t_prev) ;

15 while (t i d < s i z e) {

double DW;

int DN;

DW = sqr t (s tep) * curand_normal_double(&states_normal [t i d]) ;

DN = curand_poisson(&state s_po i s son [t i d] , intLambda (t_prev , t)) ;

20 Xalg [t i d] = milsteinCommutative (t_prev , Xalg [t i d] , step , DW, DN) ;

t i d += blockDim . x * gridDim . x ;

}

}

25

73

4.2. Implementation of algorithm X̄Lin−M
kn

in CUDA C

__global__ void ca lcu lateApp (int n , double t , double *gpuXLinM , double *gpuApp ,

int s i z e) {

int t i d = blockIdx . x * blockDim . x + threadIdx . x ;

while (t i d < s i z e) {

30 gpuApp [t i d] = b(t , gpuXLinM [t i d]) * b(t , gpuXLinM [t i d]) +

lambda (t) * c (t , gpuXLinM [t i d]) * c (t , gpuXLinM [t i d]) ;

t i d += blockDim . x * gridDim . x ;

}

}

35

double ca lcu lateNextT (double eps , double app , double T, int n) {

i f (eps < app)

return T / (n * app) ;

else

40 return T / (n * eps) ;

}

void oneDimMilste inStepSize (int numberOfTrajector ies , int numberOfSteps ,

double cModule , double T, s t r i n g f i leName) {

45 s i ze_t threadsPerBlock = 256 ;

s i ze_t numberOfBlocks = (numberOfTrajector ies + threadsPerBlock = 1)

/ threadsPerBlock ;

double eps = pow((double) numberOfSteps , cModule) ;

50 // a l l o c a t e space on the GPU f o r the wienner random s t a t e s

curandState_t* states_normal ;

curandState_t* s ta te s_po i s son ;

checkCuda (cudaMallocManaged ((void **) &states_normal ,

numberOfTrajector ies * s i z e o f (curandState_t))) ;

55 checkCuda (cudaMallocManaged ((void **) &states_poi s son ,

numberOfTrajector ies * s i z e o f (curandState_t))) ;

// i n i t i a t e s t a t e s f o r both proc e s e s

i n i t S t a t e <<<numberOfBlocks , threadsPerBlock>>>(time (NULL) , s tates_poi s son ,

60 numberOfTrajector ies) ;

checkCuda (cudaDeviceSynchronize ()) ;

i n i t S t a t e <<<numberOfBlocks , threadsPerBlock>>>(time (NULL) , states_normal ,

numberOfTrajector ies) ;

checkCuda (cudaDeviceSynchronize ()) ;

65

/* a l l o c a t e space on the GPU f o r a l l needed l i s t s */

double *App ;

double *XLinM;

checkCuda (cudaMallocManaged ((void **) &App , numberOfTrajector ies * s i z e o f (double))) ;

70 checkCuda (cudaMallocManaged ((void **) &XLinM, numberOfTrajector ies * s i z e o f (double))) ;

double * t ;

double * t_prev ;

double * r e s u l t s ;

75 checkCuda (cudaMallocManaged ((void **) &t , s i z e o f (double))) ;

74

4.2. Implementation of algorithm X̄Lin−M
kn

in CUDA C

checkCuda (cudaMallocManaged ((void **) &t_prev , s i z e o f (double))) ;

checkCuda (cudaMallocManaged ((void **) &r e s u l t s , s i z e o f (double))) ;

int kn = 0 ;

80

// s e t a l l s t a r t i n g va lue s f o r e lements in ar rays

for (int i = 0 ; i < numberOfTrajector ies ; i++){

XLinM[i] = X0 ;

}

85 memset (t , 0 , s i z e o f (double)) ;

memset (t_prev , 0 , s i z e o f (double)) ;

checkCuda (cudaDeviceSynchronize ()) ;

//open f i l e to save r e s u l t s and save f i r s t po int

90 ofstream p l i k ;

p l i k . open (f i leName) ;

//main part o f a lgor i thm

95 while (* t < T) {

saveToFileArray (p l ik , * t , XLinM, numberOfTrajector ies) ;

kn += 1 ;

* t_prev = * t ;

calculateApp<<<numberOfBlocks , threadsPerBlock>>>(numberOfSteps , * t , XLinM,

100 App , numberOfTrajector ies) ;

checkCuda (cudaGetLastError ()) ;

checkCuda (cudaDeviceSynchronize ()) ;

compensate (App , * r e s u l t s , numberOfTrajector ies) ;

* t += calcu lateNextT (eps , * r e s u l t s , T, numberOfSteps) ;

105 ca lcu lateApproximat ion<<<numberOfBlocks , threadsPerBlock>>>(*t , *t_prev ,

states_normal ,

s tates_poi s son ,

XLinM,

numberOfTrajector ies) ;

110 checkCuda (cudaGetLastError ()) ;

checkCuda (cudaDeviceSynchronize ()) ;

}

* t = T;

ca lcu lateApproximat ion<<<numberOfBlocks , threadsPerBlock>>>(*t , *t_prev ,

115 states_normal ,

s tates_poi s son , XLinM,

numberOfTrajector ies) ;

checkCuda (cudaGetLastError ()) ;

checkCuda (cudaDeviceSynchronize ()) ;

120 saveToFileArray (p l ik , * t , XLinM, numberOfTrajector ies) ;

// f r e e a l l o c a t e d memory

cudaFree (states_normal) ;

cudaFree (s ta te s_po i s son) ;

125 cudaFree (App) ;

75

4.3. Numerical experiments

cudaFree (XLinM) ;

cudaFree (t) ;

cudaFree (t_prev) ;

cudaFree (r e s u l t s) ;

130 }

Listing 4.2.3: Main Algorithm.

4.3. Numerical experiments

4.3.1. Problems

Scalar Problem

First, let us consider the following linear scalar SDE used in the Merton's model{
dX(t) = µX(t)dt+ σX(t)dW (t) + cX(t−)dN(t), t ∈ [0, T],

X(0) = x0,
(4.2)

where c > −1 and x0σ > 0, µ ∈ R. The exact solution of problem (4.2) has the

following form

X(t) = x0 · exp

((
µ− 1

2
σ2
)
t+ σW (t)

)
· (1 + c)N(t).

We have E(Y(t)) = x2
0 (σ2 + c2 · λ(t)) exp

(
2(µ+ σ2/2)t+ c(c+ 2)m(t)

)
for t ∈ [0, T].

Multidimensional Problem

For multidimensional problem we consider the case when
dX(t) = µX(t)dt+

σ1,1X1(t) σ1,2X1(t) · · · σ1,mwX1(t)

σ2,1X2(t) σ2,2X2(t) · · · σ2,mwX2(t)
...

...
. . .

...

σd,1Xd(t) σd,2Xd(t) · · · σd,mwXd(t)

 dW (t) + cX(t−)dN(t),

X(0) = x0, t ∈ [0, T]

(4.3)

where c > −1 and σi,j > 0 for i ∈ {1, . . . , d}, j ∈ {1, . . . ,mw}, µ ∈ R , x0 ∈ Rd
+.

The exact solution of problem (4.3) has the following form

Xi(t) = Xi(0) · exp

((
µ− 1

2

(mw∑
j=1

σij
)2
)
t+

mw∑
j=1

σijWj(t)

)
· (1 + c)N(t).

76

4.3. Numerical experiments

By the considerations presented at page 40 the problem (4.3) satis�es jump

commutative conditions (Dmd). On the Figure 4.6 we show sample of approximations

of trajectories for solutions of problem (4.3) in one and two-dimensional case and on

Figure 4.7 we present three dimensional case.

Figure 4.6: Examples of SDEs trajectories.

Figure 4.7: Examples of SDEs trajectories.

77

4.3. Numerical experiments

4.3.2. Error criterion

Now we de�ne the way how we calculate error. We take as an estimator of the error

of ‖X − X̄n‖L2(Ω×[0,T]), for one-dimensional case

εK(X̄kn) =

(
1

K

K∑
j=1

Qn

(
|X(j) − X̄j,kn|2

))1/2

,

where X̄kn ∈
{
X̄Lin−M∗
kn

, X̄Lin−M−eq
kn

, X̄df−Lin−M∗
kn

, X̄df−Lin−M−eq
kn

}
. For

multidimensional case we use the same estimations, but only for method X̄Lin−M−eq
n

εK(X̄Lin−M−eq
n) =

(
1

K

K∑
j=1

Qn

(
‖X(j) − X̄Lin−M−eq

(j),n ‖2
))1/2

.

In both methods of estimations Qn is the composite Simpson quadrature based on

the knots
{
t̂∗0,n, t̂

∗
1,n, . . . , t̂

∗
kn,n

}
∪
{

(t̂∗i,n + t̂∗i+1,n)/2
}
i=0,1,...,kn−1

for a one-dimensional

case. For multidimensional case, when we consider only equidistant mesh we use{
t0,n, t1,n, . . . , tn,n

}
∪
{

(ti,n + ti+1,n)/2
}
i=0,1,...,n−1

. We assume that X(j) is the jth

(simulated) trajectory of the solution both problems (4.2) and (4.3) and X̄Lin−M−eq
n

is the piecewise linear interpolation of the classical Milstein steps performed at the

equidistant discretization teq
i,n = iT/n, for i = 0, 1, . . . , n for jth trajectories. (Hence, we

use the same number of steps for X̄Lin−M∗
kn

and X̄Lin−M−eq
kn

.) In one-dimensional case we

also compare the error of the method X̄Lin−M∗
kn

with the error of X̄Lin−M−eq
kn

performed

at equidistant points ti = iT/kn, i = 0, 1, . . . , kn. The improvement, observed in the

numerical experiments, is de�ned by

impK,kn = εK(X̄Lin−M∗
kn

)/εK(X̄Lin−M−eq
kn

), (4.4)

impdfK,kn = εK(X̄df−Lin−M∗
kn

)/εK(X̄df−Lin−M−eq
kn

). (4.5)

78

4.3. Numerical experiments

4.3.3. Results of numerical experiments

Numerical experiments for method X̄Lin−M∗
kn

We have performed numerical experiments for the following particular cases of (4.2)

for regular method.

1. µ = 0.08, σ = 0.4, c = −0.03, λ(t) = 2, x0 = 5, T = 3, K = 60000.

n kn εK(X̄Lin−M∗
kn

) εK(X̄Lin−M−eq
kn

) impK,kn

3 7 2.37 2.36 1.004 42

10 23 6.30× 10−1 6.34× 10−1 9.939 68× 10−1

32 70 1.87× 10−1 1.88× 10−1 9.962 56× 10−1

102 230 5.50× 10−2 5.70× 10−2 9.647 49× 10−1

326 757 1.67× 10−2 1.75× 10−2 9.543 49× 10−1

1043 2433 5.15× 10−3 5.31× 10−3 9.698 94× 10−1

3338 7842 1.61× 10−3 1.63× 10−3 9.896 44× 10−1

10682 24871 5.07× 10−4 5.61× 10−4 9.033 90× 10−1

34182 87332 1.70× 10−4 1.80× 10−4 9.459 98× 10−1

Table 4.4: Results of calculated error and improvement.

Figure 4.8: Left �gure � comparison with theoretical rate of convergence, right � �gure

improvement calculated by (4.4).

79

4.3. Numerical experiments

2. µ = 1, σ = 0.7, c = 1, λ(t) = 0.1, x0 = 10, T = 0.25, K = 60000.

n kn εK(X̄Lin−M∗
kn

) εK(X̄Lin−M−eq
kn

) impK,kn

3 28 5.77× 10−2 6.06× 10−2 9.527 41× 10−1

10 92 1.77× 10−2 1.94× 10−2 9.093 78× 10−1

32 294 3.36× 10−3 4.04× 10−3 8.323 43× 10−1

102 932 8.26× 10−4 8.40× 10−4 9.841 58× 10−1

326 2877 2.67× 10−4 2.72× 10−4 9.812 55× 10−1

1043 9253 8.33× 10−5 8.47× 10−5 9.837 17× 10−1

3338 30287 2.54× 10−5 2.58× 10−5 9.832 27× 10−1

10682 98321 7.85× 10−6 7.94× 10−6 9.889 80× 10−1

34182 307098 2.50× 10−6 2.55× 10−6 9.821 82× 10−1

Table 4.5: Results of calculated error and improvement.

(a)

Figure 4.9: Left �gure � comparison with theoretical rate of convergence, right �gure

� improvement calculated by (4.4).

80

4.3. Numerical experiments

3. µ = 10, σ = 3, c = −0.9, λ(t) = 1.5, x0 = 5.75, T = 0.25, K = 60000.

n kn εK(X̄Lin−M∗
kn

) εK(X̄Lin−M−eq
kn

) impK,kn

3 434 5.88× 101 4.90× 101 1.199 12

10 1620 6.76× 101 1.22× 101 5.525 69

32 4976 1.99 4.79 4.168 43× 10−1

102 19780 3.32× 10−1 2.32 1.431 87× 10−1

326 47558 1.05× 10−1 1.64× 10−1 6.382 89× 10−1

1043 169508 1.68× 10−2 5.02× 10−2 3.350 85× 10−1

3338 1065420 4.08× 10−3 7.41× 10−3 5.508 01× 10−1

10682 1405330 2.88× 10−3 2.05× 10−2 1.405 99× 10−1

Table 4.6: Results of calculated error and improvement.

Figure 4.10: Left �gure � comparison with theoretical rate of convergence, right �gure

� improvement calculated by (4.4).

81

4.3. Numerical experiments

4. µ = −1, σ = 1.5, c = 0, λ(t) = 0, x0 = 0.1, T = 1, K = 60000.

n kn εK(X̄Lin−M∗
kn

) εK(X̄Lin−M−eq
kn

) impK,kn

3 3 6.76× 10−2 2.52× 10−2 2.675 37

10 5 3.00× 10−2 1.80× 10−2 1.668 50

32 11 1.73× 10−2 1.17× 10−2 1.485 60

102 23 6.50× 10−3 4.91× 10−3 1.324 75

326 50 1.23× 10−3 1.02× 10−3 1.206 75

1043 149 2.10× 10−4 1.08× 10−3 1.935 79× 10−1

3338 536 5.17× 10−5 5.76× 10−5 8.969 19× 10−1

10682 1696 1.67× 10−5 2.70× 10−5 6.176 00× 10−1

34182 6239 3.94× 10−6 7.13× 10−6 5.524 70× 10−1

Table 4.7: Results of calculated error and improvement.

Figure 4.11: Left �gure � comparison with theoretical rate of convergence, right �gure

� improvement calculated by (4.4).

82

4.3. Numerical experiments

Numerical experiments for method X̄df−Lin−M∗
kn

1. µ = 0.08, σ = 0.4, c = −0.03, λ(t) = 2, x0 = 1, T = 5, K = 60000.

n kn εK(X̄df−Lin−M∗
kn

) εK(X̄df−Lin−M−eq
kn

) impdfK,kn

3 3 2.53 1.79 1.410 49

10 6 8.25× 10−1 8.04× 10−1 1.025 82

32 17 2.13× 10−1 2.53× 10−1 8.396 74× 10−1

102 52 5.07× 10−2 5.55× 10−2 9.145 76× 10−1

326 169 1.69× 10−2 1.76× 10−2 9.591 50× 10−1

1043 568 4.11× 10−3 4.61× 10−3 8.929 29× 10−1

3338 1676 1.42× 10−3 1.73× 10−3 8.247 52× 10−1

10682 5902 4.05× 10−4 4.45× 10−4 9.099 42× 10−1

34182 17044 1.41× 10−4 1.60× 10−4 8.790 91× 10−1

Table 4.8: Results of calculated error and improvement.

Figure 4.12: Left �gure � comparison with theoretical rate of convergence, right �gure

� improvement calculated by (4.5).

83

4.3. Numerical experiments

2. µ = 1, σ = 0.7, c = 1, λ(t) = 0.1, x0 = 10, T = 0.25, K = 60000.

n kn εK(X̄df−Lin−M∗
kn

) εK(X̄df−Lin−M−eq
kn

) impdfK,kn

3 29 5.76× 10−2 6.05× 10−2 9.522 42× 10−1

10 94 1.69× 10−2 1.92× 10−2 8.820 98× 10−1

32 287 3.39× 10−3 4.02× 10−3 8.444 03× 10−1

102 898 8.61× 10−4 8.70× 10−4 9.894 51× 10−1

326 2946 2.62× 10−4 2.65× 10−4 9.872 63× 10−1

1043 9397 8.22× 10−5 8.32× 10−5 9.884 45× 10−1

3338 30675 2.51× 10−5 2.56× 10−5 9.825 92× 10−1

10682 96359 7.99× 10−6 8.12× 10−6 9.846 98× 10−1

34182 309389 2.49× 10−6 2.54× 10−6 9.824 08× 10−1

Table 4.9: Results of calculated error and improvement.

Figure 4.13: Left �gure � comparison with theoretical rate of convergence, right �gure

� improvement calculated by (4.5).

84

4.3. Numerical experiments

3. µ = 0.08, σ = 0.4, c = −0.03, λ(t) = 2, x0 = 10, T = 3, K = 60000.

n kn εK(X̄df−Lin−M∗
kn

) εK(X̄df−Lin−M−eq
kn

) impdfK,kn

3 15 3.89 3.90 9.980 08× 10−1

10 49 1.07 1.09 9.805 73× 10−1

32 154 3.30× 10−1 3.38× 10−1 9.758 61× 10−1

102 490 1.00× 10−1 1.05× 10−1 9.555 14× 10−1

326 1560 3.16× 10−2 3.34× 10−2 9.458 77× 10−1

1043 5066 9.75× 10−3 1.03× 10−2 9.479 37× 10−1

3338 16492 3.15× 10−3 3.29× 10−3 9.570 43× 10−1

10682 56293 1.02× 10−3 1.09× 10−3 9.315 08× 10−1

34182 175734 3.45× 10−4 3.84× 10−4 8.975 61× 10−1

Table 4.10: Results of calculated error and improvement.

Figure 4.14: Left �gure � comparison with theoretical rate of convergence, right �gure

� improvement calculated by (4.5).

85

4.3. Numerical experiments

Numerical experiments for method X̄Lin−M−eq
n in multidimensional case

1. a(t, x) = 0.5

x1

x2

x3

x4

x5

,

b(t, x) =

0.075x1 0.22x1 0.741x1 0.172x1 0.01x1

0.254x2 0.634x2 0.925x2 0.901x2 0.943x2

0.109x3 0.333x3 0.825x3 0.273x3 0.256x3

0.027x4 0.577x4 0.9x4 0.461x4 0.867x4

0.623x5 0.097x5 0.438x5 0.275x5 0.682x5

, c(t, x) = 1.25

x1

x2

x3

x4

x5

,

λ(t) = 1.1245t, x0 =

1

1

1

1

1

, T = 5, K = 60000.

Figure 4.15: Comparison with theoretical

rate of convergence.

n εK(X̄Lin−M−eq
n)

10 3.08× 103

20 6.40× 102

40 4.50× 102

80 3.42× 102

160 2.14× 102

320 8.65× 101

640 9.34× 101

1280 6.44× 101

2560 6.99× 101

5120 3.24× 101

10240 1.57× 101

20480 3.46× 101

Table 4.11: Results of calculated error.

86

4.3. Numerical experiments

2. a(t, x) = 0.5
(
x1

)
, b(t, x) =

(
0.075x1 0.22x1 0.741x1 0.172x1 0.01x1

)
,

c(t, x) = 1.25
(
x1

)
, λ(t) = 5, x0 =

(
1
)
, T = 2.25, K = 60000.

Figure 4.16: Comparison with theoretical

rate of convergence.

n εK(X̄Lin−M−eq
n)

10 2.16× 107

20 2.06× 108

40 4.31× 107

80 9.64× 107

160 3.64× 107

320 2.00× 107

640 3.24× 106

1280 6.64× 106

2560 8.51× 106

5120 4.47× 105

10240 3.81× 106

20480 1.25× 106

Table 4.12: Results of calculated error.

87

4.3. Numerical experiments

3. a(t, x)µ = 0.5

x1

x2

x3

x4

x5

,

b(t, x) =

0.075x1 0.22x1 0.741x1 0.172x1 0.01x1

0.254x2 0.634x2 0.925x2 0.901x2 0.943x2

0.109x3 0.333x3 0.825x3 0.273x3 0.256x3

0.027x4 0.577x4 0.9x4 0.461x4 0.867x4

0.623x5 0.097x5 0.438x5 0.275x5 0.682x5

, c(t, x) = 1.25

x1

x2

x3

x4

x5

,

λ(t) = 5, x0 =

1

1

1

1

1

, T = 2.25, K = 60000.

Figure 4.17: Comparison with theoretical

rate of convergence.

n εK(X̄Lin−M−eq
n)

10 7.82× 108

20 7.93× 108

40 2.85× 107

80 2.26× 107

160 6.94× 107

320 2.94× 107

640 2.98× 106

1280 2.64× 107

2560 5.14× 106

5120 1.70× 106

10240 4.48× 105

20480 2.71× 106

Table 4.13: Results of calculated error.

88

4. a(t, x) = 0.5

x1

x2

x3

x4

x5

, b(t, x) =

0.075x1

0.254x2

0.109x3

0.027x4

0.623x5

, c(t, x) = 1.25

x1

x2

x3

x4

x5

,

λ(t) = 1.1245t, x0 =

1

1

1

1

1

, T = 2.25, K = 60000.

Figure 4.18: Comparison with theoretical

rate of convergence.

n εK(X̄Lin−M−eq
n)

10 3.59× 102

20 3.21× 102

40 1.59× 102

80 1.10× 102

160 1.02× 102

320 5.78× 101

640 4.25× 101

1280 2.46× 101

2560 2.86× 101

5120 6.73

10240 8.34

20480 5.61

Table 4.14: Results of calculated error.

Chapter 5

Conclusions and future work

In this section we shortly summarize results presented in the thesis. We also identify

some open problems corresponding to the equation (1.1).

5.1. Summary of results

In the thesis we considered problem of optimal strong approximation of stochastic

di�erential equation with jumps. In the �rst part of thesis we investigated scalar

problem driven by one-dimensional Wiener and Poisson processes. We analyzed

algorithms based on the path-independent adaptive step-size control. We proved that

these algorithms are asymptotically optimal in considered class of methods.

In the second part of the thesis we investigated systems of SDEs driven by

multi-dimensional Wiener process and one-dimensional Poison process. We considered

piecewise linear interpolation of the classical Milstein scheme based on equidistant

mesh.

In the last part of the thesis we discussed CUDA C programming language and its

application to simulation of stochastic processes. We also presented results of numerical

experiments preformed on GPUs.

5.2. Open problems

(OP1) In the future work we would like to investigate algorithms based on

path-independent and path-dependent adaptive step-size control in the case

when the driving Wiener and Poisson processes are multidimensional.

90

(OP2) Analysis of (OP1) without assuming jump commutative conditions.

In [23] we investigated the problem of optimal approximation of stochastic integrals

I(X,W) =
T∫
0

X(t)dW (t), where T > 0 and W = {W (t)}t≥0 is a standard

one-dimensional Wiener process. We were aiming at methods that were based only

on discrete values of X and W which were, additionally, corrupted with some noise.

Hence, it is natural to investigate the following problem:

(OP3) Investigation of (1.1) in the case when the coe�cients a, b, c, as well as the driving

processes N and W , are corrupted with some noise.

Inspired by a practical applications we plan a further development of the cuSTOCH

library. We also think about application of DNN (deep neural network) into stochastic

problems. In [2] we proposed the �rst solution which was the hybrid model. It combined

appropriate methodology for performing fast Monte Carlo simulations on GPUs with

application of DNNs to approximating prices of some �nancial derivative instruments.

We plan to go deeper into that topic in the future.

Appendix A

Basic information on stochastic

processes and stochastic di�erential

equations

In this section we present basic de�nitions about random variables, stochastic

processes, stochastic integration, stochastic di�erential equations, and auxiliary

results. We have collected here the most important information about the topic

discussed in this thesis.

A.1. Random variables and conditional expectation

De�nition A.1 ([77]). Let X be a set, 2X represents a power set of X. The subset

F ⊂ 2X is called σ-algebra if

� X ∈ F and ∅ ∈ F ,
� for all A ∈ F , X \ A ∈ F ,
� for all A1, A2, . . . ∈ F , ∪∞i=1Ai ∈ F .

De�nition A.2 ([77]). Let Ω be a set, and A be a family of subsets of

Ω (i.e. A ⊂ 2Ω). The smallest in terms of inclusions σ-algebra contains sets from

A is called σ-algebra generated by family A. We denote it by σ(A).

We say that pair (X,F) is a measurable space. If X is a topological space, then

the σ-algebra generated by all open sets in X (we denote it by Top(X)) is called the

92

A.1. Random variables and conditional expectation

Borel σ-algebra on X and we denote it by B(X). The element A ∈ B is called Borel

sets.

De�nition A.3 ([77]). Let (F,FF), (G,FG) be a measurable space. The product

FF ⊗FG of σ-algebras FF and FG on F ×G is de�ned as

FF ⊗FG := σ
(
{A×B : A ∈ FF , B ∈ FG}

)
.

De�nition A.4 ([77]). Let (Ω,F) be a measurable space and G,H be a sub-σ-algebra

in F . The sum of G,H is de�ned as

G ∨H := σ(G ∪H).

De�nition A.5 ([77]). Let (Ω,F) be a measurable space, mapping P : F → R is

called probability measure if

� 0 6 P(A) 6 1, for all A ∈ F ,
� P(Ω) = 1,

� for all A1, A2, . . . ∈ F , Ai ∩ Aj = ∅ for i 6= j then

P
(∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

De�nition A.6 ([77]). Let (Ω,F) be a measurable space and function P : F → R be

a probability measure de�ned on F . A triple (Ω,F ,P) is called probability space.

Here Ω is a sample space, a set A ∈ F is an event and P(A) is a probability of

event A.

De�nition A.7 ([1]). The probability space (Ω,F ,P) is called complete probability

space if for all A ⊂ B such that B ∈ F and P(B) = 0 we have that A ∈ F and

P(A) = 0.

De�nition A.8 ([5]). Let (Ω,F ,P) be a probability space, and let
{
Ai
}
i∈I be an

indexed family of events. The events Ai, i ∈ I are called independent if for each �nite

subset I0 ⊂ I we have

P
(⋂
i∈I0

Ai

)
=
∏
i∈I0

P(Ai).

De�nition A.9 ([1]). Let (F,FF), (G,FG) be measurable spaces. Mapping

f : (F,FF)→ (G,FG) is called a FF/FG-measurable if for all A ∈ FG we have that

f−1(A) ∈ FF .

93

A.1. Random variables and conditional expectation

If G is a topological space equipped with the Borel σ-algebra FG = B(Top(G)),

where Top(G) is a collection of all open set in G, we say that f is Borel measurable.

De�nition A.10 ([37]). Let (X,F , µ) be a space with σ-�nite measure and a Banach

space E with a norm ‖ · ‖. A function f : (X,F) → (E, ‖ · ‖) is called strongly

measurable (or Bochner measurable) if there exists a sequence of simple functions

{fn}n∈N such that

‖fn(x)− f(x)‖ → 0

for almost all x ∈ X.

Based on [27] if space E is separable then every E-valued Borel measurable function

f is strongly measurable. It follows from the fact that a subset of separable metric space

is itself separable. Moreover, if f : X → E is Borel measurable then mapping

X ∈ x→ ‖f(x)‖ ∈ (0,∞)

is F/B(Rd)-measurable, we also write F -measurable in a case of Borel set when

E = Rd.

De�nition A.11 ([1]). Let (Ω,F), (Rd,B(Rd)) be measurable spaces. Mapping

X : (Ω,F) → (Rd,B(Rd)) is called random variable if it is a F -measurable. We

write X : Ω→ Rd.

De�nition A.12 ([1]). Let (Ω,F ,P) be a probability space and X : Ω → Rd is a

random variable de�ned on it. The σ-algebra generated by X is given by

σ(X) :=
{
X−1(A) : A ∈ B(Rd)

}
.

De�nition A.13 ([5]). Let
{
Xi

}
i∈I be an indexed family of random variables de�ned

on (Ω,F ,P), and with values in the measurable space (Rd,B(Rd)). The random

variables Xi, i ∈ I, are called independent if for each choice of sets Ai in B(Rd),

i ∈ I, the events X−1
i (Ai) are independent.

De�nition A.14 ([5]). Let (Ω,F ,P) be a probability space, and let
{
Fi
}
i∈I be an

indexed family of sub-σ-algebras of F . The σ-algebras
{
Fi
}
i∈I are independent if for

each choice of sets Ai ∈ Fi, where i ∈ I, the events Ai are independent.

Fact A.15 ([5]). If
{
Xi

}
i∈I is an indexed family of random variables de�ned on a

probability space (Ω,F ,P), then the random variables Xi, where i ∈ I, are independent
if and only if the σ-algebras

{
σ(Xi)

}
i∈I are independent.

94

A.1. Random variables and conditional expectation

De�nition A.16. Let (X,F , µ;E) be a measured space where E is a separable Banach

space with norm ‖ · ‖, and let p ∈ [1,∞). We de�ne space

Lp(X,F , µ;E) =
{
f : X → E | f − Borel measurable,

∫
X

‖f(x)‖pµ(dx) <∞
}
.

If we identify functions which are equal µ-almost everywhere, then Lp(X,F , µ;E) is

Banach space with norm

‖f‖Lp(X,F ,µ;E) =

(∫
X

‖f(x)‖pµ(dx)

)1/p

.

We use the following notation for the Lp spaces.

De�nition Shortcut

Norm

L2(Ω,F ,P;Rd) L2(Ω;Rd) or L2(Ω)

‖X‖L2(Ω;Rd) = E
(
‖X‖2

)1/2

L2([0, T],B([0, T]), λ1;Rd) L2([0, T];Rd)

‖f‖L2([0,T];Rd) =
(T∫

0

‖f(x)‖2dx
)1/2

L2(Ω× [0, T],F ⊗B([0, T]),P× λ1;Rd) L2(Ω× [0, T];Rd) or L2(Ω× [0, T])

‖f‖L2(Ω×[0,T];Rd) =
(
E

T∫
0

‖f(x)‖2dx
)1/2

L2(Ω× [0, T], σ(Nn(W,N))⊗B([0, T]),P× λ1;Rd) L2(Ω× [0, T];Rd) or L2(Ω× [0, T])

‖f‖L2(Ω×[0,T];Rd) =
(
E

T∫
0

‖f(x)‖2dx
)1/2

De�nition A.17 ([36]). LetX be an integrable random variable de�ned on probability

space (Ω,F ,P) it means that E|X| < ∞. Suppose G is a σ-algebra and G ⊂ F . The
conditional expectation of X given G is de�ned to be the unique random variable Y

(up to P-measure one) satisfying the following conditions:

1. Y is G-measurable,

2.
∫
A

XdP =
∫
A

Y dP for all A ∈ G.

We use E(X | G) to denote the conditional expectation of X given G. We recall that

the notion E(X | Y) = E(X | σ(Y)) formally refers to conditioning given σ-algebra

generated by the random variable Y .

Proposition A.18 ([29, 49]). Let X, Y be integrable random variables on (Ω,F ,P),

and a, b be real numbers. Then:

95

A.1. Random variables and conditional expectation

a) E(aX + bY | G) = a · E(X | G) + b · E(Y | G),

b)
∣∣E(X | G)

∣∣ 6 E
(
|X| | G

)
,

c) if X is G-measurable then

E(X | G) = X,

d) if G,H are σ-algebras such that H ⊂ G ⊂ F , then

E
(
E(X | H) | G

)
= E

(
E(X | G) | H

)
= E(X | G),

and in particular E
(
E(X | G)

)
= E(X).

Proposition A.19 ([29]). Let X be a random variable de�ned on (Ω,F ,P) with

EX2 < ∞. Let G ⊂ F be a sub-σ-algebra of F. Then E(X | G) is the orthogonal

projection of X on L2(Ω,G,P). That is, for any G-measurable random variable Y with

EY 2 <∞,

E
(
X − Y

)2
> E

(
X − E(X | G)

)2

with the equality if and only if Y = E(X | G).

Lemma A.20 ([6]). Let X be integrable random variable on probability space (Ω,F ,P),

let G,F be a sub-σ-algebras such that H σ(σ(X) ∪ G) then

E(X | G ∨H) = E(X | G).

De�nition A.21 ([6]). Let (Ω,F ,P) be a probability space and let F1,F2,F3 be a

three sub-σ-algebras of F . F1 and F3 are called conditionally independent given F2 if

E(Y1Y3 | F2) = E(Y1 | F2) · E(Y3 | F2),

where Y1, Y3 denote positive random variables measurable with a respect to the

corresponding σ-algebras F1,F3. We will mark it as F1 F2F3.

Theorem A.22 ([6]). Let F12 = F1 ∨ F2. Then F1 and F3 are conditionally

independent given F2 if and only if

E(Y3 | F12) = E(Y3 | F2), a.s.

for every F3-measurable and integrable random variable Y3.

96

A.2. Basic fact from the theory of stochastic processes

Proposition A.23. Let (Ω,F ,P) be a probability space and let F1, F2, F3 be a

three sub-σ-algebras of F which satisfy F1 F2F3. Let Y1, Y3 : Ω → R be a random

variables and σ(Y1) ⊂ F1, σ(Y3) ⊂ F3. We assume that E|Y1| < +∞, E|Y3| < +∞
and E|Y1Y3| < +∞. Then we have that

E(Y1Y3 | F2) = E(Y1 | F2) · E(Y3 | F2) a.s. (A.1)

Proof. Let Yi = Y +
i −Y −i for i = 1, 3. We have that 0 6 Y +

i , Y
−
i and 0 6 Y

+/−
i 6 |Yi|.

σ(Y
+/−
i) ⊂ σ(Yi) ⊂ Fi for i = 1, 3. We also have that 0 6 Y

+/−
1 Y

+/−
3 6 Y1Y3.

So random variables Y +
1 ,−Y −1 , Y +

3 ,−Y −3 are positive and integrable. From assumption

about conditional independence F1 F2F3 and integrability of de�ned random

variables, we have

E(Y1Y3 | F2) = E
(
(Y +

1 − Y −1) · (Y +
3 − Y −3) | F2

)
= E(Y +

1 Y
+

3 | F2)− E(Y +
1 Y

−
3 | F2)− E(Y −1 Y

+
3 | F2) + E(Y −1 Y

−
3 | F2)

= E(Y +
1 | F2) · E(Y +

3 | F2)− E(Y +
1 | F2) · E(Y −3 | F2)

− E(Y −1 | F2) · E(Y +
3 | F2) + E(Y −1 | F2) · E(Y −3 | F2)

= E(Y +
1 | F2) ·

(
E(Y +

3 | F2)− E(Y −3 | F2)
)

+ E(Y −1 | F2) ·
(
E(Y +

3 | F2)− E(Y −3 | F2)
)

=
(
E(Y +

1 | F2)− E(Y −1 | F2)
)
·
(
E(Y +

3 | F2)− E(Y −3 | F2)
)

= E(Y1 | F2) · E(Y3 | F2).

That ends the proof. �

A.2. Basic fact from the theory of stochastic

processes

Let (Ω,F ,P) be a complete probability space. Let B([0,+∞)) be a σ-algebra

of Borel sets de�ned on [0,∞). Now, we recall the de�nitions of a �ltration and a

stochastic process.

De�nition A.24 ([38]). A �ltration is a family {Ft}t≥0 of increasing sub-σ-algebras

of F , i.e. Ft ⊂ Fs ⊂ F for all 0 6 t < s. The �ltration is called right continuous if

Ft =
⋂
s>tFs for all t > 0. For a complete probability space the �ltration is said to

97

A.2. Basic fact from the theory of stochastic processes

satisfy the usual conditions if it is right continuous and F0 contains all sets of zero

measure.

Let us de�ne F∞ = σ
(⋃

t≥0Ft
)
.

De�nition A.25 ([38]). A family X =
{
X(t)

}
t≥0

of Rd-valued random variables is

called a stochastic process with the parameter set R+ and the state space Ω.

For any parameter t ∈ [0,+∞) we have a random variable

Ω 3 ω 7→ X(ω, t) ∈ Rd.

For a �xed state ω ∈ Ω, a function

[0,+∞) 3 t 7→ X(ω, t),

is called a sample path of the process.

De�nition A.26 ([38]). A stochastic process X is continuous if for almost all ω ∈ Ω

the function X(ω, ·) is continuous on [0,+∞).

De�nition A.27 ([38]). A stochastic process X is càdlàg if the process has right

continuous paths and left limits almost everywhere. A stochastic process X is càglàd

if the process has left continuous paths and right limits almost everywhere.

De�nition A.28 ([38]). We say that a process X is adapted to �ltration
{
Ft
}
t≥0

if

for all t > 0 the random variable X(t) is Ft-measurable.

De�nition A.29 ([38]). Let O (resp. P) denote the smallest σ-algebra on Ω × R+

with respect to every càdlàg adapted process (resp. càglàd) is a measurable function

of (ω, t). A stochastic process is said to be optional (resp. predictable) if the process

regarded as a function of (ω, t) is O-measurable (resp. P-measurable).

Theorem A.30 ([38]). Every càglàd and adapted to �ltration
{
Ft
}
t≥0

stochastic

process X is predictable.

De�nition A.31 ([38]). We say that a stochastic process X is measurable if the

process regarded as a function of two variables (ω, t) from Ω × [0,+∞) → Rd is

F ⊗B([0,+∞)])-measurable.

De�nition A.32 ([38]). A stochastic process X : Ω × [0,+∞) → Rd is

called progressively measurable if for every t > 0 the function X|Ω×[0,t] is

Ft ⊗B([0, t])/B(Rd)-measurable.

98

A.2. Basic fact from the theory of stochastic processes

Theorem A.33 ([38]). Every
{
Ft
}
t≥0

progressively measurable process is measurable

and adapted to �ltration
{
Ft
}
t≥0

.

De�nition A.34 ([38]). A natural �ltration
{
FXt
}
t≥0

of a process X is de�ned as

FXt = σ
(
X(s) : 0 6 s 6 t

)
.

Any stochastic process is adapted to its natural �ltration.

De�nition A.35 ([38]). Let (Ω,F ,P) be a probability space with �ltration
{
Ft
}
t≥0

.

A standard one-dimensional Brownian motion is a real-valued continuous and{
Ft
}
t≥0

-adapted process {W (t)}t≥0 with the following properties:

(i) W (0) = 0 a.s.,

(ii) for 0 6 s < t, the increment W (t)−W (s) ∼ N(0, t− s),
(iii) for 0 6 s < t, the increment W (t)−W (s) is independent of Fs.

Any Brownian motion is adapted to its natural �ltration {FWt }t≥0. Moreover, if{
Ft
}
t∈[0,T]

is (in terms of inclusion) 'larger' �ltration, i.e. FWt ⊂ Ft for all t > 0, and

W (t) −W (s) independent of Fs whenever 0 6 s < t < ∞, then W (t) is a Brownian

motion with respect to the �ltration
{
Ft
}
t≥0

.

The σ-algebra

Ft = σ
(
FWt ∪ {A ∈ F : P(A) = 0}

)
.

It is called an augmentation under P of the natural �ltration
{
FWt

}
t≥0

generated by

Brownian motion W . The augmentation is a �ltration on (Ω,F ,P).

De�nition A.36 ([38]). Anmw-dimensional process
{
W (t) =

(
W1(t), . . . ,Wmw(t)

)T}
t≥0

is called an mw-dimensional Brownian motion if every
{
Wi(t)

}
t≥0

is a one-dimensional

Brownian motion and
{
W1(t)

}
t≥0
, . . . ,

{
Wmw(t)

}
t≥0

are independent.

De�nition A.37 ([61]). Stochastic process
{
N(t)

}
t≥0

is called the non-homogeneous

Poisson point process, with intensity function λ(t) > 0 and
+∫
0

∞λ(t)dt < +∞ when it

satis�es the following conditions

(i) N(0) = 0,

(ii) has independent increments,

(iii) N(t)−N(s) ∼ Poiss(Λ(t, s)),

99

A.3. Stochastic integration with respect to square integrable martingale

where

m(t) =

t∫
0

λ(s)ds,

Λ(t, s) = m(t)−m(s), t, s ∈ [0, T].

By the De�nition A.37 we have the following properties.

Proposition A.38 ([61]). For the homogeneous Poisson point process
{
N(t)

}
t≥0

we

have for all t > 0 that

(i) E
(
N(t)

)
= m(t),

(ii) P
(
N(t) = n

)
= (m(t))n

n!
e−m(t).

De�nition A.39 ([61]). The compensated Poisson process Ñ = {Ñ(t)}t∈[0,T] is de�ned

as follows

Ñ(t) = N(t)−m(t), t ∈ [0, T]. (A.2)

Fact A.40 ([61]). The compensated Poisson process Ñ = {Ñ(t)}t∈[0,T] is a martingale

(see De�nition A.41).

A.3. Stochastic integration with respect to square

integrable martingale

De�nition A.41 ([38]). A real valued,
{
Ft
}
t≥0

-adapted integrable process
{
M(t)

}
t≥0

(i.e. E|M(t)| < ∞ for all t) is called a martingale with respect to
{
Ft
}
t≥0

(or simply,

martingale) if

E
(
M(t) | Fs

)
= M(s) a.s.,

for all 0 < s < t <∞.

De�nition A.42 ([78]). Let
{
M(t)

}
t≥0

be a martingale such that M(0) = 0, we say

that
{
M(t)

}
t≥0

is square integrable martingale if for all t > 0

E
(
M2(t)

)
<∞.

By M2 we denote a space of square integrable martingale. If additionally
{
M(t)

}
t≥0

is continuous we say that
{
M(t)

}
t≥0

is square integrable continuous martingale, and

by M2,c we denote space of square integrable continuous martingale.

100

A.3. Stochastic integration with respect to square integrable martingale

De�nition A.43 ([38]). A random variable τ : Ω→ [0,∞] (it may take the value∞)

is called an
{
Ft
}
t≥0

-stopping time (or simply, stopping time) if{
ω : τ(ω) 6 t

}
∈ Ft,

for any t > 0.

De�nition A.44 ([38]). A right continuous adapted processM =
{
M(t)

}
t≥0

is called

a local martingale if there exists a non-decreasing sequence {τk}k≥0 of stopping times

with τk ↑ ∞ a.s. such that every
{
M(τk ∧ t)−M(0)

}
t≥0

is a martingale.

De�nition A.45 ([78]). A right continuous adapted processM =
{
M(t)

}
t≥0

is called

a locally square integrable martingale if there exists a non-decreasing sequence {τk}k≥0

of stopping times with τk ↑ ∞ a.s. such that every
{
M(τk ∧ t)

}
t≥0
∈M2.

By M2,loc we denote a space of locally square integrable martingale. If additionally{
M(t)

}
t≥0

is continuous we say that it is locally square integrable continuous

martingale, and by M2,loc,c we denote space of locally square integrable continuous

martingale.

De�nition A.46 ([25]). An càdlàg adapted process X is said to be a semi-martingale

if X can be decomposed into X = M + A where M is an càdlàg local martingale and

A is an càdlàg process whose paths have �nite variation on [0, T] for all T < ∞. We

call this decomposition D-M (Doob-Meyer) decomposition.

Proposition A.47 ([78]). Let
{
M(t)

}
t≥0
,
{
M̃(t)

}
t≥0
∈M2 then

�

{
M2(t)

}
t≥0

has a unique D-M decomposition as follow

M2(t) = martingale+ 〈M〉(t),

where 〈M〉(t) is a natural (predictable) integrable increasing process, and it is

called (predictable) characteristic process for M(t).

�

{
M(t) · M̃(t)

}
t≥0

has a unique D-M decomposition as follow

M(t) · M̃(t) = martingale+ 〈M, M̃〉(t),

where 〈M, M̃〉(t) is a natural (predictable) integrable �nite variational process, i.e.
it is a di�erence of two natural (predictable) integrable increasing processes and

it is called the cross predictable characteristic process (or (predictable) quadratic

variational Ft-adapted process) for M(t) and M̃(t).

101

A.3. Stochastic integration with respect to square integrable martingale

Now we show partial construction of stochastic integral with the respect to square

integrable martingale. For the full concept we refer to [78].

De�nition A.48 ([78]). By L0(Ω × [0, T],F ⊗ B([0, T]),P × λ1;Rd) we denote the

space of all real-valued,
{
Ft
}
t≥0

-adapted processes such that exists decomposition

0 = t0 < t1 < . . . < tn < . . . → +∞ and exists ψi(ω) Fti-measurable such that

supi(ess sup ‖ψi(ω, t)‖2) < +∞ and we can write f as simply function

f(ω, t) = ψ0(ω)1t=0(t) +
∞∑
i=0

ψi(ω)1t∈(ti,ti+1](t).

Fact A.49 ([78]). L0(Ω × [0, T],F ⊗ B([0, T]),P × λ1;Rd) is dense in

L2(Ω× [0, T],F ⊗B([0, T]),P× λ1;Rd) with the respect to complete norm

‖f‖L2 =
∞∑
n=0

1

2n
(
‖f‖2

L2(Ω×[0,T]) ∧ 1
)
.

De�nition A.50 ([78]). We denote by L2
M the space of all real-valued,{

Ft
}
t≥0

-adapted processes f =
{
f(t, ω)

}
t≥0

such that for all t > 0 we have

that

‖f‖2
L2(Ω×[0,t]),M = E

 t∫
0

|f(s)|2d〈M〉(t)

 < +∞.

Fact A.51 ([78]). L0 is dense in L2
M with the respect to complete norm

‖f‖L2,M =
∞∑
n=0

1

2n
(
‖f‖2

L2(Ω×[0,t]),M ∧ 1
)
.

De�nition A.52 ([78]). Let M ∈ M2. For every f ∈ L0 we de�ne a Itô integral for

tn < t 6 tn+1, n = 0, 1, . . . as

I(f)(ω, t) =

t∫
0

f(ω, s)dM(ω, s) =
n∑
i=0

fi(ω) ·
(
M(ω, ti+1)−M(ω, ti)

)
,

and we can write as a in�nite sum

I(f)(t) =

t∫
0

f(s)dM(s) =
∞∑
i=0

fi ·
(
M(ti+1 ∧ t)−M(ti ∧ t)

)
.

De�nition A.53 ([78]). Let M ∈ M2 and let f ∈ L2
M and

{
fn
}∞
n=1

be a sequence of

processes from L0 such that ‖f − fn‖L2,M → 0 when n→∞. We de�ne a Itô integral

as a limit for

I(f)(t) = lim
n→∞

I(fn)(t),

102

A.3. Stochastic integration with respect to square integrable martingale

and we write

I(f)(t) =

t∫
0

f(s)dM(s).

Fact A.54 ([78]). If f ∈ L2 then the Itô integral I(f) belongs to M2,c.

Theorem A.55 ([26,36,38,48,78,83]). Let M, M̃ ∈M2, f, g ∈ L2
M and h ∈ L2

M̃
then

for all τ > σ σ, τ � stopping time, for all t, s ≥ 0 we have that

� E
(

s∫
0

f(t)dM(t)

)
= 0,

� E
(

s∫
0

f(t)dM(t)

)2

= E
s∫

0

|f(t)|2d〈M〉(t),

�

s∫
0

f(t)dM(t) is Fs-measurable,

� E

((t∧τ∫
0

f(u)dM(u)−
t∧σ∫
0

f(u)dM(u)
) ∣∣ Fσ) = 0 a.s.,

�

t∫
0

f(u) + g(u)dM(u) =
t∫

0

f(u)dM(u) +
t∫

0

g(u)dM(u) a.s.,

� E

((t∧τ∫
0

f(u)dM(u)−
t∧σ∫
0

f(u)dM(u)
) ∣∣ Fσ) = 0 a.s.,

� E

((t∧τ∫
0

f(u)dM(u)−
t∧σ∫
0

f(u)dM(u)
)
·
(t∧τ∫

0

g(u)dM(u)−
t∧σ∫
0

g(u)dM(u)
) ∣∣ Fσ)

= E

((t∧τ∫
t∧σ

f(u)g(u)d〈M〉(u)
∣∣ Fσ) a.s.,

� E

(
t∫

0

f(u)dM(u)−
s∫

0

f(u)dM(u)
)
·
(t∫

0

h(u)dM̃(u)−
s∫

0

h(u)dM̃(u)
) ∣∣ Fs)

= E

((t∫
s

f(u)h(u)d〈M, M̃〉(u)
∣∣ Fs) a.s.

� Let ξ is a real-valued Fs-measurable random variable then

t∫
s

ξ · f(u)dM(u) = ξ

t∫
s

f(u)dM(u) a.s.

Stochastic integral de�ned in this section can be extended for more general

stochastic processes (see [78]). It turns out that any càglàd processes are integrable with

respect to a semi-martingale. It is because of the fact that it compensator is absolutely

continuous. By this fact whole considered in thesis processes (N andW) satisfy all the

necessary assumptions and can be integrated with the respect to semi-martingales.

103

A.3. Stochastic integration with respect to square integrable martingale

Lemma A.56 ([38]). Let W1,W2 be a one-dimensional Wiener processes and N be

non-homogeneous Poisson process. Then we have that

〈W1,W1〉(t) = t,

〈W1,W2〉(t) = 0,

〈W1, N〉(t) = 0.

In the thesis we also use multidimensional Wiener process so we have to de�ne a

multidimensional Itô integral.

De�nition A.57 ([38]). Let Mj ∈ M2 for j ∈ {1, . . . ,mw}. Using matrix notation,

we de�ne the multi-dimensional Itô integral for f

I(f)(t) =

t∫
0

f(s)dM(s) =

t∫
0

f 1,1(s) f 1,2(s) . . . f 1,mw(s)

f 2,1(s) f 2,2(s) . . . f 2,mw(s)
...

...
. . .

...

fd,1(s) fd,2(s) . . . fd,mw(s)

dM1(s)

dM2(s)
...

dMmw(s)

 ,

where f ij ∈ L2
Mj
, i ∈ {1, . . . , d}, j ∈ {1, . . . ,mw}. De�ned in that way stochastic

integral I(f)(t) is the d-dimensional column-vector-valued process whose ith

component is the following sum of 1-dimensional Itô integrals,

mw∑
j=1

t∫
0

f i,j(s)dMj(s).

Lemma A.58. Let f = (f 1, . . . , fmw) be a function where f j ∈ L2
Wj
, j ∈ {1, . . . ,mw}

and Wj for j ∈ {1, . . . ,mw} be a Brownian Motion. Then we have the following Itô

isometry

� E
(

s∫
0

f(t)dW (t)

)2

= E
s∫

0

‖f(t)‖2dt.

104

A.3. Stochastic integration with respect to square integrable martingale

Proof.

E

 s∫
0

f(t)dW (t)

2

= E
(mw∑
j=1

t∫
0

f j(s)dWj(s)
)2

=
mw∑
j=1

E
(t∫

0

f j(s)dWj(s)
)2

+ 2E
∑
i<j

E

((t∫
0

f i(s)dWi(s)
)
·
(t∫

0

f j(s)dWj(s)
))

=
mw∑
j=1

E
t∫

0

(
f j(s)

)2

dt = E
t∫

0

‖f(s)‖2dt.

This ends the proof. �

In this thesis we consider also stochastic integrals with respect to the Poisson process

N . The process is a semi-martingale and for any càglàd process f the stochastic integral

with respect to N is de�ned as follows (see [83]) for all s, t > 0

t∫
s

f(u)dN(u) =

t∫
s

f(u)dÑ(u) +

t∫
s

f(u)λ(u)du,

where Ñ is de�ned in De�nition A.39. Note that the integral with respect to Ñ is a

stochastic integral with respect to the square-integrable martingale Ñ . Moreover, due

to the fact that the trajectories of N and Ñ are of �nite variation, the above stochastic

integrals with respect to N and Ñ are equivalent to Lebesgue-Stjeltjes integrals (for

more see [62]).

Now we can show a multidimensional version of the Itô formula for semi-martingales

with jumps, see, for example, [78] or [62].

Lemma A.59 ([19]). Let us assume that the mappings a, b, c and λ satisfy the

assumptions (B1md), (B2md), and (Emd). Let a function U : [0, T] × Rd → Rd belongs

105

A.4. Stochastic di�erential equations

to C1,2([0, T]× Rd). Then for the solution X of (1.1) it holds that

U(t,X(t)) = U(0, X(0)) +

t∫
0

(∂
∂t
U(s,X(s)) +∇xU(s,X(s)) · a(s,X(s))

+
1

2

d∑
j1,j2=1

∂2

∂xj1∂xj2
U(s,X(s)) ·

(
bj1(s,X(s)) · bTj2(s,X(s))

))
ds

+

t∫
0

∇xU(s,X(s)) · b(s,X(s))dW (s)

+

t∫
0

(
U(s,X(s−) + c(s,X(s−)))− U(s,X(s−))

)
dN(s),

and the kth component is given by

Uk(t,X(t)) = Uk(0, X(0)) +

t∫
0

(∂
∂t
Uk(s,X(s)) +

d∑
i=1

∂

∂xi
Uk(s,X(s)) · ai(s,X(s))

+
1

2

d∑
j1,j2=1

∂2

∂xj1∂xj2
Uk(s,X(s))

×
mw∑
j=1

(
bj1,j(s,X(s)) · bj2,j(s,X(s))

))
ds

+
mw∑
j=1

t∫
0

d∑
i=1

∂

∂xi
Uk(s,X(s))bi,j(s,X(s))dWj(s)

+

t∫
0

(
Uk(s,X(s−) + c(s,X(s−)))− Uk(s,X(s−))

)
dN(s).

A.4. Stochastic di�erential equations

Followed by [25] we show here basic theorem about existence and uniqueness of

solutions of SDEs. At the beginning we have to describe notations used in this section.

De�nition A.60 ([27]). Sequence fn converges to f in topology of uniform convergence

on compact sets (ucc topology) if

sup
t<T

∥∥fn(t)− f(t)
∥∥→ 0 ∀T<∞.

106

A.4. Stochastic di�erential equations

De�nition A.61 ([27]). Let (T, τ) be a topological space and (Y, dY) be a metric

space. A sequence of functions fn : T → Y, n ∈ N, converge compactly as n → ∞ to

some function f : T → Y if, for every compact set K ⊆ T,

lim
n→∞

sup
x∈K

dY
(
fn(x), f(x)

)
= 0.

By Dd we de�ne space of function with topology of uniform convergence de�ned as

follows

Dd = D
(
[0,∞),Rd

)
=
{
f : [0,∞)→ Rd | f − is càdlàg

}
.

Let Y1, Y2, . . . , Yk be a càdlàg semi-martingales with the respect to �ltration{
Ft
}
t≥0

. We will consider SDEs of the following form{
dX(t) = z̃(· , t, X)dY (t)

X(0) = ξ0,

where the functional z̃ is given as follows. Let B(Dd) be the smallest σ-algebra de�ned

on Dd under which coordinate mappings θt given by

θt(γ) = γ(t), γ ∈ Dd, 0 6 t <∞,

are measurable, (B(Dd) = σ(θt : 0 6 t <∞)).

Let

z : Ω× [0,∞)× Dd → Rd×k,

be such that for all t ∈ [0,∞),

(ω, γ) 7→ z(ω, t, γ) is Ft ⊗B(Dd)−measurable. (A.3)

For all (ω, γ) ∈ Ω× Dd,

t 7→ z(ω, t, γ) is an càdlàg mapping. (A.4)

Suppose that there is an increasing càdlàg adapted process κ such that for all

γ, γ1, γ2 ∈ Dd,

sup
0≤s≤t

‖z(ω, s, γ)‖ 6 κ(ω, t) sup
0≤s≤t

(
1 + ‖γ(s)‖

)
, (A.5)

sup
0≤s≤t

‖z(ω, s, γ1)− z(ω, s, γ2)‖ 6 κ(ω, t) sup
0≤s≤t

‖γ1(s)− γ2(s)‖. (A.6)

Let z̃ : Ω× [0,∞)× Dd → Rd×k be given by

z̃(ω, s, γ) = z(ω, s−, γ). (A.7)

The Theorem A.62 gives us knowledge about existence and uniqueness of the solutions

of stochastic di�erential equations with respect to multidimensional semi-martingale.

107

A.4. Stochastic di�erential equations

Theorem A.62 ([25]). Let Y1, Y2, . . . , Yk be a càdlàg semi-martingales with the respect

to �ltration
{
Ft
}
t≥0

, Y = (Y1, Y2, . . . , Yk)
T . Let z satisfy assumptions (A.3) � (A.6)

and let z̃ be de�ned by (A.7). Let H be an adapted càdlàg process. Then there exists

an adapted càdlàg process X such that

X(t) = H(t) +

t∫
0+

z̃(· , s,X)dY (s).

Now let us check that the de�nition in (1.1) under considered in thesis assumption

has unique solutions. Let (Ω,F ,P) be a complete probability space with �ltration

{Ft}t≥0. Let W (t) = (W1(t), . . . ,Wmw(t))T be an mw-dimensional Brownian motion

de�ned on that space and N(t) be one-dimensional Poisson process. Let 0 < T < +∞,

x0 ∈ Rd. Let a : [0, T] × Rd → Rd, b : [0, T] × Rd → Rd×mw and c : [0, T] × Rd → Rd

be Borel measurable functions and satisfy the following assumptions.

For function f ∈ {a, b, c}, exists K > 0 such that

(Ã) f ∈ C([0, T]× Rd),

(B̃) for all t, s ∈ [0, T] and all y, z ∈ Rd

(B̃1) ‖f(t, y)− f(t, z)‖ 6 K‖y − z‖.

Consider the d-dimensional stochastic di�erential equation of Itô type

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t) + c(t,X(t−))dN(t) on 0 6 t 6 T,

with the initial valueX(0) = x0. This equation is the notion for the following stochastic

integral equation

X(t) = x0 +

t∫
0

a(s,X(s))ds+

t∫
0

b(s,X(s))dW (s) +

t∫
0

c(s,X(s−))dN(s) t ∈ [0, T].

(A.8)

We refer to a, b and c as to drift, di�usion and jump coe�cients, respectively. Problem

(A.8) can be rewritten as an SDE driven by the multidimensional semi-martingale

Y = (t,W,N)T = (t,W1, . . . ,Wmw , N)T

X(t) = x0 +

t∫
0

F (s,X(s−))dY (s), t ∈ [0, T], (A.9)

108

A.4. Stochastic di�erential equations

where

F (t, y) =
(
F i,j(t, y)

)
1≤i≤d, 1≤j≤2+mw

=

a1 b1,1 b1,2 · · · b1,mw c1

a2 b2,1 b2,2 · · · b2,mw c2

...
...

...
. . .

...
...

ad bd,1 bd,2 · · · bd,mw cd

 (t, y).

(A.10)

De�ned function F : [0, T] × Rd → Rd×(2+mw). Under the assumptions (Ã), (B̃) we

have that F ∈ C([0, T]× Rd) and for all t ∈ [0, T], x, y ∈ Rd,

‖F (t, x)− F (t, y)‖ 6 K‖x− y‖.

Let us de�ne function z : [0,∞)× Dd → Rd×(2+mw)

z(t, γ) = F (t, γ(t)),

and then

z̃(t, γ) = z(t−, γ) = F (t−, γ(t−)) = F (t, γ(t−)).

Now, let us check that the de�ned function z satis�es the conditions (A.3) � (A.6).

Let's start with explaining (A.3). For t 6 T we have that mapping γ → F (t, γ(t))

is B(Dd)-measurable. By assumption (AMD), F (t, ·) is continuous and it is also

Ft-measurable. By the de�nition of B(Dd) coordinate mapping is B(Dd)-measurable.

Moreover, mapping F (t, γ(t)) does not depend on ω. Combining it together we have

that (ω, γ)→ F (t, γ(t)) is Ft ⊗B(Dd)-measurable.

To show (A.4), let (ω, γ) ∈ Ω×Dd. We have that mapping t→ F (t, γ(t)) is càdlàg

as a submission, because F is continuous and γ is càdlàg.

By Lemma B.2 we have that

sup
0≤s≤t

‖z(ω, s, γ)‖ 6 sup
0≤s≤t

∥∥F (s, γ(s))
∥∥

6 sup
0≤s≤t

(d∑
i=1

2+mw∑
j=1

‖F i,j(s, γ(s))‖2
)1/2

6 κ(t, ω) sup
0≤s≤t

(
1 + ‖γ(s)‖

)
,

which proofs that de�nition of z satis�es condition (A.5).

By assumption (B̃1) we have that

sup
0≤s≤t

‖z(ω, s, γ1)− z(ω, s, γ2)‖ 6 sup
0≤s≤t

∥∥F (s, γ1(s))− F (s, γ2(s))
∥∥

6 κ(t, ω) sup
0≤s≤t

∥∥γ1(s)− γ2(s)
∥∥,

109

A.5. Random elements with values in Banach spaces

which proofs that de�nition of z satis�es condition (A.6).

In Chapters 2 and 3 we use stronger assumptions so the existence and uniqueness

also holds. By the above considerations and Theorem A.62 there exists a unique

solution X(t) of the equation (A.8), and the solution belongs to M2([0, T];Rd).

We also have the following estimates for the solution X under the additional

assumptions (B̃2), (Ẽ). For function f ∈ {a, b, c}, and λ exists K > 0 such that

(B̃) for all t, s ∈ [0, T] and all y, z ∈ Rd,

(B̃2) ‖f(t, y)− f(s, y)‖ 6 K(1 + ‖y‖)|t− s|,
(Ẽ) λ ∈ C([0, T]).

Lemma A.63 ([62]). Let us assume that the functions a, b, c and λ satisfy the

assumptions (Ã), (B̃1), (B̃2) and (Ẽ). Then there exists positive constants C1, C2 such

that ∥∥∥ sup
t∈[0,T]

∥∥X(t)
∥∥∥∥∥

L4(Ω)
6 C1,

and for all t, s ∈ [0, T] ∥∥X(t)−X(s)
∥∥
L2(Ω)

6 C2|t− s|1/2.

A.5. Random elements with values in Banach spaces

In stochastic analysis it is important to have tools which allow us to switch

between two possible ways of looking at a stochastic process. Firstly, we can consider

a stochastic process as a product measurable function

Ω× [0,+∞) 3 (ω, t)→ X(ω, t) ∈ Rd.

On the other hand, if almost all trajectories of process X belongs to (E,E) where

(E,E) is some functional space equipped with a σ-algebra E, we can consider mapping

X̂ : Ω→ E de�ned in the following way

X̂(ω) = X(ω, ·), ω ∈ Ω. (A.11)

If X̂ is F/E-measurable then we say that the process X generates the random element

X̂ in (E,E). Moreover, the law of µ of X̂ is a probabilistic measure induced by X̂ in

the measurable space (E,E).

Theorem A.64 ([11]). Let E = L2([0, T]), equipped with the norm ‖ · ‖L2([0,T]), and

E = B(E). If X ∈ L2(Ω× [0, T],F ⊗ B([0, T]),P× λ1), then it generates the random

element X̂ in L2([0, T]).

110

A.6. Auxiliary results

Having a random element X̄ in some functional space E it is natural to ask if

there is a product measurable stochastic process X satisfying (A.11). In the case when

E = L2([0, T]) the answer is provided by the Theorem A.65.

Theorem A.65 ([37] Proposition 2, page 741). Let X̄ be a random element in

L2([0, T]). Then there exists a product measurable process X such that for almost all

ω, the equality X(ω, t) = (X̄(ω))(t) holds almost everywhere on [0, T].

Note that X ∈ L2(Ω × [0, T],F ⊗ B([0, T]),P × λ1). Hence by Theorem A.64 the

solution X of the SDE (1.1) generates their representation element X̂ :→ L2([0, T];Rd)

which is F/B(L2([0, T];Rd))-measurable. In the thesis we use tha same symbol X for

the product measurable solution of SDE (1.1) as for it representation as a random

element in L2([0, T];Rd).

By (1.5) and (1.6) we have that X̄n : Ω → L2([0, T];Rd) is a

σ(Nn(W,N))/B(L2([0, T];Rd))-measurable random element in L2([0, T];Rd).

By Theorem A.65 there exists σ(Nn(W,N))⊗B([0, T])/B(Rd)-measurable process

X̂n such that for almost all ω ∈ Ω

X̂n(ω, t) =
(
X̄n(ω)

)
(t)

holds for almost all t ∈ [0, T]. In particular, this implies that for almost all t ∈ [0, T]

the random variable

Ω 3 X̄n(· , t)→ Rd

is σ(Nn(W,N))-measurable. Again, we do not distinguish between X̄n and X̂n.

A.6. Auxiliary results

A.6.1. Properties of Frobenius norm

Let A = [ai,j]d,ki,j=1 be the d×k real matrix. Then the Frobenius norm of A is de�ned

as

‖A‖ =

(
d∑
i=1

k∑
j=1

|ai,j|2
)1/2

.

In the special case, when x is a vector of length d,

‖x‖ =

(
d∑
i=1

|xi|2
)1/2

111

is just the Euclidean vector norm.

Now, if we denote jth column of A by aj, and ith row of A by ai , then the norm

can be expressed as

‖A‖ =

(
m∑
j=1

‖aj‖2

)1/2

=

(
d∑
j=1

‖ai‖2

)1/2

.

The Frobenius norm has a useful property of submultiplicity.

Lemma A.66 ([81]). Let A = [ai,j]d,mi,j=1 and B = [bi,j]m,ki,j=1 be matrices of sizes d×m
and m× k, respectively. Then the the product C = [ci,j]d,ki,j=1 of matrices A and B is an

d× k matrix and

‖C‖ = ‖AB‖ 6 ‖A‖‖B‖.

A.6.2. Grönwall's inequality

Theorem A.67 ([38]). Let T > 0 and c > 0. Let u(·) be a Borel measurable, bounded,

and nonnegative function on [0, T], and let v(·) be a nonnegative integrable function

on [0, T]. If

u(t) 6 c+

t∫
0

v(s)u(s)ds for all t ∈ [0, T],

then

u(t) 6 c · exp

 t∫
0

v(s)ds

 for all t ∈ [0, T].

Appendix B

Time-continuous Milstein

approximation

In this section we show basic properties about time continuous Milstein

approximation which is used in this thesis. We will provide de�nition of approximation

in two cases, �rst which use information about �rst derivative, and second which

corresponds to derivative free version of Milstein scheme. Then we prove main

theorems which say about the rate of convergence of both algorithms. We also

show here the useful Lemmas and Facts which help to prove Theorem B.1 and

Theorem B.13.

B.1. Time-continuous Milstein approximation for

system of SDEs

Let m ∈ N and

0 = t0 < t1 < . . . < tm = T, (B.1)

be an arbitrary discretization of interval [0, T]. By

∆Zi = Z(ti+1)− Z(ti),

we denote the increment of stochastic processes Z ∈
{
N,W,W1, . . . ,Wmw

}
, where

i = 0, 1, . . . ,m − 1, it is both a vector or a number depending on process structure.

113

B.1. Time-continuous Milstein approximation for system of SDEs

Followed by [61] the time-continuous Milstein approximation X̃M
m =

{
X̃M
m (t)

}
t∈[0,T]

based on the discretization (B.1) is de�ned as follows. We set

X̃M
m (0) = x0, (B.2)

and for t ∈ [ti, ti+1], i = 0, 1, . . . ,m− 1,

X̃M
m (t) = X̃M

m (ti) + a(Ui) · (t− ti) + b(Ui) ·
(
W (t)−W (ti)

)
+ c(Ui) ·

(
N(t)−N(ti)

)
+

mw∑
j1,j2=1

Lj1b
j2(Ui) · Iti,t(Wj1 ,Wj2)

+
mw∑
j1=1

Lj1c(Ui) · Iti,t(Wj1 , N) +
mw∑
j1=1

L−1b
j1(Ui) · Iti,t(N,Wj1)

+ L−1c(Ui) · Iti,t(N,N), (B.3)

where Ui =
(
ti, X̃

M
m (ti)

)
and multiple stochastic integrals de�ned as

Iti,t(Y, Z) =

t∫
ti

s−∫
ti

dY (u)dZ(s), (B.4)

for Y, Z ∈
{
N,W1, . . . ,Wmw

}
. For more properties about multiple integration we refer

to Appendix B.4, where we consider basic properties about multiple stochastic integrals

in a way when partial information about processes are known.

We stress that for any m ∈ N the approximation
{
X̃M
m (t)

}
t∈[0,T]

, in our model of

computation (even under the commutative conditions (Dmd)), is not an implementable

numerical scheme, since computation of a trajectory of X̃M
m requires complete

knowledge of a corresponding trajectories of N and W . However, if the conditions

(Dmd) holds, by Lemma B.23, we can compute values of X̃M
m at the discrete points

(B.1) using only function evaluations of W and N at (B.1).

For everym ∈ N the process
{
X̃M
m (t)

}
t∈[0,T]

is adapted to
{
Ft
}
t∈[0,T]

and has càdlàg

paths. Furthermore, under the commutative conditions (Dmd) the random variables{
X̃M
m (ti)

}m
i=0

are measurable with respect to the σ-algebra

σ
(
Nm(N,W)

)
= σ

(
N(t1), N(t2), . . . , N(tm),W (t1),W (t2), . . . ,W (tm)

)
, (B.5)

and the upper bound on the error of X̃M
m is given by Theorem B.1. We provide an

auxiliary result concerning an upper bound on the error for the continuous Milstein

approximation X̃M
m . A similar result has been justi�ed in Theorem 6.4.1 in [61],

however, under slightly stronger assumptions. In particular, in this thesis we do not

114

B.1. Time-continuous Milstein approximation for system of SDEs

assume the existence of continuous partial derivative ∂f/∂t for f ∈ {a, b, c} and we

do not assume any Lipschitz conditions for the second order partial derivatives of

f = f(t, y), f ∈ {a, b, c}, with respect to y. Moreover, we consider non-homogeneous

Poisson process, while in [61] in Theorem 6.4.1 has been shown only for homogeneous

counting processes.

Theorem B.1. Let us assume that the mappings a, b, c and λ satisfy assumptions

(Amd) � (Cmd) and (Emd). Let m ∈ N and let (B.1) be an arbitrary discretization of

the interval [0, T]. Then for continuous Milstein approximation X̃M
m , based on the mesh

(B.1) we have that

sup
t∈[0,T]

∥∥X̃M
m (t)

∥∥
L2(Ω)

6 C1, (B.6)

and

sup
t∈[0,T]

∥∥X(t)− X̃M
m (t)

∥∥
L2(Ω)

6 C2 max
0≤i≤m−1

(ti+1 − ti), (B.7)

where C1, C2 > 0 do not depend on m.

As a proof of Theorem B.1 is long we decide to divide it into smaller parts. We also

proof some lemmas, which are repeatable in the main proof. Firstly we show results

following from the given assumptions (Amd) � (Cmd).

Lemma B.2. Let f : [0, T] × Rd → Rd satisfy (Amd) � (Bmd) then for all

(t, y) ∈ [0, T]× Rd, exist K1 > 0 depends only on ‖f(0, 0)‖, K and T such that

‖f(t, y)‖ 6 K1

(
1 + ‖y‖

)
, (B.8)

∥∥∥∂|α|f
∂yα

(t, y)
∥∥∥6 K, |α| = 1, 2, (B.9)

where α ∈ Nd
0, and |α| =

∑d
k=1 αk. We also have that∥∥∇xf(t, y)

∥∥6 d ·K. (B.10)

Moreover if function f satisfy assumption (Cmd) we have that for all (t, y) ∈ [0, T]×Rd

max
{
‖L−1f(t, y)‖, ‖L1f(t, y)‖, . . . , ‖Lmwf(t, y)‖

}
6 K2

(
1 + ‖y‖

)
, (B.11)

with K2 = KK1. (For f : [0, T]× Rd → Rd×mw the statement (B.8) also holds.)

115

B.1. Time-continuous Milstein approximation for system of SDEs

Proof. Firstly we show (B.8). By Cauchy-Schwarz inequality and by assumption (Bmd)

we have that

‖f(t, y)‖ 6 ‖f(t, y)− f(0, y)‖+ ‖f(0, y)− f(0, 0)‖+ ‖f(0, 0)‖

6 K1

(
1 + ‖y‖

)
.

Let ek = (0, . . . , 0, 1, 0, . . . , 0)T for k ∈ {1, . . . , d} be a d-dimensional vector where

non-zero element is on ith position. We have that ‖ei‖ = 1. Then we go to proof (B.9)

in case when |α| = 1. By assumptions (B1md) we have that∥∥∥∥ ∂f∂yk (t, y)

∥∥∥∥ = lim
h→0

∥∥∥∥∥f(t, y + h · ek)− f(t, y)

h

∥∥∥∥∥ 6 lim
h→0

K‖h · ek‖
|h|

6 K.

Now, we go to proof of (B.9) when |α| = 2. For k1, k2 ∈ {1, . . . , d} it follow that∥∥∥∥ ∂2f

∂yk1∂yk2
(t, y)

∥∥∥∥ = lim
h→0

∥∥∥∥∥
∂f
∂yk1

(t, y + h · ek2)− ∂f
∂yk1

f(t, y)

h

∥∥∥∥∥ 6 lim
h→0

K‖h · ek2‖
|h|

6 K.

The (B.10) is a natural consequence of (B.9). Finally we prove (B.11). Hence by (B1md)

and (B.8) we have

‖L−1f(t, y)‖ = ‖f(t, y + c(t, y))− f(t, y)‖

6 K‖y + c(t, y)− y‖ 6 KK1

(
1 + ‖y‖

)
.

Then, directly from (B.8) for j ∈ {1, . . . ,mw} we have

‖Ljf(t, y)‖ 6
∥∥∇xf(t, y)

∥∥ · ∥∥bj(t, y)
∥∥ 6 KK1

(
1 + ‖y‖

)
.

This ends the proof. �

Let f ∈ {a, b1, . . . , bmw , c} and (B.1) be a discretization of interval [0, T]. Let

u ∈ [ti, ti+1] for i ∈ {1, . . . ,m}, then we can de�ne functions αi, βi, γi by

αi(f, u) := ∇xf(ti, X(u)) · a(u,X(u))

+
1

2

d∑
j1,j2=1

∂f

∂xj1∂xj2
(ti, X(u)) ·

(
bj1(u,X(u)) · bTj2(u,X(u))

)
, (B.12)

βi(f, u) := ∇xf(ti, X(u)) · b(u,X(u)), (B.13)

γi(f, u) := f(ti, X(u−) + c(u,X(u−)))− f(ti, X(u)). (B.14)

116

B.1. Time-continuous Milstein approximation for system of SDEs

By Lemma A.59 (Itô formula) applied to function U(x) = f(ti, x), by De�nition A.39,

(B.12) � (B.14) we can write that

f(ti, X(s))− f(ti, X(ti)) =

s∫
ti

αi(f, u)du+

s∫
ti

βi(f, u)dW (u) +

s∫
ti

γi(f, u)dN(u).

(B.15)

Based on given assumptions about function f (Amd) � (Cmd), we have the following

estimations.

Lemma B.3. For i ∈ {1, . . . ,m}, for all u ∈ (ti, ti+1] we have that∥∥αi(f, u)
∥∥2
6 C

(
1 + ‖X(u)‖

)4
. (B.16)

Proof. By the Lemma A.66 we have that∥∥αi(f, u)
∥∥2
6

∥∥∇xf(ti, X(u)) · a(u,X(u))
∥∥2

+
1

2
C

d∑
j1,j2=1

∥∥∥ ∂f

∂xj1∂xj2
(u,X(u)) · bj1(u,X(u)) · bTj2(ti, X(u))

∥∥∥2

6 ‖∇xf(ti, X(u))‖2 · ‖a(u,X(u))‖2

+
1

2
C

d∑
j1,j2=1

∥∥∥ ∂f

∂xj1∂xj2
(ti, X(u))

∥∥∥2

·
(
bj1(u,X(u)) · bTj2(u,X(u))

)2
.

Now, by (B.8), (B.9) and assumption (B2md) we have (B.16) and this ends the proof.

x �

Lemma B.4. For i ∈ {1, . . . ,m}, for all u ∈ (ti, ti+1] we have that∥∥βi(f, u)
∥∥2
6 C

(
1 + ‖X(u)‖

)2
. (B.17)

Proof. By the Lemma A.66 we have that∥∥βi(f, u)
∥∥2
6

∥∥∇xf(ti, X(u))
∥∥2 · ‖b(u,X(u))‖2.

Now, by (B.8), (B.9) we have (B.17) and this ends the proof. �

Lemma B.5. For i ∈ {1, . . . ,m}, for all u ∈ (ti, ti+1] we have that∥∥γi(f, u)
∥∥2
6 C

(
1 + ‖X(u−)‖

)2
. (B.18)

117

B.1. Time-continuous Milstein approximation for system of SDEs

Proof. By assumption (B1md) we have that∥∥γi(f, u)
∥∥2
6 ‖c(u,X(u−))‖2.

Now, by (B.8) we have (B.18) and this ends the proof. �

Lemma B.6. For i ∈ {1, . . . ,m}, for all u ∈ (ti, ti+1], for f ∈
{
b1, . . . , bmw , c

}
for

k ∈ {1, 2, . . . ,mw}, Ui =
(
ti, X̃

M
m (ti)

)
we have that

E
∥∥(βi(f, u))k − Lkf(Ui)

∥∥2
6 C

(
E
∥∥X(ti)− X̃M

m (ti)
∥∥2

+ (u− ti) + (u− ti)2
)
.

Proof. By the assumption (Cmd), Theorem A.63, (B.8), we have that

E
∥∥(βi(f, u)

)k − Lkf(Ui)
∥∥2
6 E

∥∥(βi(f, u)
)k − Lkf(ti, X(u))

∥∥2

+ E
∥∥Lkf(ti, X(u))− Lkf(Ui)

∥∥2

6 E
(
‖∇xf(ti, X(u))‖2 · ‖bk(u,X(u))− bk(ti, X(u))‖2

)
+ K E

∥∥X(u)− X̃M
m (ti)

∥∥2

6 KE
(
1 + ‖X(u)‖

)2 · |u− ti|2

+ KE
∥∥X(u)−X(ti)

∥∥2
+KE

∥∥X(ti)− X̃M
m (ti)

∥∥2

6 C
(
E
∥∥X(ti)− X̃M

m (ti)
∥∥2

+ (u− ti) + (u− ti)2
)
.

That ends the proof. �

Lemma B.7. For i ∈ {1, . . . ,m}, for all u ∈ [ti, ti+1] we have that for

f ∈
{
b1, . . . , bmw , c

}
for k ∈ {1, 2, . . . ,mw}, Ui =

(
ti, X̃

M
m (ti)

)
E

s∫
ti

∥∥γi(f, u)− L−1f(Ui)
∥∥2

du 6 C
(
E
∥∥X(ti)− X̃M

m (ti)
∥∥2

+ (ti+1 − ti)2
)
.

Proof. Firstly we show estimation for
∥∥γi(f, u) − L−1f(Ui)

∥∥2
for all u ∈ [ti, ti+1] By

the assumption (B1md), we have that∥∥γi(f, u)− L−1f(Ui)
∥∥ 6 ∥∥f(ti, X(u−) + c(u,X(u−)))− f(ti, X̃

M
m (ti) + c(Ui))

∥∥
+
∥∥f(ti, X(u))− f(Ui)

∥∥
6 C

∥∥X(u−)− X̃M
m (ti)

∥∥+ C
∥∥c(u,X(u−))− c(Ui)

∥∥

118

B.1. Time-continuous Milstein approximation for system of SDEs

6 C
∥∥X(u−)−X(ti)

∥∥+
∥∥X(ti)− X̃M

m (ti)
∥∥

+ C
(
E
∥∥c(u,X(u−))− c(ti, X(u−))

∥∥
+
∥∥c(ti, X(u−))− c(Ui)

∥∥)
6 C

(∥∥X(ti)− X̃M
m (ti)

∥∥
+
∥∥X(u−)−X(ti)

∥∥+
(
1 + ‖X(u−)‖

)
· |u− ti|

)
.

Then we have that

E
s∫

ti

∥∥γi(f, u)− L−1f(Ui)
∥∥2

du 6 CE
s∫

ti

∥∥X(u−)−X(ti)
∥∥2

du

+ CE
∥∥X(ti)− X̃M

m (ti)
∥∥2

(s− ti)

+ CE
s∫

ti

(
1 + ‖X(u−)‖2

)
· (u− ti)2du

6 CE
s∫

ti

(u− ti)du+ CTE
∥∥X(ti)− X̃M

m (ti)
∥∥2

+ C
(
1 + sup

0≤t≤T
E‖X(t)‖2

)
· 1

3
(s− ti)3.

By Theorem A.63,

E
s∫

ti

∥∥γi(f, u)− L−1f(Ui)
∥∥2

du 6 C(ti+1 − ti)2 + CE
∥∥X(ti)− X̃M

m (ti)
∥∥2
.

This ends the proof. �

The solutions of problem (1.1) given by X = X(t) and time continuous Milstein

approximation X̃M
m = X̃M

m (t) can be decomposed into

X(t) = x0 + A(t) +B(t) + C(t), (B.19)

X̃M
m (t) = x0 + ÃMm (t) + B̃M

m (t) + C̃M
m (t), (B.20)

119

B.1. Time-continuous Milstein approximation for system of SDEs

where

A(t) =

t∫
0

m−1∑
i=0

a(s,X(s))1(ti,ti+1](s)ds, (B.21)

B(t) =

t∫
0

m−1∑
i=0

b(s,X(s))1(ti,ti+1](s)dW (s), (B.22)

C(t) =

t∫
0

m−1∑
i=0

c(s,X(s))1(ti,ti+1](s)dN(s), (B.23)

and

ÃMm (t) =

t∫
0

m−1∑
i=0

a(Ui)1(ti,ti+1](s)ds, (B.24)

B̃M
m (t) =

mw∑
j=1

(t∫
0

m−1∑
i=0

(
bj(Ui) +

mw∑
k=1

s∫
ti

Lkb
j(Ui)dWk(u)

+

s∫
ti

L−1b
j(Ui)dN(u)

)
1(ti,ti+1](s)dWj(s)

)
, (B.25)

C̃M
m (t) =

t∫
0

m−1∑
i=0

(
c(Ui) +

mw∑
j=1

s∫
ti

Ljc(Ui)dWj(u)

+

s∫
ti

L−1c(Ui)dN(u)
)
1(ti,ti+1](s)dN(s). (B.26)

Lemma B.8. Let us assume that the mappings a, b, c and λ satisfy assumptions

(Amd) � (Cmd) and (Emd). Let m ∈ N and let (B.1) be an arbitrary discretization

of the interval [0, T]. Let A(t) and ÃMm (t) are given by (B.21), (B.24). For all t ∈ [0, T]

we have that

E
∥∥A(t)− ÃMm (t)

∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2.

(B.27)

Proof. W have that for all t ∈ [0, T]

E
∥∥A(t)− ÃMm (t)

∥∥2
6 E

∥∥∥ t∫
0

m−1∑
i=0

(
a(s,X(s))− a(Ui)

)
1(ti,ti+1](s)ds

∥∥∥2

6 3
(
E
∥∥ÃMm,1(t)

∥∥2
+ E

∥∥ÃMm,2(t)
∥∥2

+ E
∥∥ÃMm,3(t)

∥∥2
)
,

120

B.1. Time-continuous Milstein approximation for system of SDEs

where

E
∥∥ÃMm,1(t)

∥∥2
= E

∥∥∥ t∫
0

m−1∑
i=0

(
a(s,X(s))− a(ti, X(s))

)
1(ti,ti+1](s)ds

∥∥∥2

,

E
∥∥ÃMm,2(t)

∥∥2
= E

∥∥∥ t∫
0

m−1∑
i=0

(
a(ti, X(s))− a(ti, X(ti))

)
1(ti,ti+1](s)ds

∥∥∥2

,

E
∥∥ÃMm,3(t)

∥∥2
= E

∥∥∥ t∫
0

m−1∑
i=0

(
a(ti, X(ti))− a(ti, X̃

M
m (ti))

)
1(ti,ti+1](s)ds

∥∥∥2

.

Now, by a Hölder inequality, Lemma A.63 and assumption (B2md) it follows that for

all t ∈ [0, T]

E
∥∥ÃMm,1(t)

∥∥2
= E

∥∥∥ t∫
0

m−1∑
i=0

(
a(s,X(s))− a(ti, X(s))

)
1(ti,ti+1](s)ds

∥∥∥2

6 C
m−1∑
i=0

E
t∫

0

∥∥a(s,X(s))− a(ti, X(s))
∥∥2
1(ti,ti+1](s)ds

6 C
m−1∑
i=0

t∫
0

K2(s− ti)2 · E
(
1 + ‖X(s)‖

)2
1(ti,ti+1](s)ds

6 C max
0≤i≤m−1

(ti+1 − ti)2. (B.28)

By decomposition (B.15) and decomposition of N given by (A.2) we have the following

estimation

E
∥∥ÃMm,2(t)

∥∥2
= E

∥∥∥ t∫
0

m−1∑
i=0

(
a(ti, X(s))− a(ti, X(ti))

)
1(ti,ti+1](s)ds

∥∥∥2

6 C
(
E
∥∥M̃M

m,1(t)
∥∥2

+ E
∥∥M̃M

m,2(t)
∥∥2

+ E
∥∥M̃M

m,3(t)
∥∥2

+ E
∥∥M̃M

m,4(t)
∥∥2
)
,

121

B.1. Time-continuous Milstein approximation for system of SDEs

where

E
∥∥M̃M

m,1(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

αi(a, u)du
)
1(ti,ti+1](s)ds

∥∥∥2

,

E
∥∥M̃M

m,2(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

βi(a, u)dW (u)
)
1(ti,ti+1](s)ds

∥∥∥2

,

E
∥∥M̃M

m,3(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

γi(a, u)dÑ(u)
)
1(ti,ti+1](s)ds

∥∥∥2

,

E
∥∥M̃M

m,4(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

γi(a, u)λ(u)du
)
1(ti,ti+1](s)ds

∥∥∥2

.

From Hölder inequality and Lemma B.3 we have that

E
∥∥M̃M

m,1(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

αi(a, u)du
)
1(ti,ti+1](s)ds

∥∥∥2

6 C

t∫
0

m−1∑
i=0

(s− ti)
(s∫
ti

E
(
1 + ‖X(u)‖

)4
du
)
1(ti,ti+1](s)ds.

Then, by Theorem A.63 we have that

E
∥∥M̃M

m,1(t)
∥∥2
6 C max

0≤i≤m−1
(ti+1 − ti)2. (B.29)

By the de�nition of Euclidean norm we have that

E
∥∥M̃M

m,2(t)
∥∥2

= E
d∑

k=1

(t∫
0

m−1∑
i=0

(s∫
ti

(
βi(a, u)

)
k
dW (u)

)
1(ti,ti+1](s)ds

)2

= E
d∑

k=1

(t∫
0

m−1∑
i1=0

(s1∫
ti1

mw∑
j1=1

(
βi(a, u)

)k,j1dWj1(u)
)
1(ti1 ,ti1+1](s1)ds1

)

×

(t∫
0

m−1∑
i2=0

(s2∫
ti2

mw∑
j2=1

(
βi(a, u)

)k,j2dWj2(u)
)
1(ti2 ,ti2+1](s2)ds2

)

= E
d∑

k=1

(t∫
0

t∫
0

m−1∑
i1=0

m−1∑
i2=0

(s1∫
ti1

mw∑
j1=1

(
βi1(a, u)

)k,j1dWj1(u)
)

×
(s2∫
ti2

mw∑
j2=1

(
βi2(a, u)

)k,j2dWj2(u)
)
· 1(ti1 ,ti1+1]×(ti2 ,ti2+1](s1, s2)ds1ds2

)
.

122

B.1. Time-continuous Milstein approximation for system of SDEs

The multiplication is non zero only when i1 = i2, so we have that

E
∥∥M̃M

m,2(t)
∥∥2

=
d∑

k=1

(t∫
0

t∫
0

m−1∑
i=0

mw∑
j1,j2=1

E
(s1∫
ti

(
βi(a, u)

)k,j1dWj1(u)

×
s2∫
ti

(
βi(a, u)

)k,j2dWj2(u)
)
1(ti,ti+1]2(s1, s2)ds1ds2

)
.

By Theorem A.55 and Lemma A.56

E
∥∥M̃M

m,2(t)
∥∥2

=
d∑

k=1

(t∫
0

t∫
0

m−1∑
i=0

mw∑
j=1

E
(s1∧s2∫

ti

((
βi(a, u)

)k,j)2

du
)
1(ti,ti+1]2(s1, s2)ds1ds2

)

=

t∫
0

t∫
0

m−1∑
i=0

E
(s1∧s2∫

ti

∥∥βi(a, u)
∥∥2

du
)
1(ti,ti+1]2(s1, s2)ds1ds2.

Then, by Lemma B.4 and Theorem A.63

E
∥∥M̃M

m,2(t)
∥∥2
6

t∫
0

t∫
0

m−1∑
i=0

E
(s1∧s2∫

ti

C
(
1 + ‖X(u)‖

)2
du
)
1(ti,ti+1]2(s1, s2)ds1ds2

6 C max
0≤i≤m−1

(ti+1 − ti)2. (B.30)

Analogously as previous by Theorem A.55, Lemma B.5, Theorem A.63 and assumption

(Emd) we have the following estimation

E
∥∥M̃M

m,3(t)
∥∥2

=

t∫
0

t∫
0

m−1∑
i=0

E
(s1∧s2∫

ti

∥∥γi(a, u)
∥∥2
λ(u)du

)
1(ti,ti+1]2(s1, s2)ds1ds2

6

t∫
0

t∫
0

m−1∑
i=0

E
(s1∧s2∫

ti

C
(
1 + ‖X(u−)‖

)2
du
)
1(ti,ti+1]2(s1, s2)ds1ds2

6 C max
0≤i≤m−1

(ti+1 − ti)2. (B.31)

123

B.1. Time-continuous Milstein approximation for system of SDEs

By the Hölder inequality Lemma B.5, assumption (Emd) and Theorem A.63 we have

that

E
∥∥M̃M

m,4(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

γi(a, u)λ(u)du
)
1(ti,ti+1](s)ds

∥∥∥2

6 CE
t∫

0

m−1∑
i=0

∥∥∥ s∫
ti

γi(a, u)λ(u)du
∥∥∥2

1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

(s− ti) · E
(s∫
ti

(
1 + ‖X(u−)‖

)2
du
)
1(ti,ti+1](s)ds

6 C max
0≤i≤m−1

(ti+1 − ti)2. (B.32)

By the (B.29) � (B.32) it follows that

E
∥∥ÃMm,2(t)

∥∥2
6 C max

0≤i≤m−1
(ti+1 − ti)2. (B.33)

By the Hölder inequality, assumption (Bmd), Lemma B.5, and Theorem A.63 we have

E
∥∥ÃMm,3(t)

∥∥2
6 CT

m−1∑
i=0

E
t∫

0

∥∥a(ti, X(ti))− a(ti, X̃
M
m (ti))

∥∥2
1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds. (B.34)

Finally, from (B.28), (B.33), (B.34) we proof that (B.27) holds. That ends the proof

of (B.27). �

Lemma B.9. Let us assume that the mappings a, b, c and λ satisfy assumptions

(Amd) � (Cmd) and (Emd). Let m ∈ N and let (B.1) be an arbitrary discretization

of the interval [0, T]. Let B(t) and B̃M
m (t) be given by (B.22), (B.25). For all t ∈ [0, T]

we have the following estimation

E
∥∥B(t)− B̃M

m (t)
∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2.

(B.35)

Proof. Let Ui =
(
ti, X̃

M
m (ti)

)
E
∥∥B(t)− B̃M

m (t)
∥∥2
6 3

(
E
∥∥B̃M

m,1(t)
∥∥2

+ E
∥∥B̃M

m,2(t)
∥∥2

+ E
∥∥B̃M

m,3(t)
∥∥2
)
,

124

B.1. Time-continuous Milstein approximation for system of SDEs

where

E
∥∥B̃M

m,1(t)
∥∥2

= E
∥∥∥ mw∑
j=1

t∫
0

m−1∑
i=0

(
bj(s,X(s))− bj(ti, X(s))

)
1(ti,ti+1](s)dWj(s)

∥∥∥2

E
∥∥B̃M

m,2(t)
∥∥2

= E
∥∥∥ mw∑
j=1

t∫
0

m−1∑
i=0

(
bj(ti, X(s))− bj(ti, X(ti)),

−
mw∑
k=1

s∫
ti

Lkb
j(Ui)dWk(u)−

s∫
ti

L−1b
j(Ui)dN(u)

)
1(ti,ti+1](s)dWj(s)

∥∥∥2

,

E
∥∥B̃M

m,3(t)
∥∥2

= E
∥∥∥ mw∑
j=1

t∫
0

m−1∑
i=0

(
bj(ti, X(ti))− bj(Ui)

)
1(ti,ti+1](s)dWj(s)

∥∥∥2

.

By the Itô isometry (see Theorem A.55), and assumption (Bmd)

E
∥∥B̃M

m,1(t)
∥∥2
6 C

mw∑
j=1

E
t∫

0

m−1∑
i=0

∥∥bj(s,X(s))− bj(ti, X(s))
∥∥2
1(ti,ti+1](s)ds

6 CE
t∫

0

m−1∑
i=0

K2(s− ti)2E(1 + ‖X(s)‖)2
1(ti,ti+1](s)ds

6 C max
0≤i≤m−1

(ti+1 − ti)2. (B.36)

Then, by decomposition (B.15) applied to functions bj for j ∈ {1, 2, . . . ,mw} and (A.2)
we have the following estimation

E
∥∥B̃M

m,2(t)
∥∥2
6 C

(
E
∥∥M̃M

m,1(t)
∥∥2

+ E
∥∥M̃M

m,2(t)
∥∥2

+ E
∥∥M̃M

m,3(t)
∥∥2

+ E
∥∥M̃M

m,4(t)
∥∥2
)
,

where

E
∥∥M̃M

m,1(t)
∥∥2

= E
∥∥∥ mw∑
j=1

t∫
0

m−1∑
i=0

(s∫
ti

αi(b
j, u)du

)
1(ti,ti+1](s)dWj(s)

∥∥∥2

,

E
∥∥M̃M

m,2(t)
∥∥2

= E
∥∥∥ mw∑
j=1

t∫
0

m−1∑
i=0

(mw∑
k=1

s∫
ti

((
βi(b

j, u)
)k − Lkbj(Ui))dWk(u)

)
×1(ti,ti+1](s)dWj(s)

∥∥∥2

,

E
∥∥M̃M

m,3(t)
∥∥2

= E
∥∥∥ mw∑
j=1

t∫
0

m−1∑
i=0

(s∫
ti

(
γi(b

j, u)− L−1b
j(Ui)

)
dÑ(u)

)
1(ti,ti+1](s)dWj(s)

∥∥∥2

,

E
∥∥M̃M

m,4(t)
∥∥2

= E
∥∥∥ mw∑
j=1

t∫
0

m−1∑
i=0

(s∫
ti

(
γi(b

j, u)− L−1b
j(Ui)

)
λ(u)du

)
1(ti,ti+1](s)dWj(s)

∥∥∥2

.

125

B.1. Time-continuous Milstein approximation for system of SDEs

Next, by the Itô isometry, Lemma B.3 and Theorem A.63 we have that

E
∥∥M̄M

m,1(t)
∥∥2
6 C

mw∑
j=1

E
t∫

0

m−1∑
i=0

∥∥∥ s∫
ti

αi(b
j, u)du

∥∥∥2

1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

(s− ti)
s∫

ti

E
(
1 + ‖X(s)‖

)4
du1(ti,ti+1](s)ds

6 C max
0≤i≤m−1

(ti+1 − ti)2. (B.37)

Then, by the Itô isometry, Lemma B.6 and Theorem A.63 it follow that

E
∥∥M̃M

m,2(t)
∥∥2
6 C

mw∑
j=1

t∫
0

m−1∑
i=0

mw∑
k=1

E
∥∥∥ s∫
ti

((
βi(b

j, u)
)k − Lkbj(Ui))dWk(u)

∥∥∥2

×1(ti,ti+1](s)ds

6 C
mw∑
j=1

t∫
0

m−1∑
i=0

mw∑
k=1

s∫
ti

E
∥∥(βi(bj, u)

)k − Lkbj(Ui)∥∥2
du1(ti,ti+1](s)ds

6 C
mw∑
j=1

t∫
0

m−1∑
i=0

s∫
ti

(
E
∥∥X(ti)− X̃M

m (ti)
∥∥2

+ (u− ti) + (u− ti)2
)

du1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds

+ C2 max
0≤i≤m−1

(ti+1 − ti)2. (B.38)

By the Itô isometry, Lemma B.7 and fact that λ is continuous (assumption (Emd)) we

have that

E
∥∥M̃M

m,3(t)
∥∥2
6 C

mw∑
j=1

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

(
γi(b

j, u)− L−1b
j(Ui)

)
dÑ(u)

∥∥∥2

1(ti,ti+1](s)ds

6 C

mw∑
j=1

t∫
0

m−1∑
i=0

E
s∫

ti

∥∥γi(bj, u)− L−1b
j(Ui)

∥∥2
λ(u)du1(ti,ti+1](s)ds

6 C

mw∑
j=1

t∫
0

m−1∑
i=0

(
E
∥∥X(ti)− X̃M

m (ti)
∥∥2

+ (ti+1 − ti)2
)
1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+ C2 max

0≤i≤m−1
(ti+1 − ti)2.

(B.39)

126

B.1. Time-continuous Milstein approximation for system of SDEs

Then, by the Itô isometry, Lemma B.7 by the assumption (Emd) we have the following

estimation

E
∥∥M̃M

m,4(t)
∥∥2
6 C

mw∑
j=1

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

(
γi(b

j, u)− L−1b
j(Ui)

)
λ(u)du

∥∥∥2

1(ti,ti+1](s)ds

6 C
mw∑
j=1

t∫
0

m−1∑
i=0

E
s∫

ti

∥∥γi(bj, u)− L−1b
j(Ui)

∥∥2
du

×
s∫

ti

|λ(u)|2du1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

(
E
∥∥X(ti)− X̃M

m (ti)
∥∥2

+ (ti+1 − ti)2
)
1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+ C2 max

0≤i≤m−1
(ti+1 − ti)2.

(B.40)

By the (B.37) � (B.40) we have that

E
∥∥B̃M

m,2(t)
∥∥2
6 C1

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+ C2 max

0≤i≤m−1
(ti+1 − ti)2.

(B.41)

Then, by the Itô isometry and assumption (B1md) it follows that

E
∥∥B̃M

m,3(t)
∥∥2
6 C

mw∑
j=1

t∫
0

m−1∑
i=0

E
∥∥bj(ti, X(ti))− bj(Ui)

∥∥2
1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds. (B.42)

Finally, by the estimations (B.36), (B.41), (B.42) we have that

E
∥∥B(t)− B̃M

m (t)
∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2.

This ends the proof of (B.35). �

127

B.1. Time-continuous Milstein approximation for system of SDEs

Lemma B.10. Let us assume that the mappings a, b, c and λ satisfy assumptions

(Amd) � (Cmd) and (Emd). Let m ∈ N and let (B.1) be an arbitrary discretization of

the interval [0, T]. Let C(t) and C̃M
m (t) be given by (B.23), (B.26). For all t ∈ [0, T] it

follow that

E
∥∥C(t)− C̃M

m (t)
∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2.

(B.43)

Proof. We start with decomposition

E
∥∥C(t)− C̃M

m (t)
∥∥2
6 3

(
E
∥∥C̃M

m,1(t)
∥∥2

+ E
∥∥C̃M

m,2(t)
∥∥2

+ E
∥∥C̃M

m,3(t)
∥∥2
)
,

where

E
∥∥C̃M

m,1(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(
c(s,X(s))− c(ti, X(s))

)
1(ti,ti+1](s)dN(s)

∥∥∥2

,

E
∥∥C̃M

m,2(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(
c(ti, X(s))− c(ti, X(ti))

−
mw∑
j=1

s∫
ti

Ljc(Ui)dWj(u)−
s∫

ti

L−1c(Ui)dN(u)
)
1(ti,ti+1](s)dN(s)

∥∥∥2

,

E
∥∥C̃M

m,3(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(
c(ti, X(ti))− c(Ui)

)
1(ti,ti+1](s)dN(s)

∥∥∥2

.

Now, by decomposition (A.2), Itô isometry, and Hölder inequality, Lemma A.63 and

assumption (B2md) for all t ∈ [0, T] we have the following estimation

E
∥∥C̃M

m,1(t)
∥∥2
6 C

(
E
∥∥∥ t∫

0

m−1∑
i=0

(
c(s,X(s))− c(ti, X(s))

)
1(ti,ti+1](s)dÑ(s)

∥∥∥2

+ E
∥∥∥ t∫

0

m−1∑
i=0

(
c(s,X(s))− c(ti, X(s))

)
1(ti,ti+1](s)λ(s)ds

∥∥∥2
)

6 C

(t∫
0

m−1∑
i=0

E
∥∥c(s,X(s))− c(ti, X(s))

∥∥2
1(ti,ti+1](s)λ(s)ds

+

t∫
0

m−1∑
i=0

E
∥∥c(s,X(s))− c(ti, X(s))

∥∥2
1(ti,ti+1](s)ds ·

t∫
0

|λ(s)|2ds

)

128

B.1. Time-continuous Milstein approximation for system of SDEs

6 C

m−1∑
i=0

t∫
0

K2(s− ti)2 · E
(
1 + ‖X(s)‖

)2
1(ti,ti+1](s)ds

6 C max
0≤i≤m−1

(ti+1 − ti)2. (B.44)

By decomposition (B.15) applied to function c we have that

E
∥∥C̃M

m,2(t)
∥∥2
6 C

(
E
∥∥M̃M

m,1(t)
∥∥2

+ E
∥∥M̃M

m,2(t)
∥∥2

+ E
∥∥M̃M

m,3(t)
∥∥2
)
,

where

E
∥∥M̃M

m,1(t)
∥∥2

= E
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

αi(c, u)du
)
1(ti,ti+1](s)dN(s)

∥∥∥2

,

E‖M̃M
m,2(t)‖2 = E

∥∥∥ t∫
0

m−1∑
i=0

(mw∑
k=1

s∫
ti

(
(βi(c, u))k − Ljc(Ui)

)
dWk(u)

)
1(ti,ti+1](s)dN(s)

∥∥∥2

,

E‖M̃M
m,3(t)‖2 = E

∥∥∥ t∫
0

m−1∑
i=0

(s∫
ti

(
γi(c, u)− L−1c(Ui)

)
dN(u)

)
1(ti,ti+1](s)dN(s)

∥∥∥2

.

Now, by decomposition of N given by (A.2), Itô isometry, and Hölder inequality,

Lemma B.3, Lemma A.63, assumption (Emd), we have that for all t ∈ [0, T]

E
∥∥M̃M

m,1(t)
∥∥2
6 CE

∥∥∥ t∫
0

m−1∑
i=0

(s∫
ti

αi(c, u)du
)
1(ti,ti+1](s)dÑ(s)

∥∥∥2

+ CE
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

αi(c, u)du
)
1(ti,ti+1](s)λ(s)ds

∥∥∥2

6 C

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

αi(c, u)du
∥∥∥2

1(ti,ti+1](s)λ(s)ds

+ C

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

αi(c, u)du
∥∥∥2

1(ti,ti+1](s)ds ·
t∫

0

|λ(s)|2ds

6 C

t∫
0

m−1∑
i=0

(s− ti) ·
s∫

ti

E
(
1 + ‖X(u)‖

)4
du1(ti,ti+1](s)ds

6 C max
0≤i≤m−1

(ti+1 − ti)2, (B.45)

129

B.1. Time-continuous Milstein approximation for system of SDEs

and

E
∥∥M̃M

m,2(t)
∥∥2
6 CE

∥∥∥ t∫
0

m−1∑
i=0

(mw∑
k=1

s∫
ti

((
βi(c, u)

)k − Lkc(Ui))dWk(u)
)

× 1(ti,ti+1](s)dÑ(s)
∥∥∥2

+ CE
∥∥∥ t∫

0

m−1∑
i=0

(mw∑
k=1

s∫
ti

((
βi(c, u)

)k − Lkc(Ui))dWk(u)
)
1(ti,ti+1](s)λ(s)ds

∥∥∥2

6 C

t∫
0

m−1∑
i=0

mw∑
k=1

E
∥∥∥ s∫
ti

((
βi(c, u)

)k − Lkc(Ui))dWk(u)
∥∥∥2

1(ti,ti+1](s)λ(s)ds

+ C

t∫
0

m−1∑
i=0

mw∑
k=1

E
∥∥∥ s∫
ti

((
βi(c, u)

)k − Lkc(Ui))dWk(u)
∥∥∥2

1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

mw∑
k=1

s∫
ti

E
∥∥(βi(c, u)

)k − Lkc(Ui)∥∥2
du1(ti,ti+1](s)λ(s)ds

+ C

t∫
0

m−1∑
i=0

mw∑
k=1

s∫
ti

E
∥∥(βi(c, u)

)k − Lkc(Ui)∥∥2
du1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+ C2 max

0≤i≤m−1
(ti+1 − ti)2. (B.46)

Now, by decomposition of N given by (A.2), Itô isometry, and Hölder inequality,

Lemma B.7, Lemma A.63, assumption (Emd), we have that for all t ∈ [0, T]

E
∥∥M̃M

m,3(t)
∥∥2
6 CE

∥∥∥ t∫
0

m−1∑
i=0

(s∫
ti

(
γi(c, u)− L−1c(Ui)

)
dN(u)

)
1(ti,ti+1](s)dÑ(s)

∥∥∥2

+ CE
∥∥∥ t∫

0

m−1∑
i=0

(s∫
ti

(
γi(c, u)− L−1c(Ui)

)
dN(u)

)
1(ti,ti+1](s)λ(s)ds

∥∥∥2

6 C

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

(
γi(c, u)− L−1c(Ui)

)
dN(u)

∥∥∥2

1(ti,ti+1](s)λ(s)ds

+ C

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

(
γi(c, u)− L−1c(Ui)

)
dN(u)

∥∥∥2

1(ti,ti+1](s)ds. (B.47)

130

B.1. Time-continuous Milstein approximation for system of SDEs

So analogously like (B.40) we have that

E
∥∥M̃M

m,3(t)
∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+ C max

0≤i≤m−1
(ti+1 − ti)2.

(B.48)

Finally, by the (B.45) � (B.48) we have that

E
∥∥C̃M

m,2(t)
∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+ C max

0≤i≤m−1
(ti+1 − ti)2.

(B.49)

Now, by decomposition of N given by (A.2), Itô isometry, and Hölder inequality,

assumption (B1md), (Emd) we have that for all t ∈ [0, T]

E
∥∥C̃M

m,3(t)
∥∥2
6 C

(
E
∥∥∥ t∫

0

m−1∑
i=0

(
c(ti, X(ti))− c(Ui)

)
1(ti,ti+1](s)dÑ(s)

∥∥∥2

+ E
∥∥∥ t∫

0

m−1∑
i=0

(
c(ti, X(ti))− c(Ui)

)
1(ti,ti+1](s)λ(s)ds

∥∥∥2)

6 C
(t∫

0

m−1∑
i=0

E
∥∥c(ti, X(ti))− c(Ui)

∥∥2
1(ti,ti+1](s)λ(s)ds

+

t∫
0

m−1∑
i=0

E
∥∥c(ti, X(ti))− c(Ui)

∥∥2
1(ti,ti+1](s)ds ·

t∫
0

|λ(s)|2ds
)

6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds. (B.50)

Finally, by the estimations (B.44), (B.49), (B.50) we have that

E
∥∥C(t)− C̃M

m (t)
∥∥2

= C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2.

This ends the proof of (B.43). �

131

B.1. Time-continuous Milstein approximation for system of SDEs

B.1.1. Proof of Theorem B.1

Proof. of Theorem B.1 Let Ui =
(
ti, X̃

M
m (ti)

)
, we have that Lj1f(Ui) is

Fti-measurable for f ∈ {b1, . . . , bmw , c}, j1 ∈ {1, 2, . . . ,mw} ∪ {−1} because X̃M
m (ti)

depends only of evaluation of processes until ti. Firstly, we show that

sup
t∈[0,T]

∥∥X̃M
m (t)

∥∥
L2(Ω)

<∞. (B.51)

At the beginning, we show a �rst step of induction for t0 (i = 0). We have that∥∥X̃M
m (t0)

∥∥
L2(Ω)

= E
(∥∥X̃M

m (t0)
∥∥2
)1/2

= ‖x0‖ <∞. (B.52)

Now we assume that for l = 1, 2, . . . , i, there is that
∥∥X̃M

m (tl)
∥∥
L2(Ω)

< ∞. We show

that for l = 1, 2, . . . , i and t ∈ [tl, tl+1] we have the following estimation∥∥X̃M
m (t)− X̃M

m (tl)
∥∥
L2(Ω)

6 C
(

1 +
∥∥X̃M

m (tl)
∥∥
L2(Ω)

)
· (t− tl)1/2. (B.53)

By Hölder inequality we have that

‖X̃M
m (t)− X̃M

m (tl)‖2
L2(Ω) 6 C

(
E
∥∥a(Ul) · (t− tl)

∥∥2
+ E

∥∥b(Ul) · (W (t)−W (tl)
)∥∥2

+ E
∥∥c(Ul) · (N(t)−N(tl)

)∥∥2
+ E

∥∥∥ mw∑
j1,j2=1

Lj1b
j2(Ul) · Itl,t(Wj1 ,Wj2)

∥∥∥2

+ E
∥∥∥ mw∑
j1=1

Lj1c(Ul) · Itl,t(Wj1 , N)
∥∥∥2

+ E
∥∥∥ mw∑
j1=1

L−1b
j1(Ul) · Itl,t(N,Wj1)

∥∥∥2

+ E
∥∥L−1c(Ul) · Iti,t(N,N)

∥∥2
)
.

By (B.8) we have that

E
∥∥a(Ul) · (t− tl)

∥∥2
6 K2T (t− tl) ·

(
1 +

∥∥X̃M
m (tl)

∥∥
L2(Ω)

)2

. (B.54)

By (B.8), and fact that all b(Ul) and
(
W (t)−W (tl)

)
are independent, it holds because

b(Ul) is Ftl-measurable and W (t)−W (tl) is independent of Ftl , we have that

E
∥∥b(Ul) · (W (t)−W (tl)

)∥∥2
6 E

∥∥b(Ul)∥∥2 · E
∥∥W (t)−W (tl)

∥∥2

6 K2T (t− tl) ·
(

1 +
∥∥X̃M

m (tl)
∥∥
L2(Ω)

)2

. (B.55)

Analogously by (B.8), by assumptions (Emd) and fact that all c(Ui) andN(t)−N(tl) are

independent, it holds because c(Ul) is Ftl-measurable and N(t)−N(tl) is independent

of Ftl , it follows that

E
∥∥c(Ul) · (N(t)−N(tl)

)∥∥2
= E

∥∥c(Ul)∥∥2 · E|N(t)−N(tl)|2

6 K2(t− tl) ·
(

1 +
∥∥X̃M

m (tl)
∥∥
L2(Ω)

)2

. (B.56)

132

B.1. Time-continuous Milstein approximation for system of SDEs

For consider j1, j2 ∈ {1, . . . ,mw}, by (B.11), and Fact B.28 we have that Lj1b
j2(Ul)

and Itl,t(Wj1 ,Wj2) are independent, then we have that

E
∥∥∥ mw∑
j1,j2=1

Lj1b
j2(Ul) · Itl,t(Wj1 ,Wj2)

∥∥∥2

6 C

mw∑
j1,j2=1

E‖Lj1bj2(Ul)‖2 · E|Itl,t(Wj1 ,Wj2)|2

6 CT (t− tl)2 ·
(

1 +
∥∥X̃M

m (tl)
∥∥
L2(Ω)

)2

. (B.57)

Analogously, we have that for j1 ∈ {1, . . . ,mw}, by (B.11), and Fact B.28 the pairs

Lj1c(Ul) and Itl,t(Wj1 , N), L−1b
j1(Ul) and Itl,t(N,Wj1), and L−1c(Ul) and N(t)−N(tl)

are independent. By assumptions (Emd) we have following estimations

E
∥∥∥ mw∑
j1=1

Lj1c(Ul) · Itl,t(Wj1 , N)
∥∥∥2

6
mw∑
j1=1

E‖Lj1c(Ul)‖2 · E|Itl,t(Wj1 , N)|2

6 C(t− tl)2 ·
(

1 +
∥∥X̃M

m (tl)
∥∥
L2(Ω)

)2

, (B.58)

E
∥∥∥ mw∑
j1=1

L−1b
j1(Ul) · Itl,t(N,Wj1)

∥∥∥2

6
mw∑
j1=1

E‖L−1b
j1(Ul)‖2 · E|Itl,t(N,Wj1)|2

6 C(t− tl)2 ·
(

1 +
∥∥X̃M

m (tl)
∥∥
L2(Ω)

)2

, (B.59)

E
∥∥L−1c(Ul)Itl,t(N,N)

∥∥2
6 E‖L−1c(Ul)‖2 · E|Itl,t(N,N)|2

6 C(t− tl)2 ·
(

1 +
∥∥X̃M

m (tl)
∥∥
L2(Ω)

)2

. (B.60)

Hence by (B.54) � (B.60) we have that sup
t∈[tl,tl+1]

‖X̃M
m (t)‖L2(Ω) < +∞ and in particular,∥∥X̃M

m (tl+1)
∥∥
L2(Ω)

< +∞. Therefore, we get sup
0≤i≤m

‖X̃M
m (ti)‖L2(Ω) < +∞ and (B.6). This

ends the �rst part of proof of (B.6). �

Now we justify (B.7). Then, by decomposition (B.19) and (B.20) we can write that∥∥X(t)− X̃M
m (t)

∥∥
L2(Ω)

=
(
E
∥∥X(t)− X̃M

n (t)
∥∥2
)1/2

6 C
(
E
∥∥A(t)− ÃMm (t)

∥∥2
+ E

∥∥B(t)− B̃M
m (t)

∥∥2
+ E

∥∥C(t)− C̃M
m (t)

∥∥2
)1/2

.

Then, by Lemma B.8, B.9, B.10 we have that

E
∥∥A(t)− ÃMm (t)

∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2,

E
∥∥B(t)− B̃M

m (t)
∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2,

133

B.2. Time-continuous Milstein approximation for system of SDEs under JCC

E
∥∥C(t)− C̃M

m (t)
∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X(ti)− X̃M

m (ti)
∥∥2
1(ti,ti+1](s)ds+C max

0≤i≤m−1
(ti+1− ti)2.

Finally, if follows that for all t ∈ [0, T]

sup
0≤s≤t

E
∥∥X(s)− X̃M

m (s)
∥∥2
6 C

s∫
0

m−1∑
i=0

sup
0≤u≤t

E
∥∥X(u)− X̃M

m (u)
∥∥2
1(ti,ti+1](u)du

+ C max
0≤i≤m−1

(ti+1 − ti)2.

By Lemma A.63 and (B.6) mapping

[0, T] 3 t→ sup
0≤s≤t

E
∥∥X(t)− X̃M

m (t)
∥∥2 ∈ R+ ∪ {0},

is bounded and Borel measurable. Then, by the Theorem A.67 (Grönronwall's

inequality) we have (B.7). This ends the proof. �

B.2. Time-continuous Milstein approximation for

system of SDEs under jump commutative

condition
In this section we show the de�nition of time-continuous Milstein approximation

under jump commutative condition. We discuss the most important properties about

it. Let Ui =
(
ti, X̃

M
m (ti)

)
. Under jump commutative condition (Dmd) we have that

(B.3) takes the following form

X̃M
m (t) = X̃M

m (ti) + a(Ui) · (t− ti) + b(Ui) ·
(
W (t)−W (ti)

)
+ c(Ui) ·

(
N(t)−N(ti)

)
+

1

2

mw∑
j1,j2=1

Lj1b
j2(Ui) ·

(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)

)
+

mw∑
j1=1

Lj1c(Ui) ·
(
Iti,t(Wj1 , N) + Iti,t(N,Wj1)

)
+ L−1c(Ui) · Iti,t(N,N).

Moreover, for all i ∈ {0, 1, . . . ,m − 1} and t ∈ [ti, ti+1], we have the following

decomposition

X̃M
m (t)− E

(
X̃M
m (t) | Nm(N,W)

)
= H̃M

m (t) + R̃M
m (t), (B.61)

134

B.2. Time-continuous Milstein approximation for system of SDEs under JCC

where by Fact B.19 we can write that

H̃M
m (t) = b(Ui) ·

(
W (t)− E

(
W (t) | Nm(W)

))
+ c(Ui) ·

(
N(t)− E

(
N(t) | Nm(N)

))
, (B.62)

R̃M
m (t) =

1

2

mw∑
j1,j2=1

Lj1b
j2(Ui) ·

(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)

− E
(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1) | Nm(Wj1 ,Wj2)

))
+

mw∑
j=1

Lj1c(Ui) ·
(
Iti,t(N,Wj) + Iti,t(Wj, N)

− E
(
Iti,t(N,Wj) + Iti,t(Wj, N) | Nm(Wj, N)

))
+ L−1c(Ui) ·

(
Iti,t(N,N)− E

(
Iti,t(N,N) | Nm(N)

))
. (B.63)

Lemma B.11. Let us assume that the mappings a, b, c and λ satisfy the assumptions

(Amd)− (Emd). For all t ∈ [ti, ti+1], i = 0, 1, . . . ,m− 1, it follow that

E
∥∥R̃M

m (t)
∥∥2
6 C(ti+1 − ti)2, (B.64)

where C > 0 does not depend on m nor i.

Proof. From (B.11) and Theorem B.1 we have that for f ∈ {b1, . . . , bmw , c} and

j ∈ {−1, 1, . . . ,mw} we have the following estimation

E
∥∥Ljf(Ui)

∥∥2
6 C, (B.65)

where C > 0 does not depend on m nor i. Moreover, for f ∈ {b1, . . . , bmw , c} and

j ∈ {−1, 1, . . . ,mw} the random variable Ljf(Ui) is Fti-measurable. From Fact B.28

(ii) and by Lemma B.24 � B.27 we have that for j1, j2 ∈ {1, . . . ,mw} the random

variables

Iti,t(N,N)− E
(
Iti,t(N,N) | Nm(N)

)
,

Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)− E
(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1) | Nm(Wj1 ,Wj2)

)
,

Iti,t(N,Wj1) + Iti,t(Wj1 , N)− E
(
Iti,t(N,Wj1) + Iti,t(Wj1 , N) | Nm(N,Wj1)

)
,

135

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

are independent of Fti . Hence, by (B.63), Fact B.28 (i) and (B.65) we have∥∥R̃M
m (t)

∥∥
L2(Ω)

6 C1

mw∑
j1,j2=1

∥∥Lj1bj2(Ui)∥∥L2(Ω)
·
∥∥Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)

∥∥
L2(Ω)

+ C1

mw∑
j1=1

∥∥Lj1c(Ui)∥∥L2(Ω)
·
∥∥Iti,t(N,Wj1) + Iti,t(Wj1 , N)

∥∥
L2(Ω)

+ C1

∥∥L−1c(Ui)
∥∥
L2(Ω)

·
∥∥Iti,t(N,N)

∥∥
L2Ω)

6 C(t− ti), (B.66)

for t ∈ [ti, ti+1], so that ends the proof of (B.64). �

From Lemma B.11 there exists a constant C > 0 such that for all m ∈ N and

arbitrary discretization (B.1)

sup
t∈[0,T]

E
∥∥R̃M

m (t)
∥∥2
6 C max

0≤i≤m−1
(ti+1 − ti)2. (B.67)

B.3. Derivative free time-continuous Milstein

approximation for system of SDEs under jump

commutative conditions
In this section we discuss basic properties of the derivative free time-continuous

Milstein approximation under jump commutative conditions. Note that the

derivative-free version of the Milstein scheme has to be de�ned in a suitable

way, since the operator Lj,hf approximates Ljf but does not commute.

Let m ∈ N and

0 = t0 < t1 < . . . < tm = T, (B.68)

be an arbitrary discretization of interval [0, T]. By

∆Zi = Z(ti+1)− Z(ti),

we denote the increment of stochastic processes Z ∈ {N,W,W1, . . . ,Wmw} where

for i ∈ {0, 1, . . . ,m − 1}, ∆Zi is either a vector or a scalar depending on process

structure. For h > 0 and f ∈ {b1, . . . , bmw , c} we denote by

Lk,hf(t, y) = ∇̃x,hf(t, y) · bk(t, y), (t, y) ∈ [0, T]× Rd.

De�ned in that way operator approximate operator Lkf . Let us de�ne another operator

L̃j1,hb
j2 :=

{
Lj1,hb

j2 , j1 6 j2,

Lj2,hb
j1 , j1 > j2.

(B.69)

136

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

By the Lemma B.12 we have that operator L̃j1,h commute.

Lemma B.12. We have that for j1, j2 ∈ {1, . . . ,mw}

L̃j1,hb
j2 = L̃j2,hb

j1 .

Proof. Without loss of generality j1 < j2 (when j1 = j2 it is trivial). By the de�nition

of operator L̃j1,h given by (B.69) we have that

L̃j1,hb
j2 = Lj1,hb

j2 , L̃j2,hb
j1 = Lj1,hb

j2 ,

and that ends the proof. �

By the Lemma B.12, under the jump-commutativity condition (Dmd) the

time-continuous derivative-free Milstein approximation X̃df−M
m =

{
X̃df−M
m (t)

}
t∈[0,T]

based on the mesh (B.68) is de�ned as follows. We set

X̃df−M
m (0) = x0, (B.70)

and

X̃df−M
m (t) = X̃df−M

m (ti) + a(Udf
i) · (t− ti)

+ b(Udf
i) ·

(
W (t)−W (ti)

)
+ c(Udf

i) ·
(
N(t)−N(ti)

)
+

1

2

mw∑
j1,j2=1

L̃j1,hib
j2(Udf

i) ·
(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)

)
+

mw∑
j1=1

L−1b
j1(Udf

i) ·
(
Iti,t(N,Wj1) + Iti,t(Wj1 , N)

)
+ L−1c(U

df
i) · Iti,t(N,N), (B.71)

for t ∈ [ti, ti+1], i = 0, 1, . . . ,m− 1, where Udf
i = (ti, X̃

df−M
m (ti)) and hi = ti+1 − ti.

For every m ∈ N the process
{
X̃df−M
m (t)

}
t∈[0,T]

is adapted to
{
Ft
}
t∈[0,T]

and has

càdlàg paths. Moreover, the random variables
{
X̃df−M
m (ti)

}m
i=0

are measurable with

respect to the σ-algebra generated by vector of information Nm(N,W), it is that

σ
(
Nm(N,W)

)
= σ

(
N(t1), N(t2), . . . , N(tm),W (t1),W (t2), . . . ,W (tm)

)
. (B.72)

In [61] the authors proposed a derivative-free version of the Milstein scheme. However,

the error was investigated under stronger assumptions than imposed in Theorem B.13.

137

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

Theorem B.13. Let us assume that the mappings a, b, c and λ satisfy assumptions

(Amd) � (Cmd) and (Emd). Let m ∈ N and let (B.68) be an arbitrary discretization of

the interval [0, T]. Then for continuous Milstein approximation X̃df−M
m , based on the

mesh (B.68) we have that

sup
t∈[0,T]

∥∥X̃df−M
m (t)

∥∥
L2(Ω)

6 C1, (B.73)

and

sup
t∈[0,T]

∥∥X(t)− X̃df−M
m (t)

∥∥
L2(Ω)

6 C2 max
0≤i≤m−1

(ti+1 − ti), (B.74)

where C1, C2 > 0 do not depend on m.

Before we show proof of Theorem B.13, we will focus on important auxiliary

lemmas, which help to prove the theorem. We start with additional results following

from the given assumptions (Amd) � (Cmd).

Lemma B.14. Let f : [0, T] × Rd → Rd satisfy (Amd) � (Cmd) then for all

(t, y), (t, z) ∈ [0, T] × Rd, exists K1 > 0 depends only on ‖f(0, 0)‖, K and T such

that ∥∥∇̃x,hf(t, x)
∥∥6 Kd, (B.75)∥∥∇xf(t, x)− ∇̃x,hf(t, x)

∥∥6 Kdh, (B.76)

∥∥Lj,hf(t, x)
∥∥ 6 KK1d

(
1 + ‖x‖

)
, (B.77)

and ∥∥Ljf(t, x)− Lj,hf(t, z)
∥∥ 6 K‖x− z‖+KK1d

(
1 + ‖z‖

)
h, (B.78)∥∥L−1f(t, x)− L−1f(t, z)

∥∥ 6 3K‖x− z‖. (B.79)

Proof. By Lemma B.2 we have that

∥∥∇̃x,hf(t, x)
∥∥ =

(
d∑

i1,i2=1

∣∣∣∣fi1(t, x+ h · ei2)− fi1(t, x)

h

∣∣∣∣2
)1/2

6 Kd,

and that end the proof of (B.75). �

We have that f : [0, T] × Rd → Rd and f = (f1, . . . , fd). For t ∈ [0, T], x ∈ Rd we

have that

fi(t, x+ h · ej)− fi(t, x) = fi(t, x1, . . . , xj + h, . . . , xd)− fi(t, x1, . . . , xj, . . . , xd).

138

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

We can use a standard mean value theorem

fi(t, x1, . . . , xj + h, . . . , xd)− fi(t, x1, . . . , xj, . . . , xd)

= h · ∂fi
∂xj

(t, x1, . . . , xj−1, ξi,j, xj+1, . . . , xd)

for some ξij ∈ [xj, xj + h]. Let us de�ne ξ̃i,j = (x1, . . . , xj−1, ξi,j, xj+1, . . . xd). It is easy

to see that ‖x− ξ̃i,j‖ 6 h. So we have that

∥∥∇xf(t, x)− ∇̃x,hf(t, x)
∥∥2

=
d∑

i,j=1

∣∣∣ ∂fi
∂xj

(t, x)− fi(t, x+ h · ej)− fi(t, x)

h

∣∣∣2
=

d∑
i,j=1

∣∣∣ ∂fi
∂xj

(t, x)− ∂fi
∂xj

(t, ξ̃i,j)
∣∣∣2.

By assumption (Bmd) we have that

∥∥∇xf(t, x)− ∇̃x,hf(t, x)
∥∥ 6 d∑

i,j=1

K‖x− ξ̃i,j‖ 6 Kdh.

That end the proof of (B.76). �

Now we go to prove (B.77). By Lemma B.2 and assumption (B.75) we have that∥∥Lj,hf(t, x)
∥∥ 6 ∥∥∇̃x,hf(t, y)

∥∥ · ‖bj(t, y)‖

6 KK1

(
1 + ‖x‖

)
.

That ends the proof of (B.77). �

We go to prove (B.78). By Lemma B.2, (Dmd) and (B.76) we have that∥∥Ljf(t, x)− Lj,hf(t, z)
∥∥ 6 ∥∥Ljf(t, x)− Ljf(t, z)

∥∥+
∥∥Ljf(t, z)− Lj,hf(t, z)‖

6 K‖x− z‖+
∥∥∇xf(t, z)− ∇̃x,hf(t, z)

∥∥ · ‖bk(t, z)‖
6 K‖x− z‖+KdKK1

(
1 + ‖z‖

)
h.

That ends the proof of (B.78). �

Finally, we go to prove (B.79). By Lemma B.2, assumption (Dmd) and (B.76) we

have that

‖L−1f(t, x)− L−1f(t, z)‖ 6
∥∥f(t, x+ c(t, x))− f(t, z + c(t, z))

∥∥+ ‖f(t, z)− f(t, x)‖

6 K‖x− z‖+ ‖c(t, z)− c(t, x)‖

6 3K‖x− z‖.

That ends the proof. �

139

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

B.3.1. Proof of Theorem B.13

Proof. of Theorem B.13 Since the functions a, b, c, L̃j1,hib
j2 , L−1b

j2 and L−1c for

j1, j2 ∈ {1, . . . ,mw} satisfy linear growth condition, the estimate (B.73) follows from

standard arguments, as in proof of Theorem B.1, so we skip it.

To proof (B.74), let us de�ne Udf
i =

(
ti, X̃

M−df
m (ti)

)
, we have the following

decomposition X̃M−df
m for all t ∈ [0, T]

X̃df−M
m (t) = x0 + Ãdf−Mm (t) + B̃df−M

m (t) + C̃df−M
m (t),

where

Ãdf−Mm (t) =

t∫
0

m−1∑
i=0

a(Udf
i) · 1(ti,ti+1](s)ds,

B̃df−M
m (t) =

mw∑
j=1

(t∫
0

m−1∑
i=0

(
bj(Udf

i) +
mw∑
k=1

s∫
ti

L̃k,hib
j(Udf

i)dWk(u)

+

s∫
ti

L−1b
j(Udf

i)dN(u)
)
1(ti,ti+1](s)dWj(s)

)
,

C̃df−M
m (t) =

t∫
0

m−1∑
i=0

(
c(Udf

i) +
mw∑
j=1

s∫
ti

L−1b
j(Udf

i)dWj(u)

+

s∫
ti

L−1c(U
df
i)dN(u)

)
1(ti,ti+1](s)dN(s).

Let Ui = (ti, X̃
M
m (ti)). Moreover, from (B.20) we have for all t ∈ [0, T]

X̃M
m (t) = x0 + ÃMm (t) + B̃M

m (t) + C̃M
m (t), (B.80)

140

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

where

ÃMm (t) =

t∫
0

m−1∑
i=0

a(Ui)1(ti,ti+1](s)ds,

B̃M
m (t) =

mw∑
j=1

(t∫
0

m−1∑
i=0

(
bj(Ui) +

mw∑
k=1

s∫
ti

Lkb
j(Ui)dWk(u)

+

s∫
ti

L−1b
j(Ui)dN(u)

)
1(ti,ti+1](s)dWj(s)

)
,

C̃M
m (t) =

t∫
0

m−1∑
i=0

(
c(Ui) +

mw∑
j=1

s∫
ti

L−1b
j(Ui)dWj(u)

+

s∫
ti

L−1c(Ui)dN(u)
)
1(ti,ti+1](s)dN(s).

From Hölder inequality and assumption (B1md) we have for all t ∈ [0, T] the

following estimation

E
∥∥ÃMm (t)− Ãdf−Mm (t)

∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds. (B.81)

Now, by Itô isometry and Hölder inequality we have that

E‖B̃M
m (t)− B̃df−M

m (t)‖2 6 3
(
B1,m(t) +B2,m(t) +B3,m(t)

)
,

where

B1,m(t) =
mw∑
j=1

t∫
0

m−1∑
i=0

E
∥∥bj(Ui)− bj(Udf

i)
∥∥2 · 1(ti,ti+1](s)ds,

B2,m(t) =
mw∑
j=1

t∫
0

m−1∑
i=0

mw∑
k=1

E
∥∥∥ s∫
ti

(
Lkb

j(Ui)− L̃k,hib
j(Udf

i)
)
dWk(u)

∥∥∥2

·1(ti,ti+1](s)ds,

B3,m(t) =
mw∑
j=1

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

(
L−1b

j(Ui)− L−1b
j(Udf

i)
)
dN(u)

∥∥∥2

·1(ti,ti+1](s)ds.

From assumption (B1md) we have that

B1,n(t) 6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds, (B.82)

141

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

and by Itô isometry, (B.78) and (B.73),

B2,n(t) 6 C

t∫
0

m−1∑
i=0

(
E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2

+ h3
i

(
1 + E

∥∥X̃df−M
m (ti)

∥∥2
))
· 1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds+ C max
0≤i≤m−1

h3
i .

(B.83)

Then, by using the decomposition N(t) = Ñ(t) + m(t) together with martingale

isometry for the compensated Poisson process and Lemma B.79 we have that

B3,n(t) 6
mw∑
j=1

t∫
0

m−1∑
i=0

s∫
ti

E
∥∥L−1b

j(Ui)− L−1b
j(Udf

i)
∥∥2
λ(u)du · 1(ti,ti+1](s)ds

+

t∫
0

m−1∑
i=0

s∫
ti

E
∥∥L−1b

j(Ui)− L−1b
j(Udf

i)
∥∥2
λ2(u)du · 1(ti,ti+1](s)ds

6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds. (B.84)

Combine together (B.82) � (B.84)

E
∥∥B̃M

m (t)−B̃df−M
m (t)

∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)−X̃df−M
m (ti)

∥∥2·1(ti,ti+1](s)ds+C9 max
0≤i≤m−1

h3
i .

(B.85)

To show estimation for part E
∥∥C̃M

m (t) − C̃df−M
m (t)

∥∥2
we again use the decomposition

N(t) = Ñ(t) + m(t) together with the martingale isometry and assumption (Dmd).

Then, it follows that

E
∥∥C̃M

m (t)− C̃df−M
m (t)

∥∥2
6 3
(
C1,m(t) + C2,m(t) + C3,m(t)

)
,

where

C1,m(t) =

t∫
0

m−1∑
i=0

E‖c(Ui)− c(Udf
i)‖2 · 1(ti,ti+1](s)λ(s)ds

+

t∫
0

m−1∑
i=0

E‖c(Ui)− c(Udf
i)‖2 · 1(ti,ti+1](s)λ

2(s)ds,

142

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

C2,m(t) =

t∫
0

m−1∑
i=0

mw∑
k=1

E
∥∥∥ s∫
ti

(
L−1b

k(Ui)− L−1b
k(Udf

i)
)
dWk(u)

∥∥∥2

·1(ti,ti+1](s)λ(s)ds,

+

t∫
0

m−1∑
i=0

mw∑
k=1

E
∥∥∥ s∫
ti

(
L−1b

k(Ui)− L−1b
k(Udf

i)
)
dWk(u)

∥∥∥2

·1(ti,ti+1](s)λ
2(s)ds,

C3,m(t) =

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

(
L−1c(Ui)− L−1c(U

df
i)
)
dN(u)

∥∥∥2

·1(ti,ti+1](s)λ(s)ds

+

t∫
0

m−1∑
i=0

E
∥∥∥ s∫
ti

(
L−1c(Ui)− L−1c(U

df
i)
)
dN(u)

∥∥∥2

·1(ti,ti+1](s)λ
2(s)ds.

Proceeding analogously as for the term E‖B̃M
m (t)− B̃df−M

m (t)‖2 we arrive that

C1,m(t) 6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds, (B.86)

C2,m(t) 6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds, (B.87)

C3,m(t) 6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds. (B.88)

Finally by (B.86) � (B.88), we obtain that

E
∥∥C̃M

m (t)− C̃df−M
m (t)

∥∥2
6 C

t∫
0

m−1∑
i=0

E
∥∥X̃M

m (ti)− X̃df−M
m (ti)

∥∥2 · 1(ti,ti+1](s)ds. (B.89)

Hence, by (B.81), (B.85) and (B.89) we have that for all t ∈ [0, T]

E
∥∥X̃M

m (t)− X̃df−M
m (t)

∥∥2
6 C

t∫
0

sup
0≤u≤s

E
∥∥X̃M

m (u)−Xdf−M
m (u)

∥∥2
ds+ C max

0≤i≤m−1
h3
i ,

and by the Grönwall's inequality (Lemma A.67) we get for all t ∈ [0, T] that

E
∥∥X̃M

m (t)− X̃df−M
m (t)

∥∥2
6 C max

0≤i≤m−1
h3
i .

This implies (B.74) and that ends the proof. �

For all t ∈ [ti, ti+1], i = 0, 1, . . . ,m − 1 we have the following decomposition

(analogous as for X̃M
m),

X̃df−M
m (t)− E

(
X̃df−M
m (t) | Nm(N,W)

)
= H̃df−M

m (t) + R̃df−M
m (t), (B.90)

143

B.3. Derivative free time-continuous Milstein approximation for system of SDEs

where by Fact B.19

H̃df−M
m (t) = b(Udf

i) ·
(
W (t)− E

(
W (t) | Nm(W)

))
+ c(Udf

i) ·
(
N(t)− E

(
N(t) | Nm(N)

))
, (B.91)

R̃df−M
m (t) =

1

2

mw∑
j1,j2=1

L̃j1,hib
j2(Udf

i) ·
(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)

− E
(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1) | Nm(Wj1 ,Wj2)

))
+

mw∑
j=1

L−1b
j(Udf

i) ·
(
Iti,t(N,Wj) + Iti,t(Wj, N)

− E(Iti,t(N,Wj) + Iti,t(Wj, N) | Nm(N,W))
)

+ L−1c(U
df
i) ·

(
Iti,t(N,N)− E

(
Iti,t(N,N) | Nm(N)

))
. (B.92)

Since (B.77) holds, we can show the following estimation for R̃df−M
m (t).

Lemma B.15. Let us assume that the mappings a, b, c and λ satisfy the assumptions

(Amd) � (Emd). Let (B.68) be discretization of interval [0, T] For all t ∈ [ti, ti+1],

i = 0, 1, . . . ,m− 1 we have that

E‖R̃df−M
m (t)‖2 6 C(ti+1 − ti)2,

where C > 0 does not depend on m nor i.

Proof. From (B.11), (B.77) and Theorem B.13 we have that for f ∈ {b1, . . . , bmw , c}
and j ∈ {−1, 1, . . . ,mw} the following estimations holds

E‖L−1f(Udf
i)‖2 6 C, (B.93)

E‖L̃j1,hib
j2(Udf

i)‖2 6 C, (B.94)

where C > 0 does not depend on n nor i. Moreover, for f ∈ {b1, . . . , bmw , c} and

j ∈ {−1, 1, . . . ,mw} the random variables L−1f(Ui) and L̃j1,hib
j2 for

j1, j2 ∈ {1, . . . ,mw} are Fti-measurable. Then from Fact B.28 (ii) and by

Lemma B.24 - B.27 we have that for j1, j2 ∈ {1, . . . ,mw}, the following random

variables

Iti,t(N,N)− E
(
Iti,t(N,N) | Nm(N)

)
,

Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)− E
(
Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1) | Nm(Wj1 ,Wj2)

)
,

Iti,t(N,Wj1) + Iti,t(Wj1 , N)− E
(
Iti,t(N,Wj1) + Iti,t(Wj1 , N) | Nm(N,Wj1)

)
,

144

B.4. Properties of stochastic processes on given interval and discretization

are independent of Fti . Hence, by (B.92), Fact B.28 (i) and (B.93), (B.94) we have the

following estimation

‖R̃df−M
m (t)‖L2(Ω)

6 C

mw∑
j1,j2=1

‖L̃j1,hib
j2(Udf

i)‖L2(Ω) · ‖Iti,t(Wj1 ,Wj2) + Iti,t(Wj2 ,Wj1)‖L2(Ω)

+ C
mw∑
j1=1

‖L−1b
j
1(Udf

i)‖L2(Ω) · ‖Iti,t(N,Wj1) + Iti,t(Wj1 , N)‖L2(Ω)

+ C‖L−1c(U
df
i)‖L2(Ω) · ‖Iti,t(N,N)‖L2(Ω)

6 C(t− ti),

for t ∈ [ti, ti+1], which ends the proof. �

By the Lemma B.15 there exists a constant C > 0 such that for all m ∈ N and

arbitrary discretization (B.68)

sup
t∈[0,T]

E‖R̃df−M
m (t)‖2 6 C max

0≤i≤m−1
(ti+1 − ti)2. (B.95)

B.4. Properties of stochastic processes on given

interval and discretization
Now we show basic properties about stochastic processes on a given interval [0, T]

and discretization points. Without loss of generality let W = (W1,W2)T and N be

respectively two-dimensional Wiener process and one-dimensional Poisson process. Let

m ∈ N and let

0 = t0 < t1 < . . . < tm = T,

be an arbitrary discretization of the interval [0, T]. We have a following vectors of

information about processes:

Nm(W) = [W1(t1),W1(t2), . . . ,W1(tm),W2(t1),W2(t2), . . . ,W2(tm)],

Nm(W1) = [W1(t1),W1(t2), . . . ,W1(tm)],

Nm(W2) = [W2(t1),W2(t2), . . . ,W2(tm)],

Nm(N) = [N(t1), N(t2), . . . , N(tm)],

Nm(Z1, Z2) = Nm(Z1) ∪Nm(Z2), Z1, Z2 ∈ {W,W1,W2, N}.

145

B.4. Properties of stochastic processes on given interval and discretization

De�nition B.16. Let X be a square integrable random variable. Conditional variance

by σ-algebra G is de�ned by

V ar(X | G) := E
(

(X − E(X | G)
)2 | G

)
= E(X2 | G)−

(
E(X | G)

)2
.

Lemma B.17. Let Z ∈ {W1,W2, N} we have that for all t ∈ [0, T]

V ar
(
Z(t)− Z(ti) | Nm(Z)

)
= V ar

(
Z(t) | Nm(Z)

)
.

Proof. By the De�nition B.16 and fact that σ(Z(ti)) ⊂ σ(Nm(Z)) we have that

V ar
(
Z(t)− Z(ti) | Nm(Z)

)
= E

((
Z(t)− Z(ti)− E(Z(t)− Z(ti) | Nm(Z))

)2 | Nm(Z)
)

= E
(
Z(t)− E

(
Z(t) | Nm(Z)

))2

= V ar
(
Z(t) | Nm(Z)

)
.

That ends the proof. �

Lemma B.18. Let X, Y be a stochastic processes on probability space (Ω,F ,P),

X, Y : Ω × [0,∞) → R such that both are F ⊗ B([0,∞))/B(R)-measurable and

independent (i.e. FX∞ FY∞, where FZ∞ = σ
(⋃

t≥0 σ
(
Z(t)

))
for Z ∈ {X, Y }). We

assume that for all t > 0

E|X(t)| <∞, E|Y (t)| <∞.

Let m,n ∈ N and points tX1 , . . . , t
X
m, t

Y
1 , . . . , t

Y
n satisfy 0 6 tX1 < tX2 < . . . < tXm,

0 6 tY1 < tY2 < . . . < tYn . Then we have that

FX∞ σ(X(tX1),...,X(tXm),Y (tY1),...,Y (tYn))FY∞. (B.96)

Proof. We set F1 = FX∞ and F3 = FY∞ and we de�ne

F2 := σ
(
X(tX1), . . . , X(tXm), Y (tY1), . . . , Y (tYn)

)
.

Lets take random variables Y3-integrable and F3-measurable. Then we have that

E(Y3 | F1 ∨ F2) = E
(
Y3 | FX∞ ∨ σ

(
X(tX1), . . . , X(tXm)

)︸ ︷︷ ︸
H

∨ σ
(
Y (tY1), . . . , Y (tYn)

)︸ ︷︷ ︸
G

)
.

146

B.4. Properties of stochastic processes on given interval and discretization

By the facts that

FX∞ ∨ σ
(
X(tX1), . . . , X(tXm)

)
= σ(FX∞ ∪ σ

(
X(tX1), . . . , X(tXm)

)︸ ︷︷ ︸
⊂FX
∞

) ⊂ FX∞,

σ(Y3)︸ ︷︷ ︸
⊂FY∞

∨ σ
(
Y (tY1), . . . , Y (tYn)

)︸ ︷︷ ︸
⊂FY∞

⊂ FY∞.

From independence of FX∞ FY∞ we have that

FX∞ ∨ σ
(
X(tX1), . . . , X(tXm)

)
σ(Y3) ∨ σ

(
Y (tY1), . . . , Y (tYn)

)
.

From Lemma A.20 we have that

E(Y3 | F12) = E
(
Y3 | σ

(
Y (tY1), . . . , Y (tYn)

))
.

Then by σ
(
X(tX1), . . . , X(tXm)

)
⊂ FX∞, we have that

σ
(
X(tX1), . . . , X(tXm)

)
σ(Y3) ∨ σ

(
Y (tY1), . . . , Y (tYn)

)
.

And again from Lemma A.20 we have that

E(Y3 | F12) = E
(
Y3 | σ

(
X(tX1), . . . , X(tXm)

)
∨ σ
(
Y (tY1), . . . , Y (tYm)

))
= E(Y3 | F2).

So we prove (B.96) and that ends the proof. �

Fact B.19. We have that for all α, β, t ∈ R, such that 0 6 α 6 t, 0 6 β 6 t

E
(
N(t)−N(α) | σ(Nm(W,N))

)
= E

(
N(t)−N(α) | σ(Nm(N))

)
, (B.97)

E
(
W1(s)−W1(β) | σ(Nm(W,N))

)
= E

(
W1(s)−W1(β) | σ(Nm(W1))

)
, (B.98)

E
(
(N(t)−N(α)) · (W1(s)−W1(β)) | σ(Nm(W1, N)))

= E
(
N(t)−N(α) | σ(Nm(N))

)
· E
(
W1(s)−W1(β) | σ(Nm(W1))

)
, (B.99)

E
(
(W1(t)−W1(α)) · (W2(s)−W2(β)) | σ(Nm(W1,W2)))

= E
(
W1(t)−W1(α) | σ(Nm(W1))

)
· E
(
W2(s)−W2(β) | σ(Nm(W2))

)
.(B.100)

Proof. The proof of (B.97) and (B.98) is a natural consequence of fact that N,W1 are

independent. The proof of (B.99) goes as follows. Lets substitute in Lemma B.18

147

B.4. Properties of stochastic processes on given interval and discretization

X = N and Y = W1, X, Y are independent and both are integrable. From

independence we have that E|X(t)Y (s)| <∞ for all t > 0, s > 0. Let

F1 = FN∞,

F3 = FW1
∞ ,

F2 = σ
(
X(tX1), . . . , X(tXm), Y (tY1), . . . , Y (tYn)

)
,

and random variables

Y1 = N(t)−N(α), t > α > 0,

Y3 = W1(s)−W1(β), s > β > 0.

Of course we have that σ(Y1) ⊂ F1, σ(Y3) ⊂ F3, and E|Y1| < ∞, E|Y3| < ∞
and from independence of N, W1 By the (B.96) and Proposition A.23 we have that

E|Y1Y3| = E|Y1| · E|Y3| <∞ the conditional expectation

E
(
(N(t)−N(α)) · (W1(s)−W1(β)) | σ(Nm(W1, N))

)
= E

(
Y1Y3 | F2

)
= E

(
Y1 | F2

)
· E
(
Y3 | F2

)
= E

(
N(t)−N(α) | σ(Nm(W1, N))

)
× E

(
W1(s)−W1(β) | σ(N(W1, N)

)
,

we have that

σ
(
W1(tW1

1), . . . ,W1(tW1
m)
)︸ ︷︷ ︸

⊂FW1∞

σ
(
(N(t)−N(α)

)
∨ σ
(
N(tN1), . . . , N(tNm)

)︸ ︷︷ ︸
⊂FN∞

, (B.101)

so from Lemma A.20 and by (B.101) we have

E
(
N(t)−N(α) | σ(Nm(W1, N))

)
= E

(
N(t)−N(α) | σ(Nm(N))

)
,

similarly

E(W1(s)−W1(β) | σ(Nm(W1, N))) = E
(
W1(s)−W1(β) | σ(Nm(W1))

)
.

And �nally we have that

E
(
(N(t)−N(α)) · (W1(s)−W1(β)) | σ(Nm(W1, N))

)
= E

(
N(t)−N(α) | σ(Nm(N))

)
· E
(
W1(s)−W1(β) | σ(Nm(W1))

)
.

The proof of (B.100) goes analogously as (B.99). This ends the proof. �

148

B.4. Properties of stochastic processes on given interval and discretization

Theorem B.20 ([14]). For �xed m > 1, conditioned with W1(t1), . . . ,W1(tm),

0 = t0 < t1 < . . . < tm, stochastic process W1 is Gaussian with mean

mti,ti+1
(t) =

(t− ti) ·W1(ti+1) + (ti+1 − t) ·W1(ti)

ti+1 − ti
,

and covariance function

rti,ti+1
(s, t) =

(ti+1 − s ∨ t) · (s ∧ t− ti)
ti+1 − ti

,

on the interval [ti, ti+1] for i = 0, . . . ,m − 1, and with mean W1(tm) and covariance

function

s ∧ t− tm,

on [tm,∞).

Lemma B.21. For all i = 0, 1, . . . ,m− 1 and t ∈ [ti, ti+1]

(i)

E
(
W1(t) | Nm(W1)

)
=

(t− ti) ·W1(ti+1) + (ti+1 − t) ·W1(ti)

ti+1 − ti
a.s.,

(ii)

E
(∣∣W1(t)− E

(
W1(t) | Nm(W1)

)∣∣2 ∣∣ Nm(W1)
)

=
(ti+1 − t)(t− ti)

(ti+1 − ti)
a.s.,

and, in particular,

E
∣∣W1(t)− E

(
W1(t) | Nm(W1)

)∣∣2 =
(ti+1 − t)(t− ti)

(ti+1 − ti)
.

Proof. Proof of this Lemma follow directly from Theorem B.20. �

Lemma B.22. For all i = 0, 1, . . . ,m− 1 and t ∈ [ti, ti+1] we have that

(i)

E
(
N(t) | Nm(N)

)
=
N(ti+1) · Λ(t, ti) +N(ti) · Λ(ti+1, t)

Λ(ti+1, ti)
a.s., (B.102)

(ii)

E
(∣∣N(t)−E

(
N(t) | Nm(N)

)∣∣2 ∣∣ Nm(N)
)

=
(
N(ti+1)−N(ti)

)
·Λ(ti+1, t) · Λ(t, ti)(

Λ(ti+1, ti)
)2 a.s.,

(B.103)

and, in particular,

E
∣∣N(t)− E

(
N(t) | Nm(N)

)∣∣2 =
Λ(ti+1, t) · Λ(t, ti)

Λ(ti+1, ti)
. (B.104)

149

B.4. Properties of stochastic processes on given interval and discretization

Proof. Let t = ti, for i = 0, 1, . . . ,m. In this case we get directly (B.102), (B.103)

and (B.104). Now, let t ∈ (ti, ti+1) for i = 0, 1, . . . ,m − 1. From the fact that the

process N has independent increments and is based on results from [3], we obtain that

conditioned on Nm(N) the increment N(t)−N(ti) is a binomial random variable with

the number of trials N(ti+1)−N(ti) and with the probability of success in each trial

equal to
Λ(t, ti)

Λ(ti+1, ti)
. It means that

E
(
N(t)−N(ti) | Nm(N)

)
=

Λ(t, ti)

Λ(ti+1, ti)
·
(
N(ti+1)−N(ti)

)
, (B.105)

V ar
(
N(t)−N(ti) | Nm(N)

)
=

Λ(t, ti)

Λ(ti+1, ti)
·
(

1− Λ(t, ti)

Λ(ti+1, ti)

)
·
(
N(ti+1)−N(ti)

)
.

(B.106)

We start with proof of (B.102), by (B.105) we have that

E
(
N(t) | Nm(N)

)
= E

(
N(t)−N(ti) | Nm(N)

)
+N(ti)

=
(
N(ti+1)−N(ti)

)
· Λ(t, ti)

Λ(ti+1, ti)
+N(ti)

=
N(ti+1) · Λ(t, ti) +N(ti) · Λ(ti+1, t)

Λ(ti+1, ti)
,

which gives (B.102). Then, by De�nition B.17 and (B.106) we have that

E
(∣∣N(t)− E(N(t) | Nm(N))|2

∣∣ Nm(N)
)

= E
(∣∣(N(t)−N(ti)

)
− E

(
N(t)−N(ti) | Nm(N)

)∣∣2 ∣∣ Nm(N)
)

= V ar
((
N(t)−N(ti)

) ∣∣ Nm(N)
)

=
(
N(ti+1)−N(ti)

)
· Λ(t, ti)

Λ(ti+1, ti)
·
(

1− Λ(t, ti)

Λ(ti+1, ti)

)
=
(
N(ti+1)−N(ti)

)
· Λ(ti+1, t) · Λ(t, ti)(

Λ(ti+1, ti)
)2 ,

which gives (B.103).

Since

E
(
N(ti+1)−N(ti)

)
= Λ(ti+1, ti),

and

E
∣∣N(t)− E

(
N(t) | Nm(N)

)∣∣2 = E
(
E
(∣∣N(t)− E

(
N(t) | Nm(N)

)∣∣2 ∣∣ Nm(N)
))
,

we have (B.104). �

150

B.4. Properties of stochastic processes on given interval and discretization

Let N,W1,W2 be an independent Poisson process and two one-dimensional Wiener

processes. We de�ne double Itô integrals of the following form

Ia,b(Y, Z) =

b∫
a

v−∫
a

dY (u)dZ(v),

for stochastic processes Y, Z ∈ {N,W1,W2} and a, b ∈ R+.

Lemma B.23 ([61]). Let 0 < s < t, {τi}N(t)
i=0 be a sequence such that τ0 = 0 and

N(u) = N(v) for each u, v ∈ [τi, τi+1) then

Is,t(W1,W1) =
1

2

((
W1(t)−W1(s)

)2 − (t− s)
)
, (B.107)

Is,t(W1,W2) =

t∫
s

u∫
s

dW1(z)dW2(u), (B.108)

Is,t(W1,W2) + Is,t(W2,W1) =
(
W1(t)−W1(s)

)(
W2(t)−W2(s)

)
, (B.109)

Is,t(N,N) =
1

2

((
N(t)−N(s)

)2 −
(
N(t)−N(s)

))
, (B.110)

Is,t(W1, N) =

N(t)∑
j=N(s)+1

W1(τj)−W1(s)
(
N(t)−N(s)

)
, (B.111)

Is,t(N,W1) =
(
W1(t)−W1(s)

)(
N(t)−N(s)

)
− Is,t(W1, N),

(B.112)

Is,t(N,W1) + Is,t(W1, N) =
(
W1(t)−W1(s)

)(
N(t)−N(s)

)
. (B.113)

Lemma B.24. For all i = 0, 1, . . . ,m− 1 and t ∈ [ti, ti+1] holds

E
(
Iti,t(W1,W1) | Nm(W1)

)
=

(
t− ti
ti+1 − ti

)2

· Iti,ti+1
(W1,W1).

Proof. By Lemma B.21 we have that

E
(
W1(t)−W1(ti) | Nm(W1)

)
=

t− ti
ti+1 − ti

·
(
W1(ti+1)−W1(ti)

)
. (B.114)

By Lemma B.23, Lemma B.17 and De�nition B.16 we have that

E
(
Iti,t(W1,W1) | Nm(W1)

)
=

1

2
E
((
W1(t)−W1(ti)

)2 | Nm(W1)
)
− 1

2
(t− ti)

=
1

2
V ar

(
W1(t) | Nm(W1)

)
+

1

2

(
E
(
W1(t)−W1(ti) | Nm(W1)

))2

− 1

2
(t− ti).

151

B.4. Properties of stochastic processes on given interval and discretization

Finally, from Lemma B.21 and (B.114) we have that

E
(
Iti,t(W1,W1) | Nm(W1)

)
=

1

2

(
(ti+1 − t)(t− ti)

(ti+1 − ti)
− (t− ti)

+

(
t− ti
ti+1 − ti

)2

·
(
W1(ti+1)−W1(ti)

)2

)

=

(
t− ti
ti+1 − ti

)2

· Iti,ti+1
(W1,W1).

Which ends the proof. �

Lemma B.25. For all i = 0, 1, . . . ,m− 1 and t ∈ [ti, ti+1] we have that

E
(
Iti,t(W1,W2) + Iti,t(W2,W1) | Nm(W1,W2)

)
=

(
t− ti
ti+1 − ti

)2

·
(
Iti,ti+1

(W1,W2) + Iti,ti+1
(W2,W1)

)
.

Proof. By Lemma B.109, Lemma B.21 (like in (B.114)), independence of W1,W2 and

Fact B.19 it follows that

E
(
Iti,t(W1,W2) + Iti,t(W2,W1) | Nm(W1,W2)

)
= E

((
W1(t)−W1(ti)

)
·
(
W2(t)−W2(ti)

)
| Nm(W1,W2)

)
=

t− ti
ti+1 − ti

·
(
W1(ti+1)−W1(ti)

)
· t− ti
ti+1 − ti

·
(
W2(ti+1)−W2(ti)

)
=
(t− ti
ti+1 − ti

)2

·
(
Iti,ti+1

(W1,W2) + Iti,ti+1
(W2,W1)

)
.

Which ends the proof. �

Lemma B.26. For all i = 0, 1, . . . ,m− 1 and t ∈ [ti, ti+1] it follows that

E
(
Iti,t(W1, N) + Iti,t(N,W1) | Nm(W1, N)

)
=

Λ(t, ti)

Λ(ti+1, ti)
· t− ti
ti+1 − ti

·
(
Iti,ti+1

(W1, N) + Iti,ti+1
(N,W1)

)
.

Proof. By Lemma B.22 we have that

E
(
N(t)−N(ti) | Nm(N)

)
=

Λ(t, ti)

Λ(ti+1, ti)

(
N(ti+1)−N(ti)

)
. (B.115)

152

B.4. Properties of stochastic processes on given interval and discretization

By Fact B.19, Lemma B.21, Lemma B.23, (like in (B.114)), (B.115) and independence

of W1, N , we have that

E
(
Iti,t(W1, N) + Iti,t(N,W1) | Nm(W1, N)

)
= E

((
W1(t)−W1(ti)

)
·
(
N(t)−N(ti)

)
| Nm(W1, N)

)
= E

(
W1(t)−W1(ti) | Nm(W1)

)
· E
(
N(t)−N(ti) | Nm(N)

)
=

t− ti
ti+1 − ti

·
(
W1(ti+1)−W1(ti)

)
· Λ(t, ti)

Λ(tti+1,ti)
·
(
N(ti+1)−N(ti)

)
=

Λ(t, ti)

Λ(tti+1,ti)
· t− ti
ti+1 − ti

·
(
Iti,ti+1

(W1, N) + Iti,ti+1
(N,W1)

)
.

Which ends the proof. �

Lemma B.27. For all i = 0, 1, . . . ,m− 1 and t ∈ [ti, ti+1] we have that

E
(
Iti,t(N,N) | Nm(N)

)
=

(
Λ(t, ti)

Λ(ti+1, ti)

)2

· Iti,ti+1
(N,N).

Proof. By Lemma B.23 and by De�nition B.16 we have that

E
(
Iti,t(N,N) | Nm(N)

)
=

1

2
E
((
N(t)−N(ti)

)2 −
(
N(t)−N(ti)

)
| Nm(N)

)
=

1

2
V ar

(
N(t) | Nm(N)

)
+

1

2

(
E
(
N(t)−N(ti) | Nm(N)

))2

− 1

2
E
(
N(t)−N(ti) | Nm(N)

)
.

Finally, from Lemma B.22 and (B.115) we have that

E
(
Iti,t(N,N) | Nm(N)

)
=

1

2

(
Λ(ti+1, t) · Λ(t, ti)(

Λ(ti+1, ti)
)2 ·

(
N(ti+1)−N(ti)

)
+

(
Λ(t, ti)

Λ(ti+1, ti)

)2

·
(
N(ti+1)−N(ti)

)2

− Λ(t, ti)

Λ(ti+1, ti)
·
(
N(ti+1)−N(ti)

))
.

By the fact that

Λ(ti+1, t)−Λ(ti+1, ti) = m(ti+1)−m(t)−m(ti+1)−m(ti) = −(m(t)−m(ti)) = −Λ(t, ti),

we get

E
(
Iti,t(N,N) | Nm(N)

)
=

(
Λ(t, ti)

Λ(ti+1, ti)

)2

· Iti,ti+1
(N,N).

Which ends the proof. �

153

B.4. Properties of stochastic processes on given interval and discretization

Fact B.28. (i) There exists C > 0 such that for all 0 6 s 6 t 6 T and

Y, Z ∈ {N,W1,W2} we have

E
∣∣Is,t(Y, Z)

∣∣2 6 C(t− s)2. (B.116)

(ii) For all 0 6 s 6 t 6 T and Y, Z ∈ {N,W1,W2} the stochastic integral Is,t(Y, Z) is

independent of Fs.

Proof. The proof of (i) can be straightforwardly delivered from (A.2), Lemma B.23,

the isometry for stochastic integrals driven by martingales and by the independence

of W1, W2 and N . To show methodology of proof, we present only the case when

(Y, Z) ∈
{

(W1,W2), (W1, N)
}
. Other cases goes in the same way.

For stochastic integral E|Is,t(W1,W2)|2 we have that

E
∣∣Is,t(W1,W2)

∣∣2 = E
∣∣∣ t∫
s

v−∫
s

dW1(u)dW2(v)
∣∣∣2 =

t∫
s

E
∣∣∣ v−∫
s

dW1(u)
∣∣∣2dv =

t∫
s

v−∫
s

dudv.

(B.117)

By the (B.117) we get (B.116) in the case when we consider multiple stochastic integrals

for (W1,W2), (W2,W1).

For stochastic integral E|Is,t(W1, N)|2 by Itô isometry for Ñ(t) = N(t) − λ(t),

Hölder inequality assumption (Emd) we have that

E
∣∣Is,t(W1, N)

∣∣2 = E
∣∣∣ t∫
s

v−∫
s

dW1(u)dN(v)
∣∣∣2

6 E
∣∣∣ t∫
s

v−∫
s

dW1(u)dÑ(v)
∣∣∣2 + E

∣∣∣ t∫
s

v−∫
s

dW1(u)λ(v)dv
∣∣∣2

6

t∫
s

E
∣∣∣ v−∫
s

dW1(u)
∣∣∣2λ(v)dv + C

t∫
s

E
∣∣∣ v−∫
s

dW1(u)
∣∣∣2dv

6 C

t∫
s

v−∫
s

dudv. (B.118)

By the (B.118) we get (B.116) in the case when we consider multiple stochastic integrals

for (W1, N), (W2, N). Other cases (W1,W1), (W2,W2), (N,W1), (N,W2), (N,N) goes in

analogous way as (B.117) and (B.118). That ends the �rst part of proof. �

For the proof of (ii) note that directly from (B.107) and (B.110) we have that

Is,t(Y, Y), Y ∈ {N,W1,W2}, is independent of Fs. So the only case of interest is when

154

B.4. Properties of stochastic processes on given interval and discretization

(Y, Z) ∈ {(N,W1), (W1, N), (W1,W2)}. (Case (N,W2), (W2, N) are exactly the same

as considered (N,W1), (W1, N)).

Let �x s, t ∈ [0, T], s 6 t, and let ∆n = {α0,n, α1,n, . . . , αm,n}, n ∈ N, be a sequence of
discretization of [s, t] such that s = α0,n < α1,n < . . . < αm,n = t and lim

n→+∞
‖∆m‖ = 0,

where ‖∆m‖ = max
0≤i≤m−1

(αi+1,n − αi,n).

Firstly we consider case (N,W1). By the de�nition of Itô integral we have that

t∫
s

v−∫
s

dN(u)dW1(v) =

t∫
s

(
N(v)−N(s)

)
dW1(v).

Let us de�ne process

N̄n(u) =
m−1∑
i=0

(
N(αi,n)−N(s)

)
· 1(αi,n,αi+1,n](u),

We show that the de�ned process N̄n(u) converges in space L2
W1

(Ω) to process

N(u)−N(s).

E
t∫

s

∣∣N̄n(u)−
(
N(u)−N(s)

)∣∣2du =
m−1∑
i=0

αi+1,n∫
αi,n

E
∣∣N(αi,n)−N(u)

∣∣2du

=
m−1∑
i=0

αi+1,n∫
αi,n

(
m(u)−m(αi,n)

)
+
(
m(u)−m(αi,n)

)2
du

6
m−1∑
i=0

αi+1,n∫
αi,n

‖λ‖∞
(
u− αi,n

)
+ ‖λ‖2

∞
(
u− αi,n

)2
du

6
1

2

m−1∑
i=0

‖λ‖∞
(
αi+1,n − αi,n

)2
+

1

3

m−1∑
i=0

‖λ‖2
∞
(
αi+1,n − αi,n

)3

6
1

2
‖λ‖∞‖∆n‖

(
t− s

)
+

1

3
‖λ‖∞‖∆n‖2

(
t− s

)
. (B.119)

By (B.119) and assumption lim
n→+∞

‖∆n‖ = 0 we have that

E
t∫

s

∣∣N̄n(u)−
(
N(u)−N(s)

)∣∣2du
n→∞−→ 0.

So
{
N̄n(u)

}
n∈N is a sequence of simple processes which approximate N(u)−N(s) for

u ∈ [s, t] so by the de�nition of Itô integral for simple function we have that

t∫
s

N̄n(u)dW1(u) =
m−1∑
i=0

(
N(αi,n)−N(u)

)
·
(
W1(αi+1,n)−W1(αi,n)

)
.

155

B.4. Properties of stochastic processes on given interval and discretization

So we can de�ne

Ins,t(N,W1) =
m−1∑
i=0

(N(αi,n)−N(s)) · (W (αi+1,n)−W (αi,n)).

We have that

Is,t(N,W1) = lim
n→+∞

Ins,t(N,W1) in L2(Ω).

Therefore, the sequence
{
Ins,t(N,W1)

}
n∈N converges also in probability, and by the

independence of the increments of N and W1, every random variable Ims,t(N,W1) is

independent of Fs. Hence, the limit Is,t(N,W1) is also independent of Fs. By (B.111)

we have that also Is,t(W,N) is independent of Fs.

Let us de�ne process

W̄1,n(u) =
m−1∑
i=0

(
W1(αi,n)−W1(s)

)
· 1(αi,n,αi+1,n](u).

We show that the de�ned process W̄1,n(u) converges in space L2
W2

(Ω) to process

W1(u)−W1(s).

E
t∫

s

∣∣W̄1,n(u)−
(
W1(u)−W1(s)

)∣∣2du =
m−1∑
i=0

αi+1,n∫
αi,n

E
∣∣W1(αi,n)−W1(u)

∣∣2du

=
m−1∑
i=0

αi+1,n∫
αi,n

(αi,n − u)du

6
1

2
‖∆n‖2

(
t− s

)
. (B.120)

By (B.120) and assumption lim
n→+∞

‖∆n‖ = 0 we have that

E
t∫

s

∣∣W̄1,n(u)−
(
W1(u)−W1(s)

)∣∣2du
n→∞−→ 0.

So
{
W̄1(u)

}
n∈N is a sequence of simple processes which approximate W1(u) −W1(s)

for u ∈ [s, t] so by the de�nition of Itô integral for simple function we have that

t∫
s

W̄1,n(u)dW2(u) =
m−1∑
i=0

(
W1(αi,n)−W1(u)

)
·
(
W2(αi+1,n)−W2(αi,n)

)
.

So we can de�ne

Ins,t(W1,W2) =
m−1∑
i=0

(
W1(αi,n)−W1(s)

)
·
(
W2(αi+1,n)−W2(αi,n)

)
.

156

B.4. Properties of stochastic processes on given interval and discretization

We have that

Is,t(W1,W2) = lim
n→+∞

Ins,t(W1,W2) in L2(Ω).

Therefore, the sequence
{
Ins,t(W1,W2)

}
n∈N converges also in probability and every

random variable Ims,t(W1,W2) is independent of Fs. Hence, the limit Is,t(W1,W2) is

also independent of Fs. This ends the proof. �

The proof of the following fact is straightforward.

Fact B.29 ([70]). Let the mappings a, b, c and λ satisfy the assumptions (B1), (B2)

and (E).

(i) There exists a constant C1 > 0 such that for all f ∈ {b, c} and t, s ∈ [0, T] we have∣∣∣E|f(t,X(t))|2 − E|f(s,X(s))|2
∣∣∣ 6 C1|t− s|1/2.

(ii) The mapping

[0, T] 3 t→ E(Y(t)) ∈ R+ ∪ {0},

is continuous.

(iii) There exists a constant C2 > 0 such that

E(sup
t∈[0,T]

Y(t)) 6 C2.

The proof of the following fact is straightforward.

Fact B.30. Let the mappings a, b, c and λ satisfy the assumptions (B1md), (B2md) and

(Emd).

(i) There exists a constant C1 > 0 such that for all f ∈ {b1, . . . , bmw , c} and t, s ∈ [0, T]

we have ∣∣∣E‖f(t,X(t))‖2 − E‖f(s,X(s))‖2
∣∣∣ 6 C1|t− s|1/2.

Proof. By the Jensen and Hölder inequalities we get,∣∣∣E‖f(t,X(t))‖2 − E‖f(s,X(s))‖2
∣∣∣ 6 E

∣∣(‖f(t,X(t))‖ − ‖f(s,X(s))‖
)

×
(
‖f(t,X(t))‖+ ‖f(s,X(s))‖

)∣∣
6

(
E
∣∣∣‖f(t,X(t))‖ − ‖f(s,X(s))‖

∣∣∣2)1/2

×
(
E
∣∣∣‖f(t,X(t))‖+ ‖f(s,X(s))‖

∣∣∣2)1/2

(B.121)

157

B.4. Properties of stochastic processes on given interval and discretization

By the assumption (B1md), (B2md) and Fact A.63 we have that(
E
∥∥f(t,X(t))− f(s,X(s))

∥∥2
)1/2

6 K
(
E
∥∥X(t)−X(s)

∥∥2
)1/2

+ TK
(

1 +
(
E‖X(s)‖2

)1/2
)
|t− s|1/2

6 C|t− s|1/2, (B.122)(
E
∥∥f(t,X(t))

∥∥2
)1/2

6 C
(

1 +
(
E‖X(t)‖2

)1/2
)

6 C|t− s|1/2. (B.123)

So by the (B.121), (B.122) and (B.123) we get that∣∣∣E‖f(t,X(t))‖2 − E‖f(s,X(s))‖2
∣∣∣ 6 C1|t− s|1/2.

This ends the proof. �

Fact B.31. Let 0 6 α < β 6 T , for all λ ∈ C([0, T]), λ : [0, T] → (0,+∞) we have

for all t ∈ [α, β] that∣∣∣∣ Λ(t, α)

Λ(β, α)
− t− α
β − α

∣∣∣∣ 6 1

inf
t∈[0,T

λ(t)
· sup
t,s∈[α,β]

|λ(t)− λ(s)|

Proof. From the fact that λ is continuous function on interval [0, T] and it is separated

from 0 we have that

Λ(β, α) > inf
t∈[α,β]

λ(t)(β − α) > 0, (B.124)

and of course for all t ∈ [α, β]

1

inf
t∈[0,T]

λ(t)
< +∞. (B.125)

By the mean value theorem we have that for s, t ∈ [α, β], s < t

Λ(t, s) = (t− s) · λ(ξ), (B.126)

where ξ ∈ (s, t). By (B.124), (B.126) we have that∣∣∣∣ Λ(t, α)

Λ(β, α)
− t− α
β − α

∣∣∣∣ 6
∣∣(β − α) · (t− α) · λ(ξ1)− (β − α) · (t− α) · λ(ξ2)

∣∣
inf

t∈[0,T]
λ(t) · (β − α)2

6
1

inf
t∈[0,T]

λ(t)
·
∣∣(β − α) · (t− α)

∣∣
(β − α)2

· |λ(ξ1)− λ(ξ2)|

6
1

inf
t∈[0,T]

λ(t)
· sup
t,s∈[α,β]

|λ(t)− λ(s)|,

158

B.4. Properties of stochastic processes on given interval and discretization

where ξ1 ∈ [α, t], ξ2 ∈ [α, β]. �

Lemma B.32. For f ∈ {b1, . . . , bmw , c} we have that for all i ∈ {0, 1, . . . ,m}, it holds
that ∣∣∣E‖f(ti, X̃

M
m (ti))‖2 − E‖f(ti, X(ti))‖2

∣∣∣
6 C

(
1 + sup

t∈[0,T]

‖X̃M
m (t)‖L2(Ω) + sup

t∈[0,T]

‖X(t)‖L2(Ω)

)
× sup

t∈[0,T]

‖X̃M
m (t)−X(t)‖L2(Ω). (B.127)

Proof. By the Jensen and Hölder inequalities we get,∣∣∣E‖f(ti, X̃
M
m (ti))‖2 − E‖f(ti, X(ti))‖2

∣∣∣
6 E

∣∣∣(∥∥f(ti, X̃
M
m (ti))

∥∥− ∥∥f(ti, X(ti))
∥∥)

×
(∥∥f(ti, X̃

M
m (ti))

∥∥+
∥∥f(ti, X(ti))

∥∥)∣∣∣
6
(
E
∥∥f(ti, X̃

M
m (ti))− f(ti, X(ti))

∥∥2
)1/2

×
(
E
(∥∥f(ti, X̃

M
m (ti))

∥∥+
∥∥f(ti, X(ti))

∥∥)2)1/2

.(B.128)

By the assumption (B1md), (B2md) we have that(
E
∥∥f(ti,n, X̃

M
m (ti,n))− f(ti,n, X(ti,n))

∥∥2
)1/2

6 K
(
E
∥∥X̃M

m (ti,n)−X(ti,n))
∥∥2
)1/2

6 K sup
t∈[0,T]

‖X̃M
m (t)−X(t)‖L2(Ω),

(B.129)

(
E
∥∥f(ti,n, X̃

M
m (ti,n))

∥∥2
)1/2

6 C
(

1 +
(
E‖X̃M

m (ti,n)‖2
)1/2
)

6 C
(
1 + sup

t∈[0,T]

‖X̃M
m (t)‖L2(Ω)

)
, (B.130)

and (
E
∥∥f(ti,n, X(ti,n))

∥∥2
)1/2

6 C
(

1 +
(
E‖X(ti,n)‖2

)1/2
)

6 C
(
1 + sup

t∈[0,T]

‖X(t)‖L2(Ω)

)
. (B.131)

So by the (B.128) and estimations (B.129), (B.130), and (B.131) we get (B.127) and

that ends the proof. �

159

B.4. Properties of stochastic processes on given interval and discretization

Lemma B.33. For scalar function f ∈ {b, c} we have that for all i ∈ {0, 1, . . . , kn},
t̂i,n de�ned by (2.4) and (2.38) it holds that∣∣∣E|f(t̂i,n, X

M∗
kn (t̂i,n))|2 − E|f(t̂i,n, X(t̂i,n))|2

∣∣∣
6 C(1 + sup

t∈[0,T]

‖X̃M∗
kn (t)‖L2(Ω) sup

t∈[0,T]

‖X(t)‖L2(Ω))

× sup
t∈[0,T]

‖X̃M∗
kn (t)−X(t)‖L2(Ω).

The proof of Lemma B.33 goes analogously as proof of Lemma B.32 so we skip it.

160

Bibliography

[1] P. Billingsley, Probability and Measure, Wiley Series in Probability and Statistics,

Wiley, 1995.

[2] T. Bochacik, N. Czy»ewska, A. Kaªu»a, D. Majchrowski, P. Morkisz,

P. Przybyªowicz, and M. Studzi«ska-Wrona, Hybrid option pricing

through AI and GPU-powered SDEs solvers, poster section at NVIDIA

GTC 2020, https://www.nvidia.com/content/dam/en-zz/Solutions/gtc/

conference-posters/gtc2020-posters/Algorithms_Numerical_Techniques_10_

P22219_Pawel_Przybylowicz_Web.pdf.

[3] E. Bonet and D. Nualart Rodón, Interpolation and forecasting in Poisson's

processes., Stochastica, 2 (1977), pp. 36�40.

[4] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C Programming,

EBL-Schweitzer, Wiley, 2014.

[5] D. Cohn, Measure Theory: Second Edition, Birkhäuser Advanced Texts Basler

Lehrbücher, Springer New York, 2013.

[6] C. Dellacherie and P. Meyer, Probabilities and Potential, B: Theory of

Martingales, ISSN, Elsevier Science, 2011.

[7] J. D¦bowski and P. Przybyªowicz, Optimal Approximation of Stochastic integrals

with Respect to a Homogeneous Poisson Process, Mediterranean Journal of Mathematics,

13 (2016).

[8] A. Friedman, Z. Birnbaum, and E. Lukacs, Stochastic Di�erential Equations and

Applications: Volume 1, no. t. 1, Elsevier Science, 2014.

[9] A. Gardo«, The Order of Approximations for Solutions of Itô-Type Stochastic

Di�erential Equations with Jumps, Stochastic Analysis and Applications, 22 (2004),

pp. 679�699.

[10] C. Geiss and S. Geiss, On approximation of a class of stochastic integrals and

interpolation, Stochastics and Stochastic Reports, 76 (2004), pp. 339�362.

[11] D. Gusak, A. Kukush, A. Kulik, Y. Mishura, and A. Pilipenko, Theory of

Stochastic Processes: With Applications to Financial Mathematics and Risk Theory,

Problem Books in Mathematics, Springer New York, 2010.

161

https://www.nvidia.com/content/dam/en-zz/Solutions/gtc/conference-posters/gtc2020-posters/Algorithms_Numerical_Techniques_10_P22219_Pawel_Przybylowicz_Web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtc/conference-posters/gtc2020-posters/Algorithms_Numerical_Techniques_10_P22219_Pawel_Przybylowicz_Web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtc/conference-posters/gtc2020-posters/Algorithms_Numerical_Techniques_10_P22219_Pawel_Przybylowicz_Web.pdf

Bibliography

[12] S. Heinrich, The quantum query complexity of elliptic PDE, Journal of Complexity, 22

(2006), pp. 691 � 725. Special Issue: Information-Based Complexity Workshops FoCM

Conference Santander, Spain, July 2005.

[13] S. Heinrich and P. Mathé, The Monte Carlo Complexity of Fredholm Integral

Equations, Mathematics of Computation, 60 (1993), pp. 257�278.

[14] P. Hertling, Nonlinear Lebesgue and Itô Integration Problems of High Complexity, J.

Complexity, 17 (2001), pp. 366�387.

[15] D. J. Higham and P. Kloeden, Numerical methods for nonlinear stochastic

di�erential equations with jumps, Numerische Mathematik, 101 (2005), pp. 101�119.

[16] D. J. Higham and P. E. Kloeden, Strong convergence rates for backward Euler on

a class of nonlinear jump-di�usion problems, Journal of Computational and Applied

Mathematics, 205 (2007), pp. 949 � 956. Special issue on evolutionary problems.

[17] N. Hofmann, T. Müller-Gronbach, and K. Ritter, Optimal approximation

of stochastic di�erential equations by adaptive step-size control, Mathematics of

Computation, 69 (2000), pp. 1017�1034.

[18] N. Hofmann, T. Müller-Gronbach, and K. Ritter, The Optimal Discretization

of Stochastic Di�erential Equations, Journal of Complexity, (2001), pp. 117�153.

[19] M. Jeanblanc, M. Yor, and M. Chesney, Mathematical Methods for Financial

Markets, Springer Finance, Springer London, 2009.

[20] B. Kacewicz, How to increase the order to get minimal-error algorithms for systems

of ODE, Numerische Mathematik, 45 (1984), pp. 93�104.

[21] B. Kacewicz, Improved bounds on the randomized and quantum complexity of

initial-value problems, Journal of Complexity, 21 (2005), pp. 740 � 756.

[22] B. Kacewicz and P. Przybyªowicz, Optimal adaptive solution of initial-value

problems with unknown singularities, Journal of Complexity, 24 (2008), pp. 455 � 476.

[23] A. Kaªu»a, P. Morkisz, and P. Przybyªowicz, Optimal approximation of

stochastic integrals in analytic noise model, Applied Mathematics and Computation,

356 (2019), pp. 74�91.

[24] A. Kaªu»a and P. Przybyªowicz, Optimal global approximation of jump-di�usion

SDEs via path-independent step-size control, Applied Numerical Mathematics, 128

(2018), pp. 24 � 42.

[25] R. Karandikar and B. Rao, Introduction to Stochastic Calculus, Indian Statistical

Institute Series, Springer Singapore, 2018.

[26] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Graduate

Texts in Mathematics, Springer New York, 2014.

162

Bibliography

[27] J. Kelley, General Topology, Graduate Texts in Mathematics, Springer New York,

1975.

[28] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach, Elsevier Science, 2016.

[29] A. Klenke, Probability Theory: A Comprehensive Course, Universitext, Springer

London, 2007.

[30] P. Kloeden and A. Neuenkirch, The Pathwise Convergence of Approximation

Schemes for Stochastic Di�erential Equations, LMS Journal of Computation and

Mathematics, 10 (2007).

[31] P. Kloeden and E. Platen, Numerical Solution of Stochastic Di�erential Equations,

Springer-Verlag, 1992.

[32] P. Kloeden and E. Platen, Numerical Solution of Stochastic Di�erential Equations,

Stochastic Modelling and Applied Probability, Springer Berlin Heidelberg, 2013.

[33] A. Kohatsu-Higa, A. Lejay, and K. Yasuda, On Weak Approximation of Stochastic

Di�erential Equations with Discontinuous Drift Coe�cient, Mathematical Economics,

Ser. RIMS Kôkyûroku, 1788 (2011).

[34] C. Kumar, Milstein-type Schemes of SDE Driven by L\'evy Noise with Super-linear

Di�usion Coe�cients, arXiv preprint arXiv:1707.02343, (2017).

[35] C. Kumar and S. Sabanis, On tamed milstein schemes of SDEs driven by Lévy noise,

Discrete & Continuous Dynamical Systems - B, 22 (2017), p. 421.

[36] H. Kuo, Introduction to Stochastic Integration, Universitext, Springer New York, 2006.

[37] B. Makarov and A. Podkorytov, Real Analysis: Measures, Integrals and

Applications, Universitext, Springer London, 2013.

[38] X. Mao, Stochastic Di�erential Equations and Applications, Elsevier Science, 2007.

[39] G. Milstein and M. Tretyakov, Stochastic Numerics for Mathematical Physics,

Scienti�c Computation, Springer Berlin Heidelberg, 2004.

[40] P. Morkisz and L. Plaskota, Complexity of approximating Hölder classes from

information with varying Gaussian noise, Journal of Complexity, 60 (2020), p. 101497.

[41] P. Morkisz and P. Przybyªowicz, Optimal pointwise approximation of SDE's from

inexact information, Journal of Computational and Applied Mathematics, 324 (2017).

[42] P. Morkisz and P. Przybyªowicz, Randomized derivative-free Milstein algorithm

for e�cient approximation of solutions of SDEs under noisy information, Journal of

Computational and Applied Mathematics, 383 (2020), p. 113112.

[43] T. Müller-Gronbach, The optimal uniform approximation of systems of stochastic

di�erential equations, Ann. Appl. Probab., 12 (2002), pp. 664�690.

163

Bibliography

[44] T. Müller-Gronbach, Strong Approximation of Systems of Stochastic Di�erential

Equations, 2002.

[45] T. Müller-Gronbach, Optimal pointwise approximation of SDEs based on Brownian

motion at discrete points, Ann. Appl. Probab., 14 (2004), pp. 1605�1642.

[46] E. Novak and H. Wo¹niakowski, Tractability of Multivariate Problems, EMS tracts

in mathematics, European Mathematical Society, 2008.

[47] NVIDIA, NVIDIA Documentation, 2020-11. https://docs.nvidia.com/cuda/.

[48] B. Øksendal, Stochastic Di�erential Equations: An Introduction with Applications,

Universitext, Springer Berlin Heidelberg, 2010.

[49] E. Pardoux and A. R�a³canu, Stochastic Di�erential Equations, Backward SDEs,

Partial Di�erential Equations, Stochastic Modelling and Applied Probability, Springer

International Publishing, 2014.

[50] L. Plaskota, Average Complexity for Linear Problems in a Model with Varying

Information Noise, Journal of Complexity, 11 (1995), pp. 240 � 264.

[51] L. Plaskota, How to Bene�t from Noise, Journal of Complexity, 12 (1996), pp. 175 �

184.

[52] L. Plaskota, Worst Case Complexity of Problems with Random Information Noise,

Journal of Complexity, 12 (1996), pp. 416 � 439.

[53] L. Plaskota, Average Case L−∞-Approximation in the Presence of Gaussian Noise,

Journal of Approximation Theory, 93 (1998), pp. 501 � 515.

[54] L. Plaskota, Automatic integration using asymptotically optimal adaptive Simpson

quadrature, Numerische Mathematik, 131 (2015), pp. 173�198.

[55] L. Plaskota, On Linear Versus Nonlinear Approximation in the Average Case Setting,

Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian

Sloan, (2018), pp. 1035�1049.

[56] L. Plaskota and G. Wasilkowski, Uniform Approximation of Piecewise r-Smooth

and Globally Continuous Functions, SIAM J. Numerical Analysis, 47 (2008),

pp. 762�785.

[57] L. Plaskota, G. Wasilkowski, and Y. Zhao, The power of adaption for

approximating functions with singularities, Math. Comput., 77 (2008), pp. 2309�2338.

[58] L. Plaskota and G. W. Wasilkowski, Uniform Approximation of Piecewise

r-Smooth and Globally Continuous Functions, SIAM Journal on Numerical Analysis,

47 (2009), pp. 762�785.

164

https://docs.nvidia.com/cuda/

Bibliography

[59] L. Plaskota, G. W. Wasilkowski, and H. Wo¹niakowski, A New Algorithm and

Worst Case Complexity for Feynman�Kac Path Integration, Journal of Computational

Physics, 164 (2000), pp. 335 � 353.

[60] L. Plaskota, G. W. Wasilkowski, and Y. Zhao, An Adaptive Algorithm for

Weighted Approximation of Singular Functions over R, SIAM Journal on Numerical

Analysis, 51 (2013), pp. 1470�1493.

[61] E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Di�erential

Equations with Jumps in Finance, Stochastic Modelling and Applied Probability,

Springer Berlin Heidelberg, 2010.

[62] P. Protter, Stochastic Integration and Di�erential Equations, Stochastic Modelling

and Applied Probability, Springer Berlin Heidelberg, 2013.

[63] P. Przybyªowicz, Linear information for approximation of the Itô integrals,

Numerical Algorithms, 52 (2009), pp. 677�699.

[64] P. Przybyªowicz, Adaptive Itô-Taylor algorithm can optimally approximate the Itô

integrals of singular functions, Journal of Computational and Applied Mathematics,

235 (2010), p. 203�217.

[65] P. Przybyªowicz, Optimal sampling design for approximation of stochastic

Itô integrals with application to the nonlinear Lebesgue integration, Journal of

Computational and Applied Mathematics, 245 (2013), p. 10�29.

[66] P. Przybyªowicz, Optimality of Euler-type algorithms for approximation of stochastic

di�erential equations with discontinuous coe�cients, International Journal of Computer

Mathematics, 91 (2014).

[67] P. Przybyªowicz, Minimal asymptotic error for one-point approximation of SDEs

with time-irregular coe�cients, Journal of Computational and Applied Mathematics,

282 (2015).

[68] P. Przybyªowicz, Optimal global approximation of SDEs with time-irregular

coe�cients in asymptotic setting, Applied Mathematics and Computation, 270 (2015),

pp. 441�457.

[69] P. Przybyªowicz, Optimal global approximation of stochastic di�erential equations

with additive Poisson noise, Numerical Algorithms, 73 (2016).

[70] P. Przybyªowicz, Optimal sampling design for global approximation of jump di�usion

SDEs, https://arxiv.org/abs/1701.08311, (2017).

[71] P. Przybyªowicz, Optimal sampling design for global approximation of jump di�usion

stochastic di�erential equations, Stochastics An International Journal of Probability and

Stochastic Processes, 91 (2018).

165

https://arxiv.org/abs/1701.08311

Bibliography

[72] P. Przybyªowicz, E�cient approximate solution of jump�di�usion SDEs via

path-dependent adaptive step-size control, Journal of Computational and Applied

Mathematics, 350 (2019), pp. 396 � 411.

[73] P. Przybyªowicz and P. Morkisz, Strong approximation of solutions of stochastic

di�erential equations with time�irregular coe�cients via randomized Euler algorithm,

Applied Numerical Mathematics, 78 (2013).

[74] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to

General-Purpose GPU Programming, NVIDIA, 01 2011.

[75] A. Semrau, Euler's Approximations of Weak Solutions of Re�ecting SDEs with

Discontinuous Coe�cients, Bulletin of The Polish Academy of Sciences Mathematics,

55 (2007), pp. 171�182.

[76] A. Semrau, Discrete Approximations of Strong Solutions of Re�ecting SDEs with

Discontinuous Coe�cients, Bulletin of The Polish Academy of Sciences Mathematics,

57 (2009), pp. 169�180.

[77] A. Shiryaev and S. Wilson, Probability, Graduate Texts in Mathematics, Springer

New York, 2013.

[78] R. Situ, Theory of Stochastic Di�erential Equations with Jumps and Applications:

Mathematical and Analytical Techniques with Applications to Engineering, Mathematical

and Analytical Techniques with Applications to Engineering, Springer US, 2006.

[79] J. Traub and H. Wo¹niakowski, A General Theory of Optimal Algorithms, ACM

monograph series, Academic Press, 1980.

[80] J. F. Traub, G. W. Wasilkowski, and H. Wo¹niakowski, Information-Based

Complexity, Academic Press Professional, Inc., USA, 1988.

[81] L. Trefethen and D. Bau, Numerical Linear Algebra, Other Titles in Applied

Mathematics, Society for Industrial and Applied Mathematics, 1997.

[82] UNKNOWN, CUDA Programing Blog Spot, 2020-11. http://cuda-programming.

blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html.

[83] H. von Weizsäcker and G. Winkler, Stochastic Integrals: An Introduction,

Advanced Lectures in Mathematics, Vieweg+Teubner Verlag, 1990.

[84] A. Werschulz, The Computational Complexity of Di�erential and Integral Equations:

An Information-based Approach, Oxford mathematical monographs, Oxford University

Press, 1991.

[85] A. G. Werschulz, Average case complexity of elliptic partial di�erential equations,

Journal of Complexity, 5 (1989), pp. 306 � 330.

166

http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html
http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html

	Streszczenie
	Abstract
	Introduction
	Symbols
	Chapter 1. General description of the problem and aim of the thesis
	Chapter 2. Global approximation of solutions of scalar SDEs with jumps
	The setting
	Algorithm based on path-independent adaptive step-size control
	Description of the method and its asymptotic performance
	Derivative-free version of the path-independent adaptive step-size control

	Lower Bounds

	Chapter 3. Global approximation of solutions of multidimensional SDEs with jumps
	The setting
	Algorithm based on equidistant mesh
	Description of the method and its asymptotic performance

	Chapter 4. Basics information about CUDA C programming language and numerical experiments
	An introduction to CUDA C programming language
	Basic notation and definitions
	Differences between C/C++ and CUDA C
	CUDA thread hierarchy
	Management of parallel threads
	Memory allocation
	Examples from numerical linear algebra

	Implementation of algorithm barXLin-Mkn in CUDA C
	Numerical experiments
	Problems
	Error criterion
	Results of numerical experiments

	Chapter 5. Conclusions and future work
	Summary of results
	Open problems

	Appendix A. Basic information on stochastic processes and stochastic differential equations
	Random variables and conditional expectation
	Basic fact from the theory of stochastic processes
	Stochastic integration with respect to square integrable martingale
	Stochastic differential equations
	Random elements with values in Banach spaces
	Auxiliary results
	Properties of Frobenius norm
	Grönwall's inequality

	Appendix B. Time-continuous Milstein approximation
	Time-continuous Milstein approximation for system of SDEs
	Proof of Theorem B.1

	Time-continuous Milstein approximation for system of SDEs under jump commutative condition
	Derivative free time-continuous Milstein approximation for system of SDEs under jump commutative conditions
	Proof of Theorem B.13

	Properties of stochastic processes on given interval and discretization

	Bibliography

