AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

IN KRAKOW, POLAND

FAcuLTY OF COMPUTER SCIENCE, ELECTRONICS AND
TELECOMMUNICATIONS

Department of Computer Science

Massively Selt-Scalable Platform for
Data Farming

Dariusz Krol

Doctoral dissertation
Computer Science

Supervisor: Prof. Dr. Jacek Kitowski

Krakow, September 2013

AKADEMIA GORNICZO-HUTNICZA
IM. STANISLAWA STASZICA W KRAKOWIE

WYDZIAL INFORMATYKI, ELEKTRONIKI I TELEKOMUNIKACJI

Katedra Informatyki

Masywnie samoskalowalna platforma
wspierajaca eksperymenty typu
"data farming"

Dariusz Krol

Rozprawa doktorska

Promotor: prof. dr hab. inz. Jacek Kitowski

Krakow, wrzesien 2013

Acknowledgements

I would like to thank my supervisor Professor Jacek Kitowski for his in-
valuable help and research guidance. He offered his full support, valuable
technical input and healthy criticism.

Special thanks are due to my colleagues from the Computer Systems Group at
the University of Science and Technology AGH for helpful advice, discussions
and technical input: fukasz Dutka, Bartek Kryza, Renata Stota, Michal
Wrzeszcz and Wtodzimierz Funika.

I am very grateful to my wife Marzena and my parents for their continuous
support, encouragement and patience during my research. This dissertation
would not be possible without their help.

I am also indebted to the Academic Computer Centre Cyfronet AGH for
providing the infrastructure necessary to conduct experimental evaluation of
the presented concepts. I would like to thank Fukasz Flis, Marek Magrys and
Patryk Lason for their help in preparing the testing environment.

This research was partially supported by the European Defence Agency
project A-0938-RT-GC "EUSAS", the Polish National Science Centre grant
no. 2012/05/N/ST6/03461 and the European Regional Development Fund
program no. POIG.02.03.00-00-096/10 as part of the PL-Grid Plus project.

Abstract

In many disciplines of modern science new discoveries can be made
by sifting through large quantities of data. Big data is generated, col-
lected and analyzed in both physical and virtual experiments simulating
various phenomena with computerized simulations. Recent technologi-
cal advances have led to significant improvements in computationally-
heavy disciplines by providing IT infrastructures capable of executing
large-scale simulations in a short amount of time. To effectively exploit
these opportunities new scientific methodologies such as Data Farming
have emerged. Efficient experimentation using these new tools requires
dedicated software, providing (among others) self-scalability - a highly
desirable feature which nevertheless remains difficult to implement.

In this dissertation the author introduces two concepts which can be
utilized to develop self-scalable platforms, namely self-scalable services
and scaling rules. Self-scalable services are an extension of the Service
Oriented Architecture which extends the traditional concept of a service
to include self-scalability in a standard manner. Scaling rules are a
machine-processable notation for defining conditions along with metrics
and actions concerning scalability management.

To demonstrate the proposed concepts, a massively self-scalable plat-
form for Data Farming applications is proposed. The functional require-
ments of this platform are evaluated within the context of multi-agent
simulation, which aims to enhance training of security forces in the EDA
EUSAS project. The non-functional requirements are evaluated via a
set of synthetic tests involving massive scalability and self-scalability
under different resource configurations.

Contents

Table of contents 9
List of figures 13
List of tables 14
1 Introduction 15
1.1 Motivation 15
1.2 Data Farming oo 17
1.3 Self-Scalable Software oL 20
1.4 Heterogeneous Computational Infrastructures 22

1.5 Problem Description 24
1.6 Thesis Statement and Research Objectives 27
1.7 Note on Participation in European Research Projects 28

1.8 Thesis Contribution 28
1.9 Thesis Structure 29

2 Background Survey 30
2.1 Data Farming Systems L 30
2.1.1 OldMcData 30

2.1.2 JWARS 32

2.1.3 SWAGES 33

2.1.4 DIRAC 35

2.2 Self-Scalable Systems 36
2.2.1 Staged Event-Driven Architecture 37

2.2.2 GigaSpaces eXtreme Application Platform 38

2.2.3 Teradata Database 40

224 Apache Hadoop 41

2.3 Computational Environments 43
2.3.1 Grid computingo 43

Contents

3

10

2.3.2 Cloud computing 47
Massively Self-Scalable Platform: Concept and Architecture 56
3.1 Development Methodology for a Data Farming Platform 56
3.2 Platform Use Cases 57

3.2.1 Data Farming Use Cases o7

3.2.2 Platform Management Use Cases 60
3.3 The Massive Self-Scalability Requirement 60
3.4 The Concept of Self-Scalable Services 63
3.5 Self-Scalable Services in the Data Farming Platform 65
The Problem of Scalability 68
4.1 Motivation for Scalability 0L 68
4.2 Scalability Metricso o 69
4.3 Common Scaling Strategies and Potential Bottlenecks 72
4.4 Scaling Rule Definition 0. 74
4.5 Scalability in the Scalarm Platform 75
Scalarm Implementation Details 79
5.1 Platform Overview 79
5.2 Scalarm Services 80

5.2.1 Experiment Manager 81

5.2.2 Storage Manager 82

5.2.3 Simulation Manager 85

5.2.4 Information Manager 86

5.2.5 Node Manager 87

5.2.6 Monitoringo 87

5.2.7 Scalability Manager L. 88

5.2.8 Load balancer Lo 90

529 Cache 90
5.3 Architectural Elements Supporting Scalability 90
5.4 Automatic Scalability Management 92
5.5 Implementation of Essential Use Cases 95

5.5.1 "Creating a data farming experiment" use case 95

5.5.2 "Simulation execution" use case 97

5.5.3 "Extending an experiment" use case 99
Experimental Evaluation 101
6.1 Evaluation Objectives 101
6.2 Evaluation of Massive Scalability 102

6.2.1 Testing scenario oL 103

Contents

6.2.2
6.2.3

Testing environment
Scalability evaluation results

6.3 Self-Scalability Evaluation

6.3.1
6.3.2
6.3.3
6.3.4

6.3.5

Testing scenarioo
Self-scalability test - scaling rules disabled
Self-scalability test with scaling rules for the Experiment Man-

AZET o . o e e e e
Self-scalability test with scaling rules for Experiment Man-

agers and Storage Managers
Self-scalability evaluation conclusions

7 Data Farming Utilization in Training of Security Forces

7.1 Problem Description and Motivation for Data Farming Usage

7.2 Solution Overview
7.3 Functionality Evaluation

8 Conclusions and Future Work
81 Summary
8.2 Research Contribution
8.3 Potential Areas of Application
84 Future work

Abbreviations and Acronyms

Bibliography

Index

124

. 124

125
128

133
133
134
134
135

137

139

150

11

12

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3

5.1
5.2
9.3
5.4
2.5
5.6
5.7
2.8
2.9

List of Figures

The process of a data farming experiment. 19
An autonomic computing manager [1] 23
A virtual platform for running experiments. 26
Architecture of the Condor distributed scheduler [2]. 31
Architecture of the JWARS platform [3]. 33
Architecture of the DIRAC system [4]. 36
Architecture of the reference SEDA implementation — Sandstorm [5]. 37
Tier-based architecture of a GigaSpaces XAP processing unit [6].. . . 39
Deployment diagram of a TeraData installation [7]. 41
Simplified architecture of Apache Hadoop [8]. 42
Tier-based overview of the Grid architecture [9]. 45
Taxonomy of Cloud service models [10]. 51
Architecture of the Eucalyptus Cloud [11]. 52
Architecture of the OpenStack solution [12]. 53
A budget-constrained scheduler architecture [13]. 55
A use case diagram for a virtual data farming platform. 58
Overview of a self-scalable service. 64
High-level overview of the Scalarm architecture. 66
Component diagram of Scalarm. 80
Internal architecture of the Experiment Manager. 82
Interaction flow with Experiment Manager using the provided GUIL. . 83
Internal architecture of the Storage Manager. 84
Internal architecture of the Simulation Manager. 85
Internal architecture of the Information Manager. 87
Internal architecture of the Scalability Manager. 89
Overview of scalability management within self-scalable services. . . . 94
Sequence diagram of the "Creating data farming experiment" use case. 96

List of Figures

5.10
5.11

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12

7.1
7.2
7.3
7.4

Sequence diagram of the "Simulation execution" use case. 98
Sequence diagram of the "Extending a data farming experiment" use
CASE. « v v e e e e e e e 100
Testing environment for evaluation of massive self-scalability. 102
The speedup metric for different experiment sizes and resource con-
figurations. 106
Efficiency of Scalarm for different experiment sizes and resource con-
figurations.o 108
Efficiency-based scalability for different experiment sizes. 109
Scalarm productivity for different experiment sizes and scales. 113
Productivity-based scalability for different experiment sizes. 114
CPU load [%]| on an Experiment Manager machine - test with no
scaling rules. 118
Wait time for I/O request to complete [ms| on a Storage Manager
machine - test with no scaling rules. 119
CPU load |%] on an Experiment Manager machine - test with scaling
rules for the Experiment Manager. 120
Wait time for I/O request to complete [ms| on a Storage Manager
machine - test with scaling rules for the Experiment Manager. 121
CPU load |%] on an Experiment Manager machine - test with scaling
rules for all components. 122
Wait time for I/O request to complete [ms| on a Storage Manager
machine - test with scaling rules for all components. 123

Improving security force training in the EDA EUSAS project [14]. . . 126
The progress monitoring view of a data farming experiment in Scalarm.130
Regression tree analysis view for partial experiment results in Scalarm.131
Experiment parameter space extension dialog in Scalarm. 132

13

14

4.1

6.1
6.2

6.3
6.4

6.5
6.6

6.7

6.8

List of Tables

An outline of sample scaling rules for defined self-scalable services. . . 78
Resource configurations tested during experimental evaluation. 104
Execution time [s] for experiments of varying sizes, depending on the

Scalarm resource configuration. L0 105
Mean speedup values for various resource configurations. 106
Scalarm throughput [simulations/second| for data farming experi-

ments of varying sizes, depending on resource configuration. 110

The Scalarm response value metric depending on resource configuration.111
Total cost [§] of executed tests, estimated using the Amazon EC2
price list. 112
Estimated number of Simulation Managers necessary to saturate the
Scalarm platform using configuration(1, 1) and real-life simulations. . 115
Cost-effectiveness associated with the self-scalability feature. 122

Chapter 1

Introduction

This chapter introduces the motivation for the presented work, along with areas which
are especially tmportant for the dissertation, namely the data farming methodology,
self-scalability, and heterogeneous computational infrastructures. The author de-
scriptively defines two main problems facing modern data farming software, which
will be further investigated in this dissertation. Finally, the main thesis is formu-
lated, along with research objectives and research methodology adopted by the disser-
tation.

1.1 Motivation

Many disciplines of modern science rely on gathering and analyzing large amounts
of data. These disciplines are often collectively referred to as data-oriented (or
data-intensive) science. The situation is a consequence of a major paradigm shift
which began several years ago. Historically, three other scientific paradigms can be
distinguished:

1. empirical, which develops science solely by experimentation and observation,

2. theoretical, which introduced mathematical formulae to describe the observed
phenomena,

3. computational, which utilized computers to simulate phenomena too compli-
cated to represent analytically.

Regardless of the adopted paradigm, the key scientific method can be defined
as experimentation. An experiment is "a series of tests conducted in a systematic
manner to increase the understanding of an existing process or to explore a new
product or process" [15]. An experiment is an essential source of information about
processes obtained through observation as well as a method of evaluating theories.
The introduction of computers has resulted in an evolution of experimentation.
Today, most scientific experiments are assisted by computers, if only to collect and

15

Chapter 1. Introduction

store all data produced by the experiment. In addition, more and more experiments
are conducted in virtual reality — these are referred to as virtual experiments.

Large-scale experimentation supported by computers, e.g. in physics, can gener-
ate petabytes of data per day. In such experiments data produced by various sensors
is stored for further analysis in order to increase our understanding of natural pro-
cesses. Sometimes it is impossible to collect enough data about a given physical
phenomenon in a single experiment and many experiment runs are required. An
example is provided by the Large Hadron Collider (LHC), where numerous parti-
cle collisions are analyzed to answer fundamental questions regarding the nature of
matter.

Some physical experiments — for instance those which require expensive equip-
ment such as airplane engines or military vehicles — are too expensive to repeat
enough times to amass meaningful data. In such cases physical experiments are
preceded by their virtual counterparts which aim to minimize the number of un-
knowns and require a fraction of the physical experiment’s cost. In addition, virtual
experiments are utilized when physical experiments become impossible to perform,
e.g. to study crowd behavior during natural disasters.

Utilization of digital devices to support physical and virtual experiments has led
to a virtual data "flood". The amount of data generated worldwide is greater than
the combined processing capacity of all the world’s computers [16]. A special term
— "big data" [17] — was coined to describe vast amounts of data which are difficult
to process using commodity software within a tolerable period of time. As new
scientific findings emerge through analysis of data gathered from various scientific
experiments, this new scientific paradigm, sometimes called "The Fourth Paradigm
of Science" [18], relates to data exploration. Data mining methods [19] become
a crucial tool for analysis and knowledge extraction from collected data. Equally
important is the systematic process of generating and analyzing data with virtual
experiments, based on the methodology known as data farming [20]. This process
will be described in detail in the following sections.

An important tool utilized in virtual experiments is computer simulation — or
simulation for short — capable of representing a portion of the real world with a com-
puter program to study natural phenomena in virtual reality only. Each simulation
involves:

e certain input parameters,
e a model of the simulated entities,

e output, which is also referred to as Measures of Effectiveness (MoE).

MokEs are a set of measurable attributes that describe a meaningful aspect of the
simulation. In addition, a simulation can produce text or binary data, e.g. logs of
each performed simulation step.

16

Section 1.2. Data Farming

A crucial requirement for performing data-intensive virtual experiments is the us-
age of high-performance and high-throughput computer infrastructures, particularly
when a large number of complicated simulations need to be executed simultaneously,
producing results which are aggregated afterwards. Such virtual experiments often
demand more computational power than a single computing center is able to pro-
vide, requiring integration of organizationally distributed resources. Moreover, new
types of computational infrastructures have emerged in recent years, e.g. Cloud en-
vironments, offering features distinct from traditional computing clusters or Grids.
These aspects need to be considered when planning data-intensive experiments.

It becomes clear that new software for supporting data-intensive virtual experi-
ments is required. Existing software does not enable scientists to take full advantage
of all available computational resources, even though they may have access to more
resources than ever. This new software should facilitate all phases of conducting
data-intensive virtual experiments. In particular, it should virtualize access to com-
putational and storage resources. Besides fulfilling functional requirements, such
software should be massively scalable to cope with large-scale virtual experiments.

1.2 Data Farming

Recent technological advances have led to significant improvements in computer
simulations, reducing the time required to run a simulation and enabling refinement
of simulation models with regard to their complexity. Complicated natural phenom-
ena, e.g. climate changes, can now be simulated in a reasonable amount of time.
Besides accelerating simulations, modern high-performance computing infrastruc-
tures are capable of processing much more data in a given interval than ever before.
New data mining and statistical data analysis tools are also emerging at a rapid
pace. As a result, many complex phenomena — such as flood scenarios — can finally
be modeled in real time.

Based on this technological progress, new scientific methodologies centered
around data-intensive computation and analysis have emerged. Data farming [21, 22]
is an example of such a methodology where the main objective is to obtain better
understanding of the analyzed phenomena by examination of entire landscapes of
potential outcomes — not just selected cases — through data-oriented virtual experi-
ments. Data farming utilizes high-performance and high-throughput computing to
generate large amounts of data via computer simulations. These results are sub-
sequently analyzed to obtain new insight into various phenomena. Hence, data
farming can be considered to represent "the Fourth Paradigm of Science".

The data farming methodology is well suited for studying complicated multi-
parameter scenarios which cannot be efficiently solved with analytical methods, e.g.
involving fuzzy variables such as leadership or trust. Initial applications of data

17

Chapter 1. Introduction

farming concerned verification and enhancement of existing procedures and analytic
culture at the Department of Defense [23|. One data farming application developed
within this project aimed to facilitate the choice between maneuver and attrition
in combat scenarios. The simulation model involved Red forces as defenders and
Blue forces as attackers. MoEs of this simulation included the number of eliminated
Blue entities and whether or not Blue forces where prevented from penetrating the
area defended by Red forces. Input parameters included the firing range of Red
forces, their accuracy and the attack strategy of the Blue forces (heading straight
for the objective or attempting to outmaneuver the enemy). By running multiple
simulations, it became possible to determine that maneuvering is superior when Red
forces possess long range and high accuracy, while heading straight for the objective
is advisable in all other cases. Moreover, based on this information, analysts decided
to enhance the simulation model with aggression and sensor range parameters for
the Red forces, and then run the next batch of simulations. Based on these new
results they deduced that Red forces should be more aggressive in order to increase
their effectiveness.

Data farming refers to the process of conducting virtual experiments, also re-
ferred to as data farming experiments, which follows the methodological principles
depicted in Fig. 1.1. In order to be considered a data farming experiment, the virtual
experiment should consist of the following steps:

1. Experiment objective definition is an initial step which involves stating ques-
tions and objectives which should be answered and achieved by the experiment.
In addition, a stop condition is formulated as the data farming process can be
iterated many times before stopping.

2. Simulation scenario building concerns providing a simulation capable of gen-
erating the necessary data to answer the questions stated at the beginning of
the experiment. Hence, it is necessary to select or develop a simulation model
with necessary input parameters and meaningful MoEs.

3. Input space specification results in a set of input vectors, each of which rep-
resents a single simulation case. As the input space can be extremely large,
Design of Experiment (DoE) methods [24] are often employed to reduce the
number of input vectors. These methods may include two-level and fractional
factorial design.

4. Simulation execution involves execution of simulations with input vectors gen-
erated in the previous step. Each data farming experiment comprises multiple
simulations, often run in parallel using High Throughput Computing (HTC).
Depending on the input space this step can require organizationally distributed

18

Section 1.2. Data Farming

1. Experiment
objectives
definition

2. Simulation
scenario
building

Experiment
stop

5. Output data 3. Input space
exploration specification

4, Simulation
execution

Figure 1.1: The process of a data farming experiment.

resources working together to provide the necessary computing power. Results
from all simulations are aggregated for further analysis.

5. Output data exploration is where knowledge is extracted and new insights
obtained. Should a simulation scenario require adjustments, step 2 may be
repeated as needed. If additional areas of the parameter space need to be
explored, step 3 is repeated. Otherwise the stop condition is considered fulfilled
and the experiment concludes.

The "Information Store" concept refers to a knowledge base, which collects all
relevant information throughout the experiment. This information can be utilized
at subsequent steps of the process to increase efficiency. One exception is the "Sim-
ulation execution" step, where data is generated for further use. On the other hand,
the collected information is necessary to meet the objectives of the experiment.

19

Chapter 1. Introduction

Data farming combines several existing concepts and techniques into a coherent
process facilitating data-oriented virtual experiments:

e parameter study and DoE methods to specify the experiment input space,

e data exploration with data mining and other statistical methods to extract
knowledge from multiple simulation results,

e HTC to run multiple simulations in parallel to minimize the time required to
carry out experimentation.

1.3 Self-Scalable Software

The second area of computer science seen as important to this dissertation concerns
automatic software management. Here, a common use case involves a web service
which starts as a small project for a limited group of clients but becomes very pop-
ular over time. At first, this service can be monitored and maintained manually by
a single administrator; however as the number of clients increases, a need for addi-
tional resources emerges and manual maintenance becomes difficult and ineffective.
It is therefore crucial for the service to be able to manage itself. A special type
of management, called self-scalability, is especially important when dealing with
unpredictable and dynamic load conditions.

Scalability can be defined as the ability of a computer program to cope with in-
creased workload. In this sense an ideal scalable computer program should retain
performance when confronted with a heavier load but also provided with an increased
quantity of resources. In the context of High-Performance Computing (HPC), per-
formance relates to FLoating-point Operations Per Second (FLOPS) when executing
a single large task. On the other hand, the performance of HT'C systems is measured
by the number of independent tasks executed per second. This dissertation focuses
on HTC systems due to the nature of data farming experiments.

As with algorithms [25], we can define three levels of scalability:

e Linear scalability, where additional resources of a given type always increase
application performance by the same amount.

o Sub-linear scalability, where adding resources has diminishing influence on ap-
plication capacity, e.g. due to synchronization overhead.

o Super-linear scalability, where additional resources of a given type contribute
more than the same amount of additional capacity to the application.

20

Section 1.3. Self-Scalable Software

In practice, due to multiple sources of overhead (e.g synchronization and com-
munication), a computer program is considered scalable when additional resources
contribute to its performance in a similar way, i.e. the difference between perfor-
mance contributions provided by each batch of resources is not significant.

In most cases an application is scaled manually: upon discovering a change in
workload patterns the operator allocates new resources and reconfigures the ap-
plication. In contrast, a self-scalable application scales itself without any external
interaction. Once configured, it can adjust itself to different workload patterns dy-
namically.

Advantages of self-scalability relate to the effort required to maintain applications
in a running state. Traditional applications often require constant monitoring and
possible reconfiguration when the workload pattern changes, e.g. when the number
of clients increases or resource usage efficiency drops as a result of competition
with other applications. In many situations a human administrator needs to be
present at all times simply to ensure that a critical application continues to operate.
On the other hand, self-scalable applications should perform administrative actions
automatically. Moreover, by using monitoring data, self-scalable applications can
be more efficient than their manually operated counterparts due to faster reaction
time. This is especially important in dynamically changing environments when
the workload pattern cannot be determined or predicted beforehand. Building a
self-scalable application can be a challenging task. Such functionality is typically
implemented in a separate module, often referred to as the management module,
responsible for analyzing application load based on monitoring data and executing
scaling actions, e.g. starting a new instance of the application on a different server.
The management module typically implements the following four features:

e online monitoring, i.e. collecting online data about current application work-
load,

e detection of events, which should trigger the above mentioned scaling proce-
dure,

e scaling procedure execution, which involves acquisition of additional resources
by the application,

e resource discovery, which encompasses identification of resources that can be
used during the scaling procedure.

Besides implementing these features, self-scalable applications require knowledge
about events that should trigger the scaling procedure. This knowledge can assume
the form of rules which define conditions under which the management module
should perform certain actions. Such rules are often gathered by observing the

21

Chapter 1. Introduction

application in real-life scenarios and may be difficult to generate automatically.
Thus, the decision to enhance an existing application with self-scalability features
is not an obvious one.

Self-scalability belongs to a popular set of features often referred to as self-*,
which denotes features related to application autonomy. The set also encompasses
the following capabilities:

e self-healing, which is the ability of a system to automatically recover from a
failure,

e self-organization, which is the ability of a system to dynamically adjust its
logical or physical organization to new requirements at runtime,

o self-adaptation, which is the ability of a system to adapt itself to a changing
environment in an automatic manner,

e self-protection, which reflects the need for proactive authentication and pro-
tection from attacks.

These properties are used to describe systems which should provide a high level of
automatic behavior and can be considered self-aware. Such systems are the subject
of Autonomic Computing initiative [26] research. The initiative intends to provide
mechanisms and tools for developing intelligent, self-managed computing systems,
where administrators’ interference is reduced to a minimum. The inspiration for
this research is the human autonomic nervous system, which controls key functions
without any outside involvement. One way to design an autonomic system is to
extend an existing portion, responsible for functional requirements, with a compo-
nent which takes care of non-functional requirements, e.g. availability. A possible
design of such a component is depicted in Fig. 1.2. The basis of every possible ac-
tion that can be performed by the component is knowledge about the system as a
whole. By performing, in a loop, the steps depicted in Fig. 1.2, namely monitoring,
analyzing, planning and executing, the component can implement self-management
of resources.

1.4 Heterogeneous Computational Infrastructures

Modern scientific research requires efficient resource sharing between various insti-
tutions and initiatives. This requirement is dictated by two key factors: scientific
research is often performed by teams from multiple geographically distributed insti-
tutions and moreover, computational power and storage capacity required to perform
scientific experiments often exceed the capacity of a single data center. Over the

22

Section 1.4. Heterogeneous Computational Infrastructures

Autonomic manager

Managed resource touchpoint

Sensors NN Ef{ectors r

Managed resource J

Figure 1.2: An autonomic computing manager [1]

recent years, great effort has been expended to design and implement distributed
environments which would enable users to access shared resources in a uniform man-
ner. Historically, each scientific facility set up its own data center which varied in size
depending on the perceived user needs. A single data center would host computing
and storage resources along with other more specialized instruments, e.g. chemistry
or material science labs. All resources were connected with a network and thus ac-
cessible remotely. Depending on the scope of research, the yearly level of utilization
of a data center’s resources was between 30% to 50% [27]. On the other hand, when
a scientific facility did not possess sufficient funds to build its own data center, its
members had to apply for help to a nearby affiliated facility which possessed such a
center. This was generally a cumbersome and time-consuming process.

Another issue related to resource sharing began to emerge as the amount of
resources at each data center increased (along with the number of users who intended
to utilize these resources). The issue relates to the effort required to maintain a fair-
share policy (in terms of application execution) on the one hand, and to maximize
resource utilization on the other. A data center is a multi-tenant pool of resources
which should be accessed in a uniform and intuitive way by its users. Back when
computing and storage resources were severely limited, this issue was mitigated
by the small number of users and reservation-based scheduling. This was a quasi-
optimal situation, since a single user would often use most of the available resources.
Currently we are facing the opposite scenario, i.e. a data center can handle hundreds
or thousands of users simultaneously while a single user needs only a small fraction
of the available resources. Thus, a different approach is needed to facilitate efficient
scheduling and resource management. Moreover, it would be desirable to decrease

23

Chapter 1. Introduction

the amount of administrative effort by utilizing dedicated applications to monitor
and perform any necessary actions automatically. In fact, many researchers predict
that future data centers will delegate routine administrative tasks and actions to
custom software since the amount of resources will become unmanageable for a
human administrator [28].

The scientific community, along with various commercial providers, has invested
a lot of work in resolving the problem of efficient and transparent resource sharing
across administrative boundaries. Although the stated problem seemed simple, its
resolution under real-world conditions turned out to be anything but trivial. Two of
the most successful solutions in this regard are computing Grids and Clouds. Both
ideas grew out of the desire to make computational power and storage capacity
accessible in a similar way to other basic utilities such as electricity or telephone
links.

Grid computing [29] intended to implement this idea by providing an additional
software layer (middleware) between users and resources, responsible for resource
access management and application scheduling in a organizationally distributed en-
vironment. Grid computing envisioned a coherent distributed environment with
several points of access to the underlying resources, which would be shared across
multiple institutions. This idea underpinned multiple scientific research projects.
Many software frameworks and toolkits were created and a significant amount of
computational and storage resources are currently shared in Grid environments.

On the other hand, Cloud computing [30] is a more business-oriented approach.
Originally, Cloud computing was invented to increase utilization of I'T resources at
large companies such as Amazon or Microsoft. Since corporate data centers were
built to handle peak load scenarios, which rarely materialized in practice, their
resources were often severely underutilized. Thus, corporations began to rent out
computational resources to third parties via a pay-per-use model. An important part
of this solution was a set of virtualization techniques for computational and storage
resources, which enabled Cloud providers to maintain effective separation between
different clients executing code on a single machine. Another important goal was to
make the rent process as simple and intuitive as possible, which, in practice, meant
that the client could start a new virtual machine with just a few clicks. As a result,
Clouds minimize investment risks by reducing the initial infrastructure costs, which
leads to more applications being exposed as online services.

1.5 Problem Description

The efficiency of doing scientific research with the data farming methodology is
highly dependent on the available software. This is due to the need to manage high-
performance and high-throughput computational infrastructures which run multiple

24

Section 1.5. Problem Description

simulations in parallel, and to aggregate their results. Thus, in order to increase the
efficiency of virtual experiments based on the data farming methodology, we first
have to provide software which supports this methodology. By investigating existing
software and the data farming process itself we have identified three main problems
to be addressed by this dissertation:

e lack of scalability,
e poor utilization of computing and storage resources,

e poor integration with different computational infrastructures.

An example of a common situation involving modern software for running multi-
ple simulations in parallel is depicted in Fig. 1.3. By following the "master-worker"
design pattern, components of such software are divided into two groups: man-
agers and workers. Managers, which constitute the "master" part of the software
stack, are responsible for preparing the input parameter space, assign its elements
to workers and collect any output. "Workers" reside on computational resources
and perform actual simulations using the supplied input values.

When considering data farming experiments with tens of thousands of simula-
tions, the platform should be able to run not only a large number of workers but
also multiple managers. The actual quantity of each component type depends on
the simulation in question:

e simulations which take a short time to complete typically produce heavy com-
munication overhead and demand more throughput from managers,

e lengthy simulations decrease the amount of required communication per unit
of time — as a result the number of managers can be much lower.

The number of workers is typically much higher than the number of managers
(although the ratio can vary dynamically).

Self-adjustment of software to different workload patterns is a descriptive defi-
nition of self-scalability. It is especially desirable in highly dynamic environments
such as Clouds, which can provide computing resources on a large scale. Achieving
high throughput and minimizing the cost of running independent tasks in Clouds is
the focus of methodologies such as task farming [31]. However, most of the existing
software packages for running jobs on computational infrastructures only address
worker scalability, i.e. adjust the number of workers to suit the experiment’s de-
mands in order to achieve the highest throughput. The greater the influence of
manager throughput on experiment efficiency, the more important manager scala-
bility becomes. In many cases a predefined pool of generic computational resources

25

Chapter 1. Introduction

Client part

Client Client
Master part]_ I
| |
——————. \ | ——————. N s St \
([. ([. ([.
| 8 Manager | | | 8 Manager 13 Manager |
z ' .z ' z '
.\ . | _ T N W .
| |
Worker part i '_
| I |
—_— Y — . TUTII TN TSN TUITIITLUITVAITI TN
(('T;T;T;i:T;T_\\ ! et —\! -(/(’ ——————————— N
1 Yoo il TR |
B Worker ool 3 et Lol 8 edey !
N 2 o NS I _
| |
Infrastructure A | Infrastructure B | Infrastructure C

Figure 1.3: A virtual platform for running experiments.

is used both to run both managers and workers. In such a scenario downward scala-
bility (the ability of a system to decrease the number of running managers in order
to run more workers) becomes very important.

Although the infrastructure for a data farming experiment can be configured to
handle peak throughput requirements, such an approach can lead to low utilization
of computing resources, especially when running short simulations which require
more communication between workers and managers to exchange information about
subsequent simulations. A similar situation can occur when a business — e.g. Ama-
zon Inc. [32] — invests in a data center to run a popular service. As the service
only operates under peak load conditions for several days per year, the data center
remains underutilized throughout the rest of the year. Hence, it might be desirable
to deallocate some managers to free resources for additional workers, increasing the
overall resource utilization level and reducing the time required to perform data
farming experiments.

The ratio between managers and workers should therefore be dynamically ad-
justed to match the changing workload. This adjustment should be performed in an

26

Section 1.6. Thesis Statement and Research Objectives

automatic manner, though it should take into account expert knowledge expressed
in the form of scaling rules, i.e. conditions upon which managers or workers should
be scaled upward or downward. Scaling rules should reflect measurable parameters,
e.g. service response time, CPU, memory or measurement aggregation, along with
interpretation methods such as capturing the average measurement within a given
time frame or discovering trends in online workload. For each specific situation scal-
ing rules should be set in advance by an expert who has in-depth knowledge about
the properties of a given simulation. This batch of scaling rules can be treated either
as a final set or as an initial point. In the latter case, the system should exploit
information gathered at runtime to adjust scaling rules appropriately.

Last but not least, executing a large number of simulations may exceed the
capacity of a single data center. The platform should be capable of scheduling simu-
lation execution between organizationally distributed infrastructures, as depicted in
Fig. 1.3. By such infrastructures we mean distributed environments which provide
computational and storage resources with a known interface, e.g. a Grid scheduling
system, a Cloud environment available through a vendor-specific SDK, or even an
institutional cluster accessible via Secure Shell.

1.6 Thesis Statement and Research Objectives

As described in previous subsections, there is a strong need for enhancing the data
farming methodology with an efficient software platform that will support each phase
of the data farming process. Based on this requirement the following thesis will be
investigated in this dissertation:

Platforms for data farming processes require a heterogeneous computational in-
frastructure and support for self-scaling in order to provide efficient and cost-effective
performance.

Therefore, the main goals of the proposed thesis are as follows:

e to design and implement a massively self-scalable virtual platform which sup-
ports each phase of the data farming process and utilizes a heterogeneous
computational infrastructure,

e to propose a set of scaling rules, which take into account time- and cost-
related parameters and ensure a high level of performance with regard to user
requirements concerning costs.

27

Chapter 1. Introduction

The research methodology for validating the proposed thesis includes:
e development of a virtual platform,
e preparing a set of synthetic tests for validating the platform’s scalability,

e validating the self-scalability feature of the platform with synthetic tests and
sample data farming experiments which generate different workload patterns
and hence require different scaling actions,

e investigating other areas where the platform can be utilized.

1.7 Note on Participation in European Research
Projects

The author of this dissertation is a member of the Knowledge in Grids Team at the
Department of Computer Science, AGH University of Science and Technology and
has participated in several EU-funded research projects as an employee of the Aca-
demic Computer Centre CYFRONET AGH. This dissertation has been influenced
by experience gained in the course of the above mentioned work.

Participation as a scientific developer in the EU-IST ViroLab [33, 34] and EU-
IST GREDIA [35] projects provided insight into development of Grid collaborative
platforms for e-Science [36], user interfaces [37, 38| and infrastructures [39].

Development of a semantic-oriented monitoring tool within the POIG IT-SOA
[40] project has increased the author’s knowledge about (SOA) [41], QoS-oriented
(Quality of Service) monitoring systems [42, 43, 44| and semi-automatic management
of distributed applications [45, 46].

During the PL-Grid [47, 48] and PLGrid Plus [49] projects the author was re-
sponsible for highly scalable, semantic-based data management systems working in
both Grid and Cloud environments [50, 51, 52|, obtaining insight into scalability
problems facing large-scale applications in heterogeneous computational infrastruc-
tures [53, 54, 55, 56, 57].

Participation in the European Defense Agency (EDA) EUSAS [14] project as a
key developer of the data farming platform [58] enabled investigation of the data
farming methodology and issues related to existing software which supports this
methodology [59].

1.8 Thesis Contribution

The work performed within this thesis contributes to three areas of computer science:
scalability management, software engineering and data farming, with the following

28

Section 1.9. Thesis Structure

elements:

e The author proposes the concept of scaling rules — a formal way of expressing
scaling management knowledge. For a given platform scaling rules describe
how the system should rescale itself in response to various conditions. Such
rules can be predefined by domain experts and then utilized automatically by
computer systems.

e In order to address the scalability requirements of modern distributed software
platforms, an extension of SOA, called self-scalable services, is proposed, ac-
knowledging the scalability property as a first-class citizen of software architec-
tures. A self-scalable service extends the meaning of a software modularization
unit with built-in self-scalability.

e The presented concepts were exploited during development of a massively self-
scalable virtual platform for data farming called Scalarm, which is a complete
solution for performing large-scale data farming experiments using a hetero-
geneous computational infrastructure with minimal administrative effort.

e To verify Scalarm’s scalability and functionality a number of experiments were
conducted using both synthetic and real-life scenarios.

1.9 Thesis Structure

The thesis is organized as follows: Chapter 2 provides an analysis of existing data
farming systems, self-scalable solutions, systems for data storage and computational
environments. In Chapter 3 the author introduces the virtual platform for data
farming, starting with user requirements through platform design and architecture
definition. As part of of this chapter the concept of self-scalable services is pre-
sented. Chapter 4 discusses the problem of scalability in the context of a virtual
platform for data farming. Moreover, the concept of scaling rules is introduced. In
the following chapter 5 an implementation is described for both self-scalable ser-
vices and scaling rules. A reference implementation of both concepts is provided in
the form of a massively self-scalable platform for data farming experiments called
Scalarm. Additionally, a thorough description of all platform components and rep-
resentative use cases which explicitly depend on the platform’s scalability features,
is provided. Chapter 6 contains a detailed description of a complete Scalarm ex-
perimental evaluation. This evaluation is divided into two parts. The first part
concerns the scalability feature of the platform, while the second part is related to
the self-scalability aspect. In Chapter 7 a real-life application of the Scalarm plat-
form is described in the context of enhancing training of security forces. Finally, a
summary with possible directions for future work is presented in Chapter 8.

29

Chapter 2

Background Survey

This chapter describes various ongoing work in areas related to this thesis. Since
the data farming approach includes task scheduling, simulation management and
data storage, it is important to explore work related to these topics. In addition, we
provide an overview of self-scalable systems and computational infrastructures which
focus on heterogeneity and scalability issues.

2.1 Data Farming Systems

We begin our background survey by identifying relevant research from other projects
and activities which focus on building systems that either directly support Data
Farming or deal with a subset of Data Farming phases, e.g. simulation schedul-
ing. In particular, we explore scalability, support for heterogeneous computational
infrastructures, data analysis methods and the ability to conduct Data Farming
experiments in an exploratory way.

2.1.1 OldMcData

Although Data Farming is becoming quite widespread, software which supports this
methodology remains limited in scope. One of the most popular examples is OldMc-
Data - the Data Farmer (OMD) [60], a small-scale system that can execute multiple
simulations on a standalone computer or in a distributed computational network.
It was developed at the SEED Center for Data Farming [61] and integrated with
external tools to support preparation and execution of data farming experiments.
OMD utilizes an application called Xstudy [62] to set up data farming experi-
ments. Xstudy uses an XML file, called study.xml, to specify information about the
simulation model, input parameters of the experiment, the type of algorithm which
should be used to generate the actual set of input parameter values, and other ad-
ministrative data such as the user’s contact details. As a text file, study.xml can be
created and edited using any text editor, however Xstudy provides a user-friendly
graphical frontend to carry out all the preparatory steps and initiate execution. In

30

Section 2.1. Data Farming Systems

Matchmaker

{eentral manager)

N

Problem

User ——= Sol —= Agent -=——» Resource
olver (schedd) (starid)
(DAGMan) ¢
[Master-Waorker) T
Shadow -+——» Sandbox
{shadow} (starier)
Job

Figure 2.1: Architecture of the Condor distributed scheduler [2].

addition, Xstudy can import a list of comma-separated values (CSV) describing an
experiment.

By applying the study.xml file, OMD can generate separate configurations for
each simulation design point, which is defined as a vector of input parameter values.
It finds a base scenario file which contains a complete configuration for running a
simulation but without actual values of input parameters. Since it is an XML file,
OMD locates all input parameter elements and substitutes actual parameter values
for each design point with the selected Design of Experiment (DoE) algorithm. As
a result, a new configuration file is created. Currently OMD supports the following
DoE algorithms: full factorial, Cartesian product, values specified in a CSV file
and evolutionary programming. Moreover, several parameters can be grouped and
assume the same values for selected simulations.

OMD schedules simulations to run either on a standalone computer or on avail-
able distributed computational resources using Condor software [63], whose goal is
to provide mechanisms and policies that support HTC on large collections of dis-
tributed resources. Condor supports Grid and Cloud environments via the Globus
toolkit [64]. The most important processes in the Condor system are depicted in
Fig. 2.1. The user (in our case, OMD) submits jobs to an agent which is responsible
for finding suitable resources. Agents and resources are registered in a matchmaker
which can introduce compatible agents and resources. Upon finding a match the
shadow component of the agent provides all the required details about a job to the
sandbox in order to create a safe execution environment. Once the job is completed
its output can be moved from the resource to a designated point.

31

Chapter 2. Background Survey

Unfortunately, no data analysis methods are provided by the OMD. This intro-
duces the need for external tools appropriate to the output format of the simulation.
Moreover, running simulations is a batch-like process, i.e. the entire input package is
submitted to the scheduler all at once. The user cannot proceed with data analysis
until the experiment is finished. There is no information about partial results and
the user cannot modify the set of input vectors after submission. Although Condor
can be integrated with heterogeneous infrastructures, it lacks self-scaling features,
which means that the infrastructure used to run the experiment has to be set up
beforehand and cannot change at runtime.

2.1.2 JWARS

The Joint Warfare System (JWARS) [65] is a virtual platform for running a
campaign-level model of military operations. It intends to provide a simulation
of joint warfare that supports operational planning and execution, force assessment
studies, system trade analyses, and concept and doctrine development. It began as
a joint military program funded by the Office of the Secretary of Defense to create a
simulation and modeling framework for military operations. JWARS was used in a
number of projects to help plan various military deployments and develop military
doctrines.

JWARS was one of the first attempts to integrate all phases of a military cam-
paign, from planning through execution to analysis. It supports creating an opera-
tional plan from doctrines, rules of engagement, and campaigns while incorporating
entity locations and movement. Multiple simulations can be run in parallel and their
output gathered and analyzed in the context of force assessment studies and statis-
tical research. JWARS provides an event-stepped simulation system that describes
the behavior and interaction of military forces across a wide spectrum of scenarios.

JWARS includes three software domains, namely problem, simulation, and plat-
form. All are integrated into a single package which is used to perform studies and
analyses. The problem domain models entities which exist during simulations. The
simulation domain provides an engine which executes simulations in a stepwise man-
ner in a three-dimensional battlespace. The platform domain incorporates hardware
and a Human-Computer Interface (HCI) which assists analysts in getting data into
and out of the simulation. The current version of the platform is based on a client-
server architecture in which HCI runs on the client side while the simulation logic
and management are located on the server side.

The logical structure of the JWARS platform is depicted in Fig. 2.2. JWARS
implements the "Observe, Orient, Decide, Act" simulation loop paradigm. The
"Ground Truth" database provides a battlespace abstraction and contains all force
descriptions, their plans, possible behaviors, and the environment in which they
exist. Information about the opposing force is collected using sensors. The process-

32

Section 2.1. Data Farming Systems

Processin .] ..
(C:t:lrn?llatil:m,9 Situation Map {EEWSI:H .
Associalicn, (Perceived Truth) e "

Fusion) ontrol)

A

Intelligence Preparation
of the Battle Space (User Input)

Communicatio

(User Input)

Communications

Collection Plan ‘

Database of)
Data Collection Forces, Assets, Action
(Sensors) etc. {Mcu;:rh":i?t'
(Ground Truth)

Figure 2.2: Architecture of the JWARS platform |[3].

ing node represents the activity necessary to formulate a commander’s perception.
JWARS utilizes historical perception states and processes incoming information to
create a new state. The current state of perception is then used to build a situa-
tion map which contains all relevant information (e.g. the position of own troops),
necessary to make a decision concerning the next action. Once the data farming
experiment concludes analysts can visualize the results using several analysis tools
built into JWARS. Alternatively, output data can be exported to a file for further
analysis using third-party software.

Due to the potential for involving humans in the simulation loop JWARS focuses
on analyzing output from a limited number of simulations rather than on collect-
ing data from millions of simulations. In addition, all runtime information about
each running simulation is stored in a central database, which is a single point of
failure (SPOF) for the JWARS architecture. As such, the output landscape anal-
ysis features are rather limited in complex scenarios (which may involve dozens of
parameters). JWARS requires a dedicated cluster, which greatly limits the scale of
supported data farming experiments and mitigates the need for self-scaling.

2.1.3 SWAGES

Artificial life (Alife) is another example of a multi-agent simulation environment.
Artificial life refers to the concept of studying living systems running in virtual
worlds in order to understand the way in which such systems process information.
The main idea is to synthesize lifelike behavior from scratch in silico. This would
allow researchers to investigate non-trivial problems such as the origins of life, self-

33

Chapter 2. Background Survey

assembly, growth and development, evolutionary and ecological dynamics, animal
and robot behavior, social organization and cultural evolution. SWAGES is an ex-
perimentation platform for distributed agent-based Alife simulations which employs
dynamic parallelization and distribution of simulations in a heterogeneous comput-
ing environment. SWAGES combines several loosely coupled components to provide
a coherent platform for supervising Alife experiments which involve multiple large-
scale agent-based simulations. It supports all experimentation phases, namely:

e Setting up experiment sets, i.e. generating configurations for a number of
simulations based on initial conditions.

e Scheduling simulations to run on the available computational resources. The
scheduling process is based on several priority-based queues to which simula-
tion configurations are submitted for execution on remote hosts.

e Supervising running simulations on remote hosts. SWAGES monitors the
progress of running simulations and handles failures of remote hosts by re-
running crashed simulations from scratch or from a saved state.

e Gathering output from simulations and exporting the data in a number of
formats supported by external tools for further processing.

An important feature of the SWAGES platform is its extendability with third-
party components, e.g. result visualization tools or physics engines. Using the
so-called open "plug-in architecture", SWAGES allows users to exchange informa-
tion between its internal and external components via inter-process communication
means, e.g. shared memory or network sockets. An existing version of the SWAGES
platform uses a general-purpose environment called SimWorld [66], to develop and
run agent-based simulations. It supports running simulations in a graphical (inter-
active) mode as well as in a batch (non-interactive) mode. SimWorld includes an
automatic parallelization mechanism which is based on the simulation distribution
algorithm. The algorithm can either update all parallel simulations one cycle at a
time or independently update simulations after as many cycles as possible (when
information from other simulations is needed). The latter mode utilizes spatial
"spheres of influence" which describe the range at which one agent affects others.

While SWAGES can use multiple computational resources to perform simula-
tions, its scalability is rather limited. The main reason for this is the need to
maintain a connection between the server and each running simulation. Moreover,
server-side components of SWAGES lack the clustering feature, even though they
can be run on separate hosts. As a result, SWAGES can only be used in experi-
ments which do not entail a large number of simulations. Another limitation is the

34

Section 2.1. Data Farming Systems

graphical user interface, which does not provide any means of analyzing partial re-
sults. In order to perform analysis — even a simple one — the user first has to export
experiment results and then apply an external tool, e.g. the R statistical language.

2.1.4 DIRAC

Although dedicated data farming tools are rather limited in number, several soft-
ware packages support selected phases of the data farming process. Among the
most important phases is simulation, which needs to run on a high-performance and
high-throughput computational infrastructure. As this is a generic problem shared
by many areas of computational science, several tools are available. Distributed
Infrastructure with Remote Agent Control (DIRAC) [67] is a platform support-
ing computations with heterogeneous resources including local clusters, Grids and
Clouds. It was originally developed to provide a complete solution for using the
distributed computing resources of the LHCb experiment [68] at CERN for data
production and analysis. However, it remains a generic platform and can interface
with non-reliable resources in an efficient way to perform computational jobs.

DIRAC provides an additional abstraction layer between users and various com-
putational resources to allow optimized, transparent and reliable usage. It applies
the so-called Workload Management System with Pilot Jobs which increases com-
putational efficiency and reliability. DIRAC is an agent-based architecture where
agents are deployed on worker nodes, creating a dynamic overlay network of readily
available resources. Agents constitute a representation of the available comput-
ing resources. Their goal is to reserve computational power to run actual tasks
which are distributed using a custom scheduling model. By applying the Pilot Jobs
and Workload Management System concepts DIRAC implements redundancy at the
computational task level, i.e. guarantees that tasks will be run and rescheduled in
case of failure. In addition, these concepts enable a single system to aggregate vari-
ous types of computing resources such as computational Grids, Clouds and clusters
— all in a manner which is transparent to end users.

DIRAC follows the SOA paradigm; hence it is composed of a number of loosely
coupled components, as depicted in Fig. 2.3. These components can be grouped into
four categories:

e Resources which provide access to computing and storage infrastructures.

e Services which maintain system state and handle workload and data manage-
ment tasks. Each service is a passive component which operates by reacting
to client requests.

e Agents which run the actual computational tasks on behalf of the user on the
available resources. Agents provide a uniform way to deploy, configure, control

35

Chapter 2. Background Survey

| GANGA

[mch AP lEK query] lFiIECainlog

[..'Inh nmitur] ["‘“"““i““

—

Manager webpage browser
) v v v v v
Services JobMonitorSve DIRAC Job J BookkeepingSve B FileCatalogSve
Management
T il g (e
b [] & F Y

B x| omw][smmp.,r][mwam]]

K

Figure 2.3: Architecture of the DIRAC system [4].

and log their own activity. They can operate in different environments such
as Grids, clusters or Clouds.

e Interfaces which are access point to the system from the user’s or developer’s
points of view. The end user uses command-line tools to schedule jobs with
DIRAC, while developers can exploit a dedicated Application Programming
Interface (API) exposed by the DIRAC platform to implement third-party
tools, e.g. Graphical User Interfaces or other abstraction layers on top of
DIRAC itself.

While DIRAC provides certain data management features, they are chiefly re-
lated to reliable data distribution among computational resources. As a generic
tool focused on computations, it does not provide task result analysis extensions.
Moreover, it does not have inbuilt DoE methods for sampling the input parameter
value space upon which computational jobs should be generated. Thus, it can only
be used as a single component of a complete data farming platform rather than a
self-contained solution.

2.2 Self-Scalable Systems

Self-scalability is a necessary feature in a massively scalable platform. A platform
which comprises a large number of resources should be able to adjust itself to a
dynamically changing environment and load.

36

Section 2.2. Self-Scalable Systems

Ll

ThreadManager | ThreadManager 2

Asyne Sockets Timers Asyne Disk

1
— w0 | a0

Java Virtuwal Machine

I3[
128euRpy WAsAg

I

Operaring Sysiem

Figure 2.4: Architecture of the reference SEDA implementation — Sandstorm [5].

2.2.1 Staged Event-Driven Architecture

Staged Event-Driven Architecture (SEDA) [69] is a design approach for building
highly concurrent server applications. It intends to provide a hybrid infrastructure
which utilizes threading and event-driven programming models. Its main goals in-
clude enabling applications to be well conditioned to load, preventing computational
resources from being overcommitted when demand exceeds capacity. Each applica-
tion based on SEDA is decomposed into a set of stages, which are similar to states
in the event-driven programming model. Stages communicate with each other via
messages. Each application’s stages can be executed using the threading model. By
separating stages, better performance and fault tolerance can be achieved.

The reference implementation of SEDA is called Sandstorm [70]. The platform
provides a set of interfaces with which to build applications. Its architecture is
depicted in Fig. 2.4. A Sandstorm-based application consists of a set of stages con-
nected by queues. Each stage is implemented as a module with two components: an
event handler and a stage wrapper. The handler receives notifications about events
that have occurred (e.g. incoming messages) and encapsulates the logic of the ap-
plication, while the stage wrapper is responsible for creating and managing event
queues. The flow of stages is controlled by a thread manager which allocates thread
and schedules event handlers for execution. An important aspect of the Sandstorm
platform is built-in support for customization through replaceable resource schedul-
ing policies. As such, it is relatively easy to replace the basic thread manager with a
more sophisticated implementation. In addition, Sandstorm provides services such
as timers and profilers, which can support application development and testing.

Although SEDA is an interesting approach to building scalable software, it is ori-
ented towards fine-grained (as opposed to coarse-grained) concurrency, i.e. executing

37

Chapter 2. Background Survey

modular applications in parallel using message passing. Moreover, its reference im-
plementation is rather limited and has not been completed as of yet. Nevertheless,
several open-source and commercial systems, e.g. SwiftMQ [71] or OceanStore 72|,
are based on SEDA principles such as non-blocking I/O or event-driven program-
ming.

2.2.2 GigaSpaces eXtreme Application Platform

Besides academic research, self-scalable platforms are very important in the com-
mercial world. System malfunctions resulting from excessive client load often incur
significant costs — up to millions of dollars per hour of downtime [73]. Thus, it is
essential to maintain system stability at all times. There are several commercial
platforms which support enterprise virtualization and application scalability. One
such platform is called the eXtreme Application Platform (XAP).

XAP intends to provide end-to-end scalability of applications and data under
extreme latency and load requirements. It is designed to meet the mission-critical
needs of a wide range of businesses with the following features:

e online monitoring,

e advanced management capabilities,

e automation of operations,

e supporting private, public, and hybrid Cloud environments,
e integration with popular programming frameworks,

e interoperability among programming languages, environments, and APIs.

XAP departs from common tier-based applications due to their perceived dis-
advantages such as management overhead or latency of business transactions which
span all tiers. Instead, it proposes a different approach based on the notion of
separating processing units which represent self-contained components. Each such
component includes processing, data management and messaging. At the core of
each processing unit is a scalable, high-performance, reliable in-memory data grid
(IMDG). IMDGs support multiple APIs for accessing stored data with a clustered
in-memory message bus which supports update subscriptions and cluster-wide code
execution. The latter feature enables IMDG to function as a scalable processing
environment with shared memory between nodes and built-in support for the map-
reduce pattern.

The architecture of XAP is depicted in Fig. 2.5. The Open Interfacing Layer
enables uniform access to resources for applications written in various programming

38

Section 2.2. Self-Scalable Systems

Business Application Monitoring &
Management Tools =

Open Interfacing Layer

Elastic Application Container

Unified In-Memory Services

DATA

MESSAGING L e PROCESSING

Management and Monitoring Engine

B
=
w
a
3 P
m
= 5
[= W
v 2
£ <
3 A
1]
E
=
™
1]
o

Virtualized Deployment Infrastructure

Virtualization/Private Cloud r

Physical Environment
Figure 2.5: Tier-based architecture of a GigaSpaces XAP processing unit [6].

languages and technologies. The Elastic Applications Container is an implementa-
tion of the processing unit concept with support for self-scaling based on defined
rules. The Virtualized Deployment Infrastructure provides an abstraction layer on
top of the available computational resources and environments, e.g. clusters and
Clouds.

In order to enable self-scaling of processing units, XAP provides an advances
monitoring service and Service Level Agreement (SLA) definition support based on
the scaling rules specification. The monitoring service collects information about
workload on the underlying computational resources, application availability and
communication topology between processing units, as well as usage of business logic
and data by applications. The user can utilize this information by defining thresholds
for each monitored parameter value and specify actions which should be performed
upon exceeding these thresholds. Moreover, thresholds can represent both maximum
and minimum values of the monitored parameters.

XAP appears to be an attractive solution for building self-scaling applications.
However, it is rather generic in scope and does not support data analysis methods or
means for building data farming experiments. Moreover, it does not integrate with
Grid environments as the underlying computational infrastructure. Regarding the

39

Chapter 2. Background Survey

self-scaling aspect, the user can define strict thresholds but there is no support for
trend detection or averaging historical measurements of the monitored parameters.

2.2.3 Teradata Database

One of the most important aspects of a data farming platform is efficient data man-
agement. In particular, storing large structured data sets can be challenging. This
problem is not limited to the data farming methodology. One other example is data
warehousing, which focuses on analysing data from a set of distributed databases.
Traditionally, relational database management systems (RDBMS) were designed to
work in the Online Transaction Processing (OLTP) mode, which often operates
on single-row requests. Unfortunately, these databases, often perform poorly when
faced with such operations as full-table scans, multiple-table joins, sorting or aggre-
gating — all common data warehousing functions.

An important requirement of data warehousing solutions is scalability. This
becomes especially important when building a data warehouse in an evolutionary
manner, i.e. starting with a small installation and then extending it by adding
new databases as data sources. Teradata Database |7| intends to provide a best-on-
the-market solution for building data warehouses with near-linear scalability. The
key aspect of Teradata Database is parallelization of query execution. By running
multiple execution engines in parallel, each query can be processed much faster than
in the traditional approach. However, to achieve this kind of processing, a shared-
nothing approach must be adopted. Each physical node which belongs to a Teradata
installation is responsible for handling a partition of data. Teradata takes care of
distributing data to available physical nodes evenly.

The architecture of Teradata Database is depicted in Fig. 2.6. Each physical
node hosts two types of components: Parsing Engine (PE) and Access Module
Processor (AMP). Several instances of these components can run on a single phys-
ical node in parallel. Parsing Engines manage external connections to the system
and perform query optimization. AMPs are responsible for managing a number of
assigned rows and performing requested operations, e.g. manipulation, sorting, in-
dexing and backing up. The last crucial element of this solution is the interconnect
between physical nodes. Teradata provides a custom interconnect called BYNET
for delivering messages, moving data and collecting results.

The scalability of Teradata Database is based on two aspects: shared-nothing
architecture and scalable interconnect. Since components which reside on individual
physical nodes are self-contained, they can be added to the system whenever nec-
essary and operate in parallel. Each new node is assigned a portion of the overall
dataset for management. However, this would be inefficient without a dedicated
interconnect, i.e. BYNET, which utilizes several concepts (such as message ag-
gregation, locality exploitation or column-based compression) to keep traffic to a

40

Section 2.2. Self-Scalable Systems

Scalable Teradata BYNET
—
Interconnect I Host channel
connections
VPROCS VPROCS VPROCS VPROCS
PE and AMPs PE and AMPs PE and AMPs PE and AMPs

Parsing -
Engil .

Figure 2.6: Deployment diagram of a TeraData installation [7].

minimum.

Unfortunately, Teradata Database is oriented towards data warehousing and
therefore unsuitable for OLTP processing tasks. Moreover, it is based on many
custom solutions, e.g. the BYNET interconnect, which increases the costs of such
an installation. However, mechanisms which are utilized by Teradata Database to
achieve massive scalability are generic and can be exploited in other systems.

2.2.4 Apache Hadoop

For a long time analysing large datasets with massively parallel tasks required in-
depth expertise in the areas of hardware infrastructure, concurrency theory and
building parallel applications. Many institutions, both academic or commercial,
developed custom solutions to tackle this challenge. In most cases this resulted in
immature, poorly scalable software which was forgotten as soon as the analysis was
completed. However in 2004 Google proposed a simple programming model called
"MapReduce" |74], which was internally used by the Google search engine. Under
MapReduce the input dataset is divided into unrelated parts, each of which can be
processed concurrently (Map phase). Following the processing phase all results are
combined to form the output (Reduce phase).

MapReduce is merely a programming paradigm which has to be implemented by
dedicated tools. One such solution, which has recently gained widespread popularity,
is Apache Hadoop [75]. Although it began as a free implementation of MapReduce,
it currently includes various subprojects for reliable, scalable, distributed comput-

41

Chapter 2. Background Survey

master slave
task task
tracker tracker
- e
MapReduce job
layer tracker
(AR R R R RRUNER] RERRERRERRRRRE BEJRRERERERNRRNRNRDNNNEHN.]
HDFS name
layer node
L] - T
data data
node node
multi-node cluster

Figure 2.7: Simplified architecture of Apache Hadoop |[§].

ing. Examples include HBase [76], which is a scalable, distributed non-relational
database, the Hadoop Distributed File System (HDFS) [77], which provides high-
throughput access to application data, and ZooKeeper 78], which is a coordination
service for distributed applications.

The architecture of Hadoop is quite complicated and Fig. 2.7 only presents a
somewhat simplified overview. Hadoop follows the master-slave pattern: the master
is responsible for distributing tasks and collecting results from slaves which act as
processing units. An important element of the architecture is the data distribution
layer, which is implemented with HDFS. Similarly to Hadoop, HDFS follows the
master-slave pattern, where the master node contains metadata about each stored
file, along with its physical localization, and exposes a global namespace, while the
slave node is responsible for storing the actual data. Hadoop maintains high oper-
ational efficiency thanks to data locality: during the map phase Hadoop dispatches
tasks to nodes that are proximate to the data node which stores the necessary data.

The scalability of Hadoop is based on the elasticity of the master-slave pattern
in terms of adding new slaves when necessary. As the HDFS layer follows the same
pattern, it can also scale horizontally. Another important aspect is extendability.
A common usage scenario is to first deploy Hadoop on a small cluster and then
gradually extend it to hundreds of nodes as the application grows. The scalability of
Hadoop and HDF'S has been confirmed in many academic and commercial scenarios
[79].

It should be noted that the size of a single Hadoop cluster is limited by the

42

Section 2.3. Computational Environments

capacity of its master node. In [79] the authors empirically estimate this to be
approximately 4000 slave nodes. The only way to go beyond this number is to use
multiple separate Hadoop clusters. As Hadoop is oriented towards batch processing,
the cluster needs to be restarted to bring new resources online. Moreover, the master
node can be treated as a single point of failure for the cluster. When it fails the whole
cluster goes down. Thankfully, a number of possible solutions (e.g. the Facebook
Avatar node citehadoop-avatar) have been developed to mitigate this problem.

2.3 Computational Environments

When building a massively scalable platform one should take into account executing
applications in a heterogeneous computational infrastructure. In the following sub-
sections we will describe the environments commonly used for large-scale application
runs.

2.3.1 Grid computing

While conveying obvious advantages, distributed computing has also resulted in
increased infrastructural complexity. Utilizing distributed computational resources
to run applications can be a challenging task, especially for domain scientists who
are not always [T experts. To facilitate this step several approaches and tools have
recently been proposed, Grid computing being among the most important. The main
idea of Grid computing is to render computational power and other related resources
(e.g. storage or specialized devices) accessible in the same way as electricity. The
term "Grid" was introduced in 1998 [80] to describe computational environments
which possess the following properties (among others):

e coordinate resources that are not subject to centralized control,
e use standard, open, general-purpose protocols and interfaces,

e deliver nontrivial QoS.

Although the goal was well defined, it was not clear how such an environment
could operate in practice. Several problems had to be solved — e.g. secure access
to resources across institutional boundaries or ensuring the required QoS. Thus,
various projects were initiated to study the issue further and develop the necessary
tools.

In order to support modularity, most Grid projects proposed tier-based archi-
tectures similar to the one depicted in Fig. 2.8. The commonly encountered layers
include:

43

Chapter 2. Background Survey

e a resource abstraction layer, which is responsible for providing uniform access
to various resources,

a service layer, which includes all Grid-specific services supporting users ap-
plications,

a security layer, which ensures that Grid resources such as computational
power and sensitive data are not accessed by untrusted parties,

a scheduling layer, which is responsible for deploying user jobs on the available
resources.

Such a coherent set of Grid layers is often referred to as Grid middleware. It
is often implemented as a software stack which turns distributed resources from
many institutions into a coherent Grid environment. Note, however, that this deals
merely with the technical aspect of the problem. The second part of constructing
a Grid environment consists of procedures. As the Grid provides access to vast
amounts of computational power, only trusted parties should be able to use it.
Thus, it is necessary to uniquely identify each user of the Grid, in most cases via
a personal certificate. The second characteristic feature is related to the way in
which applications are running in the Grid. To create a single point of access to
the environment Grids expose queuing systems to which users submit application
(called Grid jobs in Grid parlance). The third interesting feature is the scientific
orientation of Grid environments. Grids originated in the world of academia and
remain more popular in the scientific community than in the industry. As a result,
most applications running on Grid resources are scientific ones.

Although the concept of the Grid is simple, its implementation remains complex
and poses many technical challenges. For several years the most common Grid user
interfaces were (and arguably still are) command-line tools. GUIs are a minority,
and in most cases focus on particular scientific disciplines. The second problem
with Grids involves security measures which many users consider unintuitive and
cumbersome. Thirdly, the diversity of Grid middleware makes the Grid quite difficult
to use. As many Grid projects developed their own tools and services no standard
middleware has emerged and there are still several divergent middleware packages
in active use. Naturally, this precludes portability of Grid applications and services.
Lastly, the Grid infrastructure is often less reliable than it should be. In most cases
Grid middleware is powered by open-source software developed by volunteers from
multiple countries. As a result, it sometimes contains insufficiently tested code.

Grid middleware

At the center of each Grid environment lies Grid middleware — an abstraction layer
between Grid users and Grid resources. As presented in Fig. 2.8, Grid middleware

44

Section 2.3. Computational Environments

APPLICATIONS
| Applications and Portals |
| Scientific | | Engineering || Collaboration | | Prob. Solving Env. | o | Web enabled Apps
. ER LEVEL
| Development Environments and Tools | MIDDIL.EWARE
| Languages/Compilers || Libraries | Debuggers | Monitors | Web tools |
| Resource Management, Selection, and Aggregation (BROKERS) |
| Distributed Resources Coupling Services | MIDDLEWARE
| Security || Information | Data | | Process | I Trading I
| SECURITY LAYER |
I Local Resource Managers | FABRI(
| Operating Systems | Queuing Systems || Libraries & App Kernels | | Internet Protocols |
| Networked Resources across Organizations |
| Computers | | Networks || Storage Systems || Data Sources | | Scientific Instruments |

Figure 2.8: Tier-based overview of the Grid architecture [9].

consists of two sublayers: core middleware and user-level middleware. While the
core middleware provides a uniform interface for accessing resources in the Grid
Fabric layer, the user-level middleware is responsible for exposing services for Grid
application developers, which provide high-level access to various Grid services, e.g.
resource brokers or information services. A number of Grid middleware packages
are available, each following a different approach to the common Grid objective.

UNICORE UNiform Interface to COmputing Resources (UNICORE) [81] is an
integrated solution which facilitates seamless, secure and intuitive access to Grid
resources, authentication mechanisms which can be integrated into administration
procedures, and relocation of Grid jobs between different resources. UNICORE fol-
lows a tier-based architecture which divides Grid infrastructure into three types of
elements. The first type, called the UNICORE Client, is responsible for preparation
and monitoring of Grid jobs on behalf of the end user. It communicates, through a

45

Chapter 2. Background Survey

component called the UNICORE Gateway, with the UNICORE Site (Usite) compo-
nent, which represents a portion of the data center. Each data center can have one
or more Usites. Each Usite offers access to Grid resources which are grouped into
Virtual Sites (Vsites). UNICORE provides a Graphical User Interface to create and
submit jobs. At the job creation stage the user can specify which files should be
imported to worker nodes. These nodes are responsible for actually executing the
job and exporting its results to a dedicated repository following completion. The
user can describe jobs as a set of one or more directed acyclic graphs (DAGs). Upon
submission each job is monitored and its current status reported to the user. In
terms of security, UNICORE supports single sign-on through X.509 certificates.

Globus toolkit The second popular Grid middleware package is called Globus
[64]. It provides a versatile open-source software toolkit which can be used to build
Grid environments and Grid-oriented applications. Core Globus services enable re-
mote access to distributed resources in a secure manner across institutional bound-
aries without sacrificing local autonomy. Globus implements three modules:

e Grid Resource Management, which enables resource allocation through job
submission, staging of executable files, monitoring of job execution and col-
lecting results. It integrates with various local schedulers such as Portable
Batch System (PBS) or Load Sharing Facility (LSF). Jobs are defined using a
dedicated language called the Globus Resource Specification Language. Any
necessary files can be also specified in the job description and prefetched before
the job is executed.

e Grid Information Services include a component called Monitoring and Dis-
covery Service (MDS) which exposes an interface for registering and querying
resource information. On each Grid resource a dedicated component (Grid
Resource Information Service) is run, which responds to queries concerning
resource properties.

e Grid Data Management, which defines an extension of the standard FTP pro-
tocol, namely GridFTP, and a replica management component. GridFTP
enables efficient and reliable data transfer in a secure manner across Grid re-
sources. The replica management components supports storing a single file
at multiple sites and accessing it via a logical name, independent of the file’s
actual location. Detailed information about file replicas is available upon re-
quest.

QosCosGrid The third Grid middleware package worth mentioning is a relatively
new Polish solution called QosCosGrid [82]. Its design was motivated by problems

46

Section 2.3. Computational Environments

with running complex simulations that can span hundreds or thousands of worker
nodes, using common Grid middleware. QosCosGrid intends to provide resource
reservation and fault tolerance capabilities. The architecture of the proposed so-
lution divides the Grid infrastructure into so-called Administrative Domains (AD)
which represent different data centers built on top of the Grid Fabric layer. QoSCos-
Grid leverages the queuing systems already available within each AD by providing a
uniform remote interface (called the SMOA Computing service), supporting advance
reservation of resources. Parallel execution of Grid jobs is supported by extend-
ing two popular environments: the OpenMPI [83] implementation of the Message
Passing Interface standard for C/C-++ and Fortran-based applications, and the
ProActive framework [84| for running Java-based parallel applications. These ex-
tensions allow applications to communicate and synchronize between geographically
distributed data centers. Additionally, the Data Movement component is provided
to enable dataset prefetching. In order to submit jobs to ADs, a Grid Domain is
necessary. The domain serves as an access point to the QosCosGrid infrastructure.
Each Grid Domain exposes a Graphical User Interface for job preparation and sub-
mission, in the form of a Web portal. When a Grid job is ready for submission, the
Grid Resource Management System (GRMS) is called to perform appropriate re-
source discovery and job management and monitoring (following actual submission).
GRMS supports job definitions in the form of a workflow, with specific conditions
applied to each workflow task. Moreover, GRMS has built-in support for parameter
study jobs: the user can define parameter value ranges while GRMS automatically
prepares and executes the necessary number of jobs, each with slightly different
input parameter values.

2.3.2 Cloud computing

When planning and developing large-scale computational infrastructures, industry
leaders such as Amazon, Google or Microsoft have always taken into account the
highest possible number of clients whose requests may have to be processed. Thus,
in most cases their data centers are underloaded, which can incur significant costs.
This is an undesirable situation for a profit-seeking company and therefore many
companies have opted to lease out the idle portions of their infrastructures to run
third-party applications. In order to meet this goal they required a solution which
would:

e be fairly easy to use by end users,
e reduce maintenance effort,

e come with a clear pricing model.

47

Chapter 2. Background Survey

Existing Grid computing solutions suffered from poor penetration in the commer-
cial market due to being overly complicated and unreliable. Thus, in 2005 Amazon
Inc. introduced a new type of computational infrastructure, called Cloud [85], based
on the idle portion of the infrastructure which powers the Amazon e-commerce por-
tal.

The Cloud is often described as an unlimited pool of computing resources and
storage space which can be accessed by users at the click of a button, with a pay-per-
use model. This model enables users to avoid the high baseline costs of purchasing
and installing actual hardware infrastructures. Instead, the Cloud provider main-
tains all hardware while the user obtains access to abstract, virtual resources, e.g.
virtual machines with specified parameters. Moreover, by scaling upwards, large
Cloud providers can offer very competitive pricing compared to in-house infras-
tructures. The underlying infrastructure is highly reliable and resource failures are
usually transparent to end users.

In addition to raw computing power, Cloud providers offer a number of ser-
vices which facilitate exploitation of the infrastructure. Common services include
messaging, mailing, structural storage and scaling operations. While the former
three are strictly application-oriented, the last one allows users to define how their
applications should be scaled, both vertically and horizontally.

Another aspect of computational Clouds, of particular importance to this dis-
sertation, is infrastructure scalability. When applications are run as Cloud virtual
machines, the infrastructure can be scaled simply by adding new VMs. Even more
importantly, the Cloud can provision new virtual machines in minutes instead of
hours, which is especially important in highly dynamic environments. Moreover,
some commercial Cloud providers expose services which enable starting and stop-
ping Cloud virtual machines based on defined rules — for instance Amazon provides
the Auto Scaling service for specifying scaling conditions and the CloudWatch ser-
vice for monitoring virtual machine instances [86]. Microsoft Azure also allows the
user to define rules based on which virtual machines are to be started and stopped
[87]. However, both solutions are proprietary and focus on managing the infrastruc-
ture rather than actual applications (i.e. built-in scaling actions concern starting
and stopping virtual machines running in the Cloud). In addition, both platforms
are restricted to a single Cloud environment and do not support other types of
infrastructures.

Although the Cloud may seem like a silver bullet for anyone wishing to lease
computational resources, the approach is not without certain drawbacks. The most
commonly raised issue involves security. As both data and applications reside on the
Cloud provider’s infrastructure, the user does not have full control over their manage-
ment. They can be migrated between data centers and across national boundaries.
This can be undesirable if the data in question is sensitive. The second aspect is

48

Section 2.3. Computational Environments

virtualization overhead, which may impact performance. Due to the highly hetero-
geneous nature of computational resources Cloud providers often introduce a virtual
unit of computation which is used to describe different resources in a uniform man-
ner. As a result virtual machines deployed in the Cloud will provide slightly inferior
performance compared to physical nodes which are commonly encountered in Grid
environments. Last but not least, the topology of connections between a given
group of virtual machines can be far from optimal, rendering parallel computation
less effective than in standard clusters.

Cloud taxonomies - deployment models and service models

Two of the most important taxonomies of existing Cloud computing systems focus
on deployment models and service models respectively. The former is based on the
visibility of a Cloud from the user’s point of view. Public Clouds, which can be used
by everyone without any constraints, possess the highest availability, although each
Cloud infrastructure is owned by an organization selling Cloud services. This cate-
gory includes Amazon Elastic Compute Cloud (EC2), Microsoft Azure [88], Google
AppEngine [89] and many others. Private Cloud reside on the opposite end of the
availability spectrum. In most cases they are limited to the resources of a single
organization and can be accessed only from that organization’s network, by autho-
rized users. An organization can build a private Cloud using existing open-source
Cloud stacks such as Eucalyptus [90], OpenStack [91] or OpenNebula [92]. Alterna-
tively, a third party can provide an organization with a dedicated infrastructure for
running a private Cloud. The third group, called hybrid Clouds, describes private
Clouds whose computation power and storage capacity can be extended with pub-
lic Cloud resources. A very important aspect of hybrid Clouds is technology that
enables data and application portability between different Clouds. Unfortunately,
due to the sluggish standardization process, portability and interoperability of var-
ious Clouds remain limited. The last group in this taxonomy is called community
Clouds. They can be treated as an evolution of private Clouds, spanning several or-
ganizations which share a common goal. Such a Cloud is a single entity from the end
user’s point of view, but its infrastructure can be co-managed by several organiza-
tions. Community Clouds are often temporary, i.e. created to facilitate cooperation
of several organizations for a specific purpose (such as a shared project).

The second important taxonomy concerns the manner in which the customer
uses the Cloud, as depicted in Fig. 2.9. This taxonomy includes:

e Infrastructure as a Service (IaaS) Clouds, which provide access to a virtualized
pool of resources (CPU, storage and networking) enabling customers to assem-
ble virtual machines. The customer obtains access to the selected operating
system and can deploy and run required software without any constraints.

49

Chapter 2. Background Survey

While such low-level control is convenient and desirable, especially when de-
ploying custom software, it requires additional effort on the customer’s part.
In this model the Cloud owner is responsible for providing reliable underlying
infrastructure, i.e. physical devices and the interconnect layer.

e Platform as a Service (PaaS) Clouds provide access to well-defined runtime
environments and programming services which can be used to develop appli-
cations without worrying about virtual machines. This model is much more
convenient from the developer’s point of view since it frees the developer from
having to individually manage operating systems or physical infrastructure.
The consumer is responsible only for providing an application developed using
a software stack which is supported by the Cloud provider. On the other hand,
the Cloud owner remains responsible for application deployment, availability
and — in many cases — elastic scaling. In addition, the Cloud owner pro-
vides several services which facilitate the process of application development,
such as (non-)relational databases, messaging middleware or e-mail facilities.
In spite of existing constraints, especially concerning the available software
stacks, PaaS Clouds offer an interesting developer-oriented alternative to IaaS
Clouds.

e Software as a Service (SaaS) Clouds deliver specific applications which are
deployed on the provider’s infrastructure. SaaS applications are usually ac-
cessible through a thin client (such as a web browser) from arbitrary input
devices. The Cloud owner manages the entire software stack, from the op-
erating system to the provisioned application. In this model the consumer
focuses on using provided application rather than on developing his/her own
applications.

Open-source Cloud solutions

Historically, the first Cloud solutions were the proprietary, closed, commercial plat-
forms operated by large enterprises such as Amazon, Microsoft and Google. Al-
though they were public and could be used by anyone, only the Cloud owner knew
how the Cloud worked internally. From the consumer’s point of view such a Cloud
was a black box. Since 2005 (the year Amazon EC2 was introduced) a number of
new Cloud computing solutions have been launched. Some of them remain commer-
cial in nature, but others are open-source products. Thanks to open-source Cloud
middleware many companies and research facilities can run a private Cloud using
private resources. While most of these deployments are oriented on performing com-
putations and did not support any form of "Data as a Service", modern open-source
Cloud solutions often provide rudimentary data storage features.

50

Section 2.3. Computational Environments

Traditional IT
r 3
Applications Applications Applications Applications
Data Data Data Data
Runtime Runtime » Runtime w Runtime
Q
>
Middleware Middleware " Middleware i Middleware
2 <
0/s i oIS i o/s < o/s
w © a
g : 8
Virtualization 33 Virtualization 2 Virtualization u Virtualization
] a 3
w w
Servers é Servers § Servers e Servers
8 g
Storage [Storage = Storage Storage
=
o
Networking oy Networking v Networking Ak Networking

Source: Microsoft.

Figure 2.9: Taxonomy of Cloud service models [10].

Eucalyptus The first successful open-source Cloud system which provides stor-
age on demand was Eucalyptus [90]. Introduced in 2008 at University of California,
Santa Barbara, Eucalyptus is an example of an open-source project which became
very popular outside the scientific community. Many commercial entities currently
develop their own private Clouds using Eucalyptus. In fact, Eucalyptus is often
treated as a model TaaS Cloud solution. Regarding functionality, Eucalyptus aims
to provide an open-source alternative to the Amazon EC2 Cloud. It exposes a pro-
gramming interface to its services (virtual machine management and storage), which
is compatible with programming interfaces exposed by the Amazon EC2 Cloud.
Each Eucalyptus installation consists of several loosely coupled components, each of
which can run on a separate physical machine to increase scalability. The architec-
ture of Eucalyptus is depicted in Fig. 2.10. The frontend of an Eucalyptus Cloud
is the Cloud Controller element, which is an access point to virtual machine-related
features. While the Cloud Controller is responsible for computations, the Walrus
component handles data storage. It can store virtual machine images along with
any other files, organized into a hierarchy of buckets and can be used in the same
way as Amazon S3. Each virtual machine is executed on a physical host, which is
controlled by the Node Controller element. A group of nodes can be aggregated
into a cluster which exposes a single access point (the Cluster Controller for virtual
machine management and the Storage Controller for access to the virtual machine
image repository).

There are two versions of the Eucalyptus Cloud: Community and Enterprise.

51

Chapter 2. Background Survey

- b
& " AWS-COMPATIBLE API

DEVELOPERS

& = Ak
FEUCALYPTUS

COMPUTE STORAGE .—=—. NETWORK

VIRTUALIZATION
PHYSICAL INFRASTRUCTURE

DATACENTER

NAGEMENT

Figure 2.10: Architecture of the Eucalyptus Cloud [11].

The free version of the Fucalyptus system stores data in a single directory on the
host on which the Walrus component is installed. As such, the only way to dis-
tribute data is to exploit a distributed file system, e.g. Lustre or Oracle Cluster
File System 2, mounted in the directory used by the Eucalyptus installation. The
file system remains orthogonal to the Cloud solution, i.e. it does not have access to
any information about the Cloud and can only manage data based on some basic
properties such as the size of stored files the or capacity of the available storage
resources. Such strategies are very limited and are cannot be easily adapted to suit
the Cloud computing paradigm. The problem is tackled by the Enterprise version of
Eucalyptus which, among other features, provides an adapter for direct integration
with Storage Area Networks (SANs), e.g. Dell Equallogic or NetApp. However, to
the best of our knowledge, this integration does not allow combining different types
of storage systems within a single Cloud installation. Moreover, the Cloud admin-
istrator cannot declare a policy for distributing data among the available storage
resources. Data management therefore devolves upon SAN, which knows nothing
about the Cloud, its users or the type of data stored in the Cloud. Although SANs
are enterprise-class data storage solutions, they do not provide any Cloud-specific
storage strategies which would acknowledge e.g. information about Cloud customers.

52

Section 2.3. Computational Environments

OpenStack In 2010 NASA and RackSpace jointly launched the OpenStack Cloud
initiative, which intends to enable any organization to create an laaS Cloud on com-
modity hardware. NASA contributed to the project by releasing its middleware,
called Nebula [92], for managing virtual machines at physical infrastructure. In
turn, RackSpace contributed its storage solution known as Cloud Files [93]. Since
the launch, over 120 companies have joined the OpenStack project, including In-
tel, AMD, HP, Dell Cisco and Citrix Systems. OpenStack is a collection of tools
for building a virtual infrastructure using resources available to a data center. In
terms of computations, OpenStack provides the OpenStack Compute (Nova) solu-
tion, which is responsible for provisioning and managing instances of virtual ma-
chines. To control the OpenStack-based Cloud both graphical and programming
interfaces are provided, compliant with Amazon EC2 and Rackspace Server APIs.

OpenStack Architecture

INSTANCE
4

Figure 2.11: Architecture of the OpenStack solution [12].

In terms of storage, OpenStack provides OpenStack Object Storage (Swift),
which is an object storage solution with built-in redundancy and failover mecha-
nisms. Each stored object is transparently replicated to multiple hardware devices.
Swift handles failover situations automatically by ensuring the replication level of
each stored object. In addition, it supports dynamic scaling of the underlying stor-
age by adding or removing storage resources. The programming interface of Open-
Stack Swift is compatible with Amazon S3, thus any existing application which uses

53

Chapter 2. Background Survey

Amazon S3 can also leverage OpenStack Swift. There is also a separate subsystem,
called OpenStack Imaging Service, responsible for managing virtual machine images.
OpenStack was designed with scalability in mind. Thus, its internal architecture,
depicted in Fig. 2.11, uses the shared-nothing, messaging-based approach and each
of its major components, i.e., Cloud Controller, Volume Controller, Object Store
and Network Controller, can be run on multiple servers. Communication between
components is based on asynchronous method calls via HT'TP and AMQP to avoid
blocking.

Although OpenStack provides many important features regarding high-
availability data storage, it lacks mechanisms for increasing data access performance
or differentiating data on the basis of its purpose. Each stored object is treated in
the same way, regardless of its importance or intended use (note that data which is
frequently updated should be replicated less eagerly than data which is only read).
Moreover, OpenStack does not provide any monitoring service which would observe
and analyze user behavior with respect to data usage.

Task farming

Executing a large number of independent tasks, often referred to as task farming
or bags of tasks, is a popular approach while using HTC systems, e.g. Grids and
Clouds. Furthermore, this approach is often applied as a component of simulation-
based scientific workflows [94]|. By enabling parameter studies, task farming can be
considered part of the data farming process, as described in Chapter 1.

Although task farming can be conducted in any computational environments,
using Cloud environments is especially interesting due to the availability of various
types of resources at limited cost. Utilization of Cloud environments to conduct
task farming is a popular research topic [94|. Contrail is an EU-funded project
which intends to design, implement, evaluate and promote an open-source system
for Cloud Federations [95]. As a part of the Contrail project, the ConPaaS software
stack is developed [96], which addresses the problem of porting existing applications
to the Cloud. The project aims at supporting familiar programming models so that
existing applications can be easily migrated to the Cloud. To achieve this goal
ConPaaS provides services which act as replacements for commonly-used runtime
environments, e.g. MySQL databases or PHP runtimes.

Another product of ConPaaS is related to task farming and its main component
is a budget-constrained scheduler called BaT$ [13]. The main objective of the BaTS
scheduler is to minimize the cost of running a bag of tasks using Cloud resources
by allocating the most efficient resources for the given task. Cloud environments
such as Amazon EC2 offer different resources at different costs. BaTS estimates the
required budget for the given bag of tasks by evaluating the efficiency of executing
tasks using different resource types.

54

Section 2.3. Computational Environments

The BaTS architecture is depicted in Fig. 2.12. Task execution is divided into
two phases. The first phase, called the sampling phase (the left side of the figure), is
related to budget estimation. BaTS schedules a small number of tasks on different
types of resources and calculates the total cost for each resource type. Based on
the estimated budgets, ConPaaS allocates Cloud resources. The second phase (the
right side of the figure) is called execution and involves execution of the remainder
of tasks from the initial bag. During this phase online monitoring is used to refine
the initial execution plan, if necessary.

Master
ﬂ v Master
/ r 3

Linear
Regression| | ™ Task | [Cluster

T Profiler | {Utilization
Budget ‘
Estimates v
@ Reconfigure |—»{ Scheduler

-

Figure 2.12: A budget-constrained scheduler architecture [13].

Sampling

DO

55

Chapter 3

Massively Selt-Scalable Platform:
Concept and Architecture

In this chapter the author describes the development process of a virtual platform for
data farming starting with use cases along with their functional and non-functional
requirements. Next, the author considers adapting existing software architectures
to match the design of the proposed platform. Due to the limitations of existing
architectures the author introduces an extension to SOA in the form of self-scalable
services which addresses the scalability non-functional requirement. Based on the
proposed architecture, an overview of the platform’s design and a description of the
required functional modules are presented.

3.1 Development Methodology for a Data Farming
Platform

Although this thesis addresses scientific and engineering problems affecting mas-
sively self-scalable software, it was inspired by an actual problem related to the
development of a virtual platform for data farming. We decided to utilize the wa-
terfall model as the main software methodology since all functional requirements
were well known beforehand. Only two development iterations (i.e. building a pro-
totype version and building the final version) were planned, precluding the need for
more agile methodologies such as Scrum.

The waterfall process starts with a requirements analysis phase which is often
supported by use case definition and specification of requirements. Each use case
refers to a complete scenario performed by the client using the platform to achieve a
meaningful effect, e.g. creating a new data farming experiment. Each use case may
involve a number of high-level actions performed be the client, e.g. specifying input
parametrization followed by application of DoE methods. Finally, each high-level
action can be translated into a number of low-level operations performed both on
the client and server sides, e.g. specifying a single input parameter or calculating the

56

Section 3.2. Platform Use Cases

expected number of simulations based on currently selected parametrization criteria.

Once all use cases have been defined, a design phase is carried out by extract-
ing functional blocks and discussing the available architectural styles suitable for
the platform. Analysis of existing architectural styles such as layer-based, service-
oriented and space-based architectures, is presented later on in this chapter. Due
to limitations regarding scalability, the author proposes an architecture style based
on the self-scalable service concept, which is among this dissertation’s key contribu-
tions. This new architecture style intends to address the scalability requirement as
a first-class citizen by combining concepts known from existing architectural styles
and concurrency programming models. The author then applies these concepts to
describe the platform architecture.

The next phase of the waterfall process is implementation. In the context of
the presented platform implementation details are discussed in Chapter 5. Platform
evaluation, which is the next phase of the process, is described in Chapter 6. The
final phase of the process, i.e. maintenance, is described in Chapter 7.

3.2 Platform Use Cases

Use cases allow us to define the main goals of software in terms of functionality which
should be provided from the end user’s point of view. In addition, end users need to
be specified as part of this phase. The author intend to build a virtual platform for
data farming, which addresses problems encountered by analysts and decisionmakers
(often seen as the main beneficiaries of the data farming methodology). Thus, the
virtual platform aims at supporting different phases of the data farming process.
An overview of the supported use cases is presented in Fig. 3.1.

The supported use cases can be divided into two groups, based on the actor who
executes each use case:

1. data farming use cases, depicted on the left side of Fig. 3.1, including activities
related to preparation and execution of data farming experiments,

2. platform management use cases, depicted on the right side of Fig. 3.1 and
related to platform operation and maintenance.

The following subsections summarize the supported use cases.

3.2.1 Data Farming Use Cases

This group includes use cases related strictly to each phase of the data farming
process which was described in Chapter 1. In particular, these use cases cover such
features as preparation of a data farming experiment, monitoring its progress and

57

Chapter 3. Massively Self-Scalable Platform: Concept and Architecture

uc Platform Use Cases /

Massively Self-Scalakble Platform for Data Farming

(Get experiment input
parametrization

"wincludes

Create a Data
Farming experiment

Define a sealing rule

-
-

kS

resources to an

experiment

-
o wincludes =
Y
Y
aincludex

)

walues

Enable
self-scalability

Apply Design of
periment method

A

Data exploration "’"‘n___‘
User wextends ” = /
‘R\\ Y‘:-\\ Create a scatter plot dministrator
L
\‘\ % aextends N
“\ ~ Specify platfiorm
s sextends resources

Extend an experiment

Create a histogram

. [Create a regression
Download experiment tree

results

Maonitoring data

wisualization

Figure 3.1: A use case diagram for a virtual data farming platform.

exploration of data with built-in mechanisms. A summary of each use case in this
group is presented below (cf. left side of Fig. 3.1):

1. Create a data farming experiment involves the first three steps of the data
farming process, as depicted in Fig. 1.1, namely 'Experiment objectives defi-
nition’, ’Simulation scenario building’ and 'Input space specification’. During
this use case the decisionmaker specifies all attributes of a data farming ex-

periment:

e a simulation model, which will be used during simulation execution,

e a parameter space to explore during the experiment, including
parametrization methods, input value constraints and DoE methods,

e an initial set of resources which will be used by the simulation.

58

Section 3.2. Platform Use Cases

2. Add resources to an experiment is related to the ’Simulation execution’ phase
of the data farming process. Although the "master" part of the platform, de-
picted in Fig. 1.3, is self-scalable, the user can adjust the amount of compu-
tational resources dedicated to the "worker" part dynamically. Having access
to different infrastructures, e.g. Grids and Clouds, the user can decide how
many resources should be used by the platform to run workers and execute
simulations included in the data farming experiment, e.g. in terms of CPU and
RAM. In most cases the source of computational power should be transparent
to the user, i.e. starting new virtual machines in a private infrastructure or
submitting jobs to the Grid environment should be equally transparent. How-
ever, if public Clouds (e.g. Amazon EC2) are required, the user should be able
to select this type of infrastructure explicitly and acknowledge the associated
financial conditions.

3. Data exploration is related to the ’Output data exploration’ phase of the data
farming process. In general, simulation output data can be explored in various
ways, e.g. using visualizations or data mining methods. It is difficult to
implement all possible options in a single platform and therefore we have
decided to include only a few visualization methods (described in more detail
in Chapter 7), which facilitate basic analysis of simulation results:

e scatter plots for pairs of MoE and/or input parameters,
e histograms of MoE values,

e regression tree graph.

4. Eztend an experiment relates to a transition between 'Output data explo-
ration” and ’Input space specification’. Nowadays the practice of conducting
data farming experiments involves creating several small-scale experiments to
investigate a given phenomenon, and then following up with large-scale stud-
ies to thoroughly explore interesting subspaces. However, such an approach is
error-prone due to the need for separate data farming experiments focusing on
different parts of the input parameter space. The presented platform intends
to eliminate this process by enabling users to create an experiment which can
later be extended to cover additional input parameter subspaces in an evolu-
tionary way. By extending a single experiment in different directions the user
can compare simulation results from different subspaces more easily than with
separate experiments.

5. Downloading experiment results (experiment management group) is a neces-
sary step for further analysis of results with third-party tools as well as sharing
them with people who do not use the platform. The result of an experiment can

59

Chapter 3. Massively Self-Scalable Platform: Concept and Architecture

be divided into two parts. The first part contains information about each sim-
ulation run, i.e. input arguments and resulting MoE values. This data should
be accessible in a commonly used standard, e.g. a CSV file, supported by by
third-party statistical analysis tools such as JMP [97] or R [98]. The second
part of the experiment’s result includes more detailed information about each
simulation run, i.e. actions performed within the simulation. Although this
information is simulation-specific, it can be useful e.g. when tracing potential
eITors.

3.2.2 Platform Management Use Cases

An important feature of the presented platform is massive self-scalability, which
calls for a set of features related to platform management. A summary of the use
cases related to this aspect is presented below (cf. the right side of Fig. 3.1):

1. Define a scaling rule is a basic operation related to platform self-scalability.
The main goal of scaling rules is to express expert knowledge about platform
scaling behavior. The platform administrator can define rules for each platform
service to enable self-scalability.

2. Enable self-scalability is a simple switch which can be set by the administrator.
The platform will use monitoring data along with scaling rules to scale itself
once the self-scalability feature is enabled.

3. Specify platform resources is an operation related to selecting resources which
comprise the master part of the platform. Selected resources are used during
scaling operations to start new manager instances.

4. Monitoring data visualization is an administrative tool which provides admin-
istrators with information about the current and historical platform workload.
This information can be utilized to define new scaling rules or modify existing
ones.

3.3 The Massive Self-Scalability Requirement
The previously described use cases do not cover non-functional aspects of the plat-
form which address issues related to QoS, platform maintenance and user experience.

In the context of a data farming platform several such requirements can be discerned:

1. massive scalability to support large-scale data farming experiments,

60

Section 3.3. The Massive Self-Scalability Requirement

2. simulation execution with heterogeneous infrastructures, i.e. local clusters,
Grids and Clouds (whether public or private),

3. cost-effective resource utilization through self-scalability.

Massive scalability is necessary to execute thousands of simulations in parallel.
As explained in Chapter 1, data farming experiments often require computational
power which exceeds the capacity of a single data center. This translates into the
need for heterogeneous infrastructures. Self-scalability is an essential feature which
contributes to optimal resource utilization.

Self-scalability can be defined as the ability of a platform to automatically adjust
the quantity of resources used in response to emerging events. Scale adjustment can
have a different meaning depending on the platform, e.g. allocating an additional
processor in a multiprocessor system or using additional servers to run applications.
In either case, scale adjustment involves changing the set of resources assigned to the
platform. The "self" prefix denotes that the adjustment is performed automatically,
without human interaction. However, conditions, which trigger this action should be
defined beforehand, typically by domain experts. The platform itself is responsible
for detecting whether such conditions have actually occurred, and for initiating the
scale adjustment procedure.

To cope with the need for massive self-scalability we have identified the following
additional functional requirements:

e ability to represent expert knowledge regarding scaling conditions and proce-
dures,

e collecting monitoring information describing the workload of each platform
element,

e execution of multiple instances of each platform element, maintaining location
transparency,

Concerning the first requirement, both aspects, i.e. specification of conditions
and self-scaling procedures, need to be represented in a formal way to be processed
by computer systems. In order to address this need, the author introduces the
concept of scaling rules in Chapter 4.

The remaining two requirements are indirectly related to platform architecture
and can be met by way of appropriate design. The platform should be designed as
a set of elements which fulfill the following criteria:

1. each platform element is a unit of modularization which provides the desired
functionality through a well-defined interface,

61

Chapter 3. Massively Self-Scalable Platform: Concept and Architecture

2. platform elements communicate with each other directly and do not form a
hierarchy,

3. each platform element can be deployed multiple times with each instance using
a different set of physical resources; however all instances of a given platform
element should expose a single access point (if necessary),

4. for each platform element, scaling conditions and procedures can be defined
separately.

Many different architectural styles are applied in modern IT design. The most
popular ones include:

1. Layer-based architecture |99|, where functionality is provided by tiers, each of
which has a well-defined interface and responsibilities. Each tier communicates
only with tiers located directly below and above itself. The user interacts with
the topmost tier, while the lowest tier is usually associated with physical hard-
ware. Arguably the most common incarnation of this architecture comprises
three tiers: data access, business logic and presentation.

2. Service Oriented Architecture (SOA) [100], which assumes that each applica-
tion can be assembled from a set of loosely coupled services with well-defined
interfaces. Hence, each service is a separate peer and can be replaced easily.
An important feature of SOA is interoperability, i.e. the ability of services to
work together to provide the desired functionality. SOA promotes flexibility
and adaptability of applications by encouraging developers to create reusable
and well-focused services, which can be easily utilized in multiple applications.

3. Space-based architecture [101] is an architectural style for achieving linear scal-
ability by dividing applications into processing units, i.e. self-sufficient mod-
ules, each of which provides the full functionality of an application. Each pro-
cessing unit is independent and the application can be scaled up/down simply
by adding/removing processing units. Note, however, that the requirement of
distributing an application as a monolithic module may result in significant
overhead as applications typically contain components responsible for data
access, business logic, messaging, presentation etc.

The first two architectural styles intend to cope with software complexity by
introducing modularization and separation of concerns. They do not address the
problem of scalability directly as this problem was not deemed critical when these
architectural styles were being introduced. However, along with the growing pop-
ularity of the Internet in the late 90s and in the early 21th century, applications
had to face the problem of handling rapidly varying number of clients (e.g. due to

62

Section 3.4. The Concept of Self-Scalable Services

a sudden surge in the popularity of a given application). Hence, these styles do not
fulfill all of the necessary requirements.

The third architectural style, i.e. space-based architecture, was introduced to
solve the scalability problem by using self-sufficient processing units. A processing
unit can be instantiated multiple times on different computational resources to pro-
vide the necessary performance. However, it is assumed that each processing unit
encapsulates all the features of an application, which can impose significant overhead
when considering unbalanced components (for example a single database component
can handle multiple business logic services). Overall platform performance depends
on the load of each component which may vary from request to request — a single
request can involve many data access operations or many CPU-intensive operations.
In such cases components may require different scaling conditions, which is not
supported by space-based architectures.

To fulfill all the presented requirements, an extension to SOA called Self-scalable
services is proposed in the next section. This extension aims to provide all the
necessary features for designing massively self-scalable platforms.

3.4 The Concept of Self-Scalable Services

To the best of our knowledge, none of the existing architectural styles fulfill all the
requirements described in the previous section. In particular, these architectural
styles do not address the massive self-scalability of data farming platforms. On the
other hand, each of the presented styles provides important and desirable features:

e separation of concerns in the layer-based architecture,
e loose coupling in SOA,

e self-sufficient modularization units in the space-base architecture.

As a consequence, this dissertation proposes an extension to SOA called self-
scalable services, which is a set of service instances grouped together, along with
additional shared modules providing self-scalability . This extension represents a
combination of the above mentioned features in the form of a self-scalable modular-
ization unit. A data farming platform has been developed to verify the applicability
of the proposed extension to building highly scalable software.

When considering massively self-scalable platforms composed of loosely coupled
services, the most challenging requirement is management of multiple instances of
each service running in parallel in such a way that all instances are treated as a
single unit by external clients. To address this requirement we cannot operate on
the level of services (treated as individual instances). Instead, we have to extend the

63

Chapter 3. Massively Self-Scalable Platform: Concept and Architecture

<<Entry point>> ‘
| Self-Scalable Load balancer
| service |
| I
<<Shared memory>>
| Cache |
| I
| I
| I
I v \ 4 \ 4 :
I Service Service Service
I
| instance instance instance
| cee |
| I
| I
| I
| I
| szleloiliay Monitoring |
| Manager |
| I

Figure 3.2: Overview of a self-scalable service.

meaning of a service as a software modularization unit to embrace the scalability
feature. We therefore introduce the concept of a self-scalable service, which can be
defined as a group of service instances sharing the same functionality, accessible as
a single unit by external clients.

An overview of a self-scalable service structure is depicted in Fig. 3.2. It is an
independent modularization unit which enriches any service with the self-scalability
feature. Each such service contains the following elements:

e one or more instances of a service denotes an original service which provides
the desired functionality,

e load balancer forwards requests from external clients to service instances and
constitutes an entry point for the self-scalable service (though each service
instance can be accessible directly if necessary),

e cache service, which can be utilized as shared memory for all service instances
enabling communication between them and providing a common place to store
seldom-changing data utilized by service instances,

64

Section 3.5. Self-Scalable Services in the Data Farming Platform

e monitoring system, which collects information about the self-scalable service
workload,

e Scalability Manager, which is responsible for enforcing scaling rules in an au-
tomatic way.

Crucial self-scalability features are provided by the last two elements, i.e. the
monitoring service and the Scalability Manager. To achieve the desired QoS (e.g.
mean response time less than some arbitrary value) these elements utilize the feed-
back loop approach, popular in control systems and autonomous computing. Mon-
itoring is a sensor which provides information about service workload, while the
Scalability Manager is a controller which adjusts the number of concurrent service
instances according to the observed workload. Scale adjustment is based on defined
scaling rules which express expert knowledge about the desired scaling behavior.
Scaling rules are provided to the Scalability Manager of a self-scalable service by
the administrator who manages the self-scalable service.

3.5 Self-Scalable Services in the Data Farming Plat-
form

To demonstrate the capabilities of self-scalable services we have built a platform
called Scalarm, which stands for Massively Self-Scalable Platform for Data Farming.
Scalarm is a complete multi-tenancy platform for data farming, which implements
all phases of the data farming process, starting from experiment definition through
simulation execution to result analysis. In addition, Scalarm enables users to manage
computational resources assigned to simulations regardless of their source — this
includes private resources, Grids and Cloud environments.

Considering the explicit scalability requirement, self-scalable services are espe-
cially well suited for designing the platform. The architecture of Scalarm is depicted
in Fig. 3.3. Each service except the Information Manager is self-scalable by design,
i.e. several common modules are utilized alongside actual service instances.

In the context of the platform four services are defined:

1. Experiment Manager handles all interaction between the platform and end
users via a graphical user interface. It also constitutes a gateway for analysts,
providing a coherent view of all running and completed data farming experi-
ments and enabling analysts to create new experiments or conduct statistical
analysis of existing ones. Finally, the Experiment Manager is responsible for
scheduling simulations using Simulation Managers.

65

Chapter 3. Massively Self-Scalable Platform: Concept and Architecture

User

Experiment
execution requests

1. Experiment

Manager

e}ep UO[}ed0|
sia8eue|n

Managers 4. Information
location data Manager

Managers
location data

%

2. Simulation | > 3. Storage

66

Manager

Manager

Simulation output

Figure 3.3: High-level overview of the Scalarm architecture.

. Simulation Manager is a wrapper for actual simulations which can be de-

ployed in various computational infrastructures, e.g., private clusters, Grids or
Clouds. It can be treated as an implementation of the pilot job concept, i.e., a
special application that acquires computational resources to run applications.
While the pilot job concept was devised specifically for Grid environments, the
Simulation Manager is infrastructure-independent. The wrapper is responsible
for preparing the simulation environment, e.g. by downloading the necessary
code dependencies and input parameter values. When the simulation con-
cludes the Simulation Manager uploads its results to the "master" part: log
files and other binary datasets are sent to the Storage Manager while MoE
values are sent to the Experiment Manager along with a notification that the
simulation has completed. Since it operates in a highly dynamic and unreli-
able environment, the Simulation Manager is guarded against Experiment and

Section 3.5. Self-Scalable Services in the Data Farming Platform

Storage Manager failures as well as network connectivity issues. Moreover, to
maximize resource utilization, the Simulation Manager may schedule multiple
simulations in parallel based on computational resource capabilities, i.e. addi-
tional simulations are started as long as they do not significantly impact the
performance of simulations which are already in progress.

3. Storage Manager implements the persistence layer concept in the form of a
separate service. Other components, particularly Experiment and Simulation
Managers, use this service to store different types of data: structural informa-
tion about each executed simulation and experiment, and results of simulations
(which may be either binary or textual). By utilizing a built-in load balancer,
the Storage Manager can be treated as a virtually centralized but physically
distributed single data storage point, facilitating client-side operations while
preserving performance and scalability.

4. Information Manager is an implementation of the service locator pattern,
known from SOA-based systems. It is a "well-known" place for each compo-
nent in the system, which stores information about other components’ loca-
tions.

The first three services need to be massively self-scalable to enable Scalarm to
operate on a large scale. In light of this requirement they were designed as self-
scalable services. The fourth service — the Information Manager — is less frequently
used and therefore has no need for self-scalability, though it was designed as a
highly available service using similar concepts (multiple instances governed by a
load balancer).

67

Chapter 4

The Problem of Scalability

In this chapter the author describes the scalability feature in more detail. First, the
need for scalability is outlined, followed by a description of the most popular scala-
bility metrics. Common scaling strategies and potential bottlenecks in web applica-
tions are described and the concept of scaling rules is introduced to represent expert
knowledge about scalability management, which is the second main contribution of
this thesis. Finally, the scalability of the Scalarm platform is discussed.

4.1 Motivation for Scalability

As highlighted in Section 1, scalability has only recently become the defining feature
of modern large-scale systems. At first, scalability referred to the extendability of
computing infrastructures [102]. This was especially desired when designing a large
installation which would need to expand in the future. The rise of parallel algo-
rithms gave new meaning to the scalability concept — it was now interpreted as the
ability of an algorithm to utilize additional resources, e.g. CPU or memory, when
available [103]. Designing and implementing such algorithms was, and still remains,
the main goal of scientists who have access to large-scale computer installations. In
order not to reimplement the same scientific algorithms for each new machine, these
algorithms had to become scalable. This meaning of scalability has recently been
subsumed by the domain of distributed applications, especially web-oriented ones.
From a business point of view, it is necessary to have applications which can cope
with increased workload (generated by additional clients) simply by adding more
computational power. This approach, i.e. increasing the available computational
resources on demand, is one of the main benefits of Cloud computing. In this con-
text, a new aspect of web application scalability is the ability to scale upward as well
as downward, taking into account the cost of running web applications in large busi-
nesses. Using all the available resources to run an application all the time may incur
high costs as most resources remain idle. By the same token, combining scalable
applications with flexible computational infrastructures can be very cost effective
since the amount of allocated resources varies along with the actual workload.

68

Section 4.2. Scalability Metrics

Throughout this dissertation the scale of a computer system, in particular the
Data Farming platform, refers to the amount of resources it uses. In the context
of self-scalable services the scale of a service can be measured by the number of
instances running in parallel, which indirectly influences the amount of utilized
resources. In addition to scalability, we can define scalability management as a
set of management operations related to application management in the context
of scale adjustment, i.e. discovering when the application should be rescaled and
performing the actual rescaling. Appropriate scalability management is required to
achieve efficient scalability in self-scalable systems. Unfortunately, there is currently
no standard way of expressing expert knowledge regarding scalability management.

4.2 Scalability Metrics

To measure the scalability feature a number of different metrics have been proposed.
All of them reflect changes in system properties corresponding to changes in scale.
The system scale represents the amount of resources — e.g. processors, storage or
memory — available to the system. Scalability of computational algorithms can be
measured with regard to the number of processors. On the other hand, scalability of
a software platform requires a different scale, representing e.g. the number of active
servers. For the purpose of this thesis we will use the general concept of a "compute
unit" in order to represent system scale.

The most widely used metric for describing scalability, called Speedup, "S",
compares the total execution time for a program running on a single compute unit
to execution time obtained with N compute units. It can be calculated using Eq. 4.1.

=7
where Tg is the execution time of the fastest known serial algorithm and Ty is the
execution time with N compute units. This particular form of speedup is called fixed
size speedup as the execution time in either case is measured with respect to the same
total workload. In a perfectly scalable system speedup equals IV, i.e. regardless of
the amount of compute units work can be divided into N parts and performed in
parallel.

In 1967 Gene Amdahl suggested that the maximum speedup of some types of
applications depends on the portion of the application that cannot be parallelized
[104]. An important prerequisite is that the application must execute the same
number of instructions for the same input data regardless of whether processing

occurs in a serial or parallel fashion. Amdahl’s law is mathematically represented
by Eq. 4.2.

S(N) (4.1)

69

Chapter 4. The Problem of Scalability

svy—1s _stp 1 (4.2)
TN s+ % s + %
where s is the non-parallelizable fraction of the application while p is the parallelized
fraction of the application. For the sake of convenience we assume that s +p = 1.
Amdahl’s law assumes that the problem size remains identical in both runs, which
is hardly ever true. Instead, one may fix the time slot in which the application is
run and instead increase the size of the problem. This scenario is described by
Gustafson-Barsis’s law and expressed by Eq. 4.3.

s+pxN

SIN) = s+p

=N+sx%x(1—=N) (4.3)
where s is the non-parallelizable fraction of the application. For the sake of conve-
nience we assume that s +p = 1.

As both laws produce different results, many viewed Amdalh’s law as incorrect.
However, in [105] Yuan Shi claimed that both laws are, in fact, consistent. In the
Amdahl’s formula the non-parallelizable fraction of the algorithm is independent of
the number of compute units, as expressed by Eq. 4.4:

ls
ot + (1)

where s, is the the non-parallelizable fraction of the algorithm in the Amdahl’s
formula (often referred to as non-scaled percentage of the serial part program), t,
is the processing time for the non-parallelizable fraction of the algorithm using a
single compute unit and ¢,(1) is the processing time for the parallelizable fraction
of the algorithm using a single compute unit.

In Gustafson’s formula this fraction is dependent on the number of compute
units, as expressed by Eq. 4.5:

(4.4)

S'I’LS

ts
 ts+1(N)
where t,(N) is the processing time for the parallelizable fraction of the algorithm

using N compute units. s, is often referred to as scaled percentage of the serial part
program. Both values are related by Eq. 4.6.

(4.5)

Ss

1

= 1+ (1—s5)xN

Ss

(4.6)

STLS

where s,, is the non-scaled percentage of the serial part program while s; is the
scaled percentage of the serial part program.

70

Section 4.2. Scalability Metrics

The second metric, i.e. efficiency (Eq. 4.7), E, describes how additional resources
are utilized by a parallel version of an application. The value of efficiency is com-
monly thought to fall in the [0, 1] range, however practice shows that it is possible
to achieve efficiency greater than 1, e.g. by storing all of the application’s data in
RAM instead of on a hard drive. Efficiency is often used to categorize the type of
scalability provided by an application, with three distinct groups: linear (efficiency
equal to 1), sub-linear (efficiency lower than 1) and super-linear (efficiency greater
than 1).

S(N)
E(N) = N (4.7)

Scalability can be expressed either using the above mentioned metrics or with
dedicated formulas. There are two popular scalability metrics. The first one is based

on efficiency, and therefore called Efficiency-based scalability, "Sg", as expressed by
Eq. 4.8.

E(N)
E(Ny)
The second scalability metric invokes the concept of productivity introduced in
[106] to combine system performance with the cost of computation. Taking cost
into account is especially important when using commercial Clouds for computing.
Productivity is the capability of a system to process incoming requests which should
be maintained at different scales to call the system scalable. The authors define the
productivity of a "request-response" system using the following properties:

SE(NlaNQ) =

(4.8)

e \(k) - system throughput in responses per second at scale k,

e f(k) - abstract value of each system response, called response value, indicating
QoS at scale k; it be expressed e.g. by the mean response time of the system,

e C(k) - cost of the system at scale k, indicating the total quantity of different
types of resources such as compute units, memory and disk space allocated by
the system.

The productivity metrics (F') can be then expressed according to Eq. 4.9:
A(k) = f(k)
C(k)

Using these properties, Productivity-based scalability, "Sr", can be calculated
with Eq. 4.10:

F(k) = (4.9)

Sk ke) = F(ki) k) * f(k1) * C (ko) (4.10)

71

Chapter 4. The Problem of Scalability

In real-life applications scalability can depend on multiple factors and should be
studied with different metrics reflecting different perspectives. Scalability analysis
of an application requires in-depth understanding of the system behavior, going
beyond the raw values of scalability-related metrics. Such analysis will be performed
in Chapter 6 with regard to the presented Data Farming platform.

4.3 Common Scaling Strategies and Potential Bot-
tlenecks

In the context of web applications two scaling strategies can be distinguished: scal-
ing up (vertically) and scaling out (horizontally). Scaling up means adding more
resources to a machine which runs the application. In this strategy we manipulate
the resource pool of a single machine, e.g. adding more CPUs or more RAM. A
scalable application should discover and utilize any available additional resources
automatically. It is worth noting that scaling up can be easily achieved by most
web applications simply by exploiting the local OS and its inbuilt mechanisms such
as threads and virtual memory.

On the other hand, scaling out (horizontally) means adding new resources to
the application in the form of additional machines. In this scenario the application
obtains all crucial resources, i.e. CPU, memory, disk and network, as a coherent unit.
Compared to scaling up, scaling out can provide much more total computational
power to an application. However, the application itself has to be designed differently
to operate in a distributed environment. It has to be able to discover new available
machines and utilize them. This approach promotes a decentralized approach to
software design, i.e. there should be no single resource required for the application
to operate.

To enable large deployments which adjust themselves to changing workload pat-
terns with minimal administrative intervention, the platform has to provide near-
linear scalability along with high performance. The latter is necessary in any pro-
duction platform in order to minimize the resources required to handle a single
client. On the other hand, scalability is needed to cope with increasing workload.

Based on the above-mentioned rules governing scalability, i.e. Amdahl’s and
Gustafson’s laws, we can conclude that a massively scalable platform can be de-
veloped only by minimizing the non-parallelizable fraction of algorithms executed
by the platform. This includes any action performed by the platform starting from
experiment generation, through simulation scheduling and execution all the way to
result analysis.

In traditional layer-based web applications, scalability bottlenecks typically in-
volve the database tier [107]. There is often a single database which persists state for

72

Section 4.3. Common Scaling Strategies and Potential Bottlenecks

the entire web application, while the business logic layer provides stateless services
to ensure scalability. Modern relational database management systems are mature,
efficient and can handle multiple clients simultaneously but they still constitute a
single point of failure. To increase reliability and availability, it is possible to run
two or more instances of a replicated database management system. To increase
scalability, data representing application state has to be sharded and distributed to
more than one server.

Another bottleneck of software platforms is related to the load balancing of con-
nections between clients and platform services, where each service and each service
instance is deployed on a different physical server. When considering several plat-
form services and their instances, along with a much higher number of clients, it
is crucial to balance the workload evenly between the available servers. There are
several common load balancing strategies:

e DNS load balancing [108] involves using the DNS system to bind several IP
addresses to a single domain name and then return addresses in a round robin
manner to successive clients. It does not require any modification either on
the service or on the client side. However, it is less flexible than other methods
since it does not take into account information about service workload.

e Client-side load balancing is a strategy in which the client is aware of all
available service instances. For each request the client can select a different
service instance to interact with. This strategy is the most scalable, because
each client is responsible for individually selecting a service instance. However,
this can lead to suboptimal resource usage since clients are not aware of the
current load conditions on the service side.

e Using a dedicated component called a load balancer, which handles all incom-
ing requests and redirects them to different service instances based on a set of
rules. The load balancer can access monitoring information about each service
instance and can provide optimal workload balance in terms of resource uti-
lization. However, due to being a single access point, it cannot scale linearly
in large installations.

The final bottleneck which should be considered in the scope of the Data Farm-
ing platform regards data storage of simulation output. Depending on the scenario,
each simulation can generate several megabytes of data, which means that a single
experiment can produce terabytes of data, or more. This amount of data is more
than a single hard drive can store, hence a dedicated storage system, such as a disk
array, should be used. As management component instances will be distributed
among multiple servers, this storage system should be accessible via a network and

73

Chapter 4. The Problem of Scalability

capable of handling large-scale write throughput from multiple clients. These re-
quirements are hard to meet with a single storage system. Thus, a more scalable
system is required.

4.4 Scaling Rule Definition

In this section, the author introduces the concept of scaling rules as another con-
tribution of this dissertation. Scaling rules express the intended scaling behavior
of a self-scalable service; in particular — how and when service instances should be
started and stopped.

Self-scalable services intend to facilitate development of self-scalable platforms
such as Scalarm. An important element of such a platform is automation of scaling
procedures which can be achieved by representing knowledge about scalability man-
agement (i.e. when and how to scale the given platform) in a computer-processable
form. In computer science, a well-known form of expressing knowledge involves
rules [109]. Such rule-based knowledge is often consumed by domain-specific expert
systems [110], which support decision making by end users.

While expressing knowledge in the form of rules is commonplace in modern
systems, there is no standard way of specifying rules for scalability management.
Such dedicated rules should describe conditions which will trigger scaling actions,
in addition to scaling strategies and metrics. Scaling rules intend to fill this gap
by providing a machine-processable way for defining conditions, metrics and actions
concerning scalability management. A scaling rule can be defined as the following
tuple:

ScalingRule := < Metric, M easurementType, Condition, Threshold, Action >
MeasurementType := Simple M easurement | TimeW indow M easurement
Condition == < | > | ==
Threshold := SimpleV alue | PercentageV alue

where the tuple elements are as follows:

e Metric denotes any measurable parameter of a service included in the scalable
system, e.g. CPU utilization level or service response time,

e MeasurementType indicates the way in which a service parameter is measured.
SimpleMeasurement gets the most recent measured value of the parameter,
while Time WindowMeasurement aggregates measurements over a given period
of time.

e Condition is a logical operator which defines the desired relationship between
the Metric value and the Threshold.

74

Section 4.5. Scalability in the Scalarm Platform

e Threshold is a numerical or percentage-based value of the Metric, which, com-
bined with the Condition operator, determines when a scaling action should
be triggered.

e Action denotes what should be done when a rule is met (e.g. add new com-
putational resources or shut down a service instance).

Multiple scaling rules can be combined into a single compound rule using logical
operators:

CompoundScalingRule := ScalingRule | ScalingRule O R CompoundScaling Rule
| ScalingRule AN D CompoundScaling Rule

By using these scaling rules, a self-scalable service can be precisely described in
terms of conditions governing up- and downscaling. For each such a service a set of
compound scaling rules can be defined, which will encapsulate scaling management
knowledge. As a result, scaling rules should be adapted to the characteristic features
of the service, e.g. high consumption of RAM. Scaling rules can be grouped into
three categories, based on the combination of measurement types and thresholds:

e Simple scaling rules, which include rules with Simple Measurements as the
measurement type and SitmpleValues as the threshold type, e.g. “service
response time is less than 100 ms.”

e Time window rules, which include rules with TvmeW indow M easurements as
the measurement type and SimpleV alues as the threshold type, e.g. “average
response time over the last 5 minutes is less than 100 ms.”

e Trend discovery rules, which include rules with TimeWindow M easurements
as the measurement type and PercentageV alues as the threshold type, e.g.
“response time increased by more than 200 % of the mean value over the last
5 minutes.”

4.5 Scalability in the Scalarm Platform

In the context of the Data Farming platform, vertical and horizontal scalability of
the "master" part (depicted in Fig. 1.3), is desired for the following reasons:

e Executing data farming experiments of varying sizes - each experiment can
include a different number of simulations, from dozens to thousands or more.
Hence, the platform needs to enable adjusting the quantity of computational
resources at runtime.

75

Chapter 4. The Problem of Scalability

e Platform multi-tenancy - the number of clients interacting with the platform at
any given moment can vary significantly. To maximize the resource utilization
level, the platform should reserve the minimal amount of resources required to
handle the current workload and be able to allocate additional resources when
the workload increases.

e On-demand boosting of experiment execution - the user may want to execute
simulations involved in the experiment as fast as possible, depending on the
experiment’s priority. Hence, the platform should enable the user to manually
adjust the amount of resources allocated to simulations.

e Resource partitioning between “masters” and “workers” - executing experi-
ments can result in variable workload to which the platform should adjust
even when dealing with a fixed amount of resources. The platform should
partition the available resources between “masters” and “workers” according to
the ratio of work handled by each type of component respectively.

We utilized self-scalable services to address the above mentioned issues during
the design phase of the platform. Each self-scalable service is a fully independent
modularization unit which can be managed independently to obtain the required
scalability. The Scalarm platform is divided into four services, as described in
Section 3.5. Each service has different resource requirements:

o Frperiment Manager handles actions related to the three main phases of a
data farming experiment:

— input space specification,
— output data exploration,

— progress monitoring and simulation scheduling as parts of the simulation
execution phase.

The first two phases are mostly CPU- and memory-bound as computations
need to be performed on possibly large datasets. The third phase is mostly
network-bound because it requires querying databases in the Storage Manager.

e Storage Manager is responsible for persisting information about data farming
experiments performed by the platform. This information comes from two
different sources:

— information about each simulation included in the experiment, e.g. input

parameter values, current status and results. This data is well suited for
structural storage systems, such as (non-)relational databases.

76

Section 4.5. Scalability in the Scalarm Platform

— binary results of completed simulations, e.g. log files, which can be used
for further analysis.

The volume of binary results can be much larger than the volume of ancillary
information. This calls for a different type of storage system: one which
provides limited performance but is more cost-effective. Activities performed
by these components are primarily I/O- and memory-bound.

e Simulation Manager handles actual simulation execution based on input pa-
rameter values obtained from Ezperiment Manager. Once the simulation is
finished, MoE values and any binary results are sent to Storage Manager.
Depending on the simulation, these components can be CPU-, memory- or

[/O-bound.

e Information Manager is responsible for storing configuration information re-
quired by other self-scalable services (e.g. location of access points for each
self-scalable service). This information represents shared knowledge about the
platform, required for initialization of new service instances and integrating
them with existing services. The associated resource requirements are negligi-

ble.

Utilizing self-scalable services provides the option to attach different scaling rules
to different services. This feature follows the SOA principle of building systems
from loosely coupled and independent services. Actual scaling rules for each self-
scalable service can vary depending on the specific deployment, e.g. physical server
capabilities or communication layer properties. The following key factors are taken
into account when considering different self-scalable services:

e Scaling rules for Ezperiment Manager should involve parameters describing the
overhead of simulation execution, e.g. simulation scheduling time. In addition,
metrics related to data exploration can be defined, such as the preparation time
for a specific type of graph.

e Scaling rules for Storage Manager should be related to parameters describing
[/O performance, e.g. read and write operations per seconds and the average
completion time for I/O requests, including the time spent in queues.

e Scaling rules for Simulation Manager should involve parameters describing the
current utilization level of basic machine resources, e.g. CPU and RAM.

Although detailed scaling rules will be defined on the basis of experimental eval-
uation presented in Chapter 6, we can specify some preliminary scaling rules based

7

Chapter 4. The Problem of Scalability

on the above mentioned key scaling factors. We begin by defining a set of scal-
ing actions, which includes only two operations, namely starting a new component
instance and stopping an existing instance:

Actions = (StartNewlInstance, StopInstance)

We also define a set of monitoring metrics which includes information about the
monitored system properties:

Metrics = (AverageResponseTime, AverageNumberO f RequestsPerSec,
AverageNumberO f ReadOperations, FreeDiskMemory, CpuUtilization)

By using the presented actions and metrics we can define sample scaling rules for
each main self-scalable service. These rules are listed in Table 4.1. Each self-scalable
service can utilize different metrics to decide when and how to scale. In addition,
different measurement types can be used in different metrics.

Table 4.1: An outline of sample scaling rules for defined self-scalable services.
Service Rule objective | Metric Measurement | Condition | Threshold | Action
type

Experiment | scale up Average TimeWindow > 100ms | Start New
Manager Response = 1 minute Instance

Time
Experiment | scale down Average TimeWindow < 1 | Stop In-
Manager Number Of | = 1 minute stance

Requests

Per Sec
Storage scale up Free Disk | TimeWindow > 10% | Start New
Manager Space = 1 minute Instance
Storage scale down Average TimeWindow < 30 | Stop In-
Manager Number = 1 minute stance

Of Read

Operations
Simulation | scale up CPU Uti- | TimeWindow > 98% | Start New
Manager lization = 30 seconds Instance
Simulation | scale down CPU Uti- | TimeWindow < 40% | Stop In-
Manager lization = 30 seconds stance

78

Chapter 5

Scalarm Implementation Details

In this chapter the author describes essential aspects of the implementation of the
Scalarm platform. First, the services constituting the platform are described in de-
tail. This is followed by a description of key elements of the platform architecture,
implemented to support massive scalability. The self-scalability feature is discussed
in terms of its implementation. Finally, behavior of the platform in typical situa-
tions is described, including creation of a new data farming experiment, executing
simulations and extending an experiment.

5.1 Platform Overview

Scalarm is a complete multi-tenant platform for data farming, which facilitates all
phases of the data farming process, starting with experiment definition, through
progress monitoring to analysis of results. In addition, Scalarm enables users to
manage computational resources regardless of their source, e.g. private resources,
Grids or Cloud environments. The basic design pattern which underpins the Scalarm
architecture is "master-worker", hence internal components can be divided into two
groups: managers and workers. The former group handles actions related to log-
ical organization of computation and infrastructure management, while the latter
handles actual execution of simulations.

The main use cases and (non-)functional requirements of Scalarm are described
in Chapter 3. Due to the massive self-scalability requirement, Scalarm utilizes the
concept of self-scalable services to organize its architecture, i.e. Scalarm functional-
ity is provided by a number of independent services, each of which scales itself and
exposes a single access point on demand (if necessary). While existing systems for
data farming or simulation scheduling are only capable of scaling workers, Scalarm
supports scaling of managers as well, to maximize the resource utilization level.

In terms of scalability management, Scalarm utilizes the concept of scaling rules
introduced in Chapter 4. Scaling rules express expert knowledge on scaling each
platform service. Combined with information about the current state of the plat-
form (obtained from a dedicated monitoring system), they constitute the self-scaling

79

Chapter 5. Scalarm Implementation Details

cmp Scalarm
User
Self-Scalable Experiment Service
«Shared memao... wentry points
Cache
Pull mechanism - Load balancer
-
s
~ g] ~
- Experiment ~
- L ~
Simulaticn input s 177 Manager TR . "
- Experiment progress data
aflows P 4 # [
~_ aflows
o - = s
Simulaticn Measures of Effectiveness e = N
’/ e aflows Node Manager Scalability Manager | Simulation sutput e
-~
e -~ data figus S
s s | S ~
L - / > EN
Self-Scalsble Simulstion Service \‘If Salf-Scalable Storage Service
@ E Informaticn Management Semvice E E
«Shared memory» aentry points {l aShared memonys «entry points
Cache Load balancer Cache Load balancer

xentry points

Load balancer

Simulation Manager Monitoring = {:_] = Manager :| Menitoring
1
E Information
Scalability Manager Manager Scalability Manager
Node Manager Mode Manager
Simulation cutput
e 2
«flows

Figure 5.1: Component diagram of Scalarm.

feature of Scalarm. In Chapter 4 several scaling rules are outlined in the context of
Scalarm services to demonstrate the flexibility of the concept. In addition, Scalarm
enables adding new scaling rules on demand to adjust scalability management for a
specific deployment to suit user requirements.

5.2 Scalarm Services

The architecture of the Scalarm platform, introduced in Chapter 3, is depicted in
Fig. 5.1. Key self-scalable services were previously described in terms their features
and resource requirements. In this section the author extends this description with
implementation details for each service. In addition, other modules are introduced
and described — these modules do not provide any end-user features but are essential
for the platform itself.

Services utilized in the Scalarm platform can be divided into three groups:

80

Section 5.2. Scalarm Services

e Data farming-related services, which support all phases of the data farming
process. This group includes Experiment, Storage and Simulation Managers.

e Platform maintenance-related services, responsible for managing the platform
as a whole. This group includes Information and Node Managers.

e Common services utilized by self-scalable services and included in each such
service. This group includes Monitoring, Scalability Manager, Load balancer
and Cache.

The following subsections discuss the implementation of each of the above men-
tioned services.

5.2.1 Experiment Manager

Each GUlI-enabled virtual platform requires a dedicated service to handle all inter-
action with end users. In Scalarm this task falls to the Experiment Manager which
exposes a uniform GUI. It also constitutes a gateway for analysts, i.e. provides a
coherent view of information concerning all running and completed data farming
experiments, enabling analysts to create new experiments and conduct statistical
analyses of existing ones. The Experiment Manager is a manager-type component
for Simulation Managers, i.e. it is responsible for scheduling simulations and re-
trieving results.

Its internal architecture is depicted in Fig. 5.2. The Graphical User Interface
is provided by two components, i.e. ’Experiments’ and ’Infrastructure’. The for-
mer provides an interface for creating, manipulating and extending data farming
experiments, enabling statistical analysis of partial results. The latter provides an
interface for managing data farming infrastructure, e.g. adding computational power
to speed up execution of a specific experiment, if requested. To communicate with
other components, e.g. Storage Managers, the Experiment Manager utilizes lookup
information about components’ entry points from the Scalarm Information Service
via the ’Configuration’ component. Information about currently running and his-
torical experiments is partially stored in a shared database within the self-scalable
service that supervises Experiment Managers. Information concerning actual sim-
ulations within each experiment is stored in a non-relational database handled by
Storage Managers. To enable multi-tenancy of Scalarm, a dedicated component
called "Users’ handles authentication, authorization and user management.

The Experiment Manager provides a Graphical User Interface (GUI) for ana-
lysts to conduct and monitor data farming experiments. This GUI is divided into
two logical parts: experiment management and infrastructure management. Each
part provides multiple views associated with different activities. Control flow within
the experiment management (important from the user’s point of view) is depicted

81

Chapter 5. Scalarm Implementation Details

emp Experiment Manager ./
o X q Experiment Manager
keperimen = b i
I|anagement E SIIT|IJ|E:I_:’|DE—tEI|S E P
«)
= SimulationsDOA ——
sdelegaten | Experiments ExperimentDetails staa.ge_-_—-_-_%_(
_C < Manager Storage
~— Manager
-~
Experiment M t \ T Eeee
periment Managemen s .
Config ._O E xdelegates ExperimentsDB

gu sistanf Pt "j_; - ri ExperimentsDAQ C > C

DB

Configuration -~ |

Infrastructure r~1anagE;Ent C < J
P]
Infumatiprra I
wdelegaten Managér I adelegaten
N] ~ i \\\\\

Infrastructure
Information

Infrastructure: Infrastructureetails Manager

I T
[
I
1

adelegates
— = O Users
Authentication Authentication JserDetails

Figure 5.2: Internal architecture of the Experiment Manager.

in Fig. 5.3. The User Interface aims to focus all user experience on data farming
experiments. Thus, upon login, the user is redirected to a monitoring view show-
ing the most recently started experiment, or to a list of available experiments (if
no experiment is currently running). From the monitoring view, the user can per-
form different actions related to experiment management. If an experiment has
only recently been started and there is no data to analyze, the user can assign ad-
ditional computational power from resource pools, e.g. Grids or Clouds, to execute
the experiment. Following execution of some simulations the analyst may perform
statistical analysis of partial results using built-in statistical analysis mechanisms,
e.g. regression trees or histograms. At all times the user can display the monitoring
view, showing any ongoing or completed experiments, e.g. to compare results. In
addition, new experiments can be prepared and started using various DoE methods.
More information on this aspect will be presented in Chapter 7 in the context of
Scalarm support for training of security forces.

5.2.2 Storage Manager

In traditional tier-based applications, data storage is handled by a dedicated tier,
called "persistence" or "database". It stores all the necessary information in a non-
volatile manner and provides an access interface adapted to a specific application.
It is, in turn, utilized by the business logic tier as a data access layer, and is of-

82

Section 5.2. Scalarm Services

web Interaction flow within Experiment management GUI /

Input 3 i 1 i
para mEtZrizsti:}n = EL::; = it 100 Dot =l Return to the
i - methods view [T 777 itoring view
view wsubmitse | o) oo e asubmitss monitoring view
i\ .

«sUbmitss

List of j List of j Historical _;]

i (I
experiments to running experiment |
I

Ly experiments Tt
i
Analysis with Bl i
alinks] . MoE value !
elinks wlink histograms '
/«Iin(» wlinks !

5 - Extend =
Lagin _-'| Experiment __-I Analysis with __-I W _1
===y monitorin 1] ion trees X P'E'

i 9 i link: i
aredirects i wlinkm «linkz wiew
view |
\- links
ulln(n\\‘\ *

wlinks

Analysis with B

double MoE
values charts

Add computational __‘l

power to the
experiment

Figure 5.3: Interaction flow with Experiment Manager using the provided GUI.

ten implemented as a relational database. Other tiers, e.g. the frontend layer or
clients, know nothing about it and cannot directly use it to store any additional
information (in line with the principles of tier-based architectures). Such approach
provides separation of responsibilities between tiers and conceals implementation
details within an abstraction layer. On the other hand, it can prove constraining
since all storage-related operations have to be handled by the business logic layer.

Scalarm utilizes the persistence layer concept in the form of a separate service
called the Storage Manager. Other components, mainly Experiment and Simulation
Managers, use this service to store different types of data: structural information
about each simulation and experiment, and results which may be either binary or
textual. By utilizing the concept of self-scalable services, the Storage Manager can
be treated as a virtually centralized but physically distributed single point of data
storage, supporting clients while preserving performance and scalability.

The internal structure of the Storage Manager is depicted in Fig. 5.4. Inter-
faces provided by this service enable storage of text/binary results from simulations

83

Chapter 5. Scalarm Implementation Details

cmp Storage Manager/
Storage Manager
Database
management
Database cluster service Cluster Informaticn
management informaticn
O e wdelegatexs | Manager
it Database _((— Configuration C = _(
zdelegates Management Service
Information
Manager
Datsbase
interface adelegates
O ﬁ Non-relational
Database ke
interface
LogFiles LogFiles
Uploader Uploader { C
LogBank
O ﬁ ogban File system wdelegates File
adelegates systerm

Figure 5.4: Internal architecture of the Storage Manager.

(e.g. log files), persisting information about experiment progress in a non-relational
database, and handling scaling requests. The latter interface is needed as the plat-
form relies on third-party solutions such as a non-relational database.

The current version of the manager utilizes the MongoDB non-relational
database [111] as it provides clustering and scaling features. MongoDB also imple-
ments scaling-out mechanisms, which are consistent with the concept of self-scalable
services, i.e. transparent clustering of multiple instances with a single access point to
the cluster. Furthermore, MongoDB supports data sharding of a single table within
a cluster, i.e. rows stored in a single table are transparently distributed among the
available resources.

For binary/text log file storage, the "LogBank" component utilizes standard
filesystem mechanisms. It can connect to either local or remote/distributed stor-
age resources, such as a disk array. The prototype is meant to work with a disk
array shared by multiple Storage Manager instances using the Network File System
(NFS) protocol [112]. This greatly simplifies implementation of the component, but
constraints its scalability, due to NFS limitations. However, this was not an issue
in real use cases where Scalarm was utilized.

84

Section 5.2. Scalarm Services

cmp Simulation Manager/

Simulation Manager

Simulation input Simulation executor Simulation result
configurator uploader
Simulation
monitoring

Figure 5.5: Internal architecture of the Simulation Manager.

5.2.3 Simulation Manager

At a high-level of abstraction, Scalarm follows the "master-worker" pattern, i.e.
there are services (masters), which schedule simulations to and obtain final results
from other services (workers). This pattern separates execution of simulations from
management of data farming experiments. Furthermore, the platform infrastructure
can be divided into resources dedicated to management of simulations and resources
which actually execute simulations. In Scalarm the "worker" part of this pattern
is implemented by the Simulation Manager. All Simulation Managers are logically
grouped into another self-scalable service, though individual instances can run on
physically distributed resources. They also do not need a single entry point because
no other components communicate with them. Assuming usage of heterogeneous
computational infrastructures, e.g. Grids and Clouds, it is hardly possible for each
utilized computational resource to be publicly accessible on the network. Thus, to
eliminate this requirement, the Simulation Manager is implemented as an active
service which initializes communication with other services.

This service is a wrapper for actual simulations, which can be deployed on various
computational infrastructures, e.g. private clusters, Grids or Clouds. Its internal
structure is depicted in Fig. 5.5. The Simulation input configurator component is
responsible for preparing the whole environment for a simulation, i.e. downloading
the necessary code dependencies and input parameter values. Simulation execution
is handled by the Simulation executor. Once the simulation concludes, the result
uploader sends results (log files and MoE values) to the "master" part. To max-

85

Chapter 5. Scalarm Implementation Details

imize resource utilization the Simulation executor can start multiple simulations
in parallel, depending on the capabilities of the computational resources which are
monitored with the Simulation monitoring component. With such a wrapper actual
simulations can be prepared and tested locally by simulation domain experts and
no Scalarm specific code needs to be added.

The Simulation Manager can also be treated as an implementation of the pilot
job concept [67], i.e. a special application that acquires computational resources to
run actual applications. However, while the pilot job concept was devised for Grid
environments only, the Simulation Manager is infrastructure-independent, i.e. in
theory it can work with any present or future computational infrastructure. To ver-
ify this statement, prototype Simulation Managers have been prepared for private
infrastructures, Grids and Clouds. To maximize resource utilization, Simulation
Managers prefetch configurations for subsequent simulations using the pull mecha-
nism which increases scalability by removing the need to store information about
each worker.

5.2.4 Information Manager

In highly distributed and dynamic systems a very important aspect is auto discovery.
New instances of services can be added to the system in an unpredictable manner.
Each newly added service has to be configured to be aware of other component types
and their access point locations. To facilitate this, SOA-based systems utilize the
Service locator pattern [113], where a designated service is responsible for registering
all other exposed services. By applying this pattern services need to be aware of only
one location from which current information about other services can be collected.

The Information Manager is an implementation of this pattern in Scalarm. It
is "well-known" to each component in the system and stores information about the
location of other services. Owing to self-scalability, Scalarm services can obtain
endpoint access information for any specific service they require. During instance
startup, e.g. following a scale-up action, the instance communicates with the In-
formation Manager to obtain information about dependent services — for instance,
Experiment Managers inquire about Storage Manager access points while Simula-
tion Managers request locations of Experiment and Storage Managers. In addition,
the Information Manager preserves the sources of other services, which are used by
the Scalability Manager to enact scaling actions. It can be treated as a dynamic
configuration catalogue for a Scalarm installation.

The internal architecture of the Information Manager is depicted in Fig. 5.6. It
exposes two interfaces for external services: one for (de)registering services withing a
Scalarm implementation and another for downloading source packages with Scalarm
services. The former interface provides location information for each self-scalable
service as well as actual locations of every instance of the service in the platform.

86

Section 5.2. Scalarm Services

cmp Information I'll'lanagizr/J

Information Manager
wdelegates
Component Registry
Component Registry -—-_'_"'“50— Persistance ‘ConfigurationDB
Cc}rr!p-unent Component Registry @ Com pDnErll::ADgs cription —C
Registry adelegates i~

adelegaten ConfigurationDB

Download

interf.
interrace Component Sources

Download interface Service

Figure 5.6: Internal architecture of the Information Manager.

This information can be used to determine where new instances should be started or
which instances can be stopped. Information about each registered service is stored
in a relational database.

5.2.5 Node Manager

To abstract access to computational resources, Scalarm provides a dedicated compo-
nent called the Node Manager. It is a utility component which facilitate installation
and management of other Scalarm services on computational resources. In addition,
the Node Manager contains sensors to monitor system-level metrics, e.g. CPU and
HDD utilization, along with application-level metrics such as service response time.
Application-level metrics are gathered from instance log files. When a new compo-
nent instance is started, the Node Manager observes and parses its log file to extract
information about handled requests. This information is then sent to a dedicated
monitoring system for further analysis.

Following installation, the Node Manager registers itself with the Information
Manager to become visible to other components. It provides a RESTful HTTP
interface for installation and management, i.e. starting, stopping and querying the
status of Experiment, Storage and Simulation Managers.

5.2.6 Monitoring

Reacting to workload changes in a self-scalable service requires information about
the current workload of each service instance. This information represents basic
knowledge which can be used to adapt the self-scalable service to changes in its
environment. Depending on the service purpose, monitoring can involve different

87

Chapter 5. Scalarm Implementation Details

metrics, e.g. service response time (when considering a web service) or memory
consumption (when dealing with a numerical algorithm). Even the process of col-
lecting monitoring information can be a challenging task, especially in the context of
a distributed system where different instances reside on geographically distributed
Servers.

To collect monitoring information each self-scalable service includes a dedicated
module, called the Monitoring, which constitutes a distributed monitoring system.
It consists of two separate elements: sensors, which periodically report monitoring
data, and a central database service which stores this data. Sensors are built directly
into Node Managers to couple the monitoring functionality with the deployment
layer of Scalarm. As Node Managers handle installation of each Scalarm service,
monitoring can only be enabled for active services. Even if there is no Scalarm
service running, sensors monitor the workload of the underlying operating system.
Monitoring data includes:

e basic system metrics, e.g. CPU utilization and free RAM,

e storage-related metrics, e.g. average length of HDD I/O queues, average time
(in ms) for each I/O request to be served, amount of data read from and
written to HDD, etc.,

e specific information about Scalarm service instances, e.g. response time for
various requests.

Each Node Manager periodically dispatches this information to a central service,
which stores it in a database. Collecting all information in a single database enables
statistical analyses the self-scalable service workload which can identify performance
and scalability bottlenecks. Furthermore, long-term historical data can be used
to discover load patterns and even predict when new service instances should be
started. Current version of the Monitoring Manager processes this information to
be accessible remotely by other services (in particular the Scalability Manager) in a
convenient way, i.e. as a response to scaling rule checks.

5.2.7 Scalability Manager

The end-user features of Scalarm are centered upon management of data farming
experiments. In order to effectively provide such functionality, self-scalability is nec-
essary. Unlike other existing systems, Scalarm addresses the problem of scaling both
the master and worker parts of the platform. The self-scalability feature is provided
in Scalarm by self-scalable services. Two elements constituting the Scalarm mas-
ter, i.e. Experiment and Storage Managers, exploit this concept. While Simulation

88

Section 5.2. Scalarm Services

cmp Scalability Manager
Scalability Manager
Component status
monitering GUI
O Component «delegatex
Flatform E locations {l
edelegates management Scaling rule Service —C E—
executor configuraticn cache | Information Information
\ L— Manager Manager
Manager frontend
GUl Scaling actions
xdelegates ‘\\ Menitoring wdelegatex
O Scaling rule data
Sealing rule engine Meonitoring service
Scaling rules management g q priw —(——%_c
management GUI Menitoring Monitoring

Figure 5.7: Internal architecture of the Scalability Manager.

Managers can be added by users at any time, e.g. to boost a given experiment,
master elements automatically react to changing workload via scaling actions.

The module responsible for automatic MoE management of self-scalable services
is called the Scalability Manager. This service is not visible to analysts who use the
platform. Instead, it is configured and utilized by the administrator of a Scalarm
installation. MoE management functionality involves:

e monitoring the status of service instances running on Node Managers regis-
tered in the Information Manager,

e handling scaling rule definitions, monitoring and enforcement,

e starting new instances and stopping existing instances of the supervised ser-
vice.

The internal structure of the Scalability Manager is depicted in Fig. 5.7. It
exposes a Graphical User Interface for manual monitoring and managing services
supervised by Node Managers registered in the Scalarm Information Manager. In
addition, a GUI for defining and managing scaling rules in the context of a specific
self-scalable service is provided. Each scaling rule carries a condition which specifies
when the corresponding scaling action should be performed. Conditions are moni-
tored by the scaling rule engine using monitoring data from the Monitoring. If the
current service workload satisfies a given condition, the relevant scaling operation is
executed by the Scalability Manager, e.g. by deploying additional service instances.

89

Chapter 5. Scalarm Implementation Details

Each scaling operation involves communication with the Scalarm Information Ser-
vice to retrieve a list of resources supervised by Node Managers. In the context of
starting or stopping component instances, remote Node Managers are utilized.

5.2.8 Load balancer

Load balancer is another module used by self-scalable services. It provides a single
entry point to all instances of a given service. It receives each incoming request,
forwards it to a service instance and returns the result to the user. It can be used
to increase the performance and availability of a self-scalable service. In the case
of stateless services the load balancer serves as a shared entry point for a cluster of
service instances. In addition, the load balancer monitors the availability of each
instance to ensure that no requests are forwarded to unavailable instances.

5.2.9 Cache

The Cache service manages shared memory for every instance of a self-scalable
service. It can be used to persist the state of a service instance and to implicitly
communicate with other instances which have access to this memory. Furthermore,
cache memory can store data structures which rarely change. For example, when
considering a database backend, cache can minimize the number of requests which
actually need to be executed by the database management system.

5.3 Architectural Elements Supporting Scalability

Achieving massive scalability requires minimization of work that has to be processed
sequentially. This is a difficult engineering challenge, especially when considering
platforms that involve different technologies and components, e.g. web services
and databases. A throughout analysis of existing software is required to identify
actual and potential scalability bottlenecks. Such analysis usually starts at the
architectural level, but needs to acknowledge implementation-related issues as well.
Scalarm utilizes various mechanisms in each component to facilitate parallelization
and increase performance. It should be noted that different mechanisms are utilized
on the management and worker sides.

On the management side, Scalarm utilizes a non-relational database to store
information about each simulation. When dealing with large-scale experiments,
millions of simulations may need to be registered in the database. Efficient access
to this data is one of the key determinants of Scalarm performance and scalabil-
ity. Furthermore, the total amount of storage capacity required to handle dozens
of experiments can easily exceeds the capabilities of a single machine. In addition,

90

Section 5.3. Architectural Elements Supporting Scalability

operating a centralized database can result in poor performance when dealing with
thousands of concurrent client connections. To eliminate this problem, Scalarm uti-
lizes the concept of data sharding, which enables data distribution among multiple
database instances in a transparent way. Each table from a sharded database has
a designated partition key which specifies how to distribute its rows. In the case of
simple queries predicated on the partition key, only those instances which actually
hold the relevant part of the table are queried. In other cases, each read operation
is executed in parallel on every database instance and partial results are then com-
bined into the final result to maintain stable access time regardless of the number of
database instances involved. To increase performance and scalability even further,
data sharding has been extended to include Experiment Managers. In the context
of a single experiment, each Experiment Manager is responsible for handling only
a subspace of the parameter space. This approach minimizes the time necessary to
decide which combination of input parameters’ values should be executed next. Fur-
thermore, this approach delays the insertion of a row describing the simulation and
hence minimizes the required storage capacity. Although data sharding is handled
automatically by the non-relational database management system used by Scalarm,
i.e. MongoDB, the platform nevertheless remains responsible for database cluster
management, i.e. adding or removing database instances when necessary. The dis-
tribution of read and write operations is transparent from the client’s point of view
as all database instances are grouped in a self-scalable service behind a single access
point.

Another mechanism which supports scalability on the management side is data
caching. Most use cases are divided into a number of steps, each of which is imple-
mented as a separate request-response loop between platform components. When
dealing with multiple instances of a single component, each request can be handled
by a different instance. Even though static experiment-related data does not change
throughout the course of the experiment, utilizing a number of stateless instances
means such data may be retrieved from the database multiple times. To mitigate
this issue each self-scalable service has access to a Cache module, which minimizes
the number of database queries. This is especially useful when the experiment in-
volves long access/computations on static data or rapid changes which are relevant
to the user, e.g. updating the experiment progress bar which aggregates the states
of every simulation in an experiment.

Running large-scale data farming experiments often requires extensive computa-
tional resources such as physical servers, virtual machines in the Cloud or Grid jobs.
Scalarm provides basic management functionality for computational resources, i.e.
it can allocate or release resources in a way specific for a particular computating
infrastructure. Each computational resource is responsible only for starting a Sim-
ulation Manager instance, which then handles all the work related to execution of

91

Chapter 5. Scalarm Implementation Details

actual simulations. Most existing task management systems treat workers as passive
elements, i.e. units which are told to perform a certain task. This approach con-
straints scalability because all workers needs to be registered and accessible by the
master. Nowadays this is hardly ever the case due to restricted network traffic and
shortage of public IP addresses. Similar concerns arise in the context of Scalarm,
which intends to enable execution of simulations on any computational resources,
regardless of whether they are part of the master’s network. Fulfilling this criterion
would make it possible to combine resources from multiple administrative domains
in a transparent way. Hence, Simulation Managers are implemented as active el-
ements, i.e. they pull work to do from Experiment Managers, which are publicly
accessible through a single entry point. This strategy allows Experiment Managers
to know nothing about workers which run actual simulations. They can be man-
aged by Scalarm, by the user (manually), or by any other custom client. As a result,
Scalarm can handle a much larger pool of workers and computational resources than
can be provided by a single private network.

5.4 Automatic Scalability Management

Traditional virtual platforms were designed to handle peak workloads. This usually
resulted in poor resource utilization, as peak conditions occur very rarely. On the
other hand, allocating insufficient resources could degrade performance when a large
number of clients attempt to access the given platform simultaneously.

In Scalarm, this problem is mitigated by implementing self-scalability, i.e. effi-
cient and comprehensive scalability management in an automatic way. To increase
flexibility, the self-scalability feature is implemented on the level of self-scalable ser-
vices, i.e. each such service is capable to scale itself independently. This feature
comprises three separate elements:

e scaling rules which expresses expert knowledge about how and when the service
should be scaled,

e an enforcement engine, implemented in Scalarm by the Scalability Manager,
which monitors and executes scaling rules when necessary,

e a monitoring system, which provides information about the current load of
each computational resource supervised by the service.

Scaling rules are introduced in this thesis to represent conditions and actions
associated with software platform scalability. They formalize scalability manage-
ment so that it can be performed by dedicated software in an automatic manner.

92

Section 5.4. Automatic Scalability Management

In the context of Scalarm scaling rules describe scalability management of each self-
scalable service. Each service may have different resource requirements, hence its
scaling rules should be based on different performance metrics. Moreover, scalabil-
ity requirements can depend on specific simulations which are executed by Scalarm,
e.g. simulations with large output sets will require more throughput from Storage
Managers, while running many short simulations may increase the communication
load between Experiment and Simulation Managers. Thus, scaling rules should be
defined by administrators based on their knowledge regarding the computational
infrastructure, combined with observations of running simulations.

While scaling rules represent knowledge about service scalability in a formal
manner, a separate module is necessary to process this knowledge. In Scalarm the
module that manages and uses scaling rules to provide self-scalability is called the
Scalability Manager. It provides a Graphical User Interface for administrators to
define, manage, and monitor scaling rules. Each time a new scaling rule is defined,
a process is started to enforce the rule by monitoring the specified conditions and
executing scaling operations if necessary.

Information required to handle scaling rules is provided by a dedicated monitor-
ing system which is divided into two elements. Sensors (located in Node Managers)
collect all available monitoring data from computational resources and push it to
a centralized database. This database is managed by the second element, i.e. the
monitoring service, which aggregates the available data to efficiently respond to
requests concerning scaling conditions.

A self-scalable service with modules responsible for handling scalability manage-
ment is depicted in Fig. 5.8. This service can be treated as a wrapper for an actual
service, which provides business features to external clients. Within a self-scalable
service the actual service can be instantiated multiple times on different computa-
tional resources, which are included in a computational resource pool supervised by
the self-scalable service. The load balancer, which constitutes a single access point
to the service, is responsible for delegating requests from clients to different service
instances. If a given computational resource does not host a service instance, it
is released. Moreover, computational resources include monitoring sensors which
periodically report current workload to the Monitoring.

The administrator defines scaling rules using the Scalability Manager to enable
self-scalability. The Scalability Manager then initiates supervising processes to en-
force each defined rule. A supervising process periodically collects monitoring data
from the Monitoring, checks if the rule condition is met and if so, executes scaling
actions. Scaling actions typically involve starting new instances on idle computa-
tional resources or stopping existing instances. To select resources upon which new
instances should be started, or to stop existing instances, the Scalability Manager
queries the Information Manager which stores information about resources and in-

93

Chapter 5. Scalarm Implementation Details

\

Workload monitoring

Scaling action execution

Client Client Client
Request Request
Information T ‘[Load balancer —_ = :
Manager | Y'Y e
Request Request §
| delegation delegation o
o
e S e o
| 14 L 4 L 4 N\ o
| | Service Service Service ol g
| instance instance instance o gl ©
<]

| 52

Resource location I I : o o gl

information Computational Computational 83

| | resource resource e 3|

\ 4

Scalability | _

)
Manager l Monitoring data

Monitoring

— e e e e —— —— —— — — — — —

Administrator

Figure 5.8: Overview of scalability management within self-scalable services.

stances of each scalable service.

Computational resources can be shared between self-scalable services. This fea-
ture is especially important when considering deployments with a fixed quantity of
resources. In such cases self-scalable services can spawn new instances on resources
which are already occupied by instances of other services — but only if the resource is
underutilized. The current version of the platform does not implement a preemption
feature which would enable service prioritization.

An important aspect of scalability management is ensuring that execution of
a scaling rule will not trigger execution of other scaling rules as a result of the
additional load caused by starting a new instance. To prevent this undesirable
scenario, a so-called cooldown interval is enforced after each scaling action. During
the cooldown period scaling rules are inactive and monitoring data from this period
is not taken into account by Scalability Managers. Furthermore, when considering
a Scalarm deployment with several self-scalable services which share computation

94

Section 5.5. Implementation of Essential Use Cases

resources, a global cooldown period may become desirable. Such a feature would
prevent one self-scalable service from interfering with others, although — on the other
hand — local cooldown periods make services more independent. In the current
implementation a global cooldown period was used, though it remains an area for
further investigation as part of future work.

5.5 Implementation of Essential Use Cases

Scalability and performance, which are arguably the most important non-functional
features of the Scalarm platform, depend heavily on implementation details of the
most frequently executed algorithms. By “algorithms” we mean any action per-
formed by the platform, from creation of experiments, through scheduling and
execution of simulations all the way to aggregation and analysis of results. The
architecture of a distributed system can support non-functional requirements by
incorporating useful design patterns and good practices, though the actual imple-
mentation of basic use cases determines the final scalability and performance levels.
Achieving the specified non-functional features requires that two key conditions be
met:

1. Execution of algorithms for different clients should be as independent as pos-
sible.

2. The algorithms’ execution time should not depend on problem size.

Meeting the first condition increases the speedup resulting from allocation of new
resources, while fulfilling the second condition prevents performance degradation
when the problem size increases. In addition, the system should be able to utilize
any addition resources provided to it.

In practice, meeting both conditions is nearly impossible due to complexity
of software. Even common web applications involve multiple technologies, e.g.
databases, web servers and messaging libraries, each of which has to be taken into ac-
count when considering scalability. In the following subsections the author describes
the implementation of basic use cases in more detail, focusing on the scalability
context. The description covers creating new data farming experiments, executing
simulations and extending data farming experiments. These use cases were selected
as a representative set of algorithms which are most frequently executed by Scalarm.

5.5.1 "Creating a data farming experiment" use case

Each new data farming experiment begins with questions about the studied phenom-
ena, which should be answered by the experiment. Hence, the use case concerning

95

Chapter 5. Scalarm Implementation Details

sd Creating data farming experiment/

Experiment
Manager

I
! seledtSimulationScenario{simulaticnScenariold) |

A |

extractSimulationlnputParameters{simulationScenaricld)

listCflnputParameters()

specifyParametrization Type{parametrization Types) |

Y

listOfPossiblelnputParametervalues])

specifylnputParametery'alues{parameteryalues) - |

A

supportedDesignOfExperimentMethods])

= - - = — = — == — — —

specifyDoeMethods{methods) — !

g

. \ |

startExperiment() - |
-

calculateTotalExperimentSize()
prepareExperimentDataStructures])
setExperimentState()
redirectTeMonitoringView()

s —_—_—-—_— — — — — —_ —_—_—_ = —_————————

Figure 5.9: Sequence diagram of the "Creating data farming experiment" use case.

creation of a new data farming experiment involves preparation of the simulation
input parameter space. Scalarm intends to facilitate this phase by organizing the
user’s workflow as depicted in Fig. 5.9. This use case involves two actors, namely
the analyst and the Experiment Manager component.

The first step is to select the simulation scenario which will be executed during
the experiment. The Experiment Manager extracts and returns information about
input parameters from the simulation’s description along with possible parametriza-
tion types, e.g. random values, ranges of values, etc. The analyst then se-
lects parametrization types and provides the required arguments specific for each
parametrization type, e.g. in the case of a range of values, boundaries and step val-
ues would need to be provided. This information enables Scalarm to calculate the
initial size of the experiment. However, to increase efficiency, the analyst can group
input parameters and apply DoE methods to minimize the number of simulations

96

Section 5.5. Implementation of Essential Use Cases

required in order to obtain meaningful information about the simulated phenomena.
Following this step the analyst can start the experiment, which results in preparing
the necessary data structures on the Experiment Manager’s side.

Each step of the presented use case involves a separate request-response loop.
Hence, each step can be handled by a different Experiment Manager instance as long
as the state of the use case is passed in requests. As each experiment has a unique
id, multiple experiments can be created by the platform simultaneously. The state
of each use case is partially stored in a database (experiment-related information)
and partially in the invoked request-response operations (information provided by
the user). It is worth noting that the actual input parameter space is not generated
during this step. This is a conscious design decision. Large-scale experiments require
extensive storage capacity as they involve millions of simulations, each of which
has to be described separately to enable further analysis. By generating the input
parameter space on demand, Scalarm minimizes storage space requirements and
avoids the large computational cost of upfront generation.

A description of this use case in the context of the EDA EUSAS project is
presented in Chapter 7.

5.5.2 "Simulation execution'" use case

Once a new data farming experiment has been started, actual simulations can be
run with input parameters selected from the previously defined parameter space.
The simulation execution use case describes how each simulation is scheduled from
the Simulation Manager’s perspective. This use case is performed for each simula-
tion and therefore has great impact on the scalability and performance of Scalarm.
Furthermore, this use case can be performed many times in a short period of time
if many Simulation Managers are present in the system. It calls for cooperation
between all main functional components of Scalarm: Simulation, Experiment and
Storage Managers. The platform’s end users (analysts) are not directly involved
because once an experiment begins, Scalarm handles simulation scheduling auto-
matically.

The sequence diagram for this use case is presented in Fig. 5.10. The initial state
of the platform includes at least one already running experiment and a new Simula-
tion Manager started on a computational resource. The first step performed by the
Simulation Manager is to check whether any experiment is currently running. If so,
the Simulation Manager downloads simulation code and then repeatedly requests
information about successive simulations which should be executed. Each request
for simulation input values requires communication between Experiment and Stor-
age Managers to obtain a simulation description using the experiment scheduling
policy (which is random by default).

97

Chapter 5.

Scalarm Implementation Details

sd Simulation execution

wB GO Experiment Storage Manager
Simulation Manager
Manager
I T
loop | |
! I
[manages is running] | getExperimentld{) . |
Ll

experimentld

{ _____________________

getRunningExperiments()

ort

[experimentld is not null]

opt

[simy|ationCodeRepository is stale]
codeRepository = getSimulationCodeRepository()

-
-

loop /

[extpEriment is

naot finished]
getMextSimulationld ToRun{)

f———HO-————+—-—-]

simulationld = :simld

-i: ______________________

simCaonf = getSimulationConfiguration{simulation|d) T

L |

simld = calculateMextSimulation|d|

simDoc = getSimulationDocument{siml

d)

o0t

.
L
alt
[simloc is null OR simDod to_sent™] == true]
i prepareSimulationDocument{)
L saveSimulationDocument()
g P
=l simld = findSimulationToRun() o
L
preapreSimulaticnFolderHierarchy()

gl

executeSimulation{simulaticnConfiguration)

saveSimulationData(simulationld)

i waitForNewExperiment()

98

Figure 5.10: Sequence diagram of the "Simulation execution" use case.

Section 5.5. Implementation of Essential Use Cases

Within a single experiment the simulation parameter space is partitioned be-
tween the available Experiment Managers, i.e. each Experiment Manager schedules
simulations based on its unique id and the total number of available Managers.

Preparing each simulation is therefore independent of the size of the parameter
space. This approach can lead to collisions between Experiment Managers if new
instances of the Experiment Manager are added to an already running experiment.
As a result, additional collision detection functionality is added to this step.

Once the simulation concludes, the Simulation Manager uploads its tex-
tual/binary outcome, e.g. log files, directly to Storage Managers, while information
about Measure of Effectiveness (MoE) values are sent to the Experiment Manager
along with a notification of simulation completion. MoE values are key indicators
of simulation results. This information represents basic knowledge about the sim-
ulated phenomena and should be processed by Experiment Managers. However,
simulations can also produce additional binary/text data, which can be useful for
in-depth studies. This data is uploaded directly to Storage Managers as it is not
used in analyses performed by Experiment Managers.

Similarly to the previously described use case, each request to Experiment or
Storage Managers can be handled by a different instance. Communication between
different service types is governed by the self-scalable service abstraction, with a
load balancer distributing requests to different service instances depending on their
current load. To increase scalability of the Scalarm platform, there is no list of
running Simulation Managers on the Experiment Managers’ side. Instead, Simu-
lation Managers are active workers and use the "pull" approach to obtain input
values for simulations until the experiment input space is fully explored. Once this
happens, the Simulation Manager can release any utilized computational resources.
Following creation, static information about each simulation is cached by Experi-
ment Managers in a Cache component to minimize the number of database queries.
In addition, static information, about the experiment for which the simulation is
executed is also cached between requests. If there are no more simulations to run,
the Simulation Manager exits and releases its assigned computational resources.

5.5.3 "Extending an experiment" use case

Having completed a number of simulations, statistical analysis can be performed on
the available partial results. Such an approach is suitable for exploratory experi-
ments, i.e. whenever the user does not possess in-depth understanding of the studied
phenomena beforehand. Typically, a large, sparsely sampled experiment space can
be initially selected. Statistical analysis is then conducted to discover correlation
between simulation input parameters and output MoE. Based on this analysis, addi-
tional input values can be added to the experiment parameter space, e.g. to analyze
a previously omitted subspace in detail. The parameter space expansion process is

99

Chapter 5. Scalarm Implementation Details

sd Extending a data farming E:-u:l»slriment/J

Experiment
Manager
User

I
| |
! cumrentParameterValues = getWaluesOflnputParameter) |

g

sddMewParameterValues|listOfValues, doehethod) !

calculateMewParameterSpace()
[; ;

updateExperimentlataStructures{)
[; ;

updateTotal ExperimentSize)
L

numberOfdewSimulations

..:_"_: ________________________

Figure 5.11: Sequence diagram of the "Extending a data farming experiment" use
case.

depicted in Fig. 5.11.

The current version of Scalarm supports extending experiments in a piecemeal
fashion, with regard to a single input parameter at a time. The analyst first specifies
new values for selected input parameters. Based on this information, Scalarm mod-
ifies the data structures which describe the experiment and returns the new size of
the experiment’s parameter space. As the expansion process alters the experiment’s
basic properties, all cached data about the experiment needs to be marked as out
of date (note, however, that the shared memory paradigm renders cache invalida-
tion operations straightforward). Additionally, there is now a risk of using invalid
information since the parameter space can only be expanded and not reduced.

100

Chapter 6

Experimental Evaluation

In this chapter the author presents experimental evaluation of the Scalarm plat-
form. The evaluation is divided into three parts. The first part concerns support for
heterogeneous computational infrastructures, i.e. private servers, Grids and com-
mercial Cloud sites. The second evaluation test focuses on massive scalability of
the platform in terms of allocating varying amounts of computational resources to
the management part of the platform while conducting experiments of various sizes.
Based on the obtained results, several scalability-related metrics are calculated and
discussed. The final part concerns the self-scalability feature, i.e. the platform’s
ability to execute scaling actions automatically, based on predefined scaling rules and
workload-related information. Results from the second set of sets provide a starting
point for analysis of the self-scalability feature and its advantages, especially in terms
of performance improvements and maintenance costs.

6.1 Evaluation Objectives

The main goal of the Scalarm platform is to handle large-scale data farming experi-
ments. Throughout this dissertation the author has identified two key non-functional
requirements which have to be met in order to achieve this goal, namely massive
scalability and self-scalability. As previously mentioned, Scalarm intends to fulfill
both requirements using the concepts introduced in this dissertation: self-scalable
services and scaling rules. This experimental evaluation was conducted to verify
both aspects.

Besides non-functional requirements, an essential aspect of Scalarm is its func-
tionality in terms of supporting the data farming methodology. In particular,
supporting heterogeneous computational infrastructures is crucial in the context
of large-scale data farming experiments. However, it is difficult to validate data
farming-related features without introducing a real-life use case. Chapter 7 describes
such a use case, which involves training of security forces.

101

Chapter 6. Experimental Evaluation

Master part
(—— _\ ——— \ —— __“ ——————— \ \
| | 8 | Experiment | : 1 Y | Experiment | -] Storage -] Storage -
| 3 | | 3 | [3 | | 3 |
I \ = Manager { \ = Manager 1 I Manager { Lz Manager { |
== === == -——& S . == |
|
| . s PUSISSIIDUIN S |
. h ()
| | 8 Load | | 2 Load t |
| .kz balancer J \ § balancer I |
ey N —— Computing cluster \———— S
T el | e
Worker part
———— — . P e
e IR = e
I |] L | Simulation | | I | 7 2 | simulation | - % I] 2 | Simulation | : |
R Manager | 12 I kl 12 Manager !
| ‘_l z g ,/ | | \C Manager | . o z 8 ,/
T Nt | | O — / | | S e —— |
| Computing cluster | | Cloud | | Grid I
— \ _ lou _ ; LS —— |

Figure 6.1: Testing environment for evaluation of massive self-scalability.

6.2 Evaluation of Massive Scalability

When considering a "master-worker"-based system, massive scalability refers to both
parts of the platform (Fig. 6.1):

e Scaling out the "worker" part, i.e. Simulation Managers, which are indepen-
dent from one another, seems trivial: one simply needs to start a new instance
of a Simulation Manager on a separate server. There are no constraints on the
number of running Simulation Manager instances other than those related to
the amount of available computational resources.

e Scaling the "master" part, i.e. Experiment and Storage Managers, is a more
challenging task due to the need to share state, i.e. information about data
farming experiments.

102

Section 6.2. Evaluation of Massive Scalability

This evaluation will address the problem of scaling the "master" part only, which
can be described as the ability to increase throughput as the number of Experiment
and Storage Manager instances grows. The throughput of the platform can be defined
as the number of simulations scheduled in a given interval. To measure this effect
the author uses metrics introduced in Chapter 4, along with the throughput metric.

6.2.1 Testing scenario

The baseline scenario for the presented evaluation involves executing a “foo” data
farming experiment, i.e. an experiment, which runs a simulation that does not actu-
ally perform any calculations, using a predefined resource configuration. Executing
the “foo” data farming experiment implies executing the simulation for each element
of the experiment’s input space. The goal of this evaluation is to measure the ef-
ficiency of experiment management by measuring the scalability of the platform’s
"master" part.

A single test case comprises execution of an individual foo data farming experi-
ment with a predetermined input space, using a well-defined resource configuration.
The key metric measured during scalability tests was experiment execution time,
which can be defined as time elapsed between requesting execution of an experiment
based on the provided input space specification and the final simulation being reported
as complete. The simulation scheduling policy is random, i.e. each element from the
input space can be randomly selected with a uniform distribution of probability.

The described testing scenario has two parameters:

e cxperiment size, i.e. the number of elements included in the experiment input
space. For each input space element a single foo simulation was executed.

e resource configuration, which denotes the number of servers used to run Ex-
periment and Storage Managers, i.e. the "master" part of the platform. For
brevity’s sake each resource configuration label is represented as the following
pair: (<experiment manager count>, <storage manager count>).

The final point to consider in such tests is the number of "workers", i.e. Sim-
ulation Managers, running in parallel. In our scenario we intended to achieve the
highest possible throughput and hence needed to start enough Simulation Managers
that each additional instance would actually decrease throughput by overloading
the platform. This count of Simulation Manager instances was empirically pegged
at 25 per each Experiment Manager instance.

For the purpose of the presented evaluation the following experiment size values
were tested:

e 100 000

103

Chapter 6. Experimental Evaluation

200 000

500 000

1 000 000

2 000 000

5 000 000

This range should satisfy the requirements of most users while enabling the
author to demonstrate the full capabilities of the platform. Each experiment was
executed twice.

Regarding the second parameter, i.e. resource configuration, the options listed
in Table 6.1 were used for experimental evaluation.

Table 6.1: Resource configurations tested during experimental evaluation.

Resource configuration
Experiment Managers Storage Managers | Simulation Managers | Configuration label
1 1 25 | Configuration(1, 1)
2 2 50 | Configuration(2, 2)
4 4 100 | Configuration(4, 4)
8 8 200 | Configuration(8, 8)

6.2.2 Testing environment

The properties of the testing environment are crucially important in any experimen-
tal evaluation. In our case the environment has to imitate a production environment,
i.e. an environment where large-scale experiments would be actually conducted, to
enable us to determine real-life scalability and performance features of the platform.
The author decided to use a computing cluster, along with a Grid environment pro-
vided by the PLGrid Plus project [49], to run platform tests. The architecture of the
testing environment, depicted in Fig. 6.1, conforms to the architecture of Scalarm
where each component is executed on a separate physical server.

For the purposes of the presented study, Experiment and Storage Managers were
run on standard nodes connected through a 10 GbE network switch. Each worker
node had a 1 GbE link to the switch and shared the following parameters:

e CPU: 2x Intel Xeon CPU L5420 @ 2.50GHz (4 cores each)
e Memory: 16 GB RAM

e Disk: 120 GB hard drive (5400 RPM)

e Operating system: Ubuntu Linux 10.04.1 LTS

104

Section 6.2. Evaluation of Massive Scalability

6.2.3 Scalability evaluation results

The execution time (in seconds) of each scalability test is listed in Table 6.2. During
evaluation, a separate data farming experiment was created for each experiment size
and resource configuration. The value listed in the configuration column indicates
the measured execution time. The size of the experiment is listed in the leftmost
column of the table.

Several issues need to be pointed out here. First of all, the more resources
Scalarm has available, the better its performance. In almost all cases the perfor-
mance gain grows linearly with experiment size. Comparing configurations (1, 1)
and (2, 2) reveals a performance gain of nearly 50%. For configurations (1, 1) and
(4, 4) the corresponding gain is above 65%, while for configurations (1, 1) and (8, 8)
it exceeds 80% (on average). This linear performance gain achieved while scaling up
from 2 to 16 servers is the first positive confirmation of the platform’s scalability.

Table 6.2: Execution time [s| for experiments of varying sizes, depending on the
Scalarm resource configuration.

Execution time [s]

Experiment size | Configuration (1,1) | Configuration (2,2) | Configuration (4,4) | Configuration (8,8)
[#simulations]

100 000 1049 493 321 240

200 000 2219 1068 664 433

500 000 5553 3692 1880 1039

1 000 000 11499 7881 4006 2186

2 000 000 31032 15203 10614 4076

5 000 000 98553 64797 31272 13860

The second observation focuses on the execution time of increasingly larger ex-
periments using a single configuration. Regardless of the configuration parameters,
the growth in the execution time of experiments depending on the number of simula-
tions is faster than linear. With configuration (1,1) the difference in execution time
for experiments involving 100 000 and 200 000 simulations respectively is 111%, but
for 1 000 000 and 2 000 000 simulations it works out to nearly 170%. This is caused
by increasing simulation management overhead. Each simulation is represented in
Scalarm by a row in a non-relational database, which is supervised by the Storage
Manager (Fig. 5.4). The performance of such databases depends on the I/O sub-
system, especially when concerning millions of rows. As the database volume grows
larger (reaching millions of rows on a single host) data access operations tend to
take longer than expected.

Speedup Based on the collected measurements, the scalability metrics introduced
in Chapter 4, can be calculated. The first such metric, which provides basic infor-

105

Chapter 6. Experimental Evaluation

==Configuration (2,2)

3 *gﬁﬁgﬁi - e | =@=Configuration (4,4)
o

5 108 Configuration (8,8)

Speedup
=y

0 T T T T T 1
0 10 20 30 40 50 60

Experiment size [#simulations * 100 000]

Figure 6.2: The speedup metric for different experiment sizes and resource configu-
rations.

mation about the platform’s scalability is speedup. We will use the basic formula
presented in Eq. 4.1, where T is the execution time obtained with configuration (1,
1), i.e. with a single instance of the Experiment Manager and a single instance of
the Storage Manager; and Ty is the execution time obtained with configuration(N,
N), where N denotes the number of Experiment and Storage Manager instances re-
spectively. The resulting speedup is depicted in Fig. 6.2. As already discussed, the
highest possible speedup for configuration(N, N) is IV, however the presented results
indicate that actual speedup is lower in all cases, and that the difference between
the measured and ideal speedup increases along with N, as listed in Table 6.3.

Table 6.3: Mean speedup values for various resource configurations.
Scalarm speedup

Resource configuration | Mean speedup | Standard deviation
Configuration(2, 2) 1.78 0.29
Configuration(4, 4) 3.08 0.17
Configuration(8, 8) 5.80 1.04

For configuration (2, 2) and configuration (4, 4) the calculated speedup is quite
stable, with standard deviation of 0.29 and 0.17 respectively. Speedup curves are
relatively similar, with only one exception, i.e. speedup for configuration (4, 4)
and experiment size 2 000 000 is lower than expected. The experiment execution
time for this resource configuration was relatively high compared to other resource
configurations. This might be caused by using a production Grid infrastructure to

106

Section 6.2. Evaluation of Massive Scalability

run Simulation Managers, with difficult-to-predict perturbations in job scheduling
time.

Interestingly, configuration (8, 8) provided greater speedup for larger experi-
ments than for smaller ones: for experiments smaller than 2 000 000 simulations the
average speedup was 5.025, while for larger experiments the corresponding value
was 7.362. This can be explained by looking at execution times, which are more
than 8 times greater for large experiments than for smaller ones. Running such
massively scalable experiments makes it difficult to start all Simulation Managers
at the exact same moment. The utilized Grid environment generated certain delays
when scheduling large numbers of Simulation Managers. Unfortunately, since we
used a production infrastructure, shared with a large number of users, this factor
is unpredictable. To mitigate this problem, scheduling of Simulation Managers be-
gan before the experiment actually commenced (although note that an overly large
initialization delay will cause idle Simulation Managers to stop).

In the case of configuration (8, 8), starting all 200 Simulation Managers (Table
6.1) required to saturate the platform took longer than the actual test for experi-
ments with fewer than 2 000 000 simulations. Hence, allocating this many "master"
servers did not result in the expected speedup. For larger experiments all scheduled
Simulation Managers were started and the experiment was conducted much faster
compared to configuration (1, 1). As a result, the average speedup of configuration
(8, 8) exceeds 7.1, which is close to the ideal value of 8.

Efficiency The second commonly used scalability-related metric is efficiency. It
denotes how the platform copes with additional resources in terms of the utilization
level. Aggregated values of this metric are shown in Fig. 6.3. The ideal value is 1,
regardless of the amount of resources in a given configuration. Scalarm’s efficiency
is 0.8 on average, and varies between configurations, especially for experiment sizes
lower than 1 000 000 simulations. For larger experiments, efficiency is very simi-
lar and does not depend on the configuration. Configurations with fewer resources
provide better efficiency for smaller experiments than configurations with more re-
sources. This is expected, since additional resources require additional effort to
balance the workload, which is profitable only for sufficiently large experiments.
Moreover, the efficiency of configuration (2, 2) tends to decrease along with increas-
ing experiment size, while the efficiency of configuration (8,8) exhibits the opposite
tendency. This can also be explained by referring to the workload balance effort.
Configuration (8, 8) requires much more demanding experiments (in terms of the
number of simulations) to provide high throughput. The efficiency of Configuration
(4,4) is the most stable, with an average value of 0.77 and a standard deviation of
0.049.

107

Chapter 6. Experimental Evaluation

1.2
% Py
1 _
0s 4%/ &
=]
c
206 17 =4=Configuration (2,2)
E 04 ==Configuration (4,4)
' Configuration (8,8)
0.2
0 T T T T T 1
0 10 20 30 40 50 60

Experiment size [#simulations * 100 000]

Figure 6.3: Efficiency of Scalarm for different experiment sizes and resource config-
urations.

Efficiency-based scalability The efficiency metric can be used to calculate plat-
form scalability between scales N; and N, as described by Eq. 4.8. In our case,
platform scale is measured by the number of servers running the "master" part. Four
different platform scales can be distinguished here, each twice the size of the preced-
ing one. However, as we use efficiency to calculate scalability, only two transitions
can be defined (between 4 and 8 servers and between 8 and 16 servers).
Efficiency-based scalability can be divided into the following categories:

e "Sg" lower than 1 means that the platform loses efficiency when its scale
increases. This is the most common case in real-life applications.

e "Sp" of exactly 1 means that transition between scales does not influence
efficiency at all and that the platform can therefore be scaled out indefinitely.

o "Sp" greater than 1 indicates that efficiency grows along with scale, i.e. the
platform becomes more efficient at larger scales.

According to the presented definition, the scalability of a truly scalable platform
is equal to or greater than 1 regardless of the problem size and scale. However,
this is hardly ever the case — in practice a platform is considered scalable when the
value of the scalability metric is greater than some predefined threshold, e.g. 0.7 or
0.8. This means that the platform actually loses efficiency when scale increases, but
that the efficiency falloff curve is shallow enough to make the platform efficient even
when dealing with large problems.

108

Section 6.2. Evaluation of Massive Scalability

1.4
E
] 1
]
a2
o 0.8 1 v
]
_'9' 0.6 =¢=Transition between scales 4 -> 8
>
g 0.4 =@=Transition between scales 8 -> 16
w 0.2

O T T T T T 1
0 10 20 30 40 50 60
Experiment size [#simulations * 100 000]

Figure 6.4: Efficiency-based scalability for different experiment sizes.

In the case of Scalarm, the author calculated the efficiency-based scalability for
two scale transitions, namely from 4 to 8 servers and from 8 to 16 servers. Collected
values are listed in Fig. 6.4. In most cases Scalarm provides scalability close to or
greater than 0.8, with an average value of 0.91, which is better than expected in
a real-world system. Interestingly, efficiency-based scalability tends to grow with
experiment size, especially at larger scales. This means that additional resources
are efficiently utilized when necessary, i.e. when the experiment is too large to be
processed efficiently by a small-scale configuration.

Productivity While efficiency-based scalability provides information on how the
platform loses efficiency along with increases in scale, it does not include cost- and
quality-related information. This information has been taken into account when
formulating the productivity concept, which is expressed by Eq. 4.9. To calculate
platform productivity at scale N, we need to provide information about:

e throughput,
e average quality value of each response,

e cost of maintaining the platform at scale V.

Similarly to efficiency-based scalability, the scale of Scalarm is determined by
measuring the aggregate number of servers used to run Experiment and Storage
Managers.

109

Chapter 6. Experimental Evaluation

Throughput Information about Scalarm throughput, i.e. the number of sim-
ulations scheduled in a given interval, is presented in Table 6.4. Scalarm provides
very high throughput compared to common schedulers used in production Grids,
e.g. Condor or PBS, owing to the Pilot jobs concepts, i.e. acquiring computational
resources with Simulation Managers and then scheduling simulations directly using
the pull mechanism. In [114], the authors measure the throughput of Condor and
PBS tools by scheduling many short tasks. The measured throughput for Condor
equals 11 [tasks/s|, while for PBS it is less than 1 [task/s]|.

The throughput of Scalarm is similar or (in certain situations) higher than that
offered by Falkon [114], which is optimized for efficient scheduling of small tasks.
However, in contrast to Falkon, Scalarm is not constrained by the amount of re-
sources dedicated to the master part of the platform. As a consequence, we are
confident that Scalarm throughput is not limited to the values listed in Table 6.4.

Table 6.4: Scalarm throughput [simulations/second| for data farming experiments
of varying sizes, depending on resource configuration.

Scalarm throughput [simulations/s]

Experiment size | Configuration (2,2) | Configuration (4,4) | Configuration (8,8)
[#simulations]

100 000 203 312 417

200 000 187 301 462

500 000 135 266 481

1 000 000 127 250 457

2 000 000 132 188 491

5 000 000 7 160 361

Response value The second factor in the productivity formula refers to the
response value, i.e. the average quality value of each response. It is a vague and
platform-specific coefficient which can quite difficult to determine, especially when
we involve metrics related to platform response delay, availability or likelihood of
timeouts. For the purposes of this evaluation we apply a formula similar to the one
presented in [106], which considers the mean platform response time compared to a
target value. In our case the response time of Scalarm reflects the total overhead of
the platform when executing simulations for a single input space element, i.e. the
time spent in the Experiment and Storage Managers. To determine the target value,
let us decompose this overhead. In order to complete each simulation, three HT'TP
requests to Scalarm are required:

1. obtain a id,

2. download parameter values for the simulation,

110

Section 6.2. Evaluation of Massive Scalability

3. upload results.

For the purpose of the presented evaluation, the author decided to relate the
response target value metric to the aggregate response times for all three requests.
Completing each request under low load conditions may take up to 10 ms. Hence,
the response target value is taken as 30 ms. The value function is depicted in Eq. 6.1.

1

TBSPOTLS@_U(IZUQ(N) = 1+ avg _response _time(N) (61>

response _target wvalue

where N denotes the platform scale while avg response time(N) denotes
the mean overhead of the platform when executing a simulation for a sin-
gle input space element. The maximum response wvalue approaches 1 when
avg response_time of the platform is close to 0. When avg response time
equals the response target wvalue (in our case, 30 ms), the response wvalue is

1 The greater the avg response_ time value, the smaller the corresponding

iesponse_value. The proposed response walue function provides better differ-
entiation of cases when avg response time is close to the target value than for
cases where avg response time is much higher than the target value.

The measured Scalarm response values are collected in Table 6.5. As expected,
the response value rises when more resources are added to the platform, and de-
creases along with increases in experiment size. However, the greater the scale, the

shallower the corresponding falloff in response values.

Table 6.5: The Scalarm response value metric depending on resource configuration.

Response value

Experiment size | Configuration (2,2) | Configuration (4,4) | Configuration (8,8)
[#simulations]

100 000 0.859 0.903 0.926

200 000 0.849 0.9 0.933

500 000 0.802 0.889 0.935

1 000 000 0.792 0.882 0.932

2 000 000 0.798 0.849 0.936

5 000 000 0.698 0.828 0.915

Cost The final component of the productivity formula is cost. It is difficult
to estimate the real cost of the used infrastructure when working at an academic
computer center. Hence, we have decided to apply the Amazon Cloud [32] price
list and specifically, the "Double Extra large" instance selection (30 GB RAM,
8 virtual cores, high 1/O performance), which costs $1.160 per Hour. However,

111

Chapter 6. Experimental Evaluation

instead of paying for each computational hour, our cost estimation assumes per-
second payment granularity. This assumption eliminates overhead when dealing
with smaller experiments in a large-scale environment.

The calculated cost [$]| for each evaluated experiment is listed in Table 6.6. For
experiments smaller than 2 000 000 simulations, configuration (2, 2) appears to be
the most cost-effective one, while for larger experiments configuration (8, 8) pulls
ahead. Configuration (4, 4) is never the most cost-effective one but remains a
compromise choice for all experiment sizes.

Table 6.6: Total cost [$] of executed tests, estimated using the Amazon EC2 price
list.

Estimated cost of running the platform [$]

Experiment size | Configuration (2,2) | Configuration (4,4) | Configuration (8,8)
[#simulations]

100 000 0.635 0.827 1.237

200 000 1.377 1.712 2.232

500 000 4.759 4.846 5.357

1 000 000 10.158 10.327 11.27

2 000 000 19.595 27.361 21.014

5 000 000 83.516 80.612 71.456

Productivity Finally, the author calculated the productivity value (using
Eq. 4.9) for different scales and experiment sizes (depicted in Fig 6.5). Regard-
less of the scale, productivity decreases exponentially with increasing experiment
size. For smaller experiments, i.e. fewer than 500 000 simulations, the value of
productivity is very similar for each tested scale, e.g. for experiments with 200 000
simulations, productivity of the platform at scale 16 is only 1.675 times greater than
at scale 4. One the other hand, differences between productivity values for different
scales are significant for large experiments, e.g. for an experiment with 2 000 000
simulations, productivity of the platform at scale 16 is 7.178 times greater than at
scale 4.

Furthermore, size-dependent decreases in productivity are steeper at smaller
scales, e.g. at scale 4, the productivity value drops by a factor of 4 for each successive
experiment size, while at scale 16, the corresponding ratio is only 2.5. This is another
confirmation that Scalarm can utilize large amounts of resources efficiently.

Productivity-based scalability While efficiency-based scalability expresses effi-
ciency under changing scale conditions, productivity-based scalability expresses sim-
ilar behavior of the productivity metric. By invoking the cost of physical resource
usage, productivity-based scalability appears more suitable to business-oriented use

112

Section 6.2. Evaluation of Massive Scalability

1000
w
*
wv
100
=
=
B
o
= =o=Scale 4
£ 10
= ==Scale 8
£ s
£ cale 16
kS
3 1! \
o 60
o

0.1

Experiment size [#simulations * 100 000]

Figure 6.5: Scalarm productivity for different experiment sizes and scales.

cases. Since Scalarm can easily benefit from the elasticity of Cloud environments,
this type of scalability is certainly important when considering real-life scenarios.
The calculated values of productivity-based scalability for Scalarm are presented in
Fig. 6.6. In most cases Scalarm provides scalability greater than 1 (with the average
value being 1.89), which indicates superlinear scalability. In the context of produc-
tivity, this means that when upgrading from a smaller to a larger scale, productivity
rises by almost 90% on average. In our tests scale was doubled for each subsequent
experiment, i.e. the amount of servers used to run the master part of Scalarm in-
creased by a factor of 2 each time. Furthermore, the value of productivity-based
scalability tends to rise (with only two exceptions) along with the experiment size,
which means that additional resources are efficiently utilized when necessary, i.e.
when the experiment is too large to efficiently execute upon a small-scale configura-
tion. The two exceptions relate to speedup values obtained for 2 000 000 simulations
under different resource configurations (Fig. 6.2), as follows:

e for the 4 -> 8 scale transition, the "Sr" value decreases, which is related to
the relatively small speedup between configuration (2, 2) and configuration (4,
4) for this experiment size,

e for the 8 -> 16 scale transition, the "Sg" value peaks, which is related to the
relatively large speedup between configuration (4, 4) and configuration (8, 8)
for this experiment size.

113

Chapter 6. Experimental Evaluation

4
£35
=
£ 3
S
2125
2
g 2 D
L Transition between scales 4 -> 8
E15
2 ==Transition between scales 8 -> 16
5 1
o
o
a 0.5

O T T T T T 1

0 10 20 30 40 50 60

Experiment size [#simulations * 100 000]

Figure 6.6: Productivity-based scalability for different experiment sizes.

Comparison of efficiency- and productivity-based scalability metrics
When comparing both types of scalability, i.e. efficiency-based and productivity-
based scalability, many similarities can be noted. Both curves behave in a similar
fashion, i.e. values for smaller experiments are similar for both transitions and
scalability increases along with experiment size. However while efficiency-based
scalability remains between 0.7 and 1.3, with an average value of 0.91, the values
of productivity-based scalability are between 0.9 and 3.7, with an average value of
1.89. In the context of efficiency this means additional resources are effectively used,
albeit with an upper limit (since the average value is less than 1). In the context
of productivity this means that larger scales ensure higher productivity. This is
related to higher response values and lower cost of computation when conducting
experiments with more than 1 000 000 simulations. Moreover, as the average value
is greater than 1, there does not appear to be an upper productivity limit.

Using real-life simulations in scalability evaluation One can argue that us-
ing the foo simulation, which includes no calculations, is inappropriate for scalability
testing. Therefore the author estimated the number of Simulation Managers nec-
essary to saturate Scalarm by running actual simulations. This estimation was
performed by applying the platform throughput metric, which provides information
on how many simulations can be scheduled per second, as well as the time necessary
to calculate sample real-life simulations.

In the course of evaluating Scalarm, several real-life simulations were executed.
Two of them are described below:

e In the context of the EDA EUSAS project, which is described in Chapter 7,

114

Section 6.3. Self-Scalability Evaluation

a multi-agent simulation with the goal of supporting the training process of
security forces was developed. A sample simulation scenario involved control-
ling access of civilians to a military base camp during elections in a foreign
deployment scenario. The simulation had 92 input parameters describing the
initial emotional state and other attributes of simulated entities. The average
execution time of a simulation was approximately 3 minutes.

e The second simulation used to evaluate the Statistically Similar Representa-
tive Volume Element (SSRVE) of a given microstructure, developed in the
context of the PLGrid Plus project. SSRVE is typically used for decreasing
the cost of multiscale microstructure modeling by reducing the number of fi-
nite elements required to generate a reliable mesh. This application had about
20 input parameters describing features of the microstructure and properties
for optimization algorithms. The average execution time of this simulation
was approximately 11 minutes.

An average throughput for configuration (1, 1) was about 4776 simulations sched-
uled per minute, based on data from Table 6.4. By using this throughput value and
information about execution of real-life simulations, we estimated the number of
parallel Simulation Managers necessary to generate such a workload (Table 6.7).

Table 6.7: Estimated number of Simulation Managers necessary to saturate the
Scalarm platform using configuration(1, 1) and real-life simulations.

Estimated Simulation Manager count for scalability tests with real-life simulations

Real-life simulation Measured simulation Estimated Simulation

execution time [min] Manager count
Multi-agent security forces simulation 3 14 328
SSRVE simulation 11 52 536

Even assuming that each Simulation Manager needs only one CPU core, the
required resources are still extensive. This was the main reason for performing
scalability evaluation without actual computations.

6.3 Self-Scalability Evaluation

The second part of the evaluation process of the Scalarm platform concerns the
self-scalability feature. Unlike performance metrics, which describe scalability, this
process aims to highlight the features which differentiate Scalarm from other ex-
isting solutions, i.e. the capability of the platform to scale itself based on scaling
rules. Instead of trying to implement generic scaling rules which would fit all needs,
the author implemented a generic mechanism of executing different scaling actions

115

Chapter 6. Experimental Evaluation

based on externally defined scaling rules. This is a conscious design choice, under-
taken to avoid constraining the scalability behavior of the platform while enabling
administrators to control and adjust said behavior to actual simulations and de-
ployment conditions. Scaling rules are an essential part of this mechanism since
they enable Scalarm administrators to express requirements regarding scaling in a
machine-processable form. Each defined scaling rule is then handled by a dedi-
cated component within a self-scalable service, called the Scalability Manager which
monitors the service and executes scaling actions when necessary.

6.3.1 Testing scenario

Regarding the self-scalability feature, the main purpose of the testing scenario is to
study how Scalarm behaves when faced with a varying number of clients in a given
period of time. Hence, instead of adjusting resource configurations manually, we set
up a number of machines and started Scalarm on only two of them. In addition, we
defined scaling rules to control Scalarm behavior. We then proceeded to add and
remove clients dynamically in a strictly defined, repeatable order.

As a result, we could evaluate how Scalarm responds to varying workload on its
own, relying on the predefined scaling rules. In addition, this scenario enabled us
to compare the cost differences between running a self-scaling Scalarm installation
and a fixed-configuration deployment.

The number of clients (Simulation Managers) changes over time as follows:

1. ty - the test is started

2. t1 = to + 10 minutes - 120 clients are started - the total number of clients is
120

3. ty = t1 +5minutes - 120 clients are started - the total number of clients is 240

4. t3 = ty + 10 minutes - 240 clients are started - the total number of clients is
480

5. t4 = t3 + 10 minutes - 480 clients are started - the total number of clients is
960

6. t5 = t4 + 10 minutes - 480 clients are stopped - the total number of clients is
480

7. tg = t5 + 10 minutes - 240 clients are stopped - the total number of clients is
240

8. t7 = tg+ 10 minutes - 240 clients are stopped - the total number of clients is 0

116

Section 6.3. Self-Scalability Evaluation

9. tg = t7y + 10 minutes - the test concludes

A single test run took 75 minutes to complete and number of clients (i.e. Sim-
ulation Managers) varied between 0 and 960. It should be noted that Simulation
Managers merely schedule simulations and do not perform any computations on their
own. Hence, only the management part of Scalarm, i.e. Experiment and Storage
Managers, was loaded for this test.

We ran this test with three configurations:

e with no scaling rules defined - Section 6.3.2,
e with scaling rules defined for Experiment Managers only - Section 6.3.3,

e with scaling rules defined for both Experiment and Storage Managers - Sec-
tion 6.3.4.

During tests, Scalarm had access to 8 machines (described earlier on in this
chapter) upon which to run component instances.

6.3.2 Self-scalability test - scaling rules disabled

We first launched the described testing scenario using 4 machines to run Experiment
Managers and 4 machines to run Storage Managers. The goal was to measure
the highest achievable performance (in terms of simulations scheduled) with the
highest corresponding platform cost. In this configuration during a single test run
Scalarm managed to schedule 499 292 simulations on average (Table 6.8). During
each test two random physical servers were monitored, i.e. one with an Experiment
Manager instance and one with a Storage Manager instance. Since the workload
was spread evenly across all machines, there were no significant differences between
the monitored metrics on different machines. Fig. 6.7 presents CPU load [%] on an
Experiment Manager machine while Fig. 6.8 depicts the 'wait for I/O request to
complete’ metric [ms| on a Storage Manager machine. This storage-related metric
summarizes the time spent in the [/O queue and the time of executing the actual
request.

Regarding CPU load, utilization was close to 0% in the first 10 minutes and
the last 10 minutes since no clients were running during that time. Throughout
the experiment CPU utilization peaks when new clients are started, but in most
cases remains below 60%. This indicates that the selected resource configuration is
underloaded. On the other hand, HDD utilization on the Storage Manager machine
exhibits shorter but more frequent peaks. This is the result of the database man-
agement system periodically committing its journal to the local disk. Otherwise the
local disk is relatively underutilized since all operations are done in main memory.

117

Chapter 6. Experimental Evaluation

System___CPU
100

80

1
1
{
1
1
1 - 10.1.2_10
1

1

-3
=}

CPU utilization [%

Starting clients

Stopping clients

15:30 15:40 15:50 16:00 16:10 16:20 16:30 16:40

Figure 6.7: CPU load |%| on an Experiment Manager machine - test with no scaling
rules.

To determine the cost of our configuration we calculated the number of CPU-
minutes used across 8 servers, i.e. 8 * 75 = 300 minutes, and multiplied this by the
cost of a CPU-minute based on Amazon EC2 pricing, i.e. $1.160 per CPU-hour.
Consequently, the full resource configuration test (with no scaling rules) works out
to approximately $5.80; however monitoring metrics indicate that machines were
underloaded most of the time.

6.3.3 Self-scalability test with scaling rules for the Experi-
ment Manager

An ideal situation would involve balancing the workload evenly across all available
servers, e.g. to achieve 80-90% utilization, but only when there is actual work-
load. Thus, we defined scaling rules to adjust the Scalarm resource configuration
dynamically, i.e. Scalarm should shut down unnecessary instances and release com-
putational resources, lowering the cost of the platform. The first attempt to achieve
this goal is by defining scaling rules for the Experiment Manager only. Since both
up- and downscaling need to be taken into account, we specified the following rules
in the context of the monitored machine:

1. if the average CPU load exceeds 80% over a period of 90 s then start a new
Experiment Manager instance

2. if the average CPU load is lower than 20% over a period of 240 s then stop a
running Experiment Manager instance

118

Section 6.3. Self-Scalability Evaluation

Storage___await

o

o
=~

w
=~

-8~ 10_1_2_30___sda

N
=

N
=~

10 request wait time to complete [ms]
= =

=}
=

: : ‘
E HH _ﬂ L 1 n Starting clients

15:30 15:40 15:50 16:00 16:10 16:20 16:30 16:40

Figure 6.8: Wait time for I/O request to complete [ms| on a Storage Manager
machine - test with no scaling rules.

It is worth noting that every scaling action, e.g. starting or stopping a component
instance, is followed by a "cooldown" period, i.e. an interval during which scaling
rules are disabled. By introducing such a period we intend to eliminate any negative
influence of scaling actions upon the platform’s workload. In the following test
the "cooldown" period was set to 5 minutes. For the purpose of this evaluation
we allowed only one type of Scalarm component per physical server at any given
moment. This condition facilitates workload analysis. At the beginning of the test
we ran only two machines, one with an Experiment Manager instance and one with a
Storage Manager instance. This is the minimal resource configuration which fulfills
the conditions presented above. Other servers are utilized only as a result of scaling
actions triggered by scaling rules.

Given this configuration and using the defined scaling rules, Scalarm managed to
schedule (on average) 375 951 simulations throughout the test (Table 6.8). Measure-
ments of system metrics are depicted in Fig. 6.9 (CPU load) and Fig. 6.10 (storage
load) respectively.

Regarding CPU load, new Experiment Manager instances come online two min-
utes or so following peak load conditions. As a result, CPU load drops significantly
in each case. However, if, for some reason, CPU load remains low for a few minutes,
an Experiment Manager instance is shut down. At the end of the test, when there
are no clients at all, Scalarm reverts to its minimum required configuration, i.e. two
servers.

On a server with a Storage Manager instance the utilization level of the local
disk seems to be uncorrelated with CPU load. Instead, it is related to the number
of scheduled simulations, i.e. periodic increases in disk load can be noted as a result

119

Chapter 6. Experimental Evaluation

System___CPU
125
Start EM Start EM
Start EM
100 *—e | g— — [[|
: I 1
; :._“ X X % 10.1.2_10
75 ; : i e—e ' X X
E ‘ ‘ : .Al.. -4 "t 1
%: :on i : : :
5 == i — | |
= : *—e I I |
E | | |
25
z : : 1 '_:'T Starting clients
[¥] , ! —! le—s T"? F
0 onnnsnnnnjw - : —=s : 6—8 : dos o™ ?t_‘f?'?if’?_‘_“_e_“t‘
Stop EM | ' Stop EM Stbp EM
: [1 1

s H H H H
10:50 11:00 11:10 11:20 11:30 11:40 11:50 Higheharts.corr

Figure 6.9: CPU load [%]| on an Experiment Manager machine - test with scaling
rules for the Experiment Manager.

of database journal writes. Between these peak load conditions, disk utilization is
almost negligible.

To calculate the average cost of running this test we aggregated the number of
CPU-minutes used by our configuration, which in this case was 213. By referring to
the cost of a CPU-hour for a Cloud virtual machine, we can estimate the final cost
as $4.12.

6.3.4 Self-scalability test with scaling rules for Experiment
Managers and Storage Managers

Previously, Storage Managers were run using a static configuration, which led to
either underutilization of resources (with 4 machines in the configuration), or to
decreased performance (with only 1 machine in the configuration). The following
test takes self-scalability management a step further by specifying separate rules for
Experiment and Storage Managers, as follows:

1. if the average CPU load exceeds 80% over a period of 90 s then start a new
Experiment Manager instance

2. if the average CPU load is lower than 20% over a period of 240 s then stop a
running Experiment Manager instance

3. if the average wait time for storage exceeds 2000 ms over a period of 240 s
then start a new Storage Manager instance

120

Section 6.3. Self-Scalability Evaluation

Storage___await

~
=~

=)
=~

@ 10.1.2_30___sda

w
=~

N
=~

w
=~

Starting clients

N
~

Stopping clients

10 request wait time to complete [ms]

=~

=3
=~

11 : : : :
¢ 10:50 11:00 11:10 11:20 11:30 11:40 11:50

Figure 6.10: Wait time for I/O request to complete [ms| on a Storage Manager
machine - test with scaling rules for the Experiment Manager.

4. if the average wait time for storage is lower than 200 ms over a period of 300
s then stop a running Storage Manager instance

Similarly to the previous test, we initially ran only two machines and added
other machines on demand, as a result of scaling actions. The "cooldown" period
was again set to 5 minutes. In this configuration and with the provided scaling rules
Scalarm managed to schedule 454 059 simulations during the whole test (Table 6.8).
System metric measurements are depicted in Fig. 6.9 (CPU load) and Fig. 6.10
(storage load).

Similarly to the previous test, Experiment Managers were started approximately
two minutes following peak load conditions. In the middle of the test an Experiment
Manager instance was stopped, probably due to performance issues involving the
Storage Manager. However, in contrast to the previous test, a new Storage Manager
instance was started in the second half of the test. Interestingly, this operation
increased the disk load on the Storage Manager machine until the end of the test.
This is related to the behavior of MongoDB, which is utilized as the Storage Manager
backend. When a new instance of MongoDB is added to a cluster, some data from
other instances is transferred to the new instance, which generates load on the local
disk. This additional workload persists until the end of the test, hence the additional
Storage Manager also survives until the end, instead of being shut down when there
are no more clients. Surprisingly, no more Storage Managers are started even if the
storage workload exceeds the threshold defined in scaling rules. This is a side effect
of the "cooldown" period, i.e. other scaling actions, namely stopping Experiment
Managers, prevent additional Storage Manager instances from being started.

121

Chapter 6. Experimental Evaluation

Start EM

_ CPU utilization [%]

0 enitansaeseed

System___CPU

Start EM Start EM

.l"r /
Fa— "
A : .

—_—
[

.4 L]
Start éME

13:20 13:30

/

Stop EM Stop EM

[/
: by
et B L TR

-8- 10_1_2_10

Starting clients

/

¥ .
3 Stopping clients

Stop EM

14:00

Figure 6.11: CPU load [%] on an Experiment Manager machine - test with scaling

rules for all components.

Under these scaling rules, the Scalarm configuration used 246 CPU-minutes,

which means that the average cost of the experiment was $4.76.

6.3.5 Self-scalability evaluation conclusions

The conducted tests confirmed the functionality of Scalarm regarding support for
scaling rules. Administrators can easily manage resources dedicated to Scalarm, sim-
ply by specifying how the platform should scale. This mechanism enables Scalarm
to be started with very few resources at first and then expand the resource con-
figuration on demand. An additional reason to use the self-scalability feature is
cost-effectiveness. In our case cost-effectiveness can be expressed by the number
of simulations scheduled per $1. Information regarding cost-effectiveness, obtained
from the presented tests, is collated in Table 6.8.

Table 6.8: Cost-effectiveness associated with the self-scalability feature.

Cost-effectiveness of self-scalable Scalarm

Storage Manager

Test description Scheduled simulations | Total cost [$] Scheduled
simulations per $1

No scaling rules 499 292 5.80 86 084

Scaling rules for Experiment 375 951 4.12 91 250

Manager

Scaling rules for Experiment and 454 059 4.76 95 390

The least cost-effective configuration was the one without any scaling rules, while

122

Section 6.3.

Self-Scalability Evaluation

7k

10 request wait time to complete [ms]
[=] (7] b W =13

Storage___await

a8
: : : ! ! 1 |
H H ! I | i *
: : : I I I
! ! ! I I I
Start SM I 1.
H H ; { I {
: : : 1 I I
! : H | 1 T- I I
: : : 1 1 1
E E mion 1H T il be
: : : [[
; s g 99 mes 3% 00
i *» Tl:| T'I T‘ - - q. i :ﬁ' '3$l:' il
; i o
?‘.‘ il "?';‘Blﬁsi li!-“u;-- o0 1o '3.. o bt 0 L

1k

13:.00 13:10

13:40 13:5

-8~ 101 2 30__ sda

0 :
14:0 Highcharts.co

Figure 6.12: Wait time for I/O request to complete [ms| on a Storage Manager
machine - test with scaling rules for all components.

the other two configurations enabled scheduling more simulations per $1. Although
this factor heavily depends on the actual load characteristic, the author intended
to model a representative use case, with quiescent periods as well as peak load
periods. Many research studies suggest that modern data centers are relatively un-
derloaded. In such cases, running a static Scalarm configuration would be even less
cost-effective than utilizing self-scalability. Thus, self-scalable software can provide
significant savings terms of hardware maintenance while at the same time increasing
the resource utilization level.

123

Chapter 7

Data Farming Utilization in
Training of Security Forces

This chapter discusses the application of Scalarm in the EDA EUSAS project. In
particular, the role of data farming is presented and the motivation for using Scalarm
is provided. Scalarm features essential for the project are described in the context of
a sample data farming experiment. Scalarm support for different experiment process
phases (DoE, simulation execution and output analysis) is also discussed.

7.1 Problem Description and Motivation for Data
Farming Usage

The features of the Scalarm platform were first evaluated in the European Defence
Agency (EDA) EUSAS project [14], which stands for European Urban Simulation
for Asymmetric Scenarios. The main project objective was to enhance training of
security forces, such as the military and police, in asymmetric scenarios where the
forces in opposition are not conventional, i.e. one force has a structured hierar-
chy and rules of engagement while the other is an unstructured group which uses
unconventional means and tactics. Asymmetric threats in urban settings involve
the operation of a relatively small group of soldiers in a city with a civilian pop-
ulation ranging from neutral to hostile. Furthermore, civilians usually outnumber
security forces and therefore special training is needed to effectively handle this kind
of situation.

The project involved researchers from computing institutes in Poland, France,
Germany, Slovakia, Slovenia and Sweden. It was coordinated by a defense and
security company called CASSIDIAN. The project was motivated by a number of
disruptive events in large cities, e.g. riots in Serbia following the proclamation of
independence by Kosovo in 2008, or Iranian election protests in 2009 which caused
numerous casualties both among the security forces and civilians.

During the project multiple behavioral modeling techniques were used [115] to

124

Section 7.2. Solution Overview

analyze, evaluate and enhance security force tactics. In addition, the process was
supported by a large-scale computational infrastructure provided by ACC Cyfronet
AGH, especially the "Zeus" cluster, combined with resources from public Clouds,
e.g. Amazon EC2.

The rationale behind utilization of the data farming methodology in the project
was related to the complexity of the analyzed phenomena. Use case scenarios involve
numerous entities, e.g. civilians and security forces. Each entity can be described by
a number of parameters describing their emotional state, behavioral characteristics
or physical features. Hence, simulation scenarios involve large parameter spaces and
nontrivial dependencies between the simulated entities which are nearly impossible
to model using an analytical approach. In addition, data farming has been known
to successfully handle similar cases involving military simulations.

7.2 Solution Overview

The EDA EUSAS project intended to enhance security force training with human
behavioral analysis techniques. In addition, statistical analysis was used to simulate
various scenarios to improve force strategies. An important part of the EDA EUSAS
project was Human Behaviour Modelling (HBM) with Agent Based Simulations
(ABS) [116]. Each civilian and soldier taking part in a mission was modeled as an
independent agent with multiple parameters, e.g. emotional state and the ability to
interact with other agents.

An overview of the process is depicted in Fig. 7.1. Key steps of the process are
as follows:

1. "Mission Guidelines Creation & Adjustment" - the first step of the training
enhancement proposed by the project. In this step, basic guidelines are drafted
for specific missions. During subsequent iterations of the process these guide-
lines are adjusted to acknowledge new information regarding agent strategies.

2. "Adapt Agent Models (Soldier & Civilian)" - adapting agent models, both for
security forces and civilians, to specific aspects of the analyzed mission using
manual input (e.g. expert guidelines) as well as automatic calibration.

3. "Adapt Simulation Scenarios" - changing simulation scenarios to better reflect
the mission environment, e.g. terrain, buildings, or the number of security
agents and civilians.

4. "Calibrate Models" - tuning agent models by executing simulations multiple
times manually. Based on the gathered data, agent models and simulation
scenarios can be fine-tuned.

125

Chapter 7. Data Farming Utilization in Training of Security Forces

after

) O uidelines
1. Mission Guidelines 9

Creation & Adjustment

3. Adapt

insights
Simulation

2. Adapt Agent Models
8. Data (Soldier & Civilian) Scenarios
Analysis

20 i
6. Behaviour Pattern callbration 4. Calibrate
Extraction (MASDA) Models
[#

ahbrat:on

action data
review farming 5. Behaviour . Legend: .
Cloning Session :
- Preparation |

(experts, VBS2) .
7a. Data Farming ‘ Calibration

Regular use !

training | 7b. Mission Rehearsal

Figure 7.1: Improving security force training in the EDA EUSAS project [14].

d.

126

"Behaviour Cloning Session" - a special training session with real soldiers in
virtual reality. FEach soldier participating in the session supervises his/her
virtual avatar in the simulated mission, which is repeated multiple times to
explore the possible options. Each mission run is recorded for further analysis
of selected strategies and behaviors.

"Behaviour Pattern Extraction (MASDA)" - analysis of recorded missions and
semiautomatic extraction of patterns reflecting soldiers’ behavior. The project
developed an application for this task called MASDA [117], which is a pattern
recognition tool dedicated to behavioral analysis. Extracted patterns are used
to replace real soldiers with fully automated virtual agents.

a) "Data Farming" - conducting data farming experiments using the previously
calibrated agent models instead of real security forces. The main objective is to
generate large amounts of data describing soldiers’ behavior by using computer
simulations. Due to the large parameter space, it is impossible to evaluate all
possible mission options using real soldiers. Hence, cloned behavior is used in
this process.

. b) "Mission Rehearsal" - simulation of several interesting mission cases using

the calibrated models. The main objective is to perform in-depth analysis of
selected cases to identify any undesirable elements in the simulation. It is a

Section 7.2. Solution Overview

complementary approach to data farming in which numerous simulations are
executed to analyze a large spectrum of cases statistically.

9. "Data Analysis" - utilizes all data gathered in the data farming and Mission
Rehearsal steps to extract knowledge about possible vulnerabilities in security
force strategies. Based on the extracted knowledge, recommendations regard-
ing training improvements are proposed.

The above process is iteratively repeated until no further behavioral improve-
ments are necessary. Each iteration involves one or more data farming experiments
to analyze soldiers’ behavior in a vast set of possible mission configurations. Simula-
tion scenarios used in data farming experiments concern real security force missions,
e.g. crowd control, which cannot be easily trained in real-world conditions.

Simulation models treat civilians and soldiers as agents. During successive it-
erations these models are calibrated to match particular mission aspects. Each
simulated agent is described by many parameters, such as emotional state, starting
location or intentions. The parameters of all simulated agents, along with param-
eters describing the simulated environment, constitute input for the data farming
experiments. Experiment output includes different MoEs specific for the given mis-
sion, e.g. the number of injured soldiers, average level of civilian aggression, etc.

Due to the large parameter space, the following DoE methods were implemented
and used during the project [118]:

e Near Orthogonal Latin Hypercubes (NOHL) [119] is an experiment design
method which can be represented by a matrix with n rows (denoting sepa-
rated simulation input vectors) and k columns (denoting input parameters
with uniformly distributed possible values). In addition, each pair of distinct
columns has zero correlation, i.e. their inner product is zero.

o Full factorial is a design involving k input parameters each with different possi-
ble values. Its output constitutes all possible combinations of input parameter
values.

e Fractional factorial is similar to full factorial but provides only a subset of pos-
sible combinations. A special case of the fractional factorial is the 2¥ method,
which only considers the maximum and minimum values for each input pa-
rameter.

Support for heterogeneous computational infrastructures was another require-
ment, dictated by the complexity of simulated scenarios and their large parameter
space. Even when using very restrictive DoE methods, e.g. 2%, numerous simulations
has to be executed, potentially exceeding the capacity of a single data center. There-
fore the computational infrastructure for data farming needed to include resources

127

Chapter 7. Data Farming Utilization in Training of Security Forces

from different providers, e.g. institutional clusters, national Grid environments and
commercial Clouds. For the purpose of the project we selected the PL-Grid infras-
tructure as a national Grid environment and Amazon EC2 as a sample commercial
Cloud provider.

To support data exploration the following visualization methods were imple-
mented [120]:

e Scatter plots, which describe pairs of selected MoEs and/or input parame-
ters. A scatter plot simply displays the values of two variables as points in a
2D Cartesian space. It can be useful for finding relationships or correlations
between any two variables.

e A histogram chart, which, for a selected MoE, shows how many simulations
ended with each of the possible values. The user should be able to specify how
many regions the MoE value should be divided into, thereby controlling the
resolution of the chart. In addition, this type of analysis should include some
basic statistical information about the selected MoE, i.e. minimum, mean,
maximum and standard deviation values.

e Regression trees — a commonly used method of discovering input parameters
with particularly high influence on the output. A regression tree is created
for a specific MoE and measures the influence of input parameters upon the
selected MoE, i.e. the change of MoE values for a given input parameter
(compared to other input parameters). For the selected MoE, a regression
tree is a binary tree where each node (except leaves) contains an inequality.
The left-hand side represents the name of an input parameter while the right-
hand side comprises a given value and the number of experiment instances
covered by the node. Each node (including leaves) lists the mean value for the
selected MoE calculated on the basis of completed simulations — specifically,
these simulations which satisfy all inequalities occurring along the path from
the root node to the given tree node. At the root node, the number of covered
experiment instances equals the number of experiment instances completed
since the beginning of analysis.

7.3 Functionality Evaluation

The author conducted an experiment to demonstrate essential Scalarm features
regarding data farming. The simulation involved controlling the access of civilians
to a military base camp during elections in a foreign deployment scenario. Two
groups of civilians have gathered at an entrance to a base of operations with the
intention to start a skirmish. From the security forces’ point of view the goal of

128

Section 7.3. Functionality Evaluation

this scenario is to prevent escalation of aggression by way of effective negotiations.
Civilians may respond in various ways depending on their input parameter values.
Consequently, actions performed by security forces should be adjusted as necessary.
The input parameters for this simulation scenario describe:

e the emotional state of civilians (e.g. agitation) at the start of the scenario,

e behavioral characteristics, e.g. propensity for aggression and fear of security
forces,

e ability to affect others, e.g. prestige and influence radius.

The goal of this data farming experiment was to minimize the number of injuries
among civilians and soldiers regardless of the civilians’ behavior. The author decided
to parametrize 14 input parameters (out of 92), describing:

e the size of civilian groups,

e the agitation level at the the beginning of the scenario,

e civilians’ propensity for aggression,

e the prestige of two civilian leaders (one leader per group).

The output of each simulation included a text file with less than 7 MB of simu-
lation logs (on average) and 44 different MoEs describing the aggregated emotional
states of different entity groups and statistic regarding the simulated scenario — in
particular, the number of injured agents.

At the experiment design phase the above listed parameters were set to use
"range" parametrization using the fractional factorial method described above, while
all other parameters retained their default values. As a result, 16 386 different
combinations of input parameters were generated.

One of the key Scalarm features regarding data farming is monitoring the
progress of simulations. A system screenshot of this view is depicted in Fig. 7.2. In
particular, the user can monitor various statistics of the experiment, e.g. the pace of
simulation execution, the number of simulations already executed and the number
of pending simulations.

To evaluate support for heterogeneous computational infrastructures, the follow-
ing resources were used to compute actual simulations:

e 9 worker nodes from a private cluster,

e 50 Grid jobs scheduled upon the PL-Grid infrastructure, particularly the
"Zeus" cluster at ACC Cyfronet AGH,

129

Chapter 7. Data Farming Utilization in Training of Security Forces

Experiment monitoring

Scenario name

Vignette-2.2_for_DF2

Simulation statistics

ALL: 16,384 - GENERATED: 16,384 - DOME: 539 { 3,29 % COMPLETED) - SENT: 603 Experiment Speedometer

i
S i ‘?\\
S 100,
.-_\ #3im min ‘,.',.

= =y

Averzge time of performing a single experiment instance: 1 minutes and 43 seconds

Predicted time of finishing the experment: 5 hours and 3 minutes

Experiment progress bar

Actions

£ B e ey

Figure 7.2: The progress monitoring view of a data farming experiment in Scalarm.

e 50 High-CPU Extra Large instances from Amazon EC2.

By using this set of resources more than 620 simulations were executed simul-
taneously, with more then 140 simulations completing in each minute. The average
execution time of a single simulation was about 2 minutes.

Another useful feature of Scalarm is built-in support for various statistical anal-
yses which can rely on completed simulation results: histograms, regression trees
and bivariate graphs. Basing on ongoing statistical analysis of precomputed simula-
tions the user can specify additional values of input parameters to compute. Hence
the user can conduct the experiment in an exploratory way, i.e. start with a small
parameter space and then enlarge it as needed.

As part of the demonstration the author performed sample analysis using re-
gression trees, having previously completed nearly 800 simulations, as depicted in
Fig. 7.3. Regression trees are often used to identify dependencies between selected
MoE and input parameters. In our case the most significant input parameter (af-
fecting the number of civilians and soldiers killed) was the size of the civilian group
responsible for the skirmish. As this input parameter had only two possible values,

130

Section 7.3. Functionality Evaluation

Regression trees P

Select MoE: | Clabal Killed v m

Regression tree for the "Global Killed” Measure of Effectiveness

W wxim = 763, Mean MoE = 14.9%4
AgentFlock - violenceProne - Group Size « 25.5

#sim = 541, Mnﬁ MoE = 1.00 #sim = 227, Mean MoE = 48.91

Figure 7.3: Regression tree analysis view for partial experiment results in Scalarm.

i.e. 1 and 50 (as specified by the fractional factorial method), the analysis result
was not a surprise.

However, the user can investigate this parameter in more detail by using the
built-in ability to add more input parameter values on the fly. This Scalarm feature
is depicted in Fig. 7.4. The user can review existing values and specify additional
value ranges.

131

Chapter 7. Data Farming Utilization in Training of Security Forces

‘pgentFlock - violenceProne - Group Size’ parameter x

Parametrization type is:

range

Parameter values are:

« 1.0
« 50.0 i

Expand the input parameter space:

Priarity: Standard & |
Minimum: |20 ___1 a
Maximum: |30]

Step:

Figure 7.4: Experiment parameter space extension dialog in Scalarm.

£

132

Chapter 8

Conclusions and Future Work

In this chapter the author summarizes the thesis by presenting the achieved goals
and contributions. Areas which can benefit from the thesis are discussed. Finally,
interesting directions for future work are listed.

8.1 Summary

In this work the author explored the application of self-scalability to large-scale
software platforms in the context of the data farming methodology. Support for
heterogeneous computational infrastructures was an important aspect of this work.
As modern computational infrastructures (such as Clouds) tend to offer scalability in
the infrastructure layer as well as elastic cost management, the problem of building
software capable of exploiting these features is highly relevant.

The author proposed an extension of the SOA paradigm called self-scalable ser-
vices, along with a formal way of expressing knowledge on how a given service should
scale itself when necessary. Based on these concepts a massively self-scalable plat-
form for data farming, called Scalarm, was presented. Scalarm includes a reference
implementation of both concepts to support large-scale data farming experiments
with heterogenous computational infrastructures.

The stated thesis of this work was proved by way of experimental evaluation
of non-functional and functional aspects of the platform. In particular, synthetic
tests of massive scalability and self-scalability of the platform were performed. Self-
scalable services provide scalable throughput which surpasses the capabilities of
existing solutions. By using automatically managed scaling rules the platform is
more cost-effective than manually managed deployments. Functional aspects of the
platform were evaluated in the context of the EDA EUSAS project which utilized
Scalarm to conduct data farming experiments which support training of security
forces.

133

Chapter 8. Conclusions and Future Work

8.2 Research Contribution

The contribution of this thesis can be summarized as follows:

e In order to manage software scalability, the concept of scaling rules was in-

troduced as a way to express knowledge related to the scaling behavior of
software, i.e. conditions and actions concerning scalability. Although scaling
rules are specified by users, they can be processed automatically by dedicated
software. As a result the platform is enriched with the self-scalability feature.

An extension of Service-Oriented Software, called self-scalable services, was
proposed in order to extend software (composed from loosely-coupled services)
with transparent, built-in scaling mechanisms. This extension facilitates de-
velopment of massively scalable platforms while leveraging the benefits of the
service-oriented approach.

To evaluate both concepts, a dedicated platform for conducting data farming
experiments, called Scalarm, was implemented and tested. Results of this
experimental evaluation, described in Chapters 6 and 7, proved both aspects of
the research hypothesis stated in Section 1.6, i.e. extensive scalability achieved
using self-scalable services, and cost-effectiveness achieved by utilizing self-
scalability.

8.3 Potential Areas of Application

The concepts described above were utilized to develop a platform for data farming
experiments in the area of security force training. Note that all presented concepts
and design features are generic enough to be applicable to many other areas. In
fact, each contribution of this thesis may be applied separately to solve unrelated
problems, as described below.

e Scaling rules are a suitable mechanism for any system which has to auto-

134

matically adjust to changes in its environment. This description corresponds
to almost all Cloud applications whose workload depends on the number of
clients. The relation with Cloud environments determines the actual cost of
operating a system, which depends on the number of utilized CPU-hours. Our
experimental evaluation proved that support for scaling rules can significantly
decrease the cost of running software in such environments.

Self-scalable services are dedicated for platforms composed from multiple in-
dependent services, each of which needs to be scaled in a transparent manner,
starting from a single laptop up to dozens of servers.

Section 8.4. Future work

e Scalarm is a generic system which can run any data farming experiment and, in
fact, any parameter study experiment, i.e. multiple simulations with slightly
different input parameter values. Besides preparing the input parameter space
using various DoE methods, Scalarm facilitates interaction with heterogeneous
computational infrastructures and therefore minimizes the effort needed to
redeploy standalone applications to Grid or Cloud environments. In particular,
Scalarm is well suited for task farming [13], i.e. executing large numbers of
tasks using heterogeneous computational resources.

8.4 Future work

Although Scalarm is a fully functional platform, much remains to be done. A list of
interesting aspects which merit further investigation is presented below.

e Currently, scaling rules have to be defined manually. This task usually falls
to administrators, since they are the ones with detailed knowledge about the
available infrastructure and workload generated by users. When the workload
pattern changes, existing scaling rules may become obsolete and it would be
desirable to develop an autonomous platform which can discover scaling rules
automatically based on the observed user behavior. This would allow the
platform to adapt to changing user needs without human intervention.

e Another important aspect is platform genericity, i.e. the ability to run any type
of simulation regardless of the programming language, resource requirements
or input data formats. This is a hard problem, but one which needs to be
tackled if the platform is to be widely adopted.

e In this thesis scaling rules were presented in the context of Experiment and
Storage Managers; however Scalarm includes another important component,
i.e. the Simulation Manager, which encapsulates simulation execution. The
number of Simulation Manager instances is currently predetermined by the
analyst who performs the actual experiment. The purpose of this decision is
to enable users to choose which type of infrastructure Simulation Managers
will actually run on. This is important since supporting e.g. Amazon EC2
can incur real costs for end users. However, in general, the platform should
adjust the number of Simulation Manager instances automatically, relying on
user-defined rules. In addition, the platform should be able to adjust the ratio
of resources dedicated to the "master" part and the "worker" part while the
pool of available resources remains fixed.

e An important aspect of executing simulations in Cloud environments is cost.
Commercial Clouds often comprise different types of resources with varying

135

Chapter 8. Conclusions and Future Work

136

cost per hour. For example, a virtual machine with many CPU cores costs
more but also provides more computational power than a single-core unit.
Cost minimization in such environments is widely discussed in recent litera-
ture [96]. Scalarm could present the user with suggestions regarding optimal
Cloud resource allocation for a given simulation. Furthermore, the cost of data
storage and data transfer should be taken into account when providing such a
proposal.

Last but not least, the data storage aspect requires further analysis of data and
computation locality issues. Data farming experiments often depend heavily
on efficient access to data. When using heterogeneous computational infras-
tructures, the problem of data transfer to and from computational resources
becomes highly relevant. Resources from one computational infrastructure can
be inaccessible to another infrastructure. Moreover, transferring data between
geographically distributed locations can be inefficient. Techniques which in-
volve shifting computation closer to data (instead of the other way around) are
commonly referred to as computational storage. Awareness of were the data
is actually stored facilitates optimal task scheduling. Scalarm might utilize
this knowledge when deciding how to distribute simulations between different
computational systems. Furthermore, data management techniques proposed
by the author in [121, 122, 123] could by exploited with regard to Cloud envi-
ronments.

Abbreviations and Acronyms

Abbreviation Explanation

ABS
AC
ACC
API
CERN
CPU
CSV
DIRAC
DNS
DoE
EC2
EDA
EU
EUSAS
FLOPS
GbE
GUI
HBM
HCI
HDD
HDFS
HPC
HTTP
HTC
IaaS
IMDG
IPC
IST

Agent Based Simulations

Autonomic Computing

Academic Computer Centre

Application Programming Interface
European Organization for Nuclear Research
Central Processing Unit

Comma-Seperated Values

Distributed Infrastrcuture with Remote Agent Control
Domain Name Service

Design of Experiment

Elastic Compute Cloud

European Defence Agency

European Commision

European Urban Simulation for Asymmetric Scenario
FLoating-point Operations Per Second
Gigabit Ethernet

Graphical User Interface

Human Behaviour Modelling

Human Computer Interface

Hard Disk Drive

Hadoop Distributed File System

High Performance Computing

HyperText Transfer Protocol

High Throughput Computing

Infrastructure as a Service

In-Memory Data Grid

Inter-Process Communication

User-friendly Information Society

137

Chapter 8. Conclusions and Future Work

JWARS
LHC
LHCb
MoE
MQ
NASA
NFS
NOHL
OLTP
OMD
PaaS
PBS
POIG
QoS
RAM
RDBMS
REST
S3
SaaS
SAN
SDK
SEDA
SEED
SLA
SOA
SPOF
SSH
SSRVE
SQL
XAP
XML

138

Joint Warfare System

Large Hydron Collider

Large Hadro Collider beauty

Measure of Effectiveness

Message Queuing

National Aeronautics and Space Administration
Network File System

Near Orthogonal Latin Hypercube
On-Line Transaction Processing
OldMcData

Platform as a Service

Portable Batch System

Innovative Economy Program

Quality of Service

Random Access Memory

Relational DataBase Management Systems
Representational State Transfer

Simple Storage Service

Software as a Service

Storage Area Network

Software Development Kit

Staged Event-Driven Architecture
Simulation Experiments & Efficient Designs
Service Level Agreement

Service Oriented Architecture

Single Point Of Failure

Secure SHell

Statistically Similar Representative Volume Element
Structured Query Language

eXtreme Application Platform

eXtensible Markup Language

[

2]

4]

(6]

18]

191

Bibliography

J. Bell, “Understand the autonomic manager concept.” http://www.ibm. com/
developerworks/library/ac-amconcept, Feb. 2004. Accessed: 21/03/2013.

D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Practice:
The Condor Experience,” Concurrency - Practice and Fxperience, vol. 17,
no. 2-4, pp. 323-356, 2005.

D. T. Maxwell and P. D, “An Overview of The Joint Warfare System
(JWARS),” 2000.

A. Tsaregorodtsev, M. Bargiotti, N. Brook, A. C. Ramo, G. Castellani,
P. Charpentier, C. Cioffi, J. Closier, R. G. Diaz, G. Kuznetsov, Y. Y. Li,
R. Nandakumar, S. Paterson, R. Santinelli, A. C. Smith, M. S. Miguelez,
and S. G. Jimenez, “DIRAC: a community grid solution,” Journal of Physics:
Conference Series, vol. 119, no. 6, p. 062048, 2008.

M. Welsh, “The Staged Event-Driven Architecture for Highly-Concurrent
Server Applications.” http://www.eecs.harvard.edu/ "mdw/papers/
quals-seda.pdf. Accessed: 21/03/2013.

“The GigaSpaces Runtime Environment website.” http://wiki.gigaspaces.
com/wiki/display/XAP91/The+Runtime+Environment. Accessed:
21/03/2013.

C. Ballinger, “The Teradata Scalability Story.” http://www.teradata.com/
white-papers/The-Teradata-Database-Scalability-Story-eb3031/.
Accessed: 21/03/2013.

“Hadoop tutorial website.” http://shiva-dasharathi.appspot.com/tuts/
hadoop.html. Accessed: 21/03/2013.

P. Asadzadeh, R. Buyya, C. L. Kei, D. Nayar, and S. Venugopal, “Global
Grids and Software Toolkits: A Study of Four Grid Middleware Technologies,”
CoRR, vol. ¢s.DC/0407001, 2004.

139

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

140

Microsoft company, “http://www.cisco.com/en/US/solutions/
collateral/ns340/ns517/ns224/ns944/whitepaper_c11-711496.html,”
last access 14 April, 2013.

“Architecture of the Eucalyptus cloud.” http://en.wikipedia.org/wiki/
File:Eucalyptus_Platform_Architecture, February_2013. jpg. Ac-
cessed: 21/03/2013.

“Architecture of the OpenStack cloud.” http://docs.openstack.
org/trunk/openstack-compute/starter/content/Components_of _
OpenStack-Compute-dilel66.html. Accessed: 21/03/2013.

A. Oprescu and T. Kielmann, “Bag-of-Tasks Scheduling under Budget Con-
straints,” in Cloud Computing Technology and Science (CloudCom), 2010
IEEFE Second International Conference on, pp. 351-359, 2010.

M. Kvassay, L. Hluchy, S. Dlugolinsky, M. Laclavik, B. Schneider, H. Bracker,
A. Tavéar, M. Gams, D. Krol, M. Wrzeszcz, and J. Kitowski, “An integrated
approach to mission analysis and mission rehearsal,” in Proceedings of the
Winter Simulation Conference, WSC 12, pp. 362:1-362:2, Winter Simulation
Conference, 2012.

Experiment Design and Analysis Reference, “http://www.weibull.com/
doewebcontents.htm,” last access 14 April, 2013.

J. F. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting,
and A. Toncheva, “An Updated Forecast of Worldwide Information Growth
Through 2011,” May 2008.

S. Mills, S. Lucas, L. Irakliotis, M. Rappa, T. Carlson, and B. Perlowitz, “DE-
MYSTIFYING BIG DATA: A Practical Guide to Transforming the Business
of Government,” tech. rep., 2012.

T. Hey, S. Tansley, and K. Tolle, eds., The Fourth Paradigm: Data-Intensive
Scientific Discovery. Redmond, Washington: Microsoft Research, 2009.

X. Zhu and I. Davidson, Knowledge Discovery and Data Mining: Challenges
and Realities. Hershey, PA, USA: IGI Publishing, 2007.

D. Kallfass and T. Schlaak, “NATO MSG-088 case study results to demon-
strate the benefit of using data farming for military decision support,” in
Proceedings of the Winter Simulation Conference, WSC 12, pp. 221:1-221:12,
Winter Simulation Conference, 2012.

Bibliography

[21]

[22]

23]

[24]

[25]

26]

[27]

28]

29]

[30]

31]

A. Brandstein and G. Horne, Data Farming: A Meta-Technique for Research
in the 21st Century. Marine Corps Combat Development Command Publica-
tion, Quantico, Virginia, 1998.

G. E. Horne and K.-P. Schwierz, “Data farming around the world overview,” in
Proceedings of the 40th Conference on Winter Simulation, WSC "08, pp. 1442—
1447, Winter Simulation Conference, 2008.

T. Meyer and S. Johnson, Visualization for Data Farming: A Survey of Meth-
ods. Marine Corps Combat Development Command, United States Marine
Corps Project Albert. Quantico, Virginia, 2001.

A. Dean and D. Voss, Design and Analysis of Fxperiments. Springer Texts in
Statistics, Spring-Verlag, 1999.

C. Engelmann and A. Geist, “Super-Scalable Algorithms for Computing on
100,000 Processors,” in Proceedings of the 5th International Conference on
Computational Science, pp. 313-321, Springer, 2005.

A. Maier, “Keynote: Autonomic Computing Initiative,” in ARCS (C. Muller-
Schloer, T. Ungerer, and B. Bauer, eds.), vol. 2981 of Lecture Notes in Com-
puter Science, p. 3, Springer, 2004.

P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem, “Adaptive control of virtualized resources in utility computing
environments,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 289-302, Mar. 2007.

M. Isard, “Autopilot: automatic data center management,” SIGOPS Oper.
Syst. Rev., vol. 41, pp. 60-67, Apr. 2007.

[. T. Foster, “The Grid: Beyond the Hype,” in GCC (H. Jin, Y. Pan, N. Xiao,
and J. Sun, eds.), vol. 3251 of Lecture Notes in Computer Science, p. 1,
Springer, 2004.

E. Simmon and R. Bohn, “An Overview of the NIST Cloud Computing Pro-
gram and Reference Architecture,” in Concurrent Engineering Approaches
for Sustainable Product Development in a Multi-Disciplinary Environment
(J. Stjepandic, G. Rock, and C. Bil, eds.), pp. 11191129, Springer London,
2013.

A. Oprescu and T. Kielmann, “Bag-of-Tasks Scheduling under Budget Con-
straints,” in Cloud Computing Technology and Science (CloudCom), 2010
IEEFE Second International Conference on, pp. 351-359, 2010.

141

Bibliography

32]

33]

[34]

[35]

[36]

37]

38|

139]

142

J. Varia and S. Mathew, “Amazon Web Services.” http://d36cz9buwrultt.
cloudfront.net/AWS_0Overview.pdf. Accessed: 21/03/2013.

M. Bubak, T. Gubala, M. Malawski, B. Balis, W. Funika, T. Bartynski,
E. Ciepiela, D. Harezlak, M. Kasztelnik, J. Kocot, D. Krol, P. Nowakowski,
M. Pelczar, J. Wach, M. Assel, and A. Tirado-Ramos, “Virtual Laboratory
for Development and Execution of Biomedical Collaborative Applications,” in
Proceedings of the 2008 21st IEEE International Symposium on Computer-
Based Medical Systems, CBMS ’08, (Washington, DC, USA), pp. 373-378,
IEEE Computer Society, 2008.

T. Gubala, B. Balis, M. Malawski, M. Kasztelnik, P. Nowakowski, M. Assel,
D. Harezlak, T. Bartynski, J. Kocot, E. Ciepiela, D. Krol, J. Wach, M. Pelczar,
W. Funika, and B. Marian, “ViroLab Virtual Laboratory,” in Cracow’07 Grid
Workshop : October, 2007, Krakow, Poland, pp. 35-40, 2007.

P. Nowakowski, D. Harezlak, and M. Bubak, “A New Approach to Develop-
ment and Execution of Interactive Applications on the Grid,” in Proceedings of
the 2008 Fighth IEEE International Symposium on Cluster Computing and the
Grid, CCGRID ’08, (Washington, DC, USA), pp. 681-686, IEEE Computer
Society, 2008.

M. Bubak, T. Gubala, M. Malawski, B. Balis, W. Funika, T. Bartynski,
E. Ciepiela, D. Harezlak, M. Kasztelnik, J. Kocot, D. Krol, P. Nowakowski,
M. Pelczar, and M. Assel, “A platform for collaborative e-science applications,”
in Proceedings of 2nd ACC Cyfronet AGH users’ conference, Zakopane, 2009,
p. 36, ACC Cyfronet AGH, 20009.

W. Funika, D. Harezlak, D. Krol, and M. Bubak, “Environment for Collab-
orative Development and Execution of Virtual Laboratory Applications,” in

Proceedings of the 8th International Conference on Computational Science,
Part 111, ICCS ’08, (Berlin, Heidelberg), pp. 446-455, Springer-Verlag, 2008.

W. Funika, D. Harezlak, D. Krol, P. Pegiel, and M. Bubak, “User interfaces
of the Virolab Virtual Laboratory,” in Cracow’07 Grid Workshop : October,
2007, pp. 47-52, 2008.

J. Meizner, M. Malawski, E. Ciepiela, M. Kasztelnik, D. Harezlak,
P. Nowakowski, D. Krol, T. Gubala, W. Funika, M. Bubak, T. Mikolajczyk,
P. Plaszczak, K. Wilk, and M. Assel, “ViroLab Security and Virtual Organi-
zation Infrastructure,” in Advanced Parallel Processing Technologies (Y. Dou,
R. Gruber, and J. Joller, eds.), vol. 5737 of Lecture Notes in Computer Science,
pp- 230-245, Springer Berlin Heidelberg, 2009.

Bibliography

[40]

[41]

[42]

43]

|44]

[45]

|46]

147]

48]

[49]

[50]

S. Ambroszkiewicz, SOA Infrastructure Tools: Concepts and Methods. Poznan
University of Economics Press, 2010.

K. Skalkowski, J. Sendor, M. Pastuszko, B. Puzon, J. Fibinger, D. Krol, W. Fu-
nika, B. Kryza, R. Slota, and J. Kitowski, “SOA-based support for dynamic
creation and monitoring of virtual organization,” in SOA infrastucture tools
concepts and methods (e. a. S. Ambroszkiewicz, ed.), pp. 371-374, Poznan
University of Economics Press, 2010.

W. Funika, P. Pegiel, P. Godowski, and D. Krol, “Semantic-oriented perfor-
mance monitoring of distributed applications,” in KU KDM 2010 : Third ACC
Cyfronet AGH user’s conference : Zakopane March, 2010, pp. 3334, 2010.

W. Funika, P. Godowski, P. Pegiel, and D. Krol, “Semantic-oriented perfor-
mance monitoring of distributed applications,” Computing and Informatics,
vol. 31, no. 2, pp. 427446, 2012.

D. Krol and W. Funika, “Semantic-based SLA-oriented performance monitor-
ing in the ProActive environment,” in Cracow’09 Grid Workshop : October,
2009, Krakow, Poland, pp. 151-157, 2010.

D. Krol, W. Funika, R. Slota, and J. Kitowski, “SLA-based data storage-
oriented semi-automatic management of distributed applications,” in KU
KDM 2010 : Third ACC Cyfronet AGH user’s conference : Zakopane March,
2010, p. 39, 2010.

D. Krol, W. Funika, R. Slota, and J. Kitowski, “SLA-Oriented Semi-Automatic
Management of Data Storage and Applications in Distributed Environment,”
Computer Science, vol. 11, no. 1, 2010.

PL-Grid project, “http://www.plgrid.pl/en,” last access 14 April, 2013.

R. Slota, D. Krol, K. Skalkowski, B. Kryza, D. Nikolow, M. Orzechowski,
and J. Kitowski, “A Toolkit for Storage QoS Provisioning for Data-Intensive
Applications,” in Building a National Distributed e-Infrastructure PL-Grid
(M. Bubak, T. Szepieniec, and K. Wiatr, eds.), vol. 7136 of Lecture Notes
in Computer Science, pp. 157-170, Springer Berlin Heidelberg, 2012.

PLGrid Plus project, “http://www.plgrid.pl/en#section-1t,” last access
14 April, 2013.

R. Slota, D. Krol, K. Skalkowski, M. Orzechowski, D. Nikolow, B. Kryza,
M. Wrzeszcez, and J. Kitowski, “A Toolkit for Storage QoS Provisioning for
Data-Intensive Applications,” Computer Science, vol. 13, no. 1, 2012.

143

Bibliography

[51]

52|

[53]

[54]

[55]

[56]

[57]

[58]

[59]

144

R. Slota, D. Nikolow, J. Kitowski, D. Krol, and B. Kryza, “FiVO/QStorMan
Semantic Toolkit for Supporting Data-Intensive Applications in Distributed
Environments,” Computing and Informatics, vol. 31, no. 5, pp. 1003-1024,
2012.

K. Skalkowski, R. Slota, D. Krol, M. Orzechowski, B. Kryza, and J. Kitowski,
“Towards scalable, semantic-based virtualized storage resources provisioning,”
in KU KDM 2012 : fifth ACC Cyfronet AGH user’s conference, pp. 7677,
2012.

R. Slota, D. Krol, K. Skalkowski, B. Kryza, D. Nikolow, and J. Kitowski,
“FiVO/QStorMan: toolkit for supporting data-oriented applications in PL-
Grid,” in KU KDM 2011 : fourth ACC Cyfronet AGH users’ conference :
Zakopane, March, 2011, p. 68, ACK Cyfronet AGH, 2011.

D. Krol, R. Slota, B. Kryza, D. Nikolow, W. Funika, and J. Kitowski, “Pol-
icy Driven Data Management in PL-Grid Virtual Organizations,” in Remote
Instrumentation for eScience and Related Aspects (F. Davoli, M. Lawenda,
N. Meyer, R. Pugliese, J. Weglarz, and S. Zappatore, eds.), pp. 257-266,
Springer New York, 2012.

D. Krol, A. Chrabaszcz, R. Slota, and J. Kitowski, “Evaluation of QStor-
Man dynamic storage provisioning strategies in PL-Grid,” in Cracow’12 Grid
Workshop : October, 2012, Krakow, Poland, pp. 81-82, 2012.

D. Krol, B. Kryza, K. Skalkowski, D. Nikolow, R. Slota, and J. Kitowski,
“QoS provisioning for data-oriented applications in PL-Grid,” in Cracow’10
Grid Workshop : October, 2010, Krakow, Poland, pp. 149-150, 2010.

K. Skalkowski, R. Slota, D. Krol, and J. Kitowski, “Qos-based storage re-
sources provisioning for grid applications,” Future Generation Computer Sys-
tems, vol. 29, no. 3, pp. 713 — 727, 2013. Special Section: Recent Developments
in High Performance Computing and Security.

D. Krol, B. Kryza, M. Wrzeszcz, L. Dutka, and J. Kitowski, “Elastic Infrastruc-
ture for Interactive Data Farming Experiments,” Procedia Computer Science,
vol. 9, no. 0, pp. 206 — 215, 2012. Proceedings of the International Conference
on Computational Science, {ICCS} 2012.

D. Krol, M. Wrzeszcz, B. Kryza, L. Dutka, and J. Kitowski, “Scalarm: mas-
sively self-scalable platform for data farming,” in Cracow’12 Grid Workshop :
October, 2012, Krakow, Poland (K. W. Marian Bubak, Michal Turala, ed.),
pp. 53-54, Academic Computer Centre CYFRONET AGH, 2012.

Bibliography

[60]

[61]

62]

63]

[64]

[65]

6]

67]

68]

[69]

[70]

71]

S. Upton, “Users Guide: OldMcData, the Data Farmer, Version 1.1.” http:
//harvest .nps.edu/software.html. Accessed: 21,/03/2013.

“SEED Center for Data Farming website.” http://harvest.nps.edu. Ac-
cessed: 21/03/2013.

S. Upton, “XStudy application website.” http://harvest.nps.edu/
software.html. Accessed: 21/03/2013.

R. P. Bruin, T. O. H. White, A. M. Walker, K. F. Austen, M. T. Dove, R. P.
Tyer, P. A. Couch, I. T. Todorov, and M. O. Blanchard, “Job submission to

grid computing environments,” in Proceedings of the UK e-Science All Hands
Meeting 2006, (Nottingham, UK), pp. 426-432, 2006.

[. T. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems,” J. Comput. Sci. Technol., vol. 21, no. 4, pp. 513-520, 2006.

G. F. S. IIT and G. A. Mclntyre, “JWARS: the joint warfare system (JWARS):
a modeling and analysis tool for the defense department,” in Winter Simulation
Conference, pp. 691-696, 2001.

M. Scheutz, P. Schermerhorn, R. Connaughton, and A. Dingler, “SWAGES-
An Extendable Distributed Experimentation System for Large-Scale Agent-
Based Alife Simulations.”

N. Brook, A. Bogdanchikov, A. Buckley, J. Closier, U. Egede, M. Frank,
D. Galli, M. Gandelman, V. Garonne, C. Gaspar, R. G. Diaz, K. Harrison,
E. van Herwijnen, A. Khan, S. Klous, I. Korolko, G. Kuznetsov, F. Loverre,
U. Marconi, J. P. Palacios, G. N. Patrick, A. Pickford, S. Ponce, V. Ro-
manovski, J. J. Saborido, M. Schmelling, A. Soroko, A. Tsaregorodtsev,
V. Vagnoni, and A. Washbrook, “DIRAC - Distributed Infrastructure with
Remote Agent Control,” CoRR, vol. cs.DC/0306060, 2003.

A. A. Alves et al., “The LHCDb Detector at the LHC,” JINST, vol. 3, p. S08005,
2008.

M. D. Welsh, An architecture for highly concurrent, well-conditioned internet
services. PhD thesis, 2002. AAI3082454.

M. Welsh, D. E. Culler, and E. A. Brewer, “SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services,” in SOSP, pp. 230-243, 2001.

“SwiftM(Q website.” http://www.swiftmq.com/. Accessed: 21/03/2013.

145

Bibliography

[72]

73]

[74]

[75]
[76]

7]

78]

[79]

[80]

[81]

82]

146

J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R. Eaton, D. Geels,
R. Gummadi, S. C. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Y.
Zhao, “OceanStore: An Architecture for Global-Scale Persistent Storage,” in
ASPLOS (L. Rudolph and A. Gupta, eds.), pp. 190-201, ACM Press, 2000.

“Understanding the Cost of Data Center Downtime: An Analy-
sis of the Financial Impact on Infrastructure Vulnerability.” http:
//emersonnetworkpower.com/en-US/Brands/Liebert/Documents/White}
20Papers/data-center-uptime_24661-R05-11.pdf. Accessed: 21/03/2013.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” 2004.

T. White, Hadoop: The Definitive Guide. O’Reilly, first edition ed., june 2009.

R. C. Taylor, “An overview of the Hadoop /MapReduce/HBase framework and
its current applications in bioinformatics,” BMC' Bioinformatics, vol. 11, no. S-
12, p. S1, 2010.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed
File System,” in Mass Storage Systems and Technologies (MSST), 2010 IEEE
26th Symposium on, pp. 1 =10, May 2010.

A. S. Foundation, “The zookeeper project website.” http://zookeeper.
apache.org/doc/current/zookeeperOver.html. Accessed: 21/03/2013.

K. V. Shvachko, “Apache Hadoop: The Scalability Update.” https://
www.usenix.org/publications/login/june-2011-volume-36-number-3/
apache-hadoop-scalability-update, 2011. Accessed: 21,/03/2013.

C. Kesselman and I. Foster, The Grid: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers, November 1998.

A. Streit, S. Bergmann, R. Breu, J. M. Daivandy, B. Demuth, A. Giesler,
B. Hagemeier, S. Holl, V. Huber, D. Mallmann, A. S. Memon, M. S. Memon,
R. Menday, M. Rambadt, M. Riedel, M. Romberg, B. Schuller, and T. Lippert,
“UNICORE 6 - A European Grid Technology,” in High Performance Comput-
ing Workshop (W. Gentzsch, L. Grandinetti, and G. R. Joubert, eds.), vol. 18
of Advances in Parallel Computing, pp. 157-173, IOS Press, 2008.

B. Bosak, J. Konczak, K. Kurowski, M. Mamonski, and T. Piontek, “Highly
Integrated Environment for Parallel Application Development Using QosCos-
Grid Middleware,” in PL-Grid (M. Bubak, T. Szepieniec, and K. Wiatr, eds.),
vol. 7136 of Lecture Notes in Computer Science, pp. 182—-190, Springer, 2012.

Bibliography

[83]

[84]

[85]

[86]

87]

88

[89]

[90]

191

192]

193]

S. Bounanos and M. Fleury, “Gb Ethernet Protocols for Clusters: An Open-
MPI, TIPC, GAMMA Case Study.,” in PARCO (C. H. Bischof, H. M. Bucker,
P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, and F. J. Peters, eds.), vol. 15
of Advances in Parallel Computing, pp. 397-404, I0OS Press, 2007.

L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and
R. Quilici, Grid Computing: Software Environments and Tools, ch. Program-
ming, Deploying, Composing, for the Grid. Springer-Verlag, January 2006.

Amazon, “Amazon Elastic Compute Cloud.” Online
http://aws.amazon.com/ec2/, 2010.

AWS Auto Scaling feature, “http://aws.amazon.com/autoscaling/,” last
access 14 April, 2013.

Windows Azure Autoscaling Application Block, “http://msdn.microsoft.
com/en-us/library/hh680892(v=pandp.50) .aspx,” last access 14 April,
2013.

S. Krishnan, Programming Windows Azure - Programming the Microsoft

Cloud. O’Reilly, 2010.

M. Malawski, M. Kuzniar, P. Wojcik, and M. Bubak, “How to Use Google
App Engine for Free Computing,” IEEE Internet Computing, vol. 17, no. 1,
pp- 50-59, 2013.

N. Mirajkar, M. Barde, H. Kamble, R. Athale, and K. Singh, “Implementation
of Private Cloud using Eucalyptus and an open source Operating System,”
CoRR, vol. abs/1207.3037, 2012.

I. C. Plasencia, E. F. del Castillo, S. Heinemeyer, A. Lopez-Garcia, and F. v. d.
Pahlen, “Phenomenology Tools on Cloud Infrastructures using OpenStack,”
CoRR, vol. abs/1212.4784, 2012.

S. Saini, S. Heistand, H. Jin, J. Chang, R. Hood, P. Mehrotra, and R. Biswas,
“An Application-based Performance Evaluation of NASA’s Nebula Cloud
Computing Platform.,” in HPCC-ICESS (G. Min, J. Hu, L. C. Liu, L. T.
Yang, S. Seelam, and L. Lefevre, eds.), pp. 336-343, IEEE Computer Society,
2012.

“Rackspace Cloud File website.” http://www.rackspace.com/cloud/files/.
Accessed: 21/03/2013.

147

Bibliography

[94]

[95]

[96]

197]

98]

[99]

[100]

[101]

[102]

[103]

[104]

148

R. Cushing, S. Koulouzis, A. Belloum, and M. Bubak, “Applying workflow as
a service paradigm to application farming,” Concurrency and Computation:
Practice and Experience, 2013.

E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, “Cloud Federations
in Contrail,” in Euro-Par 2011: Parallel Processing Workshops (M. Alexander,
P. D’Ambra, A. Belloum, G. Bosilca, M. Cannataro, M. Danelutto, B. Mar-
tino, M. Gerndt, E. Jeannot, R. Namyst, J. Roman, S. Scott, J. Traff, G. Val-
1ASe, and J. Weidendorfer, eds.), vol. 7155 of Lecture Notes in Computer
Science, pp. 159-168, Springer Berlin Heidelberg, 2012.

G. Pierre and C. Stratan, “ConPaaS: A Platform for Hosting Elastic Cloud
Applications,” Internet Computing, IEEE, vol. 16, no. 5, pp. 88-92, 2012.

M. Gaudard, P. Ramsey, and M. Stephens, “Interactive Data Min-
ing and Design of Experiments: the JMP Partition and Cus-
tom Design Platforms.” http://www.jmp.com/software/whitepapers/
pdfs/372455_interactive_datamining.pdf. Accessed: 21/03/2013.

R Development Core Team, R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012.
ISBN 3-900051-07-0.

M. Kircher and P. Jain, “The Three-Tier Architecture Pattern Language De-
sign Fest.,” in BuroPLoP (A. Ruping, J. Eckstein, and C. Schwanninger, eds.),
pp. 575-580, UVK - Universitaetsverlag Konstanz, 2001.

T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and De-
sign. Prentice Hall PTRs, Aug. 2005.

N. Shalom, “The Scalability Revolution: From Dead End to Open Road.”
http://wiki.gigaspaces.com/wiki/download/attachments/1835009/
FromDeadEndToOpenRoad.pdf. Accessed: 21/03/2013.

O. Kremien, “Scalability in distributed systems, parallel systems and su-
percomputers.,” in HPCN FEurope (L. O. Hertzberger and G. Serazzi, eds.),
vol. 919 of Lecture Notes in Computer Science, pp. 532-541, Springer, 1995.

V. P. Kumar and A. Gupta, “Analyzing Scalability of Parallel Algorithms and
Architectures.,” J. Parallel Distrib. Comput., vol. 22, no. 3, pp. 379-391, 1994.

M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,” Computer,
vol. 41, no. 7, pp. 33-38, 2008.

Bibliography

[105]

[106]

[107]

108

[109]

[110]

[111]

[112]

[113]

114)

[115]

Y. Shi, “Reevaluating Amdahl’s Law and Gustafson’s Law.” http://spartan.
cis.temple.edu/shi/public_html/docs/amdahl/amdahl.html, 1996. Ac-
cessed: 21/03/2013.

P. Jogalekar and C. M. Woodside, “Evaluating the Scalability of Distributed
Systems.,” IEFE Trans. Parallel Distrib. Syst., vol. 11, no. 6, pp. 589-603,
2000.

T. Horikawa and A. Fukuda, “A method for analysis and solution of scalability
bottleneck in DBMS,” in Proceedings of the 2010 Symposium on Information
and Communication Technology, SOICT 10, (New York, NY, USA), pp. 139-
146, ACM, 2010.

T. Brisco, “DNS Support for Load Balancing.” RFC 1794 (Informational),
April 1995.

R. Brachman and H. Levesque, Knowledge Representation and Reasoning.
Amsterdam: Morgan Kaufmann, 2004.

N. Dunstan, “Generating domain-specific web-based expert systems.,” Fxpert
Syst. Appl., vol. 35, no. 3, pp. 686690, 2008.

K. Banker, MongoDB in action. Manning Pubs Co Series, Manning Publica-
tions Company, 2011.

D. Hildebrand, P. Honeyman, and D. Hildebrand, “pNFS and Linux: Working
Towards a Heterogeneous Future,” in In §th LCI International Conference on
High-Performance Cluster Computing (Lake Tahoe, 2007.

Using a Service Locator pattern, “http://martinfowler.com/articles/
injection.html#UsingAServiceLocator,” last access 14 April, 2013.

I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a Fast and
Light-weight tasK executiON framework,” in IEEE/ACM International Con-
ference for High Performance Computing, Networking, Storage, and Analysis,
2007.

M. Laclavik, S. Dlugolinsky, M. Seleng, M. Kvassay, B. Schneider, H. Bracker,
M. Wrzeszcz, J. Kitowski, and L. Hluchy, “Agent-Based Simulation Platform
Evaluation in the Context of Human Behavior Modeling,” in AAMAS Work-
shops (F. Dechesne, H. Hattori, A. ter Mors, J. M. Such, D. Weyns, and
F. Dignum, eds.), vol. 7068 of Lecture Notes in Computer Science, pp. 396—
410, Springer, 2011.

149

Bibliography

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

150

S. Dlugolinsky, M. Kvassay, L. Hluchy, M. Wrzeszcz, D. Krol, and J. Kitowski,
“Using parallelization for simulation of human behaviour,” in Proceedings of

the 7th International Workshop on Grid Computing for Complex Problems,
GCCP 2011, (Bratislava, Institute of Informatics SAS), pp. 258-265, 2011.

A. Tavcar, M. Gams, M. Kvassay, M. Laclavik, L. Hluchy, B. Schneider, and
H. Bracker, “Graph-based analysis of data from human behaviour simulations,”
in Applied Machine Intelligence and Informatics (SAMI), 2012 IEEE 10th
International Symposium on, pp. 421-426, 2012.

B. Kryza, D. Krol, M. Wrzeszcz, L. Dutka, and J. Kitowski, “Interactive cloud
data farming environment for military mission planning support,” Computer

Science : rocznik Akademii Gorniczo-Hutniczej imienia Stanislawa Staszica w
Krakowie, vol. 13, no. 3, pp. 89-100, 2012.

T. Cioppa, Efficient Nearly Orthogonal and Space-Filling Experimental De-
signs for High-Dimensional Complex Models. Storming Media, 2002.

D. Krol, M. Wrzeszcz, B. Kryza, L. Dutka, and J. Kitowski, “Massively Scal-
able Platform for Data Farming Supporting Heterogeneous Infrastructure,” in
The Fourth International Conference on Cloud Computing, GRIDs, and Vir-
tualization, TARIA Cloud Computing 2013, (Valencia, Spain), pp. 144-149,
2013.

D. Krol, R. Slota, and W. Funika, “Behaviour-inspired Data Management in
the Cloud,” in Proc. of CLOUD COMPUTING 2010 The First International
Conference on Cloud Computing, GRIDs, and Virtualization, IARIA CLOUD
COMPUTING 2010, pp. 98-103, TARIA, 2010.

D. Krol, R. Slota, and W. Funika, “Behaviour-inspired Data Management in
the Cloud,” International Journal on Advances in Intelligent Systems, vol. 4,
no. 3 & 4, pp. 256-267, 2011.

D. Krol and J. Kitowski, “Distributed Storage Support in Private Clouds
Based on Static Scheduling Algorithms,” in Proc. of CLOUD COMPUTING
2011 The Second International Conference on Cloud Computing, GRIDs, and
Virtualization, TARTA CLOUD COMPUTING 2011, pp. 141-146, TARIA,
2011.

Scalarm, 89

Cloud, 14, 21, 24, 25, 28, 35, 45-49, 51,
52, 62, 76, 88, 98, 109, 125, 131-
133

Data Farming, 27, 66, 69, 70, 72

data farming, 12-17, 21, 22, 24-27, 32,
33, 37, 53-55, 57, 60, 62, 76, 78,
98, 121-126, 130

data farming experiment, 15, 17, 22, 23,
25-27, 30, 36, 53-58, 62, 72, 73,
76, 78, 79, 82, 85, 88, 92-94, 97—
100, 102, 107, 121, 123, 124, 126,
127, 130-132

Design of Experiment, 15

Dok, 15, 17, 28, 33, 53, 55, 79, 93, 121,
124, 132

EUSAS, 25, 94, 111, 121, 122, 130

Grid, 21, 24, 25, 28, 36, 40-44, 46, 56, 62,
63, 76, 83, 88, 98, 101, 103, 104,
124-126, 132

High Throughput Computing, 15
HTC, 15, 17, 28, 51

input parameter space, 22, 56, 93, 94, 132

Measures of Effectiveness, 13
MokE, 13, 15, 56, 57, 63, 74, 82, 86, 96,
124-127

Index

PLGrid, 25, 112, 126

QoS, 25, 40, 57, 62, 68
Quality of Service, 25

scalability, 17, 22, 23, 25-27, 31, 35, 37—
39, 45, 48, 51, 53, b4, 57-62, 64—
66, 68-73, 76, 77, 80, 81, 83, 85,
87-92, 94, 96, 98-106, 109-112,
130, 131

Scalarm, 26, 62, 64, 65, 71, 73, 76-94, 96—
98, 101, 102, 106-116, 118-121,
125-128, 130-133

scaling rule, 71

scaling rules, 24, 26, 36, 57, 58, 62, 65, 71,
72, 74-77, 85, 86, 89-91, 98, 112,
113, 115, 116, 118, 119, 130-132

self- scalability, 98

self-scalability, 12, 17-19, 22, 25, 26, 33,
57, 58, 60, 62, 64, 76, 85, 89, 90,
98, 99, 112-115, 117, 119, 120,
130, 131

Service Oriented Architecture, 25, 59

simulation, 13-15, 24, 27-32, 5558, 62—
64, 69, 70, 73, 74, 76, 80, 82, 83,
87-89, 92-94, 96, 100, 102, 104,
107, 108, 111, 112, 121-127, 132,
133

SOA, 25, 26, 32, 53, 60, 74, 130

task farming, 22, 51, 132

151

