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ABSTRACT : In the PhD thesis the methodology of stress measurements based on the grazing
incidence X-ray diffraction, namely: multireflection grazing incidence method (MGIXD) was
investigated and developed. The parallel beam geometry was applied for stress measurments.
The incident beam in classical diffractometers was collimated by Gobel mirror and the tests of
parallel configuration was performed for Al powder. Results presented in the thesis confirmed
that both statistical error and the misalignment error can be significantly reduced when the
Gobel mirror is used. Some physical factors was taken into account in XSA (X-ray stress
analysis): Lorentz-polarization and absorption factor (LPA) as well as refraction correction. In
the light of presented results the influence of LPA correction is minor in XSA when the
refraction correction can significantly influence the results of measurements. In the thesis the
issue of refraction correction was considered and compared with approaches presented in the
literature. In the thesis two theoretical developments of the MGIXD method were presented.
Firstly, the procedure of c/a parameter determination was proposed. Secondly, the influence
of stacking faults on the results was taken into account. It was shown that both improvements
significantly improves the quality of experimental data analysis.

In the present work the problem of X-ray stress factors (XSF) used for the
interpretation of XSA results was studied. Different theoretical grain elasto-plastic interaction
models were considered and applied in XSA. Verification of the XSF was done by measuring
lattice relative strains during tensile test for elastically anisotropic sample (austenitic stainless
steel) and for the isotropic sample (titanium — grade 2). Anisotropy of XSF was also observed
when the residual stresses were measured in ground Ni alloy, polished austenitic stainless
steel and CrN coating. The results presented in thesis, obtained using MGIXD and standard
method, shows that Reuss and free surface grain interaction models are in the best agreement

with the experimental results.

Finally the MGIXD method was verified using synchrotron radiation and three
different wavelengths (A=1.2527 A, A=1.5419 A and A =1.7512 A). The methodology was
developed in order to treat data obtained not only for different incident angles but also using
simultaneously different wavelengths. Samples exhibiting a high in-depth stress gradient:
mechanically polished AlI2017 and Ti6Al4V alloys were measured using classical X-ray
diffraction and the results were verified using synchrotron radiation. When peaks were fitted
by pseudo-Voigt function, a very good agreement was achieved between data obtained using
synchrotron radiation (for three different wavelengths) as well as classical diffractometer.

Having values of mean stress vs. penetration depth, the variation of stress vs. z — ‘real depth’



was calculated using the inverse Laplace transform applied to polynomial function. It was

found that the solutions (/,(z)) are similar for polynomial of 2" and 3" degree. Wiliamson-
Hall analysis was applied for collected data, allowing determination of the root mean square

strains +/< & > and size of coherent domain D was used. It was found that the uncertainty of

D is too large to obtain reasonable results when parallel geometry is used in MGIXD method.

The values of \/<572> measured using synchrotron and Cu K, radiations agree very well.
Next multireflection method was applied for the energy dispersion diffraction measurements
in which white beam containing radiation having different wavelengths was used (A (A): 0.3—
0.18/ E (keV): 40-68). The stress analysis was performed using three different methods:
standard sin®y method, Universal plot method and by using multireflection analysis. In the
range of penetration depth to 0-15 um the convergence of the results obtained from different
methods was gained. Moreover the synchrotron data perfectly agree with the results obtained
on laboratory diffractometer (Cu K, radiation) close to the surface. For depth larger than 14
um the experimental points exhibit significant spread and do not agree with the results of
standard method. In the end of the thesis the practical recommendations for MGIXD method

users will be drawn.



STRESZCZENIE : W niniejszej pracy doktorskiej dokonano rozwiniecia i weryfikacji
metodologii pomiarow napr¢zen wiasnych opartej na wielorefleksowej geometrii statego kata
padania (MGIXD, ang. multireflection grazing incidence X-ray diffraction). W dyfrakcyjnych
pomiarach naprgzen zastosowano geometrie wigzki réwnoleglej. Wiazka padajgca
w klasycznych dyfraktometrach zostata skolimowana przez lustro Gobela. Dla potwierdzenia
poczatkowych tez, testy konfiguracji przeprowadzono dla proszku aluminiowego. Uzyskane
w toku eksperymentu wyniki potwierdzity, ze zarowno niepewno$¢ statystyczna jak i biad
zwigzany z przesuni¢ciem probki w osi z moze ulec istotnemu zmniejszeniu, przy
zastosowaniu lustra Gobela. W pracy uwzgledniono wptyw czynnikow fizycznych (tzn.
czynnik Lorentza — polaryzacyjny i absorpcyjny, oznaczone: LPA, jak réowniez czynnik
refrakcyjny) na wyniki rentgenowskiej analizy naprgzen. W $wietle otrzymanych danych,
wptyw korekty LPA jest niewielki, natomiast refrakcja moze istotnie wplywa¢ na wyniki
pomiarow. W niniejszym opracowaniu problem refrakcji zostat poddany szczegotowej

analizie skonfrontowanej z rozwigzaniami przedstawionymi w literaturze przedmiotu.

W pracy zaprezentowano rowniez dwa teoretyczne rozwinigcia metody MGIXD. Po
pierwsze, zaproponowano procedure wyznaczenia parametru c/a. Po drugie, uwzgledniono
wplyw bledow ulozenia na wyniki analizy napr¢zen. Dzigki przeprowadzonym badaniom
udato si¢ wykaza¢, ze oOba rozwinigcia znacznie poprawiaja jakos$¢ analizy danych

doswiadczalnych.

Praca porusza réwniez problem statych sprezystych wykorzystywanych do
interpretacji wynikow. Analizowano i opisano zastosowanie wybranych teoretycznych modeli
sprezystego oddziatywania mig¢dzyziarnowego w analizie naprezen. Weryfikacje stalych
dokonano poprzez pomiar relatywnych odksztatcen sieci podczas testu rozciggania zarowno
dla probek anizotropowych (austenityczna stal nierdzewna) jak i dla probek izotropowych
(tytan). Podczas badan udato si¢ zaobserwowacé, ze anizotropia sprezysta wystepuje rowniez
w przypadku, gdy napre¢zenia mierzono w szlifowanym stopie Ni, polerowanej nierdzewnej
stali austenitycznej i powtoce CrN. Wyniki przedstawione w pracy uzyskane przy uzyciu
metody MGIXD jak i metody standardowej pokazuja, ze dane przewidywalne w oparciu o
model Reussa i samouzgodniony powierzchniowy przedstawiajg najlepsza zgodnosé
z wynikami doswiadczalnymi, przy czym model samouzgodniony powierzchniowy ma dobre

uzasadnienie fizyczne.



Metoda MGIXD  zostala zweryfikowana za pomocg  promieniowania
synchrotronowego przy uzyciu trzech réznych dhugosci fali (A = 1,2527 A, L = 1,5419 A
iA=1,7512 A). Zastosowana metodologia zostala rozwinigta W celu analizy uzyskanych
wynikow nie tylko dla réznych katow padania wigzki, ale takze przy pomocy jednoczesnie
réznych dlugosci fal. Probki wykazujgce duzy gradient naprezen w glgb: mechanicznie
polerowane stopy AI2017 i Ti6Al4V, byly mierzone za pomoca klasycznej dyfrakcji
rentgenowskiej a jej wyniki weryfikowane za pomocg promieniowania synchrotronowego.
Kiedy pozycje¢ pikow dyfrakcyjnych zostaly wyznaczone za pomocg funkcji pseudo-Voigta,
wykazano zgodno$¢ miedzy wynikami uzyskanymi za pomoca promieniowania
synchrotronowego (dla trzech réznych dlugosciach fali), a wynikami z klasycznego
dyfraktometru. Posiadajac informacje o wartosciach $rednich naprezen w funkcji glebokosci
whnikania, wyznaczono zmienno$ci napr¢zen w funkcji rzeczywistej glebokosci w probee przy
uzyciu odwrotnej transformaty Laplace'a (zastosowanej do funkcji wielomianowej).
Stwierdzono réwnoczesnie, ze rozwigzania sg podobne dla wielomianu stopnia 2 i 3. Analiza

Wiliamsona-Halla zastosowana do analizy zebranych danych umozliwita okreslenie $rednich

kwadratowych odksztalcen sieci +/<&”> jak i wielkosci domeny koherentnej D.
Stwierdzono, ze niepewnos¢ D jest zbyt duza, aby uzyska¢ prawdopodobne wyniki, gdy

geometria wigzki réwnoleglej jest uzywana w metodzie MGIXD. Jak wykazaly badania,

wartoéci /< &” > zmierzone za pomocg synchrotronu i za pomoca promieniowania X

(lampa: Cu Ka) zgadzajg si¢ bardzo dobrze.

Metoda wielorefleksowa zastosowana zostatla w eksperymencie synchrotronowym
z dyspersja energii, w ktorym wykorzystano biata wigzke promieniowania o réznych
dhugosciach fal (A (A): 0.3-0.18 / E (keV): 40-68). Analiz¢ naprgzen przeprowadzono za
pomoca trzech réznych metod: standardowej metody sin®y, metody ‘universal plot’ i za
pomoca analizy wielorefleksowej. W zakresie glebokosci penetracji 0-14 mikrometrow
uzyskano zbieznos¢ otrzymanych wynikéw pomiarow analizowanych za pomoca réznych
metod analizy danych. Ponadto dane synchrotronowe doskonale zgadzaja si¢ z wynikami
uzyskanymi za pomoca klasycznego dyfraktometru (promieniowanie Cu Ka), blisko
powierzchni. Na glebokos$ci wigkszej niz 14 mikrometréw punkty eksperymentalne wykazuja
znaczne rozproszenie i nie zgadzaja si¢ z wynikami metody standardowej. W konkluzjach
pracy przedstawiono praktyczne wskazowki dotyczace zastosowania i ograniczen metody

MGIXD.
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1. INTRODUCTION

The stress state is a characteristic parameter of the material state, together with the
microstructure and the texture, it influences the material properties. That is why the stress
analysis is of the great significance in industry and technology and became an important
part of materials science. Progress in materials science and technology brought new
challenges for stress analysis and various destructive and nondestructive methods have

been developed.

Residual stresses are the stresses that remain after the original cause of the stresses
(external forces, heat gradient) has been removed [1]. They can result from temperature or
deformation gradients which are present in almost every step of material processing.
Residual stresses can occur as a consequence of various technological treatments and
manufacturing processes, but they can also arise in the component during its service life.
Both the magnitude and the spatial distribution of residual stresses play key role in the
behaviour of the material subjected either to heat treatment or plastic deformation. The
strain - stress analysis is of particular utility for elucidating causes of failure. Depending on
the orientation and value of the residual stresses superimposed by the external loads they
can be unfavorable or beneficial for the component. The failure of a component in most
cases starts in the near-surface area and occurs due to the initiation of plastic deformation
or fracture when material is subjected to tensile loads. What is more all kinds of scratches,
notches, etc. concentrate additional applied tensile stress near the surface which can cause
the initiation of a crack. That is why; usually it is favorable with respect to the component
lifetime to create compressive residual stresses in the near-surface area, which can stop
fatigue crack propagation [2]. The basic mechanical surface treatments which allow

gaining compressive residual stresses are deep-rolling and shot-peening [2, 3].
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One of the ways to improve surface properties of the material are coatings. They
can be beneficial in example for corrosion or wear resistance and can provide the long-
term surface protection. The lifetime of a coating is strongly dependent on the residual

stresses profile in the surface area.

Residual stresses influence the strength and fatigue behavior of the materials, but
also they affect the chemical, electrical behavior of the thin films and can be very
important in stress corrosion process [2, 3]. That is why residual stresses have to be taken
into account while designing the structural parts especially in view of the improvement of
their properties and increase of their lifetime. Stress analysis is important for constructions
of and especially after various mechanical surface treatments. Studying the residual
stresses of these materials is challenging issue due to depth gradients of micro and macro
residual stresses and the influence of different parameters on their stability or relaxation.
Consequently, reliable experimental methods for residual stress determination are of great
practical importance. That is why diffraction method, which allow to separate micro- and
macro-residual stresses and to study stress distribution in the sample are an indispensible
tool. Despite great progress in stress analysis there are many questions which remain

unsettled.

In the first part of this thesis (chapters 1-3), the diffraction methods of stress
determination are introduced. The principles of lattice distortion, crystallite size and stress
analysis based on the diffraction peak profile and measured lattice strain are described in
chapter 2. Next, chapter 3 is devoted to a short characterization of different methodologies
for stress determination using X-ray radiation (classical and synchrotron). The
experimental methods are divided into two groups, i.e.: these in which the penetration
depth of X-rays is constant or these for which penetration varies during measurement. On

the basis of first three chapters the aims of the thesis are specified in chapter 4.

In chapters 5 — 7 the original results of this work, concerning development and
testing of the multireflection grazing incidence X-ray diffraction (MGIXD) method for
stress determination are presented. At first, the most important corrections of experimental

data and tests of experimental setups are described (chapter 5).

In chapter 6 two important theoretical developments of the MGIXD method are

presented. The first one enabling determination of c/a parameter and significantly

12



improving quality of experimental data analysis for hexagonal structure has been proposed
and tested. The second one in which density of stacking faults is taken into account is
applied. What is more a verification of different types of X-ray stress factors (XSF), which
can be applied to interpret the experimental data obtained using MGIXD method, is
presented. Finally, examples of stress determination in surface layer for materials having
high and low single crystal elastic constants anisotropy are shown.

In chapter 7 the methodology of data interpretation is developed in order to treat
data obtained not only for different incident angles but also using simultaneously different
wavelengths. It is shown that the new elaborated method is not only ‘multi-reflection’ but
also ‘multi-wavelength’. Moreover, application of different wavelengths enables

verification of the MGIXD measurements.

Chapter 8 concludes all the results presented in the thesis and formulates practical
recommendations for the users of MGIXD method.

13



14



2. STRAINS AND STRESSES MEASURED BY DIFFRACTION

The advantage of the diffraction method is its non-destructive character and the
possibility of direct measurements of strains in precisely defined volumes of the material.
Not only stresses can be determined from the diffraction methods. Intensities of the
diffraction lines gives us the information about the crystallographic texture and the
broadening of the diffraction lines allows to determine the size of the diffracting domains
and the content of the crystalline defects such as dislocations and stacking faults [1].
Presence of stacking faults causes the diffraction peak shift and it depends on the
probability of finding fault (Wagner 1966) [4].

The great need of precise stress determination has involved the introduction of new
measuring methods and devices into experimental world. This progress would not have
been possible without a detailed understanding of the theoretical principles of the used
methodologies. In this work the diffraction methods of stress measurement will be used
and developed. Because these methods are based on measurements of crystallographic
lattice strains, the present chapter is devoted to explain how diffraction sees the strains

caused by different kinds of stresses.

2.1. RESIDUAL STRESSES AND STRAINS
All solid materials are deformed when subjected to external loads. The deformation
is manifested in displacement of points in the body under load from their initial positions.
When a body underlies certain stresses, the strain response depends on the elastic
properties of the material. The strain can be of elastic and of plastic kind. As long as the
forces acting on the body are below a certain limit, the deformation is reversible and is
called elastic deformation. For this kind of deformation, when the load is removed the
displacements vanish and the body returns to its unloaded configuration. However, when
15



the forces acting on the material are higher than the limit, the material undergoes plastic
deformation. In this case some permanent deformation remains after the load is removed.
If the deformation of the material is homogeneous the deformation of all points of the body
is the same. However, when the deformation varies from point to point along any direction

in the material volume, the deformation distribution is considered heterogeneous [1, 3].

The relation between the stresses and elastic strain tensor for elastic body is given

by generalized Hooke’s law [1]:

O =Cjéu  Of € = SwijOjj (2.1)

where:o; and &, are the components of stress and elastic strain tensors, while c;, (s;)

are the components of stiffness (compliance) tensor.

The stress component ojj is defined to be the force per area acting on the i-face in
direction j (Fig. 2.1). The o;i components for which i-forces are normal to the i-faces are
called normal components, and the oj; components (where i#j) for which j-forces are
parallel to the i-faces are called shear components. Stresses form a 9 component

symmetrical 2" rank tensor which can be written in the matrix notation [1]:

Ojj =| O Oz O (2.2)

Fig. 2.1. Orientations of stress tensor components with respect to definition surfaces

16



In static conditions, the principle of conservation of angular momentum implies

that oj; = oj; and only 6 of the 9 components are independent [1].

The external forces acting on the material causes the deformation which can be

described by the strain tensor:
€n €

Ej = fan & & (2.3)
€y €3 &y

: 1 . OV, . 8V, .
& = lim — and gi==| lim —+ lim —~ for i#]
5% —0 5Xi 2| 5x-0 5Xi 8% —0 5)(]_

while i, j =1, 2, 3 (the displacements for two dimentions are defined in Fig. 2.2).

Fig. 2.2. Displacement of the body used in strain definition.

The proportionality constants cijq in Eq 2.1 describe physical property of the elastic
substance under load. The cjjq tensor relating strains and stresses (Eq. 2.1) is a 4-th rank
tensor of elastic stiffnesses, and it has 81 components. Because of stress and strain
symmetries it is possible to reduce the number of the components to 36 independent ones.
In the case of monocrystal this number furthermore can be reduced taking into
consideration the symmetry of the crystal lattice [1]. For isotropic body the cij, constants
depend only on two parameters (E — Young’s modulus and Poisson's ratio), and they do
not change with direction in the body. However, for anisotropic materials these properties
vary with orientation and more elastic constants are needed to describe elastic properties

[3].
17



By definition, the residual stresses are self-equilibrated stresses [2]. The residual
stresses must fulfill the equilibrium condition in each point of the material [2, 3]:

80'” B 24

ox (2.4)
And surface condition:

G-i=0 ie. o;-n =0 (2.5)

where i is the normal versor to sample surface.

When flat samples are taken into consideration the ‘plane stress’ condition can be
assumed. It is possible due to their small expansion in one direction (e.g., X3) as compared
to the other two directions, so often stresses in the Xxsz-direction can be assumed to be
negligible (613= 623 = 633 = 0). The stress equilibrium conditions imply that tensile residual
stresses in a certain direction within one part of a body are always balanced by matching
compressive residual stresses in another part. Thus, the residual stress state of a component
can never be expressed by a single residual stress tensor, but only by residual stress
distribution. This also implies the presence of residual stress gradients. Strong residual
stress gradients are often present in the near-surface area of components, due to surface
treatment, or because the residual stress component normal to the surface needs to vanish

but stress continuity has to be observed in the bulk material [2].

Due to granular structure of polycrystalline aggregates, the stress and strain states
in these materials should be considered and described at different scale. It is possible to

type, 11" type
(microstresses). The residual stress distribution in a material is the sum of type I, type II,

st nd
| |

distinguish residual stresses of type (macrostresses) and

and type 111 residual stresses:

o(N=c"+c" +" () (2.6)
[o(rdv =0 2.7)

where: Vi is the total volume of the sample and r describes position.
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Type | residual stresses o' represent the average residual stresses acting within all
phases and crystallites in the gauge volume V.. These stresses are defined by mean value
over volume of considered part of the sample (Vga, for example gauge volume in

diffraction experiment), i.e.:

o' = vi j o (r)dv (2.8)

ga Vga

The gauge must be large enough to represent macroscopic material containing a sufficient

number of crystallites and all phases present in the material.

Type | residual stresses (or first order) result from long range strain incompatibilities
introduced, e.g., by strain or temperature gradients in a manufacturing process. The
distribution and magnitude of type | residual stresses often can be controlled by modifying

the process parameters of a production process [2].

Type 1l residual stresses (o', second order) describe the mean deviation from the

macroscopic residual stress level o' calculated over the volume of individual

polycrystalline grain (Vy), i.e.:

o' = [[o()-o'Tav 2.9)
Vgr Vgr
In a multiphase material type Il residual stresses (or second order) are taken as the volume

weighted average residual stresses o“ calculated over the volume of crystallites belonging
to a phase a (V,) or as the average residual stresses for those crystallites of the phase a

which contribute to the measurement:

o :via Vj [o(F) - o' JdV (2.10)

Type |1 residual stresses arise for instance due to deformation misfits between neighboring
grains and due to temperature or deformation induced misfits between different phases in

a multiphase material [2].

Type 111 residual stresses " (r) represent the local deviation of the residual

stresses within an individual crystallite from its average residual stresses in the grain
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(variation on the atomic scale). Thus, the average type Il residual stresses does not result
in macroscopic distortions. Type Il residual stresses are caused, e.g., by voids, solute

atoms, or dislocations in the crystal lattice [1, 2].

The all three types are present, for example, in mechanically machined samples.
The microstructure of materials subjected to plastic deformation changes significantly. Due
to twinning mechanism and slips occurring on the crystallographic planes plastic
deformation of the grain occurs. In general, this irreversible deformation it is slightly
different for neighboring grains, which leads to compression or stretching of single grains.
This mechanism is a primary source of internal second order stresses. In addition, during
the plastic deformation, a large amount of point defects and dislocations is generated. The
latter phenomena lead to creation of internal stress fields. Accumulation of dislocation

inside the grains produces the third order stresses.

Each type of stresses existing in material influences crystallographic lattice causing
its distortion. The first and second order stresses cause mean elastic lattice strains for
particular polycrystalline grains. The third order stresses leads to distortion and strain
heterogeneity within grains. Both effects can be seen in diffraction experiment as the shift
and broadening of the diffraction peaks. To present methods for strain measurement, at

first the diffraction phenomenon must be described.

2.2. DIFFRACTION

Diffraction on crystallographic lattice is associated with certain phase relationships
between waves scattered in all directions by the atoms. The phases of the scattered rays are
relatively shifted in the most of directions. However, in some particular directions the
reflected waves exhibit the same phase and due to constructive interference they are

strengthened, creating a diffracted beam.

In order to describe the diffraction phenomenon using kinematic theory, crystal can
be treated as a periodic arrangement of atomic planes, which act like a mirror for the
incident radiation [5]. The incident beam strikes the crystallographic planes at an angle
6 and it is reflected from them also at an angle & (see Fig. 2.3b). Therefore, the total angle

of deflection of the diffracted beam is equal 26. If the distance between adjacent planes is
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equal to ‘d’ the difference of the paths for the rays reflected from these planes is equal to
2d sin (Fig. 2.3a). Constructive interference will occur when the waves have the same
phase, so when the path difference between them will be equal to an integer multiples (m)

of the wavelength (1), so when the equation:
mA=2dsinéd (2.11)

is fulfilled. The above equation is called Bragg’s law [1] and it is a basic geometrical

diffraction condition.

ks =0

M
d . >
(hkl) planes \\1 2
2dsin(Q)
a)

Fig. 2.3. Difference between paths of the beams reflected from neighboring
crystallographic planes (a) and construction of the scattering vector (b), where k. and k,
denotes wave vectors for the incident and diffracted beams, respectively.

Bragg’s equation can be expressed also in an equivalent way. Let us denote by k. a wave
vector of the incident beam and by k, a wave vector of diffracted beam. Diffraction vector

can be defined as: Ak =k, —k; and it is perpendicular to the plane of reflection (Fig2.3 b).

The length of the diffraction vector is given by:

Axsind
A

Ak = |k, —k;| = (2.12)
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Considering Bragg’s law, the above equation can be rewritten as:

e j—” (2.13)

hkl

where: hkl are the indices of reflection which for the first order reflection (i.e., for the

lowest hkl and m=1 in Bragg’ law) are equal to Miller indices of the of the reflecting

planes, while for the m-th order of reflections d, , =d/m where d is the interplanar space.

2 = . . . .
Because d,,, =T (where G,,, is the reciprocal lattice vector), so the general condition

‘ hkl‘

for the occurrence of diffraction (when both vectors Akand G, have the same

orientations, i.e., they are perpendicular to the reflecting plane) can be written as:

AK =G, (2.14)

Expressing the G, vector by primitive translation vectors of the reciprocal lattice
G, =hb, +kb, +1b, and multiplying both sides of Eq. (2.14) by primitive translation
vectors 4, d,,d8, (where the latter basis vectors are defined for the real lattice) the Laue

equations can be obtained [7]:
a,Ak =27h a,Ak = 27k and a,Ak =271 (2.15)

The Miller indices of crystallographic plane in the real space (h,k,l) correspond to

the coordinates of lattice point in the reciprocal space.

Bragg or Laue equations give the geometrical condition of the diffraction; however,
they do not contain the information about the intensity of the diffracted beam. The
intensity will depend on the kind of the diffracting atoms and their arrangement in the unit
cell. In the case of X-ray diffraction electrons are responsible for coherent scattering of the
electro-magnetic wave. During the diffraction each of the electrons in the atom scatters
elastically part of the incident beam. In order to describe the ability of diffraction for each
atom the atomic factor f depending on the Z (atomic number) of the element is used [8]. In
the direction of diffraction, specified by the Bragg condition, the ability of diffraction by

the unit cell is described using the structural factor Fr. The complex value of this factor is
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calculated as a sum of the amplitudes of the coherently diffracted rays from the atoms in
the unit cell (assuming unit amplitude of the incident beam) [8]. For unit cell having M
atoms at positions described with the coordinates (x,, Yn, Zn), the structural factor can be

expressed as [6]:

M
_ 27i(hx, +ky, +lz,)
Fhkl - Z fne (2.16)
n=1

where: hkl are the indices of considered reflection, f, is the atomic factor of the n-th atom

and M denotes number of atoms in unit cell

The intensity of the beam diffracted from all the atoms in the unit cell in the
direction described with the Braggs law is proportional to the square of the amplitude of
the resultant beam, and consequently, it is proportional to | Fna [>. The above equation
allows calculating the intensity of each hkl reflection when the atomic positions are known.
Analyzing intensities of the beams diffracted on different plains (i.e., knowing the values
of | Fria [* from experiment) the arrangement of the atoms in unit cell can be refined. In this

aim the numerical Rietveld method can be used [9].

In description of diffraction experiment it should be remembered that the crystals
are not ideal and the incident beam is not strictly parallel and monochromatic. The actual
X-ray beam contains rays divergent and convergent as well as parallel, so the intensity of
diffracted beam will be registered not only for the Bragg angle but also in same small
range around this angle. This effect is known as the instrumental broadening of registered
diffraction peak. Also, the microstructure of the material significantly influences the
profile of the measured peak, i.e. the broadening of the peak is affected by the size of
diffracting crystal and its real internal structure containing defects of the lattice.

To explain the role of finite crystal size the ideal crystallite having N points (equal to
number of unit cells) can be considered. The positions of n-th point of the real lattice can

be defined by the vector:
Pr = M8, +M,8, + M3, (2.17)

where: &, d,, d, are the basis translation vectors and m;, m, A m3 are the integer or zero

numbers.
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Next, the diffraction vector Ak can be expressed as the linear combination of the

basis vectors in reciprocal space:
Ak =hb +hb, +hb, (2.18)

where hy h, hs are the Ak vector coordinates given by real values. These values are chosen
close to the point of reciprocal lattice corresponding to the considered reflection hkl,
i.e. hy1=h hy=k hz=I when Eq. 2.14 is fulfilled and Ak determines the position of the

reciprocal lattice point.

If the point of the observation (detector counting intensity of diffracted beam) is far

away from the crystal the phase difference of the waves from two scattering centers is
equal: Ag, =Ak 5, . Assuming amplitude of incident beam equal to unity, the amplitude
A, of the wave diffracted on a lattice point (representing unit cell) in the position 5 can be

expressed as :

A, = AF, exp[-iAg 1= AR, eXp[—iAIZ,Bn] (2.19)

where Fyy stands for an amplitude of the beam diffracted on the unit cell which is equal to
the structural factor defined by Eq. 2.16 and A is an amplitude of wave scattered by one
electron. In order to gain the amplitude from all scattering centers it is necessary to sum up
over all lattice points [:

A = AR Y exp[ -i5,K (220

Following the calculations given by for example Kittel [10], the dependence of diffracted
intensity on the length and direction of scattering vector (Ak =hb, +hb, +hb, ) can be
derived:

2 sin” zN,h, sin® zN,h, sin® zN,h,
sin®zh,  sin®zh,  sin®zh,

1(h,h,,hy) =‘Aotal 2 =‘A\5Fhkl‘ (2.21)

where: N1, N, and N3 are the numbers of real lattice point in directions of &, d,,d, and

N= N]_ Nz N3.
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Integrating the above equation around point of reciprocal lattice
(e.9. Ak =G,,, =hb, +kb, +1b, the total diffracted intensity proportional to the number of

unit cells (N) can be calculated, i.e.:

h+1/2 k+1/2 1+1/2

It (NKI) = _[ I _[ I (h,,h,, h;)dhdh,dh, =‘AN‘2 =‘A\::Fhkl‘2 NlNZNSZ‘A\thkI‘Z N (2.22)

h-1/2 k-1/21-1/2

To see the intensity distribution around given point in reciprocal lattice the

particular reflection 00l can be considered. If we follow the intensity variation only in the

direction of b, vector we can put h =0 and h, =0 in Eq.2.21, i.e.:

HJ
2 sin“ zN,h
I(h)=|AF,| NN} —-322 2.23
() =|AF[ NN (2.23)
Using Egs. 2.12, 2.13 and 2.18 the value of h,can be related with 26 angle:
h, =%sin0 (2.24)

sin® N;h,

In Fig.2.4 the one dimensional function——;
sin” zrh,

vs. h, for I=1 is shown. Also, this

function vs. 26 is presented assuming dy, =A=1A. The calculation were performed for
N, =500 and N,=1000 atoms (or crystallographic planes) in the direction along the

scattering vector. This situation corresponds to the crystallite size of 50 nm and 100 nm

along the direction of scattering vector.

sin’ 7N, A, sin® 7N, A,
sin’ 7h, sin’ 7h,
-—= N3=500
—— N3=1000

--- N3=500

1.0e+6
— N3z=1000

1.0e+6

8.0e+5 4 8.0e+5 1

6.0e+5 - 6.0e+5
4.0e+5 4.0e+5

2.0e+5 2.0e+5

0.0 —= - Y T Y au -~ 0.0 = T T ¥ =
0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004 59.8 59.9 60.0 60.1 60.2
hs 20 ()
=2
sin® zN;h,

Fig. 2.4. Function vs. h, (for 1=1) and the same function vs. 26

sin® zh,
(assuming d,, =4=1A) are shown.

25



The following conclusion can be drawn from the above equations illustrated in
Fig. 2.4:

e intensity at the point of reciprocal lattice (or for 26, angle which fulfill strictly

Bragg low) is proportional to the square from numbers of reflecting planes being

sin ZNhy )

N;),

perpendicular to the scattering vector (lim —— =
-0 sin® zrh,

o Dbroadening of intensity given by width of the peak is proportional to 1/N,,

i.e. number of reflecting planes in the direction of scattering vector Ak ,
o total (integrated) intensity is proportional to N,

e Dbroadening of the intensity around the point of reciprocal does not depend on the
reflection order (the same profile of peak be obtained for different I, because the
period of function defined in Eq. 2.23 with respect to hs is equal tol).

The above conclusions can be generalized for any hkl reflection.

More general derivation of the intensity distribution in the diffraction peak for
crystallites with lattice distortion was given by Warren and Averbach [11]. In this case also
the partial waves diffracted on scattering centres are considered but the calculations were
performed for a powder sample and contributions of diffracted intensity from grains having
different orientations was integrated. Moreover, the scattering centres are shifted from the
points of nets. The result of calculations is given as the Fourier series (presented also for
the 00l reflection):

(h) =|AF.| N3 [a, sin(2znh,) +a', cos(2znh,)] (2.25)

which can be also written with respect to 26 angle substituting h, by relation 2.24. The

coefficients of expansion are [11]:

a,=ay (1-27°n’1> <£° >) (2.26 a) and a',=-a; (27’’’ <&>) (226 b)

n

where < &? >and <& > are the square mean and mean values of the lattice microstrains in
the direction of scattering vector, inside a crystallite (those which are caused by defects
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and associated with the third order stresses), and a° is the factor depending on the

crystallite size (also in the direction of scattering vector).

The a', coefficients represent nonsymmetrical distribution of strains within the

crystallite. However, if we consider only effect of the third order stresses and the
distribution of defects is random (or in more general case if the probability of & and -¢

occurrence is equal) the a', coefficients vanish.

It is clear that, the a,coefficients bring an important information about size of
crystallite (a®) and square mean strain of its lattice strains caused by the third order

stresses. The a, factors do not depend on the order of reflection (00l), and it can be shown

[11] that:
B
da,| __1 (2.27)
dn| . N,

where N, is an average number of reflecting plains along scattering vector.

On the other hand the function of a, vs. <&® > depend the order of reflection

(00I). Therefore the analysis of size and strain by Warren-Averbach is based on the
expansion of diffraction peak profile into a Fourier series and then calculation of <&* >

and N, (or rather D= N,a,, i.e., size of crystallite) in direction of scattering vector from

A, coefficients. In this method two diffraction peak must be measured for two orders of
reflections (usually the first and second order for example 111 and 222).

Next step in analisis of peakprofile, after single crystal and powder sample is it the
case of polycrystalline aggregate which is built from crystallites having different
orientations (like in powder but often some orientations are preferred in the case of
crystallographical texture). Moreover, in real structure of polycrystalline material mosaic
microstructures of grains can have a significant impact on diffraction (especially after large
plastic deformation). Such a crystal do not have atoms arranged in a perfectly regular
network, but a large number of small blocks, each of which is slightly disoriented with
respect to its neighbors [6]. Diffraction peak results from the coherent scattering of the
incident beam on the so-called domains which in fact represent crystallites considered by
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Warren and Averbach [11, 12]. The size of such domains is of tents or hundreds
nanometres, so their effect on the peak broadening is comparable with that shown in
Fig. 2.4. In the case of polycrystalline material usually the same methods of profile
analysis are used as for powder sample, however, in this case such properties as
crystallographic texture, complex microstructure and moreover presence of residual

stresses should be considered in interpretation of the obtained results.

The polycrystalline grains are not free as in the powder sample but they interact
elastically with their neighbours. Therefore, the first and second order stresses causing
mean elastic deformation of the lattice which can be observed as a shift of the diffraction
peak position. Using diffraction methods the mean lattice strain can be determined as the
relative change of interplanar spacing and can be calculated from the relative shift of the
peak:

_dO

<4 >0 Gy (2.28)

{hki}
0
d{hkl}

<E>pn=

or using Bragg’s relation (Eq. 2.11):
<& >y =—COt (< 0 >y _90) (2.29)

where <d >.,.is the mean interplanar spacing for {hkl} crystallographic planes

determined in the studied sample, d{ohk,} is interplanar spacing for these planes but in stress

free crystallite, 2(< 9 >

way —6,) 18 @ shift of diffraction peak with respect to the position in

stress free material (26y).

It should be underlined that the <...>gqy is the volume of the crystallites (in fact
domains in polycrystalline grains) which take part in diffraction, i.e., they have such lattice
orientations for which the scattering vector Ak is perpendicular to symmetrically
equivalent {hkl} planes (or strictly: as close to the normal as diffracted intensity appears),
see Fig. 2.5. Therefore, diffraction gives us information about average lattice strains for
group of grains, but not directly about stress in particular grain. Further analysis is
necessary to relate these strains with stress of I® and 11" type [13, 14]. Also it should be
mentioned, that the <...>gy average is calculated over different grains exhibiting different

strains (due to different lattice orientations or second order stresses), thus their contribution
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in diffraction peak cause additional broadening (however in most cases much smaller than
this produced by the third order stresses).

incident Ak 4 scattering diffracted

Fig. 2.5. The selective character of diffraction.

Only the grains for which the scattering vector Ak

is normal to the reflecting planes {hkl} and Bragg’s
law is fulfilled contribute to diffracted intensity.

Concluding it should be underlined that the peak broadening of the diffraction peak
measured for polycrystalline material brings an important information about the size of so
called coherent domain and mean square internal strains <& > (caused by defects and
third order stresses), while the shift of diffraction peak can be related to mean lattice strains
caused by the external or residual stresses acting on the grains embedded in polycrystalline
aggregate (caused both by the first and the second order stresses). In the next chapters the

method for extracting such information from experimental data will be shown.

2.3. DETERMINATION OF STRESSES FROM DIFFRACTION DATA

The residual stress state analysis is based on the diffraction measurements of the
interplanar spacings in different directions of the scattering vector Ak [1]. In order to
describe the geometry of measurements it is necessary to introduce two coordinate
systems: the coordinate system connected with the specimen (S) and the coordinate system
connected with the scattering vector. The latter frame is called the laboratory system L,
because scattering vector is often fixed with respect to laboratory and sample is rotated

(e.g. Eulerian cradle). These systems are defined as follows (Fig. 2.6):

The specimen reference system (S): The Sz axis is orientated perpendicular to the specimen

surface. Axes S; and S, lie in the surface plane. If a preferred direction within the plane of
the surface exists, e.g. the rolling direction, the S; direction is usually orientated along this

preferred direction.
29



The laboratory reference system (L): L3 axis coincides with the diffraction vector Ak , and

L, axis lies in the surface plane.

Then the orientations so defined L system with respect to S system can be described
by two angles  and ¢ defined in Fig. 2.6, i.e. w is between S3 and L3 axes, while ¢ is

between L; and its projection on the sample surface. These angles also determine

orientation of the scattering vector AK || L,.

L || scattering

veetor Fig.2.6. Orientation of the scattering vector with
respect to the sample system S. The w and ¢
angles define the orientation of the L system (the
L, axis lies in the plane of the sample surface).
Additionally, » — rotation of the L system around
scattering vector is shown (this rotation will be
used | the scattering vector method, section
3.1.3).

2.3.1. DETERMINATION OF FIRST AND SECOND ORDER STRESSES
To analyse first order stresses, the mean lattice strains has to be determined from measured

shifts of the diffraction peak (Egs. 2.28 or 2.29). Because the exact position of the
diffraction peak must be determined with high accuracy it is necessary to take into account
phenomena influencing the profile [1, 6] or position of the peak. To do this the following

depending on 26 factors are introduced in strain analyses:
e Lorentz-polarization factor - LP(26),
e absorption factor - Ab(26),
o refraction factor (in the case of small incidence angles) — R(26).

Usually, the dependence of atomic factor f, (see Eq. 2.15) and temperature factor do
not significantly influence peak profile, and they are not taken into account in corrections.
The LP(26), Ab(26) factors are described in Culity [6] or Noyan [3], while the R(26) factor

is in detail considered in this work.
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Also, the asymmetry of the background may be an imortant problem in the peak
position determination. In order to make the correction for the background it is necessary
to apply function Iye(26) which can be obtained by fitting a low degree polynomial
function (usually simply linear function) to the background intensities on both left and
right hand sides of the diffraction peak [1]. To introduce all corrections the background
must be subtracted from the measured intensities, the result must be divided by LP(26) and
ADb(20) factors for every 26 angle and next peak must be shifted by the - 26 angle (in the
case of small angle of incident beam), i.e.:

(20)

. (20)—1,,
., (20-26,) =22 g (2.30)
LP(20) Ab(20)

where the lexp(26) and 1¢o(26) are the experimental and corrected intensities, respectively.

After correction and proper preparation of data the precise position of the
interference-peak can be determined calculating center of gravity of the peak or fitting
theoretical functions to the intensity profile (e.g.: Gauss, Person VII, Lorentz or Pseudo-
Voigt functions) [1]. Although the displacement of the diffraction peak is generally small,
the fitting procedures with, e.g., Lorentz, Gauss or Voigt functions allow to determine

a very precise position of the peak.

Centre-of-gravity method. In this method the intensities of K,;-K,, lines are averaged out

in the result. The peak position is calculated by [1]:

j 1(20)26d 26
<20, >=t—— (2.31)
j 1(26)d 26

Usually the integration is performed over some threshold value assumed relatively to the

maximum peak-intensity.
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Fitting of the Gauss function. In this method the diffraction peak is fitted by [9]:

15(20) = ag exp| —bs (20-20,,,)° | (2.32)
where: ag 23 In2 and by =%, w is the full width at half maximum (FWHM
w\ 7z

defined as the full angular width at half-maximum intensity of the diffraction peak [1]),

related with integral breath by equation: g, = g \ /% (B is defined as the ratio of the peak

area to the peak maximum [1]).

Fitting of the Lorentz function [9]:

aL
1+b, (20-26,, )’

1.(20) = (2.33)

2 4 . . w
where: a_ =——, b, =— and w can be related with $ by equation: £, = =
W W 2

For better resolution of determined position it is recommended to use Pearson VII-
functions or Voigt-functions instead of Gaussian or Lorentz distributions. Those functions
are much more flexible in describing the peak profile and fits better to the measured

intensities [1].

The Pearson VII-function is given by [9]:

I, (20) = ~w — (2.34)
|:1+h/ll (20—20max) ]
1
1 4(2m —1J
where: a,, = F(m)l 2 j__l, by, = I'(m)=(m-1)!, and m is the shape
r(m)_E W
parameter.

32



The Pseudo-Voigt function [15, 16, 17] is superposition of Gaussian (G) and Lorentzian

(L) functions, given by the expression [9, 17]:
| v (20) =L (20-26,.,) + 1—17)G (26 - 26,.,) (2.35)

where: 1) is the relative contribution of Gaussian component.

If Lorentzian and Gauss components are normalized than pseudo-Voigt is also normalized.

It should be stated that from X-ray diffraction experiments performed on laboratory
diffractometers (it is not the case of synchrotron radiation) the intensity of the incident
beam is composed from two emission lines K, and K, exhibiting very similar
wavelengths. The contribution of both lines cannot be experimentally separated totally and

it has to be done at the stage of data analysis using one of two possible methods:

e influence of K, intensity can be removed using Rachinger method [18] assuming
theoretical ratios of intensities 1(K ;)/I(K 42)=0.5 and knowing difference between
wavelengths Akq1 and Akq;. Next, the center of gravity is calculated for one peak or

peak profile is fitted by above defined functions,
e doublet of two measured is treated together:
o superposition of defined above functions:

1(20) =1 Kal (20)+0.51 Ka1(26— 2‘9Ka1—|<a2) (2.36)

is fitted to experimental points (where 26, ., ., IS the distance between

two peaks resulting from two lines for given theoretical difference of

wavelengths 2Ak,; and 2Axq;) ratio I (K41)/ 1 (K 2)=0.5 is assumed,

o or the centre of gravity is calculated for the doublet but mean next mean

wavelength must be used in Bragg’s law, i.e.: Amean=(2Ako1 A ko2)/3

In Fig. 2.7 examples of peak position determination were presented. Peaks were
measured for Al powder using K, Cu radiation (Ag,=1.54056 A and Ak.=1.54433A) on
PANalytical - X’Pert MRD diffractometer (AGH, Krakéw) with Gobel mirror using
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parallel beam configuration, described in Table 5.4 (chapter 5). Different peak broadenings

are seen and high accuracy of measured peak position were obtained when doublet K,; and

K2 (two peaks) was fitted using the pseudo-Voigt function.
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- - - center of gravity ¢ T
25000 26 position s
E
20000 :
2 i
c '
3
§ 15000 !
- |
10000 " '-,.
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Fig. 2.7. Examples of different methods for position determination: calculation of center of
gravity (a), and fitting of Gauss (b), Lorentz (c), pseudo-Voigt (d) functions. Experimental
peak was measured for Al powder using PANalytical - X’Pert MRD diffractometer (AGH,
Krakow - configuration given in Table 5.4.).

Table 2.1. Comparison of the determined positions for Al powder using 4 different

methods.

Fitting position 26 (°)
Pseudo-Voigt 65.1000% + 0.0003

Lorentz 65.0982%+ 0.0002

Gauss 65.1007%+ 0.0002

center of gravity

65.1023 (65.1620°)

where:  is the position of K,, component, while ° is the position of Ky, + K, dublet.
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When the positions of diffraction peaks are determined the stress analysis can be

performed. The diffraction strain < (¢, >, measured along L3 direction (see Eq. 2.28

and Fig. 2.6) are defined as the average strain over diffracted grains volume (Fig. 2.5)
which is calculated as [19, 20]:

> [ en(hkl,& gy f (NI, &,¢,p)dé
<&(pw) >t} e 7r (2.37)
> [ £kl & 4,p)dé

{hki} o

where &, (hkl, &, 4,y) is the strain along L; direction for (hkl) plane, y and ¢ are the

angles describing the orientation of the diffraction vector (along Ls) ith the respect to the
specimen reference system, & — the rotation around the diffraction vector (see Fig. 2.8),
f(hkl, &, ¢,w) is the function representing crystallographic texture, i.e. orientation
distribution function ODF (defined in [21]) expressed in terms of measurement parameters

and the rotation angle & Summation Z is over all symmetrically equivalent planes {hkl}.
{hki}

T [001]

Ak || L,

X

Fig. 2.8. Definition of lattice rotation

[010] around the scattering vector Ak normal to
(hkl) plane.

100]

In the above average only the criterion for selection of grain orientations is
considered, but also the average must be calculated over the gauge volume using weight of

the intensity scattered by different grains (accounting for absorption).
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For polycrystal composed of elastically isotropic crystallites (for example tungsten)
Hooke’s law [19] can be applied to relate the macrostrains with the first order stresses:

1.1
8i} = SijkIO-I:I = Sijklo_kll = |:815ij5k| +ESZ E(é}kéjl +5il5jk):|o-kll (2.38)
where: o, and &; are the first order stresses and strains (mean over whole diffraction
gauge volume), S, and s, are crystal compliances (equal for isotropic material), S; and
Sz are the only independent components of S;jq for elastically isotropic specimen and &; is
the Kroneckers delta (all tensors are defined in S system).

In this case the elastic strain tensor is identical for all crystallites and also for diffracting

group of grains [19]:
<&@ W) >pa= &3 (2.39)

where L superscript means that the strain is expressed in L system (tensor in S system have

not additional superscripts as in Eq. 2.38).

Then it is possible to calculate ;" (L system) strain from tensor gi} (S system) [19]:

<&(d.¥) >nay= 5 = migi;mj = &) C0S” ¢sSin’ y + &,, sin” gsin® y/ (2.40)
+€4, COS” Y + &, SiN(2¢) sin® w + £, cos #sin(2y) + &, sin gsin(2y) '

where: &; is strain tensor in the specimen system of reference, m is the unit vector, in the

direction of the scattering vector, expressed in the specimen system of reference (S).

siny cos ¢
m=| sinysing (2.41)
cosy
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Taking into consideration the Hook’s law (Eq. 2.1) and Eq. 2.40 it is possible to gain
[19, 22]:

1. . . .
<&(@¥) >y = 5 S, sin’ y[ay, cos” g+ oy, SiN(24) + 7, sin” ¢ + (2.42)

+% S,[o}, cos gsin(2y) + o, sin gsin(2y) + o4, c0s° w1+ S, (o}, + oy + )

The above equation is a general expression relating first order mean stresses (full
tensor) with strains measured for different directions of scattering vector described by
w and ¢ angles and it is called sin?y law, because the measured strains are plotted vs. sin’y
(with constant ¢). If the shear stresses are equal to zero, i.e. the sample system (S)
coincides with principal axes of stress tensor, the latter plot is a straight line and the
components of the stress tensor can be extracted from the slope of the line plotted for

constant ¢.

Usually a polycrystal is composed of elastically anisotropic crystallites (anisotropic

S;a ), Stresses and strains vary over the differently oriented crystallites in the specimen as

aresult of the elastic grain interaction [19]. Even then the whole specimen can be
macroscopically elastically isotropic (quasi-isotropic) when the crystallographic texture
does not occur and the grain interaction is isotropic. For quasi-isotropic specimens the
Sy and 1/2S, in Eq. 2.42 need to be replaced by hkl-dependent X-ray elastic constants
(XEC) $:™ and 1/25,"™[19], i.e.:

1 . . .
<&@ ¥) > = > S, sin® yoy, cos® ¢ + 0, SIN(29) + 7, Sin” ] + (2.43)

+% S [o), COS #SiN(2y) + og SIN $SIN(2y ) + 0, cOS* w1+ S (0}, + 0sy + 0)
In this case the XEC depends on the reflection hkl [23].

The most complex case is the textured polycrystalline material when macroscopic
elastic anisotropy is present. For such specimen the dependence of the X-ray-averaged
strains on the mean stresses is described by the X-ray stress factors (XSF) Fj; depending

not only on hkl but also on texture [1, 19, 24]:
<&(@,y) >gay=F; (hkl, ¢, f)o_i; (2.44)

where f represents ODF function.
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For textured materials or in the case of direction dependent grain interaction the
sin?y plots are generally non-linear and the X-ray analysis can be challenging. The first
works on stress analysis for sample having crystallographic texture were performed by
Dole & Hauk (1978, 1979) [19].

The X-ray elastic constants S" and 1/2S,"" and the stress factors F, (hkl,,y, f)

can be evaluated experimentally by a uniaxial tension or bending test. It is also possible to
calculate stress factors from single-crystal elastic constants using a model of crystallite
coupling (Voigt, Reuss, Eshelby-Kroner) and the ODF as the weight function [1, 19].
Because the verification of F; (hkl,#,y, f) used in grazing incident method is one of the
aims of this work, the different models for calculation of these constants will be presented

in next chapters.

It should be stated that using the diffraction methods, the lattice strain are not

directly measured but in fact the interplanar spacings <d(¢,y) >, are determined from

diffraction peak positions. These positions are measured for different orientations of the
scattering vector with respect to the sample, defined by the ¢ and y angles. Using Eq. 2.44,
after simple transformation the interplanar spacings can be expressed by the macrostresses

o; and dg,, stress free interplanar spacing:

<d(P.y )>guy= [ Fij (hkl, @y, 1) O_i; 1 d{ohm} + d{ohkl} (2.45)
or in the case of quasi-isotropic material:

%SQ“ {(0l,—033) c08* ¢+ 0}, 5in 26+ (0, — 03,) | sin’ y +

<d(,9) >py= dig + g (2.46)

+SM (0}, + 0y, + 05y) + % S (01'3 COS @+ 7y, SIN ¢)sin 2y

The calculation of the stresses using Egs. 2.45 or 2.46 can be performed using least
square method and adjusting components of stress tensor as well as dfhk,}. However, the

whole stress tensor (principal stresses) can be calculated only if d{‘)hk,} (stress free

parameter) is known. Fortunately, in the case of X-ray diffraction penetrating thin surface
layer (due to high absorption) we can assume that the forces normal to the surface are
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equal to zero and also o, =0. Because one of principal stresses is known, dg,, can be

adjusted and its value can be also determined.

The least square procedure used in this work is based on minimising of the merit

function called »*which is defined as:

(2.47)

exX ca 2
o1 itd(wn)>{hs.}—<d<¢n,wn m}

T N-M & 5

n

where:  <d(g,,w,) > and <d(d,,y,) >, are the experimental and calculated
interplanar spacings , Jn=0n(<d(é,,w,) >pe;) IS the measurement error (standard

deviation) of the determined spacing for the n-th measurement, N and M are the number of

measured points and fitting parameters, respectively.
The value of §? is a measure of goodness-of-fit, i.e. [25]:

e > =1 means that the “good fit” was obtained (it corresponds to the fitting exactly

within the limits of experimental uncertainty),

exp

e y* <1 the uncertainties of experimental data dn(< d(4,,¥,) >4, ) are overestimated,

e > > 1 the uncertainties of experimental data are underestimated or calculated

cal

(theoretical) values <d(g,,y,) >, depending on stress factors Fij(hkl,¢ ,y) are

not accurate enough.

An example of stress calculation for the simplest case when elastic constants are
isotropic (for tungsten) will presented in the next chapter when two standard
methodologies are compared (Fig.3.6).

Finally it should be mentioned, that also the methods for determination of the
second order stresses were developed using the elasto-plastic models [13, 14]. From these
models the theoretical values of plastic incompatibility stresses (ai}"'“"d - model values)
and the corresponding strains <e(y,¢)>giny® can be predicted (where mod is used for the
theoretical values). Assuming that stress variation with the y and ¢ angles is correctly

described by models, the measured strain can be expressed by the theoretical value, i.e.:
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<e(y .o > =a<e(yw, @)=y’ ; where: q - is a constant scaling factor. Finally, Eq. 2.45

takes form:

<d(y.,¢)>pa ={ Fij(hkLy,¢, ©) o+ a<e(w,@)>piay" } dogay+ dogriy (2.48)

When the value of q parameter is determined (as additional adjusting parameter) the plastic

incompatibility stresses (o;') can be found for all grain orientations, i.e.: o =qoj ™ ;

where o™ are the model predicted values. Thus, the macrostresses (o) the mismatch

second order stresses (ai}' ) can be determined simultaneously.

2.3.2. DETERMINATION OF THIRD ORDER STRAINS AND CRYSTALLITE SIZE

One of the features that decide about physical and mechanical properties of a solid
body is its microstructure, such as lattice distortion or mosaic structure of grains. Using
enough resolved diffractometers it is possible to observe the broadening of the diffraction
peak due to the sample microstructure. The width of the diffraction peaks is also dependent
on the size of the coherently diffracting domains, faulting on certain (hkl) planes, and
microstrains within the coherently diffracting domains [26]. Peak broadening is further
complicated by strain anisotropy, which can be taken into account by using contrast factor
[27]. Not only sample but also instrument contribution convolute into the observed
diffraction peak profile. Instrumental aberrations depend on the measuring technique and

geometry. This effect can be taken into account by measuring a standard powder sample.

It is possible to separate the peak broadening originated from different causes. The
broadening produced by small crystallite sizes and faulting is independent of the order of
reflection, whereas the strain broadening depends on the order of reflection. Two methods

are usually applied to separate these effects from each other [28].

The first, Warren and Averbach method (1950), based on the Fourier expansion of
the intensity function and separation of size and strain series coefficients using diffraction
peaks measured for at least two orders of reflection. The second is Williamson-Hall
method (1953). It allows determine the domain size and the mean squared lattice strain by

the analysis based on full width half maximum values or the integral breadths [28, 26].
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It should be stated that the presented methods of analysis can be applied for crystallites

having the size D < 100 nm and lattice distortions v'< &2 > grater than 10>,

Warren and Averbach method

This method is based on the expansion of peak profile into Fourier series. In the
case of X-ray diffraction (on laboratory apparatus) it is necessary to remove the influence
of the K, line from measured intensity. It can be done numerically with Rachinger
method [29] or analytically with the assumption of theoretical function describing the
shape of the diffraction line [30] in which it is assumed that the intensity of line K, is
twice smaller than the intensity of line K,; and both of the lines have the same shape and
the same width. Next, the effect of instrumental influence on the peak profile must be
taken into account using proposed by Stokes [31] harmonic analysis of diffraction line
profiles of the sample and reference sample and on the basis of them it is possible to obtain
the actual intensity distribution function of the diffraction peak. The diffraction peak G(26)
for reference is measured with the same conditions as this registered for the studied sample
H(26). The latter profile can be expressed as the convolution of instrumental G(26) and

structural functions 7(26):

H(20) = T 1(9)G (20— 9)d 3 (2.49)

If both functions G(26) and H(26) are expanded into Fourier series (the coefficients of such

1
n

series are g,, g', and h_, h')), the coefficients of the series given by Egs. 2.26a and

2.26b can be calculated:

1 _C gnhn _g nhn

_anhn+gnhn an_ 5 I >
(9,)°+(@",)

= 2.50 d
RN veTs S ek

(2.50 b)

where c is a constant factor.

Finally the size of domain (D) in the direction of scattering vector and the square
mean third order strain <& > can be calculated applying Egs. 2.26a, 2.26b and 2.27 for

peak intensities measured for two orders of reflections.
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Williamson-Hall method

The crystallites size D along the direction perpendicular to the {hkl} diffracting
planes can be related with the width of the diffraction peak using Scherrer formula:

K-A
ﬁs_D-cosH

(2.51)

where K is a constant close to unity, dependent from method of the peak width

determination as well as from geometric shape of the crystallites [27].

Using the above equation the crystallite size (coherent domain) D can be
determined from the peak width measured by X-ray diffractometer. This equation assumes
that all the crystallites have the same size and the strains of the lattice are not present. In
fact usually crystallites have some size distribution and additionally lattice distortion

limiting application of this formula.

Broadening of the diffraction peak connected with the presence of the third order

lattice distortion and can be calculated from Taylor formula:
B =< e® >tgo (2.52)
where /<52> is the root mean square value of the lattice distortion.

According to Hall [32] the observed total structural broadening of the diffraction
line # is a superposition of the broadening caused by lattice distortion and crystallite size

S0 it can be expressed as:

p=4l)tgo+ DC’;H (2.53)

In order to evaluate the D and ,f(gz> values it is necessary to approximate the

diffraction profiles of the studied specimen and of the reference sample (for example strain
free powder with grains having at least a few um). There are two main methods of analysis
which are in use. The first assumes that both of the profiles (specimen and reference
sample) can be approximated by Cauchy function. Then the total line broadening can be
expressed as:
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,Bcos(9=%+4, Kﬁ)sin 0 (254a) and B=B-b (2.54 b)

where: B and b are the peak widths of the investigated sample and of the reference sample,

respectively.

After simple transformation the above formula can be written as:
* 1 * 2
B ==+d" (&) (2.55)

pcosd . « _4sin@

A

nd d

where: =

The second method assumes that both of the profiles can be approximated by
Gaussian function. Then the general formula can be expressed as:

ﬂzcoszez(%j +16( <82>)28in29 256a) and B2 =B’—b? (2.56b)

and after transformation:

2
,B*:§+d*( (g)z) (2.57)
2 2 H Y
where: ,b’*—ﬂ ;OZS 0 d d":lGS;I 0

In all of this methods by plotting £~ as a function of d” for several diffraction lines
the root mean square value of the lattice distortion and the crystallite size can be
determined from the slop and the intercept of the plotted curve, respectively. In this aim

the linear regression is used.

The width of the diffraction peak in the above formulas may be determined as
a integral breath or as the full width at half maximum (FWHM) [33].

An example of size-strain analysis using Gauss and Cauchy is presented in Fig. 2.9.
The measurements were performed for mechanically polished W sample using the same
experimental conditions as for peak measurement presented in Fig. 3.7. As the reference

the LaBg powder was used. In Table 2.2 the results of analysis are shown.
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Fig. 2.9. The linear function fitted to the experimental data in Williamson-Hall method for
polished W sample using Gauss approximation (a), Cauchy approximation (b).

Table.2.2. The slope and the intercept of the fitted linear function to the experimental data
for polished W sample. Calculated with Williamson-Hall method values of the root mean

square of the third order strain ( , f<32> ) and crystallite size (D).

a(°) function slope [-10*] intercept [107] J< &> D (A)
5 Gauss 1.0+0.2 0.01 £0.09 0.0025 +=0.0002 1678 + 8626
15 Gauss 0.51 £0.05 0.05+0.02 0.0018 +£0.0001 667 £ 133
5 Cauchy 90 + 20 -16 £ 10 0.0023 + 0.0004 -957* + 648
15  Cauchy 62+6 -9+4 0.0016 £ 0.0002  -1629* + 653

" large negative values of D means that the intercept point is negative but it is close to zero.

If the instrumental peak width is large in comparison with the broadening due to
crystallite size, than it is not possible to determine properly the coherently diffracting
domain size (some values of D are negative because intercept is negative and close to
zero). When the peak profile is either pure Gaussian or pure Lorentzian the simplified
breadth methods work well but when the peak shape is a convolution of Gaussian and
Lorentzian than these methods cannot accurately determine the crystallite size. The
Williamson-Hall analysis of polished W sample showed that on the basis of MGIXD
measurements with classical diffractometer (PANalytical — Empyrean diffractometer,
configuration is given in Table 5.4.) it is possible to estimate the value of root mean square
of third order strain but the resolution of the diffractometer is not sufficient for crystallite
size determination.
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3. METHODOLOGY OF STRESS MEASUREMENTS USING X-

RAYS

Although the neutron diffraction methods of stress measurement were significantly
developed, X-ray diffraction remains the most important tool of stress analysis which can
be used in industry or in laboratory. X-ray diffraction in residual stress measurements of
polycrystalline materials were applied for the first time in 1930 [34, 35, 36]. It is worth to
emphasise that introduction of the sin’y method by Macherauch and Miiller in 1961

[22, 36] was one of the greatest achievements in X-ray stress analysis (XSA).

angle dispersive energy dispersive neutron diffraction
X-ray methods X-ray diffraction -volume
-surface -intermediate zone

~ N/

information depth of diffractive stress analysis
(penetration) [mm]

ya

gauge volume |

\ “ 0001 0.01 01 1 10 100
\ | ] 7‘7Afi ]

S 00001 001 1 10 1000

sampling volume [mm?]

Fig. 3.1. Information depth of the diffractive stress analysis [37]

Due to high absorption of the X-rays (on laboratory diffracrometers) the stress
measurements are performed using reflection method, i.e., the beam is reflected from the
surface of the sample and penetrates the volume below the surface. The other methods
based on the transition mode can be used only for high energy synchrotron radiation or
neutron radiation. In all cases, the intensity of the beam penetrating the studied sample

depends on the linear absorption of the material («) according to the exponential law:
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1(X) = lo exp (-ux) 3.1)

where x is the length of the ray path in the material and Iy is the intensity of the incident

beam.

In the present work only the reflection mode is considered for which the
information depth can be estimated using the above law. In this case, if the strain free

lattice parameters d,, as well as stress factors F; (hkl,#,y) do not depend on depth [36]

the mean lattice strain <&(g,p,z)> at information depth Z, calculated over reflecting
grains (as in Eq. 2.33) must be also averaged with the weight of beam intensity over depth
z under surface. It was aaumed that so calculated strain is related with the mean first order
stress and also averaged with the intensity weight (see Fig. 3.5):

t

- <d(¢,y,2) >, €7 7dz
<d(g.w,z) > ¢hid} _d{ohkl} _ ! g4 {nly

<5(¢"//’E)>{hkl}: 0 t -1
d e 3.2
{hkl} d{ohkl}J'e I7dz ( )
0
= F; (hl, 6,1)03 (2)
_ t t
where: ai}(z):fai} (z)e‘z”dz/je‘“’dz (3.3)
0 0

and t is the sample thickness, 7 is the “penetration depth” defined as the distance from the

surface of bulk material (t — o), for which (1-1/e)=0.63 part of total intensity of the

incident beam is absorbed.

The above average corresponds to so called ‘information’ or ‘effective’ depth z,

which can be understood as the mean value of z-depth weighted by an attenuation factor:

t
i _([z exp(-2/7) dz [ __texp(-t/e) oo
7= = 1—exp(-t/7) (3.4)

t
I exp(-z/7)dz T fort > o
0
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A general formula for penetration depth 7 in the case of bulk material or thick coatings
(i.e., >>7) Is given by [38]:

o sin®@—sin’ y +cos” #sin® wsin®n
28N @ cosy (3.5)

where 7 is an angle of rotation of the sample around the diffraction vector i.e., L3 axis
shown in Fig. 2.6.

In the case when the incident angle of X-ray beam (a — angle between incident
beam and sample surface, see Fig. 3.7) is close to the critical angle (ac — angle for which

total external reflection occurs), the expression for penetration depth takes form [36]:
r(a) = A (3.6)
.2 . 2 2 2 | i . 2
\/(sm o —sin acr) +4B° +sin“ o, —sin“ a
2

A

. A
where 4 is the wavelength and S = Zl—
7T

In this case, as it can be seen in Fig. 3.2 small changes in a angle causes significant

changes in t.

4
----- T(o)=sin(a)/p 0.6 | TTTTT T(a)=sin(a)/p
3| T(o) calculated from Eq. 3.6 T(a) calculated from Eq. 3.6
— —~
S S
= 2 04 ]
2 4
~ ~
g g ,
[ P>
0.2 4§ 7
1 // ///
/// : //,/ H
-7 : AI ,’/ N TI
0 - T T T T T 0.0 += T T T T T
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Fig. 3.2. Penetration depth as a function of incident angle for aluminum and titanium.
Curves changes significantly close to the critical angle.
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In should be stated that for t—co (bulk materials) in Eq. 3.3, the upper limit of
the integral can be replaced by the infinity and the equation takes the form of the Laplace
transformation with respect to 1/t (see Eq. 3.3 in which z should be replaced by 7). In

order to reveal the real depth profile of stress ai}(z) it is necessary to perform inverse

Laplace transformation for the data gained experimentally ai} (z=1) [39].

. . 1 . . .
Introducing a new variable: s == mean stresses Ji} (7) determined with absorption
T

weight can be expressed as:

Tefsaﬁ (z)dz
e °dz

where z is the real depth under the surface.

It can be noticed that the denominator of the above formula is a Laplace transform of 1,
while the numerator is a Laplace transform of stress function Gi; (). Thus, Eq. 3.7 can be

rewritten as:

5 (s) :%:sﬂ(s) (3.8)

and

5; ()

£(s) = (3.9)

where .£(s) denotes Laplace transform of the macrostrain function ai} (2).

In order to reveal the real depth profiles (z-profiles) of the macrostresses, the

inverse Laplace transform of &;(s)/s have to be calculated. However, it should be noted
that usually only a few values of the mean stresses 5i} (s) within limited range of z can be

determined experimentally. The fragmentary knowledge about .£(s) function causes that

the inverse Laplace transform cannot be easily determined. Thus the experimental

functions .£(s) are usually approximated by functions for which the inverse Laplace
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transform can be easily designated. For example, it is possible to use the piecewise
polynomials allowing dividing the Laplace space into small sections in which it is possible
to describe the stress profile. Usually the polynomials of the first and second degree are
used [40].

Another method for determination of the stress in depth profile ai;(z) was

proposed by Genzel et al. (1996). In this work the inverse Laplace transform is calculated
numerically by the methods of orthogonal polynomials. Several sets of orthogonal function
were used but the best results were achieved with use of Jacobi polynomials. It seems that
this method is mostly suitable in the case of steep gradients. If necessary it is possible to
divide the depth profile into intervals and then calculate inverse transforms for each

interval separately [39].

To reveal the stress profile ai} (z) Huang et al. (1997) used the constrained linear

inversion of the .£(s) profile. This analysis showed that the significant advantage of the

numerical method is that there is no major restriction on the form of the penetration depth
profile. What is more it is more likely to achieve the better fit to the experimental data

numerically than with the inverse Laplace method [41].

In present work the z-profile of stress is determined using method based on

expansion into Taylor series of the quested stress function ai} (2),i.e.

N
ci(2)=> a7 (3.10)
n=0
The Laplace transform of the above function is given by equation:

£(5) =5”T(S)=§“an Srn'fl (3.11)

and the measured profile of the stresses can be expressed as:

n!
s"

;(s) = i a, (3.12)

1. )
as S=— it can be written:
T
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N N
Ei} () = Zn!anr“ = anrn (3.13)
n=0 n=0

where b, =nla, .

In the above equation the function of mean macrostress 65 (s) gained from measurements
Is expressed by polynomial with variable z. If the polynomial coefficients are determined,

also the coefficients of Taylor expansion of macrostress ai} (2) can be calculated, i.e.:

b
a =— .
= (314)
200 = experimental 200 — polynomial n=1 —— polynomial n=2
polynomial n=1 —— polynomial n=2 —— polynomial n=3 —— polynomial n=4
100 polynomial n=3 —— polynomial n=4 1004
© T
o o
2 0 = 0
= O
[ ~
-1001 ©-100-
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Fig. 3.3. Experimental &i} (z) stresses for polished Al2017 alloy with polynomial fitted to
the measured values (a) and corresponding profiles ai}(z)obtained by using inverse

Laplace transform (b).

At present, there are two basic types of carrying out the experiment:
- inangle dispersive diffraction mode (AD) or

- In energy-dispersive diffraction mode (ED).

In the case of the AD method one uses a monochromatic radiation, while a white X-ray
beam is diffracted by a polycrystalline material in ED mode. The later method was
introduced both by Giessen & Gordon (1968) and Buras et al. (1968) and it was firstly
used in 1970 by Nagao & Kusumoto, 1977 [42].
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AD diffraction methods with conventional X-ray tubes allow investigating the
material only for the penetration depth of a few up to some tens of microns. It is also
possible to get information on deeper regions below the surface of the sample in AD
techniques by applying layers removal. This method, however, is a destructive method and
it cannot be always used. On the other hand neutron diffraction allows getting the
information for more than hundreds of microns. The high energy ED diffraction is the non-
destructive method which gives the opportunity of the sample investigation for such depth
(up to tents or hundreds um) which are not reached by monochromatic radiation on
laboratory diffractometers. In the ED diffraction, in reflection mode, the white radiation in
the energy range from about 10 up to 150 keV with a continuous photon energy spectrum

is used. In this method the scattering angle 264 can be chosen freely and remains constant

during the measurement [2, 43]. In this case, the lattice spacing d,, expressed as

a function of the diffraction line E,,, on the energy scale is given by:

h 1
<d >y = (3.15)
2sin6; <E >y,

where: h is Planck’s constant and ¢ the velocity of light.

A great advantage of this method, in comparison with AD diffraction techniques, is
the multitude of reflections recorded simultaneously in one energy spectrum. Each of them
differ in energy so it provides additional depth information [2, 42]. The penetration depth
in ED method is given by Eg. 3.5 but in this case p denotes the linear absorption
coefficient which depends on the energy E of the radiation. In the symmetrical case of
diffraction (y=90°), the penetration depth for hkl reflection [43]:

. sin g,
2u(E)

cosy (3.16)

where 1 ~1/E® for absorption between the absorption edges.

In this chapter a few geometries used for stress measurement by X-rays will be
shortly presented and for each the problem of information depth will be discussed. This
problem is certainly very important in the case of in depth stress gradient. Also, the

principles of multireflection grazing incidence X-ray diffraction (MGIXD) developed in
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the present work will be introduced. The described below method will be divided in two
types: methods in which the penetration depth is variable or is constants during
measurement. In the first case complex analysis should be used in order to extract the
stress in-depth profiles, while the latter methodologies are concentrated on designing of
special geometries in which the lattice strains are measured for constant penetration of X-
rays (this simplifies analysis of the data).

3.1. METHODS WITH VARIABLE PENETRATION DEPTH

3.1.1. STANDARD GEOMETRIES OF STRESS MEASUREMENT

In the standard sin“y method, the <d($,w)> iy VS. sin?y functions are measured
using X-ray diffraction for a single reflection hkl and constant ¢ angle. As shown in
Fig. 3.4, the y angle can be changed in two different ways, i.e. by tilting diffraction plane
(w-geometry) or rotating both incident and diffracted beams in diffraction plane being
perpendicular to the sample surface (w-geometry). In both cases the diffraction peak for
the same reflection hkl is measured, thus the 26 angle remains approximately constants
(excluding small shifts caused by lattice strains). The measurements of
<d($,w)> iy VS. sin®y functions are repeated for different ¢ angles. To set desired angles
wand ¢ the instrumental angles y, @ and ¢ are varied applying conditions defined in
Fig. 3.4.

\J) — geometry: (1) — geometry: N
W= V=0 [P
9=  SC =0

®=0 =0

a) X se.- scattering vector  I.b. - reflected beam b) 1o
i.b. - incident beam

Fig. 3.4. Two different geometries used in standard measurements of residual stresses. The
instrumental angles are indicated by: y, @ and ¢, while w and ¢ are the desired angles.
Orientation of diffraction plane, scattering vector, incident (i.b.) and reflected beam (r.b)
are shown.
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The standard method for stress measurement is not advised for the analysis of
heterogeneous stress states because the penetration depth of X-ray radiation varies
significantly during measurement when both orientations of incident and reflected beams

are varied (Fig. 3.5). The effective penetration depth can be calculated for the y and w-

geometry:
_ cosysind
w—geometry: 7 = —— (3.17)
2p
-1
w—geometry: 7 = | — £ +— i (3.18)
sin(@—w) sin(@+y)

where y, a and 26 angles are defined in Fig. 3.4.

1.4

12 T~

= . ~
E \ S
= 0.6 \ ~
[=)

0.4 >

02

0
0 0.2 04 0.6 0.8 1
sin?ys
- — y-geometry ——wm-geometry

Fig. 3.5. Penetration depth calculated from Eqgs. 3.17. and 3.18. for polished tungsten
(r = 3313 cm™, Cu K, radiation) in function of sin*y .

Consequently, the volume for which the measurement is performed is not well
defined and the interpretation of the results is not unique. Using the standard X-ray sinzy/
method, the stress gradient can be estimated only if a special character of stress evolution
is assumed (for example exponential or linear variation with depth). Moreover, this

estimation is based on the curvature of the sin’y plot [3, 44], which can also be influenced

by other effects (presence of the o, or o,, shear stresses or sample anisotropy).
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The example of siny plots for different ¢ angles measured using » and
w geometries (mechanically polished tungsten was measured for the same experimental
conditions as peaks presented in Fig. 2.9, details are given in Table 5.4 for PANalytical —
Empyrean diffractometer). The linear behaviour of the functions means that the stress
gradient is not present in the penetration depth reached by diffraction. The results

presented in Table 3.1 show the same stresses determined using both methods.

0.8470 -
y—mode 0.8470 ® — mode
. i Sl'{{"dﬂrd I?]C}_JSlIrCIHL?nl standard measurement
0.8465 ¢ free suface grain interaction model 0.8465

free surface grain interaction model

_.0.8460 _0.8460+
[\g‘. 0.84554 = experimental $=0° ,/\;L 0.8455+
ol 2 >
f’; 68450, lheore,jncal 6=0 . k2!
'\5/5 : *  experimental $=90 '\!? 0.84507 . experimental ¢=0" = experimental $=90°
theoretical ¢=90" . —— theoretical $=0" theoretical $=90"
0.8445 * cxperimental $=180° = experimental $=270" 0.8445 = experimental $=180" = experimental $=270"
084404 thco'rctical ¢>=H:<() : 'lhcorctica'l $=270 0.8440 & theoretical d):]&l((i" - theoretical $=270" |
0.0 0.2 0.4 , 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a) s b) siny

Fig. 3.6. Interplanar spacings <d(¢,w)> gy Vs. sin“y for mechanically polished tungsten
sample. Results for y — geometry (a) and w — geometry (b).

Table 3.1. Comparison of the results obtained for two different geometries.

geometry | o'i1 (MPa) o' (MPa) ¥ 7 (um)
o -660 + 23 =787 £ 23 4.8 0.9
\j -657+ 17 =774+ 16 4.2 1.0

Finally it should be stated that the standard method can be used to measure stress
gradient using ED method with synchrotron radiation. In this case the w-geometry is used
with constant 26 angle and the reflection are obtained for different energies <E>g;
corresponding to interplanar spacings <d>g; according to Eq. 3.15. Because the
absorption coefficient x depends on the energy, also so measured <d>g Vs. siny
function will be determined for different depths (Eq.3.16). Therefore, the mean stresses
obtained for different reflections will be defined also for different z (see Eq. 3.16). The
problem is that the penetration depth for each plot <d>gy; Vvs. sinzy/ (Fig. 3.5) changes

significantly and in the case of significant stress gradient these functions are far from
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linearity. Consequently the ED standard method can be used only in the case of small in

depth variation of the stress.

3.1.2. UNIVERSAL PLOT METHOD
An interesting modification of the standard diffraction experiment introduced in

order to find cri} (z) in depth profile was proposed and developed by Genzel [36, 43,

45, 46]. In this method, an original treatment of standard sin?y plots was performed,
assuming biaxial residual stress in the quasi-isotropic sample. With these assumptions the
mean value from lattice strains measured for ¢ = 0° and ¢ = 90° can be related with so

called in-plane residual stresses (0'”' (7)) at T depth by an equation [36]:

< (1) = F (KL p)o] (2) (3.19)

1 1o
where: o (T)=E[O'1'1(r)+02'2(r)] : El(hkl,t//)=zsgk' sin®y +2S™ and

., 1
<&y, 7) >y = §[< (=0 y,7) >oay T<E(P= 90°,,7) >{th}:| (3.194)

Then the principal stress component can be expressed by [36]:

<e(y,7) >E£hk|} + <e(y,7) >{ihkl} _ Fy(hkl,7)

X oL () (3.20)
F(hkly) = AR(hkly)  F(hklyp)

(71I1/22(T):
where (for quasi-isotropic polycrystalline materials):
1 hkl o3,~2 l hkl 2 hkl
AF”(th,z//)zzs2 sin“y and F33(hkl,z//)=582 cos” y + S (hkl)

Assuming a biaxial residual stress state (o4, (z)=0) the stress free parameter
dgyy = <d°(¥’,7) >4, can be measured in the strain-free direction v+ of the biaxial stress
state, i.e. for F(hkl,p) =0 (v =arcsin[-2S;* / S§“'1"?). Therefore if dg,, is known, the

right hand side of the Eq. 3.8 contains only the experimental information and the unknown

in-plane stresses is on the left hand side. As the result the profiles of biaxial stresses can be
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easy determined. However, in the presence of o (z) stress fields in the eq. 3.20 the

additional term occurs. It can falsify the in-plane stress depth distribution by a certain

amount [43].

In this method the stress distribution vs. penetration stress can be directly computed from
single standard sin?y plot and presented as a plot versus penetration depth [36]. Moreover,
applying high energy with ED mode the universal plots for different ranges of penetration

depths can be determined and shown together as an ‘universal plot’.

3.1.3. SCATTERING VECTOR METHOD
Another method used for determination of in depth stress gradient is the scattering

vector method [38, 43, 45]. In this method the components of the stress tensor ai} (z) (in

function of penetration depth z) are determined from a series of measured

<d(@,y, 7 )>ma depth profiles. The interplanar spacings <d(¢,w, 7 )>g., are measured

for constant ¢ and y angles, with stepwise rotation # of the sample around the scattering
vector (i.e., L3 axis in Fig. 2.6). To calculate penetration depths z (for given ¢ and y)
corresponding to different » angles Eq. 3.5 is applied. Using the AD diffraction,
measurements are performed for at least two y angles. Next the self-consistent calculations
of triaxial residual stress gradient are performed. In this variation procedure [45],

perpendicular stress expressed by:

< 8(1//*, 7) >Ehk|} _ <d (‘//*, 7) >{+hk|} _d{ohm}
F., (hkl, ) Fy; (Kl )

o5 (7) = (3.21)

(where: <e(y,7) >ty 1S the same mean strain as in Eq. 3.19 a but in “strain-free
direction of the biaxial residual stress state” defined by ) and the in-plane stress
components o,,,(z) given by Eq. 3.20 are calculated for varying value of dg,,. The

calculations are repeated for strain profiles obtained for two or more inclinations

¥ receiving different profiles of triaxial Stl’eSSO'i; (r) (or mean stress a”' (z)). If the
procedure is convergent, the same profiles of ai} (z) (or 0'”' (r)) must be gained for

different ¥ inclinations (the difference between such profiles determines criterion of
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convergence). Finally, when the convergence is reached, the triaxial residual stress state
within the accessible penetration depth and the strain-free lattice parameter are determined,

without the need of some stress-free reference sample (assuming dg,,, does not change

with depth due to structure heterogeneity).

The above described method was also applied using ED measurements with
synchrotron radiation [43]. The advantage of this improvement is certainly increased
number of strain profiles measured at different penetration depths (for different energies).
This provides more available input data used for stress calculations. Moreover, the stresses
can be studied for significantly increased depth in comparison with laboratory apparatus
(with X-ray tubes).

3.2. METHODS WITH CONSTANT PENETRATION DEPTH

The geometry based on the grazing incidence X-ray diffraction can be applied to
measure gradient of residual stresses in surface layers [14, 19, 38, 45, 47, 48, 49]. The
principle of this method is the use of a small incidence angle (« in Fig. 3.7) for which the
path in the material of the incidence beam is much longer than the path of diffracted beam
(a>>b in Fig. 3.7). To perform stress measurements for constant penetration depth (z), the
orientation of scattering vector characterized by y angle must be varied, while small a is
kept unchanged. To do this, different methods were proposed [19]: (a) multiple reflection
and single wavelength — multi-reflection method [14, 47, 50, 51], (b) single reflection but
multiple wavelengths — multi-wavelength method [52]; (c) single reflection and single
wavelength - multiple ¥ method [53, 54].

3.2.1. MULTI-REFLECTION GRAZING INCIDENCE X-RAY DIFFRACTION
The multi-reflection grazing incidence X-ray diffraction (MGIXD) geometry [14],

called also multiple {hkl} grazing incidence [19], is characterized by a small and constant

incidence angle « and by different orientations of the scattering vector (variable 2 &,

angle for a constant wavelength; see Fig. 3.7) given by the equation:

Wiy = Oppiay = (3.22)
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where 26,,, are the diffraction angles corresponding to those reflections hkl for which

diffraction peaks are measured [14, 48, 55].

In this geometry the diffraction plane (defined by incident and diffracted beam) is

always perpendicular to the sample surface.

AK {hikl} A X
‘ﬁ? M

I=a+b I=a+tb b)

Fig. 3.7. Geometry of MGIXD-sin“y method. The incidence angle o is fixed during
measurement while the orientation of the scattering vector is characterised by the angle wgny.

Analogically to the standard method stresses can be determined from the

interplanar spacings measured in direction of the scattering vector, i.e. in this case, for

different 7 (and consequently various e{hkl} angles) and for constant « angle

(Fig. 3.7). However, in the case of multi-reflection method instead of <d(¢,(//,2)>{hk|}, the
so called equivalent lattice parameters < a(¢,1//,2)>{hk|} are expressed by the macrostresses

oy (2) and strain free a, lattice constant [14]:

<a(gy.2)>pn=LF,; (K.gp) oy (2)] 8 + (3.23)
where:
for cubic crystal structure: <a(@,w, 2 >y = <d(4,, Yz Vh? + k2 +12 (3.24 a)

_ _ 2 \Hh
or for hexagonal Structure: <a(g,y, 2)sqy=<d($, z)>{hk|}{[%(h2 +hk +k2)}+ (c;a)z} (3.24 )

where ¢ can be chosen arbitrary, while y depends on the diffraction angle for given

reflection hkl (Eq. 3.22).
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In the case of MGIXD method the measurements of interplanar spacings
<d(¢@,y, 7 )>pyare performed in the near surface volume, which is limited by radiation
absorption. To define this volume, the path of the X-ray beam through the sample must be

considered (Fig. 3.7). The measured average interplanar spacings <d(@,,7 )>pa are

equal to:

ey eplu @] (1 .
<d(¢,W,2)>gqy =" : and 1(z)=z [sin . + Sin(26,, —a)J (3.25)
| expl-u 1(2)1dz

where the above formula can be used if @ >> o (a is the critical angle for total external
reflection), z is a depth below the surface and the average is calculated over the volume of
all reflecting grains in the beam path, i.e. from surface ( z = 0 ) to the thickness of the
coating ( z =t ). If the stresses are measured in a monolithic sample or in a thick coating

t—> 0.

For o >> «, EQq. 3.25 is usually expressed in the equivalent corresponding to

effective depth z given by Eq. 3.4:

d(hkl, ¢,y, -z/7]d
[ d(nkt, g,y 2)expl-2/ 7] dz o T:[ﬂ u

_ 2 - -
<d(¢’!//’z)>{hkl} = j. SINa Sln(ze{hm} -
exp[—z/z]dz
0

-1
] (3.26)
a)
By using a long incident beam path for small « angle (a(x)>>b(x) in Fig. 3.7), the above
sina
yli

equation can be simplified, i.e.: 7= , Where 7 nor z does not depend on the G

(or ygnay) angle. What is more the penetration depth can be changed by appropriate
selection of a angle to investigate materials on different depths below sample surface

(order of um or even below 1 pum).

Using Eq.3.23 and assuming oy,(z) =0 the other parameters of stress tensor and

ap parameter can be determined from least square fitting procedure (as described in the
case of Eq. 2.45 and 2.46). On the other hand, if the value ao is known full stress tensor

can be found for given z or z . This gives a possibility to measure a stress gradient as well
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as the in-depth dependence of ay. It should be stated, that till now, in the case of hexagonal
structure the value of c/a was substituted from the tables [14, 47], and however in the next
part of this work an original method for determination of c/a in depth profile will be

proposed.

In Fig. 3.8 the dependence of effective penetration depth for different geometries
and two materials (Al and Ti) are presented. Calculations were performed for absorption
coefficients pai = 135.6 cm™ and pr = 918.9 cm™ occurring for Cu X-ray radiation and for
thick sample (i.e. for t>>t, when Z =7). Accordingly to the above discussion strong
dependence of 7 on y angle is seen in the case of standard w and y - geometries, while
almost constant value of z was determined for MGIXD method. Moreover, grazing incident
geometry allows investigating much shallower depths, which can be changed by setting

different o angles.

i Tal (nm)
6 - 40 -
—————— graz. o=1
35 — — — - graz.o=5°
5 ""n..,,_k!'_ ——————————— graz. o=10"
30 4 \;\ ....... graz. a=10°
4 T, \ ........ —_————— W —sin?y
25 A \\ ................... U},Sme
I~ e,
3 1 20 1 Tl e,
15 -/fi \\‘\
2 1 ~.
10 4 /.__.__,_.___._.__A__A__A_A__A_._._,_,_\,A_\A_._._
I .
————————————— -
St N
0 oY ittt ——————————

0.0 01 02 03 04 05 06 07 08

sin®y

Fig. 3.8. The penetration depth (z) vs. sin?y for classical y and w geometries (shown for 26
corresponding to 422 reflection in the case of Al) and for MGID-sin®y method (shown for
four incidence angles). Two scales of z corresponding to Al and Ti material are shown.

In present work the MGIXD method is significantly developed, tested and applied
to measure in-depth profile of stresses and stress free lattice parameter as well as c/a
parameter in the case of hexagonal crystal structure. A great advantage of this method is
the possibility of using Williamson-Hall method for crystallite size and the root mean
square of lattice strain determination [56, 57].
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3.2.2. MULTI-WAVELENGTH METHOD

Multi-wavelength method allows to perform measurements of stresses at a constant
penetration depth by applying X-rays having different energies (wavelengths) by using
synchrotron radiation or different tubes at laboratory equipment [19, 52]. The experimental
configuration is similar as this used in the above described multireflection method
(diffraction plane is perpendicular to the sample surface as shown in Fig. 3.5) but in this
case peaks for the selected single hkl reflection are measured. In order to gain the proper
set of data, i.e. to change y angles (determining inclination of the scattering vector), for
agiven hkl reflection the scattering angle 26 is varied by changing value of the
wavelength. The constant penetration depth is kept unchanged adjusting additionally the
incident angle a. In this method the relation between w, 26 and « angles is given by
Eqg. 3.22.

3.2.3. MULTIPLE X - METHOD (PSEUDO-GRAZING)

Pseudo-grazing incident X-ray (p-GIXD) method, called also multiple y [19] allows
evaluation of the average level of stresses and their distribution below the surface by
setting the desired penetration depth which can be done choosing the proper incident angle
a (angle between incident beam and sample surface) [58]. In this method only one hkl
reflection is used but additional rotation of the sample by y angle (Fig. 3.4) is performed.
To keep o angle constant, for different inclinations of the scattering vector (defined by
w angle) the orientations of the sample and the angles of diffraction cannot be chosen
independently. The values of these angles must be calculated from the directions of the
incident beam, diffracted beam and diffraction vector as well as from the penetration depth
which need to be constant when the sample is rotated. A combination of w and y tilting

angles (see Fig. 3.4 a) allows to achieve the constant penetration depth of X-rays.
In this method the penetration depth can be expressed as [53]:

. sin wsin(26 — w) cosy
u[sin o +sin(260 — w)] cos(w — )

(3.27)

cosy

where: y =arccos[cos y cos(w—6)] and coS y = ———.
v [cos x cos(e—6)] = s d)
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For each value of desired y angle and given penetration depth z it is necessary to
select proper values of the instrumental angles « and y according to Eq. 3.27. Next, in
order to set desired angle ¢, the sample must be rotated around normal to the surface by

instrumental angle @ which can be calculated from the following relation (see Fig. 3.4):

—sin
@ =¢+arctan [Wa)—le)} (3.28)

The main disadvantage of this method is the limitation of the accessible range of
specimen tilt angles y for reflections having large 26 angles (over 100°). This limits are
define by the limit of both @ (lower limit) and y (upper limit) geometries. Table 3.2
summarizes the example of the results for polished Al2017 and Ti6Al4V samples showing
the possible range of the y angle in p-GIXD. Furthermore, this method can be applied only

on the diffractometers with the Euler cradle.

Table 3.2. Possible range of the y angle in p-GIXD method for Cu K, radiation.

hkl 20 (°) y range (°) sin®y
Ti6Al4V
{103} 71 26-65 0.2-0.8
{014} 93 37-68 0.4-0.9
{114} 115 48-71 0.6-0.9
Al2017
{220} 64 23-64 0.2-0.8
{311} 77 29-66 0.2-0.8
{331} 111 46-71 0.5-0.9
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3.3. X-RAY DIFFRACTION ELASTIC CONSTANTS AND STRESS FACTORS

To study the stress state in a polycrystalline material the stresses must be related to
the measured lattice strains using the X-ray elastic constants or stress factors, as shown in
Egs. 2.43 and 2.44. In the present work X-ray diffraction methods are applied to measure
residual stresses in materials and the problem of X-ray stress factors (XSF) used for the
interpretation of results will be studied in chapter 5. To show the influence of the X-ray
stress factors on the interpretation of MGIDX results, polycrystalline materials having low
(W, Ti alloy) and high elastic anisotropy of crystallites (Ni alloy, CrN coating) are
investigated. The information about elastic anisotropy of a monocrystal is given by so-

called Zener anisotropy factor A, defined as [59]:

2
AeLu (3.29)

(€1 —Cp)
where: c44 and (C11-C12)/2 represent the shear stiffness in a [100] direction on a (100) plane
an in a [110] direction on a (110) plane, respectively (c;; are single crystal stiffnesses
written using matrix convention). For perfectly isotropic crystal A=1. Values of single
crystal elastic constants and Zener factor for materials studied in this work are given in
Table 3.3.

Table 3.3. Single crystal elastic constants (cj;) and Zener factors (A) for studied materials
[60, 61, 62, 63, 64, 65, 66].

Cij (GPa)
orA C11 C12 C13 C33 Cas Ce6 A
material

\W% 501 198 198 501 151 151 1.01
Ti 162 92 69 180 47 35 1.34
Ni 245 148 148 245 134 134 2.76
CrN 542 27 27 542 88 88 0.34
Austenite | o0y 1220 197 124 124 33

stainless steel

X-ray as well as macroscopic elastic constants can be calculated from single-crystal

elastic constants by adopting a grain-interaction model [19, 67]. The commonly used
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methods for calculation of the diffraction elastic constants are Voigt [68], Reuss [69] and
Kroner [70] models or so called direction dependent Vook—Witt [19] or recently proposed
free- surface models [71, 72]. The difference between the models is the type of assumed

intergranular elastic interaction.

o*=0C e2ED_YXeG0) .
s PUEERRG ot [ | es
Reuss Kroner
et—g SED_X86cH). s
o.& c.E c.E ST .8
R > < —
Voigh Free

surface

Fig. 3.9. Scheme of interaction between grains for four different models: a) Reuss -
homogeneous stress, b) Voigt -homogeneous strain and c¢) Kroner — (sc — self consistent)
ellipsoidal inclusion within homogeneous medium and d) free surface — (sc-fs — self
consistent free surface) ellipsoidal inclusion placed near the surface of the homogeneous
medium [20].

The Voigt model

In the Voigt [68] model the uniform grain elastic strain is assumed to be equal to
the elastic macro-strain value [73]. The strain distribution is homogenous in the sample so
there is a continuity of the strain at the grain boundaries. Stress tensor for each differently

orientated crystallite will not be the same [19].

The X-ray stress factors (independent from hkl) can be calculated from [73]:

-1

i@y, f)=mm, [CS] (3.30)

Klij

where C* is the macroscopic stiffness tensor expressed in the sample coordinate system

S (Fig. 2.6) and versor m is defined in Eq. 2.41.
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The macroscopic stiffness tensor C®is calculate from single crystal stiffnesses
ci?kl (¢, D,¢,) having orientations ¢, @, @, expressed in S system, using orientation

distribution function f (¢, ®,e,) :

2z V4

17 :
Cijskl :Q I d¢lJ‘ d(/’zj. Ci?kl (2, ©,9,) f(p, P, p,)siN® dD (3.31)
0 0 0

where ¢, @, ¢, are the Euler angles describing lattice orientation of polycrystalline grain

[74].

In the absence of texture, i.e. for f (@, ®,¢,)=1, the polycrystal is macroscopically

isotropic, and X-ray elastic constants S;™ and 1/2S,™ can be used instead of the stress
factors. The XECs, according to the Voigt model do not depend on hkl and thus are equal
to the mechanical constants. Following Welzel [19], the X-ray elastic constants S; and
1/2S, can be calculated from the components of the single-crystal compliances defined
with respect to the lattice (s;; — two indexes convention). For cubic crystals:

_ 25,(S,; +2S,,) +5S,,S,, . 18 5(S,, —S1,)Su

: =—= 2228  and  Sp=S11-S12-S44/2 3.32
65, + 55, 2 % 6s,+5s, oL (3:32)

Sl

The Reuss model

In Reuss model [73, 75] the stress is assumed to be uniform across the sample for
all polycrystalline grains. For each crystallite the strain tensor is different so at the grain

boundaries the strain mismatch will occur [19].

The X-ray stress factors can be calculated [1, 19]:

Z .[ Slflii(hkl’égi¢ll//) f(hkl, &, ¢,p)dE
F,(hkl, ¢y, f)=mm, {3 %

2 (3.33)
> | f(hkL & g,p)de

{hki} o

where the same mean value as in Eq. 2.28 is calculated for s° — single crystal elastic

compliance tensor expressed in S system, i.e., average over volume of diffracting grains.
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Both sf,ij (hkl, &,0,w) and f(hkl, &, ¢,p) values for given reflection hkl are expressed as

functions of orientation angles defined in Fig. 2.8.

In the absence of texture i.e. when f{hkl& p,p)=1, the $,™ and 1/25,"™! can be used
instead stress factors. For cubic crystal, the X-ray elastic constants S;™ and 1/25,™ can be

calculated from the components of the single-crystal compliances [19]:
1
S =5, +s,I'(hkl), 5 S =5, —s,, —3s,T'(hkI) (3.34)

where I'(hkl)=(h*k*+h?I>+k?1%)/(h?+k*+1?) is the orientation factor for cubic materials.

XECs according to the Reuss model are hkl - dependent.

The Eshelby — Kroner model

In the self-consistent [70] method the grain is approximated by an ellipsoidal
inclusion [76], which is embedded into a homogenous and isotropic medium with the
elastic properties of the entire polycrystal. In this model the inclusion has an elastic
property of cubic symmetry [77]. Kneer (1965) [78] extended the model for textured

specimens [19].
Following Welzel [19] the elastic strain of a single-crystalline inclusion is given by:
Gij :[Sijkl + i ]O-kll (3.35)

where tijq is the tensor which describes the deviation of the elastic properties of an
individual grain from the average elastic properties of the entire polycrystal/surrounding
matrix. It depends on the shape of the inclusion, the single-crystal elastic constants and the
macroscopic mechanical compliance tensor Sjq of the aggregate. Usually, spherical

inclusions are considered.
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The X-ray stress factors can be calculated from:

2z

[ 185, (k1. £,6,17) + 15, (hK1, &, 6, )] f (WK1, &, 6, ) d&

Fi(hkl, ¢,p, ) =m,m, ° (3.36)

| f(hKi, & 8,p)de

0

hkl

In the absence of texture the f(hkl, & ¢,p)=1, the X-ray elastic constants S; and

1/25,"™ can be defined. For cubic crystallites the XEC’s can be calculated from [19, 79]:
1
S =S, +T,+T, I'(hkl) and > S =8, -8, +T,, —T,, —3T, ['(hkI) (3.37)

(G —v)(3K +6G)

where To=T11-T12-2Tas, T,, T, =
TS I T G186 + G(9K +12v) + 6vK]

_ (G—1)(BK +6G)
“ G[8G?+G(9K +12u) +61K]

, 3K:1/(811+2812), ,Lt:]/S44, ZVZI/(Sll-Slz) and

K is the bulk modulus, G is the shear modulus and S;; are the macroscopic compliances

(two indexes convention).

Free surface model

Free surface model [71, 72] treats grain as an ellipsoidal inclusion placed near the
surface of the homogeneous medium. This is direction dependent model in which the

interaction between grains is changing with the direction with respect to the sample.

In this model the grains close to the surface interact differently for the forces
normal and parallel to the surface. For the direction perpendicular to the surface the grains
exhibit a Reuss type of interaction behaviour and for the in surface plane they follow
Kroner model. This idea is similar to that used in Vook-Witt model in which combination
of Reuss and Voigt approaches is applied [19]. Therefore the elastic interaction between
grains is neglected in the direction normal to the surface. Grains on the surface can freely

deform in normal direction.
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The X-ray stress factors can be calculated from:

[ X5, (K, &,8,0) (BK1, £, 6,p)d
F, (hkl,¢,p, f) =mm, 2 T (3.38)
[ F(hKIL & gy)de

0

where:

Seij (N1, &, ¢,y) for k=3 or 1 =3 as in Reuss model
Seij (K1, &, ¢, p) + 1t (hKI, &, ¢,17) for k=3 and | =3 as in Kroner model

Klij

Xgi (DKL, 6,1) :{

It should be underlined that the presented above models approximates real
polycrystalline aggregate and in fact, the grain to grain interactions depend on the grain
size distribution, grain boundary misorientation distribution and a Zener anisotropy factor.
It is well known that the high crystal anisotropy together with crystallographic texture
leads to nonlinearity of the sin’y plots obtained from standard methods of stress
measurement [14, 19, 73]. One of the aims of this work is a verification of XEF calculated
by different models and their application for interpretation of the results obtained using
MGIXD method. In this case the difference between XEF calculated for different

reflection hkl is very important especially for high single crystal anisotropy.
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4. AIMS OF THE THESIS
The aim of this work is to develop one of the methodologies for stress

measurements based on the grazing incidence X-ray diffraction, namely: multireflection
grazing incidence method. On the basis of present knowledge and due to numerous
advantages of this method it seems that it is a valuable tool for in-depth stress analysis,
especially important for samples having stress gradient. That is why this method will be
considerably developed and applied for coatings and surface layers of the materials
subjected to different processes. Moreover one of the main purposes of the thesis is to
investigate the mechanical properties of the polycrystals such as: elastic constants and their
elastic anisotropy. Different theoretical grain elasto-plastic interaction models will be
considered and applied in X-ray stress analysis in the thesis.

Till now the multireflection grazing incidence diffraction is not commonly used
method for X-ray stress analysis. The commercial companies applied this method in their
software but without taking into account the elastic anisotropy. What is more the
systematic verification of this method with synchrotron radiation was not presented as well
the precise limits of application were not summarized in the literature. That is why the
main interests in the thesis will be concentrated on method development. Firstly, physical
and geometrical effects influencing X-ray stress analysis will be taken into consideration.
Secondly, elastic anisotropy and proper choice of the grain interaction models will be
analysed in order to perform the valuable in-depth stress analysis. Thirdly, MGIXD
method will be compared with standard methods, in effect new possibilities of this method
will be highlighted. What is more method will be verified with synchrotron radiation. For
the first time MGIXD method will be applied for EDDI (energy dispersive diffraction)
experiment. Finally method will be applied to measure in-depth profile of stresses in
materials subjected to different kinds of surface treatment.

At the end of the thesis the conclusions and practical recommendations for the users

of this method will formulated.
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5. TESTS, LIMITS AND EXPERIMENTAL DEVELOPMENTS OF

THE MGIXD METHOD

The MGIXD method, proposed and developed by Skrzypek et al. [14, 48, 80], is an
indispensable tool for non-destructive analysis of the heterogeneous stresses for different
(well defined) volumes below the surface of the sample. There are important benefits in
using different reflections to measure residual stresses. The most important is the wide
range of scattering vector inclinations enabling sufficient range of measured

<a( @, )>gmuy Vs. sin?y plot which is used to calculate stress tensor from linear regression

or least square method. The main disadvantage of multi-reflection method is that the
interplanar spacings must be measured using also the low 26 reflections (for example about
40°-50°). In this case the resolution of the strain obtained from measured peak shift is low
(see Eg. 2.29) and this is why the peak position must be precisely determined. Precise
measurement is possible due to simple experimental geometry in which the orientation of
the scattering vector is changed in diffraction plane being perpendicular to the sample
surface (like in @ geometry presented in Fig. 3.4). This configuration enables to use linear
focus of the X-ray tube and application of the parallel beam geometry in which the parallel
plate collimator (soller collimator) is used in the reflected beam optics (Fig. 5.13).
Moreover, the incident beam can be collimated for example by Gobel mirror or multi-
capillary collimator. The advantage of parallel beam is its high resolution in determination
of peak position and minimisation of the error caused by sample displacement in z-
direction (see Fig. 5.13). Till now, the parallel beam geometry used in MGIXD method
was realised without collimation of the incident beam which was limited by slits [14, 48].
In the present work the geometry with Gobel mirror will be applied for stress
measurements using MGIXD method. This experimental setup will be described and
tested. The reproducibility of the results of XSA will be tested for different diffractometes
on the powder sample [81].
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In this chapter also some new developments of the methodology, most important
corrections of experimental data and tests will be presented.

5.1. CORRECTIONS OF DETERMINED PEAK POSITION

In the case of stress measurement, it is of the highest importance to know the exact
position of the diffraction peak. To do this a few factors [1, 6] should be taken into account
[82]. Hence, these factors for MGIXD are discussed below.

5.1.1. INTENSITY CORRECTIONS

As mentioned in section 2.4 there are different reasons of peak asymmetry which
should be corrected before determination of peak position. The appropriate correction
factor used for standard and MGIXD methods are summarised in Table 5.1. These factors,
depending on 20 angle, should be used to correct each peak accordingly to Eq. 2.30, after
background subtraction. The LP(26) correction is the same for all methods, Ab(26)
correction is not necessary for w — geometry, while the absorption correction is the same
for o — geometry and MGIXD methods. However, in the latter case different angles are

kept constant during peak scanning (i.e. v and « for w — geometry and MGIXD method,

respectively).

Table 5.1. The intensity correction factors for different methods of stress measurements

[3, 6], where the angles: v, « and 26 are defined in Fig. 3.7.

V- _
geometry ® — geometry MGIXD
2
Lorentz-polarization: M
LP(26) sin”¢
] (I+tanycotd)/2 (A+tan(@—ca)cotd)/2
Absorption:  Ab(26 1
sorptl (20) y =const. a = const,

72



25

LP(20)
20 1

15 4

LP

10 4

5

0

20 40 60 80 100 120 140 160 180

a) 20() b) 20)

Fig. 5.1. Dependence of LP(26) (a) factor and Ab(20) (b) factors on the scattering angle 26.
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Fig. 5.2. Dependence of LPA= LP * Ab factor on the scattering angle 26. A small range of
variation for relatively low 26 (about 30°) is shown in figure b.

As seen on Figs. 5.1 and 5.2 the most important variation of intensity (LPA =
LP*Ab) factor occurs for small 20 angles. However, even in this range the relative changes
of intensity are very small for the range of about 1 degree corresponding to the width of the

measured peak (in the case of high density of defects).
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Fig. 5.3. The influence of LPA correction on the peak position for Al 2017 (a) and Ti grade
2 (b) polished sample. The peak position without and with correction for K¢, lines are
indicated by dashed lines (in same cases the lines overlap). The PANalytical - X’Pert MRD
(AGH, Krakéw) diffractometer was used for ground Al2017 measurements while the
PANalytical - X’Pert MRD (ENSAM, Paris) was used for polished Ti measurements.
The configuration of both diffractometers is given in Table 5.4.

Examples of the diffraction peak shifts (426) and corresponding strains (g)
calculated from Eqg. 2.29 caused by the LPA correction are shown in Fig. 5.3. The peaks at
low and high 26 angles for ground Al and Ti samples having significant structural peak
broadening were chosen. Also, the values of stresses and lattice parameters determined
with and without corrections for the studied samples are presented in Table 5.2. It can be
concluded that even in the case of relatively broad diffraction peaks the influence of LPA
correction on the measured peak position, corresponding strain and consequently value of

determined stress or strain free lattice constants is very small.
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Table 5.2. The stresses (o) and lattice constants (ap) determined for ground Al2017 and

polished Ti grade 2 samples from the experimental data with and without LPA correction.

calculation without LPA calculation with LPA .
. . difference
correction correction
ground Al 2017 (cubic)
c11(MPa) 204.2 +4.8 206.9+ 5.7 2.7
o22(MPa) 126.4 +4.8 1294+ 57 3.0
a0 (A) 4.04697 + 0.00008 4.04698 + 0.00010 0.00001
polished Ti grade 2 (hexagonal)
611(MPa) -411+11 -405.4 +12.2 5.6
622(MPa) -405+11 -397.7 +12.1 7.3
a0 (A) 2.9506 +0.0001 2.9506 + 0.0001 -
cla 1.5881 £ 0.0003 1.5881 + 0.0003 -

5.1.2. PEAK SHIFT DUE TO REFRACTIVE INDEX SMALLER THAN 1

The refraction of the X-rays on the boundary between two different media can
significantly influence the position of the diffraction peak. The deviation of wave direction,
described by Snell-Descartes law, causes a change in the value of the diffraction angle 426
and additionally a small inclination Ay of the scattering vector orientation. So far the only

solutions for a refraction correction are given in the case of a smooth surface.

In this section the change of diffraction angle caused due to refractive index n <1 is
considered. The derived formulas are compared with those found in literature. Assuming
a perfectly smooth surface, the influence of the refraction on the position of the diffraction

peak can be studied by taking into account:

¢ the change of the wavelength value inside the studied material and its influence on
the Bragg’s law, Eq. 2.11,
e the refraction of the beam on the boundary between two different media described

by Snell-Descartes law.
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Fig. 5.4. Influence of refraction on the value of diffraction angle 26 (where 26° is the
measured diffraction angle).

The complex value of refractive index is defined as: n=1- ¢ +ix. The imaginary part
k indicates the amount of absorption loss when the electromagnetic wave propagates
through the material, while the real part determining the refraction of the rays is slightly
smaller than unity. The refractive index can be expressed by [83, 84]:

2

rA
n=1-5, where: §=2>-N_f_, (5.1)
272_ at "re

where: Na: — number of atoms per volume, ro — classical electron radius (2.82-10'15 m),

fre — real part of atomic scattering factor and 4 — wavelength of X-ray radiation.

When the wave propagates from vacuum to the medium its length is changing:

=tz (5.2)

i A
n 1-o6

where: 4 and A' are the wavelength values in the vacuum and in the material,

respectively.

Inside the considered material, the Bragg’s law (Eq. 2.11) can be written for A'

wavelength:

mﬂ':M: 2dsin @' (5.3)
1-6

where: 26’; is the diffraction angle inside the material defined in Fig. 5.4 and m is the

reflection order .
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By simple comparison of the above formula with that written for the wavelength A in the

vacuum (i.e.. mA=2dsin@d), we get:

_sin@ _sin(0'-A0)

-0 sing' sing' 64
where: Ag, =0'-6.
When assuming small value of Af; angle the above formula can be transformed:
1_5:sin49'cosA91—cosé?'sinAH1 ~1-cot0' - AG, (5.5)

sing'
Finally, the correction of diffraction angle due to change of wavelength in Bragg law is
given by:

A26, =25tan 6" (5.6)

The second correction can be calculated from Snell-Descartes law. For refractive
index n less than 1, the relation between directions of the incident and diffracted beams is

described by equations:

s_in(90° -a) _cosa 4 (5.72) s_in(90° - ) _Cosp _
sin(90° —a")  cosa' sin(90° - B cosp'

1-5 (5.7b)

where the angles are defined in Fig 5.4.

Next, the deviations of the incident and diffracted beams Aa=a'-a and

Ap = B'— B can be determined using two approximations:

a—0 Aa—0 and Aa<<a'
a) or b) , (5.8)
p—0 AB—0 and Ap<<p

In the first case (a), which will be applied for «'<5° orfand S'<5°, we can write

(calculations are presented for « angle, but the same transformations could be done for

small g) :

12 2 12 2
(@-9)cosa'=cosa = (1-0) 1-% _|x)1-% | =1-6-% ~1-& (5.9)
2 2 2 2
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and
Aa=a—-~Ja-25  orland Aﬁzﬁ—«/ﬁ—Z& (5.10)

where a,, =+/25 is an critical incident angle for total external reflection (below this angle,

i.e. when o <, only the reflected beam exists and Aa =2« ).

The second approximation (b) is used for angles «'>3° or/and g'>3°:

_cosa _ cos(a'+Aa) cosa'cosAa—sina'sinAa
cosa' cosa' cosa'

1-6 ~l-taha " Aa=l-tana-Ac

and consequently

Aa=dcota  orland ApB=¢5cotp (5.11)

The change A28, of the scattering angle caused by refraction is equal to the sum of

Aa and Ap deviations (see Fig. 5.4), i.e.: 420,=Aa+Ap.

Finally, the total shift of the diffraction peak A28 =A26, +A26, caused by the

passing of the wave through a boundary between two different media and change of the

wavelength, can be expressed by:

{Azeza—«/a—25+5cotﬂ+25tant9 for a<5° (5.12)

A20=6cota+ocot f+25tan @ for a>3°

where: 20°=20+A20, 26° is the measured diffraction angle and 26 is the value which
should be used in Bragg’s relation written for the vacuum (Eq. 2.11). The value 26 was
used in the above equation instead of &' because in good approximation &~ @'~ 6°
(angles defined in Fig. 5.4). In the above formula g >5° was considered (to keep constant

information depth for MGIXD method the condition g >> « must be fulfilled) and in the

intermediate range 3° < a < 5° both functions are convergent having practically the same

value.
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It should be underlined that the choice of the boundary angles 3° and 5° is not very
strict and it was checked that for all studied materials the range of functions convergence is
much wider. This choice has been suggested by Genzel [36] and it can be applied for any

other material analyzed by conventional X-rays and also synchrotron radiation.

The above derived formulas can be compared with that given by James (1993) and

applied for grazing incidence geometry by Hart [85]:

A260

5 {2+ sina +sin(26—a)} (5.13)

" sin 20 sin(260 —«) sina

and another one derived by Genzel [36]:

A20 = arccos{cos(a —Aa)cos(f=Ap) (cos 20 +sinasin B) —
COSx COS 3 (5.14 a)

—sin(a —Aa)sin(8-ApB)]-26

where:

—a—Ja— o AB=p-p-2p8 f °
Aa=a—-a-20 for a<5 and /or p=p-p-28 for p<5 (5.14b)
Aa=06cota for a>3° AB=6cotp for f>3°

After elementary transformations it can be shown that the first formula (5.13., given
by Hart) is equivalent to the derivation done in the present work but only for higher range
of deformation (indicated by a > 3° in Eg. 5.12). To demonstrate graphically this
equivalence the shift of peak position predicted by different approaches are shown in
Fig. 5.5a, where the wavelength for Cu radiation and Al sample where considered (values
of ¢ and o, are given in Table 5.3). The results obtained with the second part of Eq. 5.12
but applied for high and low ranges of a perfectly coincide with that obtained from Hart
equation but they do not agree with the results obtained from Genzel approach.

On the other hand comparing Genzel approach (Eq. 5.14) with the incomplete
Eq. 5.12 (i.e. setting 20tand=0) we get perfect convergence as shown in Fig. 5.5b. This
means that in the case of Genzel approach the effect of wavelength change in Bragg’s law

Is not taken into account (as seen also in Eq. 5.14a). Finally, the complete formula derived
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in the present work (Eg. 5.12) is compared with Hart (Eqg. 5.13) and Genzel (Eq. 5.14)
approaches in Fig. 5.6. It can be concluded that Eq. 5.13 is accurate for higher a angles
where 26 tan fterm is relatively more important but fails for angles close to acr. In the case
of Eq. 5.14 the shift of peak position is underestimated for all range of « (this effect is not

well visible for low a because the shift caused by refraction is relatively large).
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0.25 Hart 0.025 A Hart
® J(cota + cot (260—a) + 2 tan 0) * §(cota + cot (20—-a) + 2 tan 6)
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o —~
& <
@ 0.15 <@ 0.015
g g
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0.30 0.030
— Genzel —— Genzel
0.25 Hart 0.025 - Hart
L
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Fig. 5.5. Peak shift caused by refractive factor n=1-6 for ¢ =0.85 and «, =0.24° and

260 =132.5° (Al sample and Cu radiation). Genzel and Hart approaches compared with the
formula 5.12, i.e. assuming (a) A28 =5(cota +cot B+2tand) for whole range of a and

(b) 20tan & =0.
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Fig. 5.6. Peak shift caused by refractive factor n=1-06 for the same parameters as in
Fig. 5.5 compared for Genzel, Hart approaches and complete formula 5.12 (‘New
formula’).

Although in Figs. 5.5 and 5.6 the shift of peak position is shown, the most
important for stress analysis is to estimate the lattice strain corresponding to that shift.
Therefore in Fig. 5.7 the pseudo-strain (i.e. fictitious strain which would be measured if the
refraction effect is not corrected) calculated as & =—cot@-A@ (see Eq. 2.29) is shown for
the same conditions as in previous Figs. 5.5 and 5.6 Moreover, the peak shift A260 and

strain ¢ calculated for other materials and wavelengths given in Table 5.3 are presented in

Fig. 5.8.

Interesting conclusions can be drawn from the comparisons done in Figs. 5.7 and
5.8. The use of the MGIXD method is limited for small values of a angle due to significant
shift of peak position (important pseudo-strain & ) caused by the refractive index n<1. This
is especially important for low 26 angles. The effect of wavelength change
(term AG =26tan @) is significant for large diffraction angle (26) and decreases for
smaller 28 . However, in the case of strain we can write: g =(—cot@)(25tan8)/2=-5,
i.e. the wavelength change causes constant (for all angles «, g and 26) and not

significant negative pseudo-strain equal —0 (compare Genzel approach and ‘New formula’

in Fig. 5.7). Thus the most important influence on the measured strain is caused by the

refraction effect, i.e. ¢, =—cot@- A0, (where A26,=Aa+ApS, see Egs. 5.10 and 5.11).

Because A6, is positive and does not depend on the 28 angle, the pseudo-strain &, is
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negative and its absolute value strongly increases for low diffraction angle (see Figs. 5.7

and 5.8).

It should be emphasized that effect of the refractive index n<1 on the strain
measurement depends strongly on value of the 6 parameter, i.e. in the case of Al the
pseudo-strain is about &, ~-1.5-10"* for « =5° and for low diffraction angle 26 =35.5°,
while £, ~-1.10"° for «=5° and 20 =40.2° in the case of tungsten (see Fig. 5.8).
Moreover the pseudo-strains varies for different 26 angles what leads to pseudo-stress
(because w =6-«), depending also on the value of X-ray diffraction constants. The

pseudo-strains will cause also an erroneous value of determined stress free lattice

parameter. Therefore the correction should be done for the experimentally determined peak

position 26° according to the equation: 20 =26° —A26 .
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Fig. 5.7. Peak shift A20 and pseudo-strain ¢ caused by refractive factor n=1-¢ for Al
sample and Cu radiation (the same parameters as in Fig. 5.5 and 5.6; also given in
Table 5.3) compared for Genzel approach (and A&, =25 tan @ =0) and the ‘New formula’

with different 26 angles.
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Fig. 5.8. Peak shift A20and pseudo-strain ¢ caused by refractive factor n=1-¢ for
different materials and chosen wavelengths (see Table 5.3). Calculations were performed
by the ‘New formula’ applied for low and high 26 angles corresponding to available
hkl reflections.
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Table 5.3. The oc and o values calculated for the studied materials and used wavelengths
using X-ray database of Lawrence Berkeley National Laboratory's Center for X-Ray
Optics [86].

Material Al Ti Ni CrN Fe w
Wavelength (A) | 154  1.54 1.54 1.54 1.94 1.54
X-ray tube Cu Cu Cu Cu Fe Cu
§-10° 085 135 2.73 2.15 3.42 4.63
aer (°) 024  0.30 0.40 0.38 0.47 0.55

It was already mentioned above, that the refraction of the X-rays not only shifts the
diffraction angle 26, but also leads to a change of the orientation of the diffraction vector

Ay. This deviation is relatively small and practically does not influence the values stress
determined from sin?y plot. The value of Ay =y°—y (where y° and y the correct

values respectively) can be calculated from formula given by Genzel [36]:
Ay =y® —arccos[sin( — AB)sin @ —cos( — Af3) cos @ cos &] (5.15)

where:

sinB(ﬁ—@—ﬁﬂ//)}sin[;(ﬁ—e—ﬂ—w}

cosé& =2 -1
cosécos
or simply (see Fig. 5.4):
Ay =(Aa—-ApB)I?2 (5.16)
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Fig. 5.9. Deviation Ay caused by refraction for different materials and chosen
wavelengths (see Table 5.3) according to Eq. 5.15.

Because the deviation Ay is smaller than 0.1° for all considered ranges of « and all

materials given in Table 5.3, the influence of refraction on the value of determined stress is

negligible (such small deviation practically has not influence on the slope of sin?y plot).

The above derived formulas for correction of experimental data were derived for
the case of perfectly smooth surface. The main difficulty of the application of such
correction is that the surface roughness can significantly reduce value of the peak shift
(426) calculated for perfectly flat sample. A first model for an explanation of how surface
roughness could influence the refraction effect was given by Ely et al. [87]. Ott M.H and
Lohe D [88], showed that for smooth surface theoretical corrections agree very well with
experiment and what is more Snell’s law describes this effect with good accuracy at least
down to incidence angles of 0.8°. It was also proven that with increasing surface roughness

the refraction correction effect decreases.

To take into account that refractive index is smaller than unity, the analysis of the
experimental data should be performed twice (i.e. with and without correction), to see the
boundary values of stresses and determined strain free lattice constant ap. The example
results of such calculations are shown in Figs. 5.7, 5.8 and 5.9, and such comparison will
be later done for each sample studied in this work. The example of the results (Figs. 5.7

and 5.8) were obtained using Kroner model and applying fitting procedure based on
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Eq. 3.23 (the c/a parameter for hexagonal Ti samples was determined using a new self-
consistent method described in the next chapter). When the calculations are performed
without correction, the value of a, decreases for decreasing «a incident angle, while the
correction for smaller than unity refractive index leads to higher values of a,, and the
increase is more significant close to the sample surface. After correction the lattice
parameter is approximately constant in function of the incident angle o and such result was
expected for the powder and mechanically polished samples in which the crystal structure
should not change in function of the depth below the surface (and consequently on
a angle). The stress values determined with and without correction are also different and
this difference is certainly larger for Ti in comparison with Al, as expected comparing
o values in Table 5.3. As we see in Fig. 5.10, in the case of powder sample, the refraction
effect influences significantly stress determined for small incidence angle (see a = 1°),
I.e. compressive pseudo-stress is obtained without correction (this value is fictitious
because zero stress is expected in the powder sample). However, applying correction we
change the calculated stress to significant positive value. This would suggest that the
assumption of smooth samples can be not exactly fulfilled and the correction of peak
position is overestimated. Finally, we can see that refraction does not influence value of
determined c/a parameter (Fig. 5.18). This is due to the fact that variation of c/a will cause
the shifts of relative peaks positions depending on hkl reflections which is not monotonic
in function of 20. Therefore, the determined in fitting procedure c/a value is not influenced
significantly by the monotonic with respect to 26 shifts of the diffraction peaks caused by
smaller than unity refractive index. In the contrary, both strain free lattice constant a, and
stresses determined using MGIXD method depend (indirectly) on the monotonic variation
of the peak position in function of 26 angle, what leads to sensitivity of these values on the

value of refractive index.

Summarizing, it should be stated that the influence of non-unit refractive index on
the on the determined a, parameter and residual stresses depends on the type of material,
wavelength of X-rays, incident angle and moreover on the roughness of the surface. It is
known that roughness reduces the refraction effect [88]. Therefore the interpretation of the
experimental results performed with correction for flat surface and without correction
establishes limits for the values of the stresses and a, parameter in the studied sample.
Such calculations must be always compared in order to see the range of incident angle for
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which the correction is not significant (as for the samples presented in Figs. 5.8 and 5.9).
If we want to analyze data for the range where the influence of refraction is significant we
will know only the limits of the determined values. To verify the obtained results for
mechanically machined surface it is important to follow changes of determined
ap parameter, which should not change significantly with incidence angle. In the case of
presented results we can say that after correction we obtained reasonable values of stresses
and ag parameter for the incidence angles « >3° (for both Al and Ti samples using Cu K,
X-ray radiation).

25 e Al powder corrected for refraction
0 ] 4.052 1 ® Al powder not corrected for reffaction
: = Al 2017 corrected for refraction
-25 4050 1 = Al 2017 not corrected for refraction
— ) o——&_ 8§ —————— . _ e & |
© -50 A - .
o < L
N 4
g -75 A 2 4.048
“ ©
s -100 - Lo ]
©o
) 4.046 T i ]
125 | e Al powder corrected for refraction
e Al powder not corrected for reffactior]
-150 - —=— Al 2017 corrected for refraction 4.044 1
175 —a— Al 2017 not corrected for refraction
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
[¢]
(o]
a(”) a(”)

Fig. 5.10. Residual stress and strain free lattice parameter a, in function of the incidence
angle a determined with and without correction for smaller than unity refractive index. The
MGIXD method was applied for mechanically polished aluminium alloy (Al 2017) and for
Al powder, using -PANalytical - X’Pert diffractometer (configuration described in
Table 5.4) with Cu K, X-ray radiation. In calculations the Kroner XEC calculated from
single crystal elastic constants given in Table 3.3 were used.
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Fig. 5.11. Residual stress, c/a and a, parameters in function of the incidence angle
a determined with and without correction for smaller than unity refractive index. The same

experiment as described in caption of Fig 5.10 was used for mechanically polished
titanium alloy (Ti6Al4V) and for Ti powder.

5.2. TESTS OF THE EXPERIMENTAL CONFIGURATION

In diffractometry, both peak shape and angular resolution are influenced by the
optical properties of the devices in the primary and reflected beam optics [89]. The main
disadvantage of MGIXD method is its low accuracy in stress determination (about
+50 MPa for steel sample) when the classical line focus (with slit in incident beam optics)

and parallel plate collimator (soller collimator) in the reflected beam optics were used [49].
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in focus of parabolic "
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Fig. 5.12. Parallel beam configuration with G6bel mirror (incident beam optics) and soller
collimator (diffracted beam optics). Shift of the sample in z direction moves the diffracted
beam across the soller slits collimator, but the rays always reach the detector for the same
value of 26 position [90]. The X-ray source is located in the focus of the mirror.

The accuracy of measurements can be considerably improved by using collimating
X-ray optics realized by parabolically bent graded multilayer mirrors [89]. The multilayer
is bent to parallelize the divergent beam of an X-ray tube and monochromatize the
radiation to its K,-contents [90]. The graded multilayer monochromators (Gobel mirrors)
are composed as a combination of layers made of two materials having different atomic
number (Z), which allows gaining high total reflectivity [91]. The distance of layers from
each other as well as their slope depends on the wavelength and on the localization of the

mirror in relation with the position of the source.

\
|
|
graded multilayer

Fig. 5.13. Gobel mirror composed from the
layers having different atomic numbers.

substrate

Typically used Gobel mirrors are composed from tungsten and silicon (W/Si).
Gobel mirror W/Si 1s composed from the layers having low atomic number (silicon,
Zsi=14) and layers having high Z (tungsten, Zw=74) which are arranged alternately. Both

elements have similar linear coefficient of thermal expansion. Using this kind of mirrors
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reduces influence of sample misalignment and surface topography on the reflex positions.
If Gobel mirror is located on the parabola in such a way that the X-ray beam incidence on
it from the source located at the focal point of the parabola (with the accuracy of 1°), then
the divergence radiation of the source is converted to monochromatic and parallel beam

with an accuracy of about 0.8°-0.05°.

In parallel-beam geometry the angle of the diffraction must be measured directly.
The soller slit (collimator) with blades perpendicular to the diffraction plane and
a divergence of about 0.15° prevents radiation penetrating under a different angle from
reaching the detector (Fig. 5.12) [90].

Although Gobel mirror and the plate collimator parallelizes the primary beam in
direction of diffraction plane it is still divergent in direction perpendicular to the diffraction
plane. It can cause the asymmetry of the diffraction peak which is dependent on the value
of primary beam divergence. In order to reduce the asymmetry, the second soller slit, in the
primary beam or/and in the front of the other soller slit, may be used. It reduces the

divergence perpendicular to the diffraction plane [90].

In diffraction methods it is very important to be able to perform measurements in-
depth of the sample with a very good accuracy. Gross M. et al. [90] showed that the
parallel-beam geometry achieved by a Gobel mirror allows measurements with varying

angle of incidence in high accuracy.

In the present work the X-ray measurements were performed on four

diffractometers described in Table 5.4 using parallel beam configuration.
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Table 5.4. Configurations of the laboratory X-ray diffractometers used in preset work.

PANalytical - | PANalytical — | PANalytical Seifert -
Diffractometer X’Pert MRD Empyrean — X’Pert MRD | PTS MZ VI
(AGH, (AGH, (ENSAM, (ENSAM,
Krakow) Krakow) Paris) Paris)
Divergence of Gbel 0.02 0.02 >0.05 no mirror
mirror ()
slits width :
. . 0.5mm
Type and size of slit rectangular rectangular rectangular vertical
forming incident beam | (1/2°x 4 mm) | (1/2°x 4 mm) | (1/2° x4 mm limitation -
1.5
Divergence of Soller
collimator in reflected
beam optics — plates 0.18 0.18 0.27 0.30
perpendicular to
diffraction plane (°)
Soller collimators —
plates perpendicular to present present not present not present
diffraction plane
. . oint oint
X-ray tube focus line line . 2xp0. 4mm?) | ( lxpl mm?)
Type of radiation used CuK, CuK, CuK, Fe K,
not present :
for the not
reflected necessary
Monochromator not present not present beam: thanks to the
graphite (cut Jype of
the Ky) etector
(energy
resolution)
. . . solid
Type of detector proportional | semiconductor | proportional detector

The first three diffractometers presented in Table 5.4 gave very similar results
(it has been tested on powder samples), and the third configuration was used to measure
stresses in austenitic steel (in this case Cu K, radiation is not convenient due to high
fluorescence causing high background and absorption). The reproducibility of the
experimental setup with the Gobel mirror was tested repeating measurements for different
powder specimens. It was found that the difference between the stresses measured using

the MGIXD method was about 10 MPa for the Al powder [92, 55] (Table 5.5).
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Table 5.5. Comparison of results for Al powder for three different diffractometers.

diffractometer a(®) o (MPa) ag (A) e

(AGH, Krakow) 15 -69+133 4.0493+0.0001 0.7
5 -0.2+49 4.04904 +0.00008 0.5
PANalytical — Empyrean
15 -23+7.5 4.04935+0.00009 1.0

PANalytical - X’Pert MRD | °  -10.2+£2.0 4.04949+0.0001 0.2

(ENSAM, Paris) 15 -14+2.0 4.04969+0.0001 0.2

One of the aims of this work is testing of the parallel configuration of the
diffractometer containing Gobel mirror in the incidence beam optics. The test were
performed on Al — powder sample having low elastic crystal anisotropy (Zenner factor
A=1.2) and relatively low absorption (w154 4 = 136 cm™) enabling measurements at
different depths shown in Fig. 3.8. The results of the tests and the analysis of experimental
uncertainty used in the MGIXD method are described below.

5.2.1. UNCERTAINTY OF PEAK POSITION

In the analysis of experimental data it is important to take the different sensitivity of
the measured lattice strain on the value of scattering angle 26 into account. In this work
the fitting procedure is based on Eq. 3.23, in which the uncertainties of equivalent lattice

parameters &, (< a( g,y )>na;) are treated as the weight in the calculation of the »* value

(compare Eq. 2.47):

cal

1 ZN: (< a4, v,) >{?§E|} —<ad,,¥,) >ma Jz
-M = o(<a(d,, v, J>may)

2= 5.17
=Y (5.17)

where <a(g,,w,) >ne, and <a(d, w,) >, are the experimental and calculated lattice
parameters and the &(<a(d,. v, )>may) uncertainty is calculated directly from the

uncertainty of peak position dn(26niy), 1.€.:
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o<a(e, v, )>{hkl}) =<a(p,v,) >fr)$|} COt(ZH{th}) S, (2‘9{hk|}) (5.18)

In the data analysis it can be assumed that that the dn(2 Gniy) uncertainty is equal to
the standard deviation of the peak position obtained from procedure of peak adjustment.
However, these values are very small (smaller than 0.01°) and other experimental errors
play a more significant role, for example those due to the misfit of the sample position,
defocusing or misalignment errors. Errors having different reasons are in fact unknown;
therefore it was decided (if the standard deviation from peak adjustment is smaller than
0.01°) to assume a reasonable value of peak position uncertainty, the same for all
reflections. As shown in Fig. 5.14 (see error bars) the values of S(<a(g,,w, )>mam)

calculated using Eq. 5.18 with 6,(26y) = 0.01°, are different for different 26;. This

exp

ensures different influences of measured equivalent parameters <a(d,,y, >nq On the

fitting quality criterion (Eq. 5.17) and consequently on the values of the determined

stresses. As seen in Fig. 5.14 the uncertainties s(<a(g,,y, )>ma;) are larger for lower

avalue of 26, scattering angle, i.e., the low 26y angle reflections affect the fitting
results less than those for which 26, is higher (cf. Eq. 5.18). It is also important to
estimate the uncertainty of the determined stresses in the case of unknown the 6n(26npy)
value. Therefore, regardless of the reasons of the experimental errors or inaccuracy of the
data treatment the stress uncertainties were calculated assuming a ‘good fit’ for which

22 =1[25].
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5.2.2. TESTING INCIDENT BEAM OPTICS

MGIXD method and standard method (with 422 reflection) were applied to
determine stress in Al powder sample. The measurements were performed on the
PANalytical X’Pert MRD (AGH, Krakow) diffractometer in parallel beam mode
(configuration in Table 5.4) [92]. The tests for Al powder were repeated twice, i.e., using
the Gobel mirror or slit with divergence of 1/2° for the primary optic. Moreover, the data
treatment for XGIXD method was repeated applying two different conditions, i.e., using all

measured reflections presented in Fig. 5.15 or excluding two low 26 reflections (111) and

(200), for which <a(g,,y, >, deviate significantly from the theoretical values.

Table 5.6. Residual stress component o, determined for Al powder using two optics of
incidence beam: Gobel mirror or slit (stresses calculated excluding 111 and 200 reflections
compared with results obtained from all reflections). In calculations the free surface XEC

calculated from single crystal elastic constants given in Table 3.3 were used.

. _ . c1,(MPa) reflections 111, 200 excluded
method a () 7 primary all
or hkl m) beam config. . MPa a (A 2
(um) 9 eflections | (MPa) 0 (A) X
) 4.04936
Gobel mirror  -5.0+£3.0 -1.6+1.5 0.05
+0.00003
o=5° 5.8
) 4.04973
Slit -22.1+53 | -16.0+5.3 0.55
+ 0.00009
] 4.04948
Gobel mirror -3.1£3.2 -04+£1.1 0.02
+ 0.00002
MGIXD «=10° 10.8
) 4.04995
Slit -28.1+6.4 | -33.3+5.6 0.64
+ 0.00008
) 4.04945
Gobel mirror -3.0t4.4 0.4+3.8 0.29
14.9 + 0.00006
o=15°
) 4.04914
Slit -7.3+6.1 -86+7.3 1.07
+0.00011
) 4.04946
Gobel mirror -21+05 0.65
12- + 0.00001
Standard 422
34 ) 4.04903
Slit -05+14 3.08
+ 0.00004
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Fig. 5.14. Measured lattice parameters (points) and theoretical results of fitting (continuous
lines) vs. sinzl// for Al powder sample. Results of grazing incidence method for three angles
o and for two different beam geometries are shown.
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Fig. 5.15. Similar comparison as in Fig. 5.14 but for standard method (® — method).

Results of stress analysis in Al powder are shown in Table 5.6. and the sin®y plots
for grazing incidence method (MGIXD) and standard method are shown in Figs. 5.14 and
5.15, respectively. All calculations were performed with assumption 6(20¢nw;) = 0.01°.
Comparing the results obtained using MGIXD method with and without two low
20 reflections (i.e. 111 and 200) it can be stated that a small improvement of the results
(lower fictitious stress and its uncertainty) was obtained when the latter reflections were
excluded. As seen in Table 5.6 the values of y* are much lower when the Gébel mirror was
used (for both MGIXD and standard methods). Small, but significant, values of fictitious
stresses (between -8 and -33 MPa) were found, when the slit was used. As the real stress
for the powder sample is equal to zero, the determined non-zero stresses can be treated as
the values of systematic uncertainty caused by the diffractometer or sample misalignments.
The latter uncertainties can be minimized using parallel optics of the incident beam. The
near zero values of stresses measured in the Al powder (values lower than -5 MPa, see
Table 5.6) show that the experimental errors were significantly reduced by use of the
Gobel mirror. In the case of standard method almost zero stress was determined for both

used configuration of the incident beam optics.

Finally it should be stated that using MGIXD method (especially with) a good
accuracy of ap determination was achieved. When the Gobel mirror is applied, the

differences between a, measured at different depths is in the order of about 10 A,
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5.2.3. INFLUENCE OF 26 - ZERO POSITION ON THE MEASURED STRESS

In order to precisely designate the stress value it is necessary to take into account
the 20-zero position. MGIXD method was applied to determine stress in Al powder sample
and to verify the influence of the 26-zero position on the measured stresses and lattice
parameter. The measurements were performed on the PANalytical — X’Pert MRD
(configuration in Table 5.4) in parallel beam mode (Go6bel mirror). In calculations the
Kroner XEC calculated from single crystal elastic constants given in Table 3.3 were used.
The tests of the 20 direct beam position on the measured stresses and lattice parameter for
Al powder are presented on Fig. 5.16. To investigate the effect of 20-zero position on
measured quantities different values of deviation from 26 - zero position were assumed
(Fig. 5.16).

24 4.0505
18 _
12 405 H [——
£ 5 iNl 1 5
s 0 o 4.0495 H [ | —
S pL Z :
°-12 ©4.049 [ | H =
_18 4
-24 40485 H [ | -
30 +—
-36 4.048
002 001 0 -0.01 -0.02 0.02 001 0 -0.01-0.02
26 - zero position (°) 26 - zero position (°)
Oog=5° @g=15° Og=5° Og=15°

Fig. 5.16. Influence of 26 — zero position on the measured stress for powder sample.

In the light of presented results it can be concluded that deviation from 26 - zero
position equal to 0.01° causes about 10 MPa deviations of the measured stress value

(for Al sample) and about 0.0003 A deviation for ay lattice parameter.
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5.2.4. INFLUENCE OF Z- POSITION ON THE MEASURED STRESS

Precise determination of the stresses is also dependent on the z - position of the
sample. In order to investigate this effect for MGIXD method the measurements were
performed on the PANalytical - X’Pert MRD (ENSAM, Paris - configuration in Table 5.4)
in parallel beam mode (Gobel mirror). In calculations the Kroner XEC calculated from
single crystal elastic constants given in Table 3.3 were used. Different deviations from z -
zero position (in direction normal to the surface) were introduced and the values of stresses
and lattice parameter for each z -position deviation were determined and compared.
Results of the test are presented on Fig. 5.17.
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Fig. 5.17. Influence of z — zero position on the measured stress for powder sample

On the basis of the presented results it can be concluded that the deviation from z-
zero position equal to 0.01 mm causes about 5 MPa deviation of calculated value of

stresses and less than 0.0002 A for ag lattice parameter.
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Summarizing results obtained in section 5.2, it can be concluded that application of
Gobel mirror collimating incident beam decreases uncertainty of the determined peak
position and it is possible to achieve accuracy even of a few MPa for the stresses in Al
sample (the accuracy in of the stress determination in another materials can be easily
estimated comparing Young modulus of Al and this of the studied material). The accuracy
of determined strain free lattice parameter a is in order of 10* A. Moreover it was shown
that using parallel optics minimises errors connected with displacement of the sample in
the z direction (normal to sample surface). Experimental error of about 5 MPa for stress
and less than 0.0002 A for lattice parameter ag corresponds to shift of 0.1 mm. It was also
found that the more important source of systematic error is caused by the shift of 26 - zero
value. The misalignment of the diffractometer equal 420 = 0.01° leads to the fictitious
stress of about 10 MPa and change of 0.0002 A for lattice parameter ap determined for the
Al stress-free powder. This error can be minimised by the careful alignment of the
diffractometer or the results obtained for the studied sample can be corrected by using the
powder diffraction data. Concerning the statistical uncertainty it will depend on the quality
of measured peak, and for the studied samples it was about 1.5-5 MPa for stress and less
than 10 A for ao, and the latter value is significantly smaller than the errors caused by
misalignment of the sample position and diffractometer alignment.

The performed tests confirmed that we can expect the reproducibility of
measurements for different experimental setups containing the Gobel mirror is about
10 MPa and a 0.0005 A for lattice parameter @ in the case of Al elastic constants. These
values were confirmed in the performed experiments. Also, it is reasonable to assume that
the position of peak is determined with accuracy not better 426 = 0.01° (see the error bars
corresponding to this value in Fig. 5.14). Finally, it should be stated that the above values
of expected systematic and statistical errors are calculated for particular sample and they
can be different for another set of measured reflection. However, the presented results give

a view on the accuracy of the experimental setup and the applied methodology.
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5.3. CONCLUSIONS

In the light of presented results the LPA correction does not influence the XSA
significantly. Even in the case of relatively broad diffraction peak the influence of LPA
correction on the measured peak position, corresponding strain and consequently value of
determined stress or strain free lattice constants is relatively small. On the other hand the
refraction correction can significantly influence the results of the XSA. Comparing the
‘New formula’ developed in the thesis with the approaches proposed by Genzel and Hart it
can be concluded that for high incident angles the ‘new approach’ is consistent with the
one proposed by Hart, but it differs in comparison with Genzel’s (in which the effect of
wavelength change was neglected). For small incident angles the Genzel’s approach and
the one proposed in thesis are consistent but the Hart’s formula do not reflect the effect
properly. It is caused by not precise approximation for small incident angles. The effect of
refractive index n<l on the stress measurement strongly depends on value of the
o parameter (and thereby the type of material), wavelength, incident angle and surface
roughness. On the basis of considered results, if MGIXD method is used, it is advised to
perform the stress analysis with and without refraction correction and when the difference
of obtained results is significant for designated parameter than these results should be
rejected. This effect is the limitation of MGIXD method.

Results presented in this chapter confirmed that both statistical error and the
misalignment error can be significantly reduced when the Gobel mirror is used in the
primary optic of the diffractometer. In the case of parallel beam geometry used for
MGIXD method the z-position imprecisions do not significantly influence the obtained

results of XSA, however the 26-zero position should be precisely adjusted.
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6. NEW INTERPRETATIONS OF MGIXD MEASUREMENTS

AND VERIFICATION OF X-RAY STRESS FACTORS (XSFS)

In this chapter two important theoretical developments of the MGIXD method are
presented. The first one enabling determination of c/a parameter and significantly
improving quality of experimental data analysis for hexagonal structure has been proposed
and tested. The second one in which density of stacking faults is taken into account
(originally proposed by Baczmanski [20]) will be applied to the case of tensile and
compressive stresses in austenitic sample. Second part of the chapter concerns verification
of different type of XSF, which can be applied to interpret the experimental data obtained
using MGIXD method. Finally, examples of determination of stresses in surface layer for
materials having high and low single crystal elastic constants anisotropy are presented.

6.1. SELF - CONSISTENT FITTING OF C/A PARAMETER
In the case of cubic crystal structure the experimental<a(g,y )>mqy lattice
parameters are calculated directly from measured <d(@, )>nw; spacings (Eq. 3.24a).

Subsequently, the o and a, fitting parameters can be found by adjusting the

<a( @,y )>puy values obtained from Eq. 3.24a to the measured ones (Eq. 3.23), as in the
standard method. However, more complex procedure of experimental data must be applied
for hexagonal structure since the value of c/a parameter must be known a priori to
calculate the experimental <a(@,y )>ma from Eq. 3.24a. To overcome this difficulty the
iteration method can be applied. In the first step of this procedure we substitute the
theoretical value of c/a into Eq. 3.24b and the least square method is used to find out

o; and a, from Eq. 3.23. The result of the first adjustment is usually poor because the
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experimental <a(@,y )>nu; are not correctly calculated using approximate value of c/a.

Consequently the experimental <a(¢,p )>mq; do not agree with those obtained from

Eq. 3.23 for optimized Gi; and a, fitting parameters. Thus the procedure must be developed

in order to correct the value of c/a for the studied material, taking into account the
macrostresses present in the sample. In this aim Eq. 3.24b can be rewritten in the following

form:

y=px (6.1)

2
where: yz{q(qj’l/jb{h“}} —{4(h2+hk+k2)}, x=1> and p=

1
<d(4.¥ )>puy (c/a)*’

2

The above linear equation vs. I° allows us to determine p and consequently

c/a parameters using simple linear regression method. In calculations the measured
<d( @,y )>muay spacings and values of <a(@, )>mq calculated from Eq. 3.23 (for ai;

and a, optimized in the first step for approximate value of c/a) are substituted. It should

be stated that the so obtained c/a parameter is still approximate, but it can be applied in the

second step of iteration to calculate <a(@,i )>ma; used in the least square procedure

based on Eq. 3.24b. As the result the new values of Gi} and a, are determined. It will be
shown that two iteratively applied simple fitting procedure leads to convergence allowing
determination of macrostresses O’il'-, strain free lattice parameter a,and moreover more

accurate value of c/a. Finally, if the self-consistent iterative calculations are convergent

avery good agreement between theoretical values of <a(¢,y )>mq (obtained from

Eg. 3.23) and experimental ones (determined from Eq. 3.24b) can be reached.

As an example the results obtained with the new method for ground and polished
samples are presented. These samples were chosen due to different sign of stresses
generated in surface region. Measurements were performed in two directions (i.e. for $=0°
and ¢=90°) and for two incidence angles (i.e. for « = 5° and a = 15°), with Cu X-ray tube
and Gobel mirror in the incidence beam optics. The PANalytical - X Pert and PANalytical
- X’Pert MRD diffractometers were used for ground and polished samples, respectively
(see Table 5.4). The diffraction peaks having 26 higher than 40° were taken into analysis.
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At first the calculation of the stresses in polished and ground Ti (grade 2) was
performed using assumed values of c/a parameter indicated in Figs 6.1a, b and Fig. 6.2a, b,
respectively. In this case the value of c/a was not varied during data treatment. It can be
noticed that the experimental points are spread far from the lines obtained by fitting

Eq. 3.23 with the XSF calculated using Kréner model (see <a(@,y )>guy Vs. sin®y plots

in Figs. 6.1a, b and Figs. 6.2a, b from single crystal elastic constant given in Table 3.3 and
orientation distribution functions (ODFs) given in Fig. 7.1 (in the next chapter when these
sample are described). The correction for beam refraction was taken into account,
however, this effect is reliable (smaller than uncertainly) for « = 5° and « = 10°, as it was
shown in Fig. 5.11, where the results with and without refraction corrections were

compared.

Next, the self-consistent procedure was used and the value c/a was also adjusted.

The resulting <a(@,¥ )>gmuy Vs. sin®y plots exhibit significantly better agreement between

theoretical and experimental points (Figs. 6.1c and 6.2c). The values of c/a parameter and
goodness of fitting »* determined using the presented above procedure are given in these
figures. It can be seen that value of »* decreases significantly when experimental points

approach the theoretical curves.

- _ =0 _ ot -0
2960 —X-Tay Cu radiation, o = 5 X-ray Cu radiation, a. = 5 X-ray Cu radiation, o = 5°
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. 2 2.956
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G 29481 cla=1585 729481 cla=1586 7 29981 aic=15876
2 2 3 N0} 2 {302}
=40 {302} =16 =2.7 {213}
2,944 1 2,044 1% 2044 1 X
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 2 0.6 0.8 1.0 0.0 0.2 04 2 0.6 0.8 1.0
sin2\u sin‘y sin“y
a) b) c)

Fig. 6.1. The <a(@,y )>puy Vs. sin®y plots for mechanically polished Ti sample (under

pressure of 5 N), measured with « = 5°. In figures (a) and (b) the theoretical plots were
fitted to experimental points determined with assumed c/a values, while in the case of

figure (c) the c/a parameter was adjusted. Uncertainty of peak position &(26) =0.01° was
assumed.
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Fig. 6.2. Similar results as in Fig. 6.1 but for ground Ti sample.
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Fig. 6.3. The results of self-consistent fitting for mechanically polished Ti sample,
measured with a = 5° and a = 15°. The following values are presented: a) and b) - stresses
in two directions, c) 5 - goodness of fitting as defined in Eq. 4.17, d-e) lattice parameters.
The horizontal lines indicates mean value calculated over all models for both samples
(polished and ground).
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Fig. 6.4. Similar results as in Fig. 6.3 but for ground Ti sample.

The quantitative results of fitting using different XSF models are presented in
Figs. 6.3 and 6.4 for polished and ground samples, respectively. It can be concluded that
the biaxial stress was found for the both studied samples (compression after polishing and
tensile after grinding as shown in Figs. 6.3a, b and 6.4a, b) and the stress values calculated
using different models of diffraction elastic constants are not significantly different. Small
difference between models is expected because the elastic anisotropy of Ti single crystal is
low (Zener anisotropy factor A= 1.34). Also, there is no large difference between goodness
parameter y° for different models and all results fit well to almost linear measured

functions <a(¢,y )>ma Vs. sin?y. The determined lattice parameters show some regular

differences between models. In Figs. 6.3 d, e, f and 6.4 d, e, f the values of determined ay,

c/a and co (where the two first parameters are obtained from fitting, while the third one is

calculated as coz(%)-ao are compared with mean parameters calculated for both

samples and both incidence angles (¢ = 5° and a = 15°). These averages:
ap =2.9514 £ 0.0008 A, c/a = 1.5872 + 0.0008 and co = 5.6845 + 0.0014 A, can be
calculated because samples are made from the same material (Ti grade 2) and different
mechanical treatment should not influence strain free lattice parameters. It should be
underlined that the obtained lattice parameters are very close to the accurate values for

high purity Ti [93]: ap=2.95111+ 0.00006 A, and co = 4.68433 + 0.0001 A and
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c/a=1.5873 (similar values can be found in [94]). It can be also noticed that when the
Kroner and Voigt XSF were used the determined lattice parameters were similar for the
ground and polished sample. Moreover they are very close to the average values and these
which are found in literature. On the other hand the ayp, c/a parameters obtained with XSF
calculated by free surface or Reuss model are slightly overestimated for polished sample
and underestimated for ground sample (opposite tendency occurs for co).

It can be concluded that the elastic properties of the studied titanium sample are
almost isotropic and this is why fitting results obtained with XSF calculated by all models
give very similar results. The most accurate values are obtained when Kroéner or Voigt
method were applied. Finally it should be stated that the new methodology of experimental
data treatment enables determination not only strain free ap, constant but also the
c/a parameter. This method is unambiguous for materials having low elastic anisotropy,
however in the case of anisotropic materials the determined lattice parameters depend on
the model used for calculation of XSF. Thus the problem of verification of XSF is a crucial
one, not only for correct determination of the stresses but also to find out correct strain free
value lattice parameters for hexagonal structure (XSF will be tested in this chapter).

6.2. PEAK DISPLACEMENT CAUSED BY STACKING FAULTS

Not only residual stresses are the reason of diffraction peak shift with respect to the
position corresponding to the perfect lattice. The diffraction lines can be influenced by
stacking faults in the material. Two types of stacking faults can be distinguished:
deformation stacking faults and twin stacking faults. Both of them may cause the peak shift
[1]. Typically the twin stacking faults occurs during the growth of a crystal. Wagner [95]
showed that that when the peak shift originates from high twin stacking fault density the
shift of the peak is negligibly small. Deformation stacking faults may cause shift of the
different diffraction lines in different directions. First work concerning this effect was done
by Paterson [96], Warren et al [97] and Wagner [95]. Wagner and Velterop et al. showed
[4, 98] that stacking faults can significantly change the position of the diffraction lines.
This effect is especially important for the fcc crystals having low stacking fault energy

(e.g. austenitic steels) [20]. In this case the magnitude of the displacement depends on the
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probability of finding the stacking fault and on the reflection hkl used in the experiment.
In the absence of the second order incompatibility stresses [20, 99]:

<a(4.y >y =[F; (hkl 4.y, o+ o G(hkI)] &, +3, (6.2)

3 Zi(h+k+|)

ith G(hkl) =—
W (kD 4r(u+b) 5 h* +k* +1?

where p =ps -py4, ps and pq are the probabilities of finding the single and the double layer
stacking fault, respectively, between neighboring planes {111}, G(hkl) is the coefficient

the reflecting relative change of the interplanar spacings caused by stacking faults for the
diffracting {hkl} planes, while b and u are the numbers of peak components which are
affected and not affected, respectively, by the stacking faults, respectively [20].

For a quasi-isotropic sample the above equation can be written as:

<a($,v) >pn=[8" (al'l +0,, +c73',3) +%S§k' (01'1 cos® ¢+, Sin’ g+ ay, sin 2(,z$)sin2
6.3)
1 hkl _1 2 1 hkl | . H
+587 05008y + 28, (o5 COS g+ 035 5iN ) sin 2y + pG (NKI)]a, + 2,

As it can be seen in a Fig. 6.5 both the macrostress (Fig. 6.5a) and stacking faults
(Fig. 6.5b) cause the nonlinearities of the <a(¢, w)>{ny Vs. sin? winiy plots. Macrostresses
(500 MPa) influence the slope as well as the nonlinearites of the curve. In contrast the
stacking faults increase only the nonlinearities of these plots. This fact allows to separate
the effect originated from the stresses from the one connected to the stacking faults [20]
and perform the calculation of stresses values and the probability of stacking faults in
polycrystal. The idea of fitting is similar to that used by Baczmanski [20] in the case of
determination of second order stresses, when g scaling factor was used in Eg. 6.2 as
additional adjusting parameter. In the case of Egs. 6.2 and 6.3 value of p is varied in fitting
procedure in order to receive the best agreement of theoretic and experimental results. The
optimized p parameter has meaning of probability of finding stacking fault between
neighboring planes {111}.
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Fig.6.5. Lattice strains calculated for different hkl reflections as the effect of (a) uniaxial

stress and (b) presence of stacking faults on the planes {111} for austenitic sample (XSF
were calculated using free surface model with elastic constants given in Table 3.3 and

assuming random texture [20]).
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Fig. 6.6. The <a(g w)>gmay lattice parameters fitted to the experimental points using
Eq. 6.3 (assuming o # 0 - continuous line or p = 0 - dashed line) for polished austenitic
stainless steel (AISI 316L, Table 6.1) and ground Ni alloy (Inconel 690, Table 6.1). XSF
were calculated with free surface model using texture functions given in Fig. 6.19.

108



In light of these results it appears that for Ni alloy it is not necessary to take into
consideration the presence of stacking faults in stress analysis. The value of the
p parameter is in the margin of error equal to 0. On the contrary for austenite stainless steel
having low energy of stacking faults it would appear likely that taking into account the
presence of stacking faults in stress analysis can be beneficial. Admittedly the stacking
fault effect improves the fit of the theoretical curve (calculated from the chosen grain
interaction model) to experimental points but it seems possible that this effect causes the
change in XSF values, which now may differ from the real ones. On the other hand it is
worth to emphasize that the p parameter determined for austenitic samples always have
a positive value regardless whether the sample is in tensile (Fig. 6.7) or in compression
(Fig. 6.6b). It means that the deviation of the experimental points from theoretical values is

always in the same direction independently from the applied load.
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Fig. 6.7. The <a(gw)>gmuay lattice parameters fitted to the experimental points using
Eqg. 6.3 (assuming p = 0 - continuous line or p = 0 - dashed line) for the ground austenitic
steel - AISI 316L, Table 5.1 XSF were calculated with free surface model. This result is
taken from [20].
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6.3. VERIFICATION OF XSF USED IN MGIXD
A correct choice of model for calculation of XSFs is significant for materials
exhibiting high elastic anisotropy. In order to select the proper model of XSF it is valuable

to evaluate an agreement of theoretical <a( @,y )>g Vs. sin?y curve with experimental

results [100].

To show the influence of the diffraction elastic constants on the interpretation of
XSF results, polycrystalline materials having low (Ti, W) and high elastic anisotropy of
crystallites (Ni, CrN, austenite stainless steel) were investigated. Zener factors for listed
samples are gathered in Table 3.3. Compositions of the studied samples are given in
Table 6.1. The orientation distribution functions were taken into account in XSF

calculations for all investigated samples (Figs. 6.9 and 6.19).

Two samples exhibiting low (Ti) and high (austenite stainless steel) elastic
anisotropy were investigated during tensile test, for other samples: polished W, ground Ni
alloy, CrN coating and polished austenite stainless steel the residual stresses after surface

treatment or coating deposition were measured.

Table 6.1. Composition of the materials used in thesis (wt.%).

Material Components
Ti Ti 0] Fe Ni C N
grade 2 bal. 0.131 0.109 0.020 0.010 0.010
Ni alloy
'”f;aﬁ:)fego NNk C Fe Si Ti Mn C Cu P s
bal. 2991 10.61 038 033 029 0.022 0.01 0.009 0.002
prepared by
AREVA)
Austenite
stainless Fe Cr Ni Mo Mn Cu Si P S C
steel bal. 17.24 1114 196 167 035 0.056 0.04 0.04 0.02
AISI316L
Al Si Fe Cu Mn Mg Cr Zn Ti
Al 2017 bal. 05 0.7 4.0 0.65 0.6 01 025 015
TiBAlAY Ti Fe C 0 N Al VvV

bal. 025 0008 02 005 6.0 4.0
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6.3.1. TENSILE TEST

The lattice strains were measured ‘in situ’ during tensile test in elastic range of
deformation for austenite stainless steel (AISI316L) and titanium (grade 2) samples. The
MGIXD method and standard method (yw-mode for austenite and w-mode for titanium)
were used to determine stress in the sample under applied known stress (sample orientation
with respect to incident and reflected beams is shown in Fig. 6.8. Measurements for Ti
sample were performed on the PANalytical - X’Pert MRD (AGH, Krakow) and for
austenite stainless steel on the Seifert - PTS MZ VI. The configuration of both
diffractometers is given in Table 5.4. To prepare the sample the surface layer of 200 um
was removed by electropolishing. In order to avoid the influence of unknown residual
stresses or/and systematic errors of determined peak positions, the measurements were

performed for the non-loaded sample and a sample under uniaxial stress. The relative

load

differences between interplanar spacings for loaded sample (i.e. < d(¢,w)>{hk|} ) and non-
init

loaded specimen (i.e. initial: <d(g,i ) >, ) were calculated.

. <d(¢,l//)>load —<d(¢,l/l)>init
<ol ffy= VL G
! {hki}

(6.3)

In the above equation the exact value of interplanar spacing for a stress free material is not
needed and the strain <g(¢5,z//)>{ﬁ'kl} corresponding directly to the applied stress ¥, is

calculated and the effect of residual stresses or/and systematic errors of determined peak
positions is avoided. The main challenge of this part of work is to verify if the value of
applied stress =, can be recalculated from diffraction data and what type of XSF allows
determining the stress accurately. Moreover, it will be tested which model of XSF
calculation properly describes grains interaction, especially for elastically anisotropic

crystallites.
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Fig. 6.8. Orientation of the sample during tensile test. The uniaxial stress ¥,, was applied

along ¢= 0° direction.
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Fig. 6.9. Orientation distribution function (ODF) determined using Mn radiation for
austenitic (a) and Cu radiation for Ti (b) samples (these samples were used in tensile tests).

The sections through Euler space [74] with the step of 5° are presented along ¢, axis:
a) 0°<g,, @, ¢,< 90° for austenite stainless steel and b) 0° <¢,, ®< 90° and 0° <¢,< 60°
for Ti (grade 2).

High anisotropy — austenitic sample

In order to investigate the influence of the grain interaction model on the values of
calculated stresses austenite stainless steel (Table 6.1) having high elastic anisotropy

(A=3.3, see Table 3.3) was subjected to a controlled tension (=,,= 50 MPa, 180 MPa and

300 MPa) during loading and unloading in the tensile test. For each value of given load the
stress measured by X-ray diffraction was determined using the XSF calculated by four
models with ODF function presented in Fig. 6.9a. In the case of MGIXD method the
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measurements were performed for a=20° (corresponding to penetration depth t =2.9 pum).
Initial value of calculated stresses and lattice parameters for non-loaded sample are
gathered in Table 6.2. The <a(¢,y) >Ri|i,}vs. sin?y plots for initial sample are presented

in Fig. 6.10. Small compressive and tensile stresses (comparable with their uncertainties)

were found for ¢ = 0° and ¢ = 90°, respectively. In calculation least square fitting
procedure was applied using Eq. 3.23.

Table 6.2. The initial values of stresses and lattice parameters for non-loaded austenite
stainless steel.

model a[°] o1 (MPa) 622 (MPa) ag (A) e
free surface -29+ 18 27+ 18 3.5937 + 0.0001 1.5
Kroner 20 27+24 254+ 23 3.5937 £ 0.0001 1.7
Reuss 26+ 16 25+ 17 3.5937 +0.0001 1.5
Voigt -26 £33 24 + 31 3.5937 +0.0001 1.9
3:597 a =200 = experimental 3.597 o =20° = experimental
3.506 | $=0° free surface 3.596 | ¢ =90° free surface
< ’ —— Kroner @ : (111} —— Kroner
~ 3595 | — Reuss = 3.505 | — Reuss
g (111} — Voigt %, %{200} — Voigt
=3.594 1 + _ =3.594 4 _’é—:
= 7 ——5{222} £ i {311} {222}
%3.593 | { (250} 311} %3.593 | {220}
© 3502 { 200 ¥ 3502
3.591 1+ 3.591

Fig. 6.10. The <a(¢,w) >Riﬁ,}vs. si

sin2w

00 01 02 03 04 05 06 0.7 08
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(uncertainty of peak position §(28) =0.01° was assumed).

sinzw

n®y plots for initial non-loaded austenite stainless steel
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The relative lattice strains <g(¢,l//)>{ﬁ'k,}vs. sinfy (for a=20°) calculated

according to Eq. 6.3 for each load and four grains interaction models during loading and
unloading are shown in Figs. 6.11 and 6.12, respectively. In these figures the experimental

data are compared with the results of least square fitting based directly on the relation:
<&(gw) >Ef1|kl}: F, (hkl, ¢, f)o-lll +Fy, (hkl, gy, f )O'zlz (6.4)

where the adjusted values of &, ,and o), stresses can be compared with the values of

applied stress ., and X,, =0 MPa, respectively.

The non-linearity of the sin?y plots in Figs. 6.11 and 6.12 is associated with
a strong elastic anisotropy of the sample. As it can be deduced from these plots the lattice
strains are smallest in direction <111> and largest in direction <200> for loaded the
austenitic sample. This result qualitatively agrees with evolution of /s, and s; values for
different reflections hkl (in the approach of quasi-isotropic material), which explains the
observed tendency. If the interaction between grains is well predicted the nonlinearities of

the theoretical curves should reflect this dependence.
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Fig. 6.11. Relative lattice strains <&(4,y ) >,

rel

vs. siny (for 0=20°) during loading of

the austenitic sample. Experimental results are fitted using Eq. 6.3 with XSF calculated by

four tested models.

115



0.0008 0.0008

applied load 180 MPa — i
0.0006 . ~ nDD = ﬁ 0.0006 applied load 180 MPa _
=0 = 2 o $=90" = experimental
0.0004 1~ & 0.0004 — free surface
_0.0002 = & _ 0.0002 _ Kroner
® £ 0.0000 £ £ 0.0000 —— Reuss
= £ — Voigt
2 -0.0002 - experimental| & -0:0002- 9
{-} -0.0004 - — Kroner $ -0.0004 —: ﬁ'
-0.0006 - — free surface -0.0006 =~ - N
o (=) Lo
-0.0008 - Reuss 00008 2 o —
Voigt & & Q.
-0.0010 : : : . : -0.0010 : : : : :
00 01 02 03 04 05 06 00 01 02 03 04 05 06
sin‘y sin‘y
0.0008 : 5 0.0008
applied lbad 50 MPa ¢=0 i = 90"
0.0006 1=~ R 0.0006 . applied load 50 MPa  4=90
0.0004 J=. & < N 0.0004 |_.. &
IS 2 (51 — o -~ o
..0.0002{: o & 00002 T8 %) T 9
® £0.0000{ 8 ® = 00000{ ]S e 0,
SN a i — ———__—9-";
> -0.0002- = -0.0002 i =%
= =
g ~0-0004 _ G -0.0004
V' _0.0006 - = experimental 0.0006 » experimental
-0.0008 . — iﬁ::n?;l:lface — 5;1;55 00008 —_— f:ze surface —— Seyss
-0.0010 ‘ ‘ . . : -0.0010 ‘ _roner Voigt
00 01 02 03 04 05 06 00 01 02 03 04 05 06
sin’y sin‘y
0.0008
0.0008 , applied load 0 MPa  , _ g
0.0006 | _ appliedload 0 MPa - ¢ 0.0006 | - ¢ -
— e s
0.0004 =55 = = ® 0.0004 - S S o
_00002| TR S 5 8 o 00002 i o o
_E,I_\? 0.0000 | | i . . A 0.00007l * i 3 #
= poooz]| ! ! * = 000021
3 —r
B _0.0004 @ 00004
-0.0006 - = experimental -0.0006 - = experimental
00008 —freesurface —— Reuss -0.0008 — free surface —— Re_uss
-0.0010 —Kroner  —— Voigt. -0.0010 __Kroner _ Voigt
00 01 02 03 04 05 06 00 01 02 03 04 05 06
sin’y sin’y

Fig. 6.12. Similar comparison as in Fig. 6.12 but for unloading of the austenitic sample.

From the sin?y plots in Figs. 6.11 and 6.12 it is seen that the experimental values
and thereby the elastic anisotropy are well approached by Reuss, Kroner and free surface
model. The linear dependence of lattice strains vs. sin?y predicted by Voigt model cannot
be applied for austenite stainless steel having strong elastic anisotropy. Quantitative
comparison of fitting quality is given by goodness parameter x> which value is compared in
Fig. 6.13 for all applied loads and four tested models. Analysing Eq. 2.47 it can be stated

that »° must increase if the differences between experimental values and theoretical results
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increases. If a given model perfectly predicts XSF, the y* value is determined only by
experimental uncertainties and it should not increase for larger applied stresses (the lattice
strain due to stress increases by the same value as the theoretically predicted strain and
consequently distance between them does not change). However, if the XSF values are not
correctly calculated by model (even for some orientations) the difference between
theoretical and experimental interplanar spacings enlarges with increasing applied load

causing significant increase of the » value (due to squaring in definition of ).

12.00

10.00

8.00

< 6.00

4.00

" T i T

0.00 i . =

50 MPa 180 MPa300 MPa180 MPa 50 MPa 0 MPa
unload unload unload

M Free Surface M Kréner Reuss Voigt

Fig. 6.13. Comparison of the values of y? for four different grain interaction models during

tensile of austenitic sample (loading and unloading).

Comparing values x* and its dependence on the applied load it can be concluded
that Reuss and free surface model correctly predict elastic anisotropy of XSFs (Fig. 6.13).
For these models %° is small and constant for all applied external stresses. In contrast
+* obtained with Kroner and Voigt models are larger and rise with applied stress. This
effect is especially significant for linear dependence of lattice strains vs. sin?y predicted by
Voigt model and it is also evidence that any models giving linear sin?y plot should not be

used to interpret results of MGIXD measurements.

In order to determine which of these models is the best the comparison of the
stresses re-calculated from diffraction data (Eq. 6.4) with the values of applied load is
presented in a Fig. 6.14, for loading and unloading sample. The measurements were done

using two methods: MGIXD (0=20° shown in Fig. 6.14a) and standard y -geometry
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(Fig. 6.14b). It can be seen that the loading and unloading processes are exactly reversible
(points for the same applied stress overlap for both experimental methods), i.e., the
measurements were performed within elastic range of deformation. Also the stress after
unloading is very close to zero value (within the uncertainty range). The stresses state in
the sample was successfully determined from diffraction data i.e. the re-calculated stress

o,, approaches applied stress =,., while o), is close to zero value, especially for larger
loads (180 MPa and 300 MPa). It must be underline that good agreement between results
obtained with both standard and MGIXD methods and values of applied stress %,, was
found in the case of Reuss and free surface models, while o/, obtained with Kroner and
Voigt models deviate from the value of applied stress =,,. For the latter models especially

large deviation between applied and re-calculated stresses is seen in the case of standard
measurements (Fig. 6.14b). The worst results i.e., the largest deviation between applied

and recalculated stress was obtained when the Voigt model was used.

Summarizing the presented results concerning quality of strain fitting (Figs. 6.11-
6.13), as well as from the comparison of the calculated stresses and applied loads
(Fig. 6.14) it appears that the Reuss and free surface models fit the best the experimental

data in the case of anisotropic austenite stainless steel.
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Fig. 6.14. Comparison of the values of o/ ,and o,, re-calculated stresses compared with
the applied stress =, and X,, =0 MPa, respectively (dashed line indicates value of the
stress o),= X,, or o,,= X,, =0 MPa). Results of loading and unloading are shown and
the point for =, = 0 MPa corresponds to the state after unloading. The MGIXD method
(a) and standard method - w mode (311 reflection) (b) were used.
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Low anisotropy — Ti sample

Second investigated sample was Ti (grade 2; see Table 5.1) sample having low
elastic anisotropy (A=1.34, see Table 3.3). Ti was subjected to a controlled tension
(50 MPa, 150 MPa, 210 MPa) during loading in the tensile test. For each value of given
load the stress measured by X-ray diffraction was determined using the XSF calculated by
four models with ODF function presented in Fig. 6.9b. In the case of MGIXD method the
measurements were performed for a = 10° and a = 20° (corresponding to penetration
depths: t = 1.6 um and t = 2.5 um), while the w-geometry was used for standard

measurements. Initial value of calculated stresses and lattice parameters for non-loaded
sample are gathered in Table 6.3, while the <a(¢,l//)>i{fﬁ|}vs. siny plots for initial

sample are presented in Fig. 6.15 (MGIXD method). Compressive stresses of about minus
30 MPa was found for ¢ = 0° and almost zero stress for ¢ = 90°, respectively.
In calculation least square fitting procedure was applied using self-consistent method

described in section 6.1.

Table 6.3. The initial values of stresses, strain free lattice constants and c/a parameters for
non-loaded Ti (grade 2) sample - MGIXD method.

model | o1 (MPa) o (MPa) a (A) cla 2
o=10°
free
-309 £54 -47 +£5.6 29511 +0.0001 15872 +£0.0001 1.3
surface

Kréner | -31.9 £54 -49 +£5.6 2.9511 +0.0001 1.5872 £0.0001 1.3
Reuss -30.2 £53 44 £55 29511 +0.0001 1.5872 £0.0001 1.3
Voigt -335 £56 -53 £5.7 29511 +0.0001 1.5872 +0.0001 14
a=20°

free
surface
Kroner | -35.3 £82 104 +£8.6 2.9514 +0.0001 1.5869 +0.0001 2.9
Reuss -32.3 £8.0 114 +£84 29514 +0.0001 1.5869 +0.0001 2.9
Voigt -38.2 £84 9.4 £8.8 29514 +0.0001 1.5869 +0.0001 3.0

-33.1 +£82 10.7 £8.6  2.9514 +0.0001 1.5869 +0.0001 2.9
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Fig. 6.15. The <a(¢,l//)>i{?f;|}vs. sin?y plots for initial non-loaded Ti (grade 2) sample

measured measured using MGIXD with a« = 20° (uncertainty of peak position
6(20) =0.01° was assumed).

The results obtained for tensile test are presented in the following figures:

rel

e Fig. 6.16 - the relative experimental lattice strains <g(¢,z//)>{hk|}vs. sinzyx for

a=20° (MGIXD method),

e Fig. 6.17 - values of goodness parameter y? for «=10° and 0=20°
(MGIXD method);

e Fig. 6.18 - values of re-calculated stresses compared with applied ones.

As it is sheen in Fig. 6.16, in the case of Ti sample having low elastic anisotropy

rel

the nonlinearities of the <&(@,i) >, Vs. siny plots are very small in comparison with

austenitic sample. However, for the largest applied stress X, = 210 MPa we can see that

the experimental points are approached by theoretical lines when Reuss and free surface
methods are used and slightly worse result was obtained for Kréner model. Again, the

linear <g(¢,y/)>£ﬁ'k,}vs. siny  plots obtained with Voigt XSF do not match the

experimental points. The same conclusions can be drawn from Fig. 6.17 where values of

x? are compared. It should be also stated that the goodness parameter slightly increases
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with increasing value of applied stress (of course the effect is strongest in the case of Voigt
model). Thus, the XFS are not as well predicted as in the case of Reuss or free surface

model applied for austenite stainless steel.

Finally, comparing the re-calculated stress o, with applied stress =, and the &),

stress with zero value, it can be concluded that a very good agreement was obtained for the

largest stress ¥,,= 210 MPa. If smaller load is applied the re-calculated value o, is
overestimated, especially for =, = 150 MPa. It should be underlined that exactly the same

values of the recalculated stress were obtained for both incident angles « = 10° and « = 20°
(MGIXD method) and for standard method (w-mode). Hence, we can conclude that
MGIXD method gives reasonable results (comparable with standard method) and the
disagreement between recalculated &, and applied X,, stresses can be caused by sample
heterogeneity or non-uniaxiality of the stress in the sample. Finally, it should be stated, that
the stresses obtained with different models for calculation of XSFs are almost identical.
This is evidence that the elastic anisotropy plays a minor role in interpretation and any

model can be applied to calculate XSFs.
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6.3.2. MEASUREMENTS OF RESIDUAL STRESSES
Next samples having significant surface residual stresses and not subjected to the

external load were investigated. The pole figures were measured for polished W (high-purity),
CrN coating and ground Ni alloy, and the determined ODF functions are presented in
Fig. 5.19. In the case of polished W sample and deposited CrN coating the fiber type of
texture was found, while ground sample does not exhibit significant sample symmetry. These
textures were used in calculations of XSF from single crystal elastic constants given in
Table 3.3.
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— —— <% 2.55

1.77
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6.19. Orientation distribution function (ODF) determined using Cu radiation for polished
W (a), CrN coating (b) and ground Ni alloy (c) samples for which residual stresses were
measured. The sections through Euler space [74] with the step of 5° are presented along

¢, axis and ranges 0°< ¢, , @, ¢, < 90° for W and CrN (a, b) and 0° <@, ¢, < 90°, 0° <¢, ,< 360°
for ground Ni alloy.
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Firstly, elastically isotropic sample (A=1, see Table 3.3) tungsten (W) was
investigated. To generate stress in surface layer sample surface was manually polished (paper
2000 grit, non-directional polishing) causing roughness equal R;=0.16 pm. The MGIXD
method for different incident a angles as well the standard method (® and y geometries with
321 reflection) were applied to measure lattice strains. In order to calculate stresses the fitting
procedure based on Eq. 3.23 and two components o1; and oy, of biaxial stress were
determined. Comparison of stresses determined using different XSFs (calculated using single

crystal elastic constants from Table 3.3 and texture shown in Fig. 6.19 a) and the values of
22 parameter obtained in this analysis are presented in Fig. 6.19. The <a(¢@,w ) > iy VS. sin®y

plots for an example incident angle a = 5° (MGIXD method) and for standard methods are
shown in Fig. 6.20, while the comparison of the sin®y plots for different incident angles « is

shown in Fig. 6.21 (XSFs given by free surface model were applied in calculations).
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Fig. 6.19. Values of determined stresses in polished W sample using MGIXD method and
standard method (a) and comparison of y? parameter values (b) for four grain interaction
models (refraction correction was not introduced).
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Fig. 6.21. Example of the <a(@,y ) > Vs. sin®y plots for polished W sample. Results
presented for MGIXD method for incident angles a=5° and a=15°.

In the light of these results it is clearly seen that in the case of elastically isotropic

sample there is no any difference in the values of calculated stresses, for MGIXD and

standard method, for any of chosen grain

W sample the <a( @,y ) >4y Vs. sin“y plots

interaction models. In the case of isotropic

are straight-lines for each of considered models.

This is certainly due to perfect elastic isotropy of W crystals and consequently equal values of

XSF for all reflections.
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Presenting the stresses determined by MGIXD method (Fig. 6.22), it is also important
to define the range of information depths z =z (or a angles) for which the results of analysis
are reasonable. In the case of studied sample we can assume that real values of the stresses as
well as strain free lattice parameter are between those obtained with and without refraction
correction. We can see that the uncertainty of the obtained results increase significantly for
incident angle a < 10° (z < 0.4 um), because the difference between results with and without
correction increases. As shown in Fig. 6.22, the value of strain free parameter does not change
significantly with the information depth. The stress in the mechanically polished W is
compressive, biaxial and approximately fulfils relation 611 = 02,. The stress value determined
by MGIXD method is almost constant for the studied penetration depth (slowly decreasing
with depth), and perfectly agree with the results of both standard methods. The stresses
obtained with the latter method were presented for an average value of penetration depth for

all w-inclination angles.
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Fig. 6.22. Residual stresses and strain free lattice parameter in function of the information

depth z (equal to 7, see Eq. 3.4) determined with and without correction refraction effect for
polished W sample.
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Secondly, samples having high elastic anisotropy were investigated: ground Ni alloy
(A=2.76), polished austenite stainless steel (A=3.3) and CrN coating (A=0.34). The Ni alloy
(composition given in Table 6.1) was ground manually in one direction (angle 5°; effort 80N
and advance 88 mm/s). Such surface treatment cause rough surface (R, = 3.3 pum) having
topography presented in Fig. 6.23, showing regular ‘ridges and furrows’ with amplitude of
10 pum distributed with the period of about 100 um. It was found that after crystallographic
texture after grinding does not exhibit sample symmetry (the ODF is shown grinding). The
stress measurements were performed using Cu radiation on PANalytical - X’Pert MRD

(ENSAM, Paris) diffractometer having configuration given in Table 4.4.

a) b)

Fig. 6.23. Surface topography of ground Ni alloy sample with orientations of measured
stresses (a) and roughness characterisation in the direction perpendicular to direction of
grinding (b). The measuring area is indicated in figure (a).

The CrN coating (6 um thickness) was deposited at high temperature on a 4H13 steel
substrate deposited on the 4H13 steel substrate. The coating was obtained by means of the
arc-vacuum method in a nitrogen atmosphere at the pressure of N, equal to 3.5x10 mbar and
the temperature of 450° C [101, 102]. The average speed of deposition was 60 nm/min. As
aresult, the coating exhibiting the average surface roughness R, = 0.33 um and fibre
crystallographic texture (Fig. 6.19 ¢) was produced. The stresses were measured using
Cu radiation on PANalytical - X’Pert diffractometer MRD (AGH, Krakow) with

configuration given in Table 5.4.

In the case of austenite stainless steel (the same material as used in tensile test -
AISI316L with composition given in Table 6.1) the sample surface was mechanically
(manually) polished in all two directions, changing orientations of the sample during
polishing. In this case average roughness equal R; = 0.13 um was obtained. The stress

measurements were performed on Seifert - PTS MZ VI using Fe radiation (Table 5.4).
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The MGIXD method and standard method were applied to determine stresses in
aforementioned samples. Fitting procedure based on Eq. 6.2 showed that only in the case of
austenitic sample the determined probabilities of finding stacking fault between neighbouring
planes (p value) has significant influence on the results and its value exceeds the uncertainty.
Therefore p parameter was adjusted in the case of polished austenite stainless steel, while for
the other samples p = 0 was assumed. The result of stress analysis for different considered

grain interaction models and for all samples is presented in a Fig. 6.24 while the values of
x° test are shown in Fig. 6.25. The example of <a(¢,l//)>{hk|}vs. sin?y plots, compared all

for analysed samples are presented in Fig. 6.26 (for different grains interaction models) and in
Figs. 6.26 — 6.29 (for different o incident angles).
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Fig. 6.24. Comparison of influence of four models of the grain interaction model on the
results of X-ray stress analysis for ground Ni alloy (a), polished austenite stainless steel (b),
and CrN coating (c). The results for different incident angle o are compared with standard
method for hkl reflections.
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Fig. 6.25. Comparison of the values of y? parameter for different grain interaction model for
ground Ni alloy (a), polished austenite stainless steel (b), CrN coating (c). The results for
different incident angle « are compared with standard method for hkl reflections.

The results presented for all considered samples show that the theoretical curves do
not matches experimental points when Voigt model is used to calculate XSF. Comparing
values of stresses determined using different models of XSF calculation we can notice large
discrepancies, especially for Ni alloy and austenitic stainless steel (Fig. 6.24). On the basis of
the values of y? parameter (Fig. 6.25), it can be concluded that for Ni alloy as well as polished
austenite stainless steel we cannot decide which of those three: Reuss, Kroner and free surface
models is the best one. In such a case we must accept larger uncertainty of measured stress
values due to difference between these three models if the XSF are not verified in tensile test
as for Ni alloy. Certainly, in the case of austenite stainless steel the results presented in
Fig. 6.25 confirms conclusion drawn previously from tensile tests, that the Reuss and stress
free models correctly predict XSFs. For CrN sample it would appear that free surface model

fit the best the experimental data. It is worth to emphasize that the considered uncertainty of
determined peak position &(26)=0.01° is much too small, relative to the actual value, also

for the models which seems to correctly fit the experimental points. This is due to the fact that
even slight misalignment of the model to the experimental values will increase with
increasing stress value. For example, if goodness of fit caused by model discrepancy is on the
level 2 =1-2 for 300 MPa (as for austenite stainless steel or Ti the tensile tests) it will
increase proportionally to squared stress, reaching value y? =16-32 for 1200 MPa (as in the
case of ground Ni alloy, excluding Voigt method), y?> =4-8 for 600 MPa (as for polished
austenite stainless steel, excluding Voigt method and all methods for & = 5°) and y? =100-200
for 3000 MPa (as for CrN coating, excluding Voigt method and standard method for
422 reflection). Therefore, in spite of large values of y? the discrepancy of the models
(excluding Voigt) is on the same level for the tensile tests as well as for samples with residual
stresses almost for all measurements.
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Fig. 6.26. The <a(@,y)>g,vs. sin’y plots, compared for different grain interaction

models, for MGIXD a=5° for ground Ni alloy (a), polished austenite stainless steel (b), CrN
coating (c). Only in the case of austenitic sample p parameter was fitted and determined
(p =0.014+0.006).

In the sight of presented results it seems that free surface as Reuss model are in a very
good agreement with experimental results in comparison with other models (see Fig. 6.26). In

particular the Voigt model cannot be taken into account stress analysis because it does not
reflect the anisotropy of XSF, which is seen as the nonlinearities <a(¢,l//)>{hk,}vs. sin?y

plots. In the case of polished austenite stainless steel (A=3.3) and ground Ni (A=2.76) alloy
the lattice strains in direction <111> are relatively smaller than in the direction <200>, while
opposite tendency occur for CrN coating (A=0.34). It can be deduced form Figs. 6.26 -6.29
analysing shift of the experimental points from straight line and considering the sign of stress
(compressive for austenite stainless steel and CrN coatingand, tensile for Ni alloy). This
confirm opposite type of single crystal anisotropy for crystal having A >1 and A<1 (Young
modulus is smaller in <200> direction in comparison with <111> for A>1 and the opposite

tendency occurs for A<1). The latter results can be compared with elastically isotropic
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(W) sample for which the <a(¢,v/)>{hk|}vs. siny experimental plots are linear and the

experimental point lie (in a margin of error) on the straight line.

For more precise analysis of the influence of the chosen model for investigated

stresses the <a( @,y ) >4, Vs. sin“y plots are presented in Figs. 6.26 - 6.28 for different

incident angle a in MGIXD method for free surface model, which is in the best agreement

with experimental results, and for Kroner model which does not reflect fully the experimental

results.
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Fig. 6.27. Example of the <a( @,y ) >y, vs. sin’y plots for ground Ni alloy. Measurements

presented for incident angles: 5°, 15° (MGIXD). The theoretical curve obtained using XSF
calculated from single crystal data using free surface (a) and Kroner (b) models.
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Measurements performed by MGIXD for incident angles: 5°, 15°. The theoretical curve
obtained using XSF calculated from single crystal data using free surface (a) and Kroner (b)

models.
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Fig. 6.29. Example of the <a(@,y) >y, vs. sin’y plots for CrN coating. Measurements

performed by MGIXD for incident angles: 5°, 15°. The theoretical curve obtained using XSF
calculated from single crystal data using free surface (a) and Kroner (b) models.
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Finally, the results of residual stress analysis in anisotropic samples are presented in
Fig. 6.30 where the dependence of stresses and strain free parameters vs. information depth is
shown (Eqg. 3.4). Analysis was performed applying XSF calculated by the free surface model

with refraction correction or without this correction.
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Fig. 6.30. Residual stresses, strain free lattice parameter and p parameter (in the case of
austenitic sample) in function of the information depth z (see Eq. 3.4) determined with and
without correction refraction effect index for ground Ni alloy (a), CrN coating (b) and
polished austenite stainless steel (c).
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Analysing the results from Fig. 6.30 it can be conclude:

o Tension stresses were found in the ground Ni alloy sample (such stress is generated

due to temperature gradient during grinding). Residual stresses are large and constant for

different incident angles in the direction of grinding (02'2 - along ridges and furrows), while it

. . . . . |
Is much smaller and decreasing to zero value at surface for perpendicular direction (o, ), see

Fig. 6.23. This effect can be easily explained due to shadows for the X-ray beam causing from

the ridges which are important when the measurement is performed in transfers direction

( 0'1'1 are measured for the top ridge where its relaxation close to the surface is very large).

The stress 02!2 is measured for the ridges and furrows as well (no shadow) and it does not

relax significantly at the top of ridge (in direction of grinding). The standard measurements
confirm tendency of stress evolution in larger depth. It should be also emphasised that no
significant difference was observed for the stresses determined taking into account refraction
correction and without correction. This is because the shift of the diffraction peak is very
small in comparison large shift caused by large stress (strain). However, we can see influence
of refraction on the value of strain free lattice parameter ao. It should be underlined that
determined value of ag is constant for different depths (even for so large stresses) if the
refraction correction is not applied and the correction causes unexpected variation of ap.
It means that refraction should not be taken into account due to very rough surface
(Ra=3.3 um).

. . . | |
. Compressive very large stress was found in CrN coating (o,; =0,, was assumed

because of fibre sample and process symmetry). It results from different shrinking amplitudes
of the CrN layer and the steel substrate during cooling (their thermal expansion coefficients
are, respectively 6 x 10° K [103] and 11-12 x 10° K [104, 105]). It should be noted that the
observed important compressive stress is caused not only by the temperature effect but also
due to the peening of the growing coating by accelerated atoms, interdiffusion and the
reactions with the substrate [105, 106]. A similar level of the stresses in the CrN coating
deposited on the steel base was previously observed in [101, 105, 106]. For this sample the
stresses are so large that the effect of refraction correction is relatively small (Fig. 6.30b).

o Compressive stress was determined in polished austenitic sample. Higher value of

compressive stress was found in the direction in which the last polishing was applied

(i.e. |<72|2 |>| 01'1 |) and the stress in transverse direction (o}, ) relaxes close to the surface.
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This effect is very similar to this observed in ground Ni alloy taking into account that ridges
and furrows were created in austenitic sample (with small roughness R,=0.13 pum) along
direction of the last polishing. The dependence of ap vs. depth is not constant but the variation
is rather small. Concerning probability of stacking fault finding it can be seen that it decreases
with penetration depth. Fitting or not fitting of the p parameter does not change the results of
calculated stresses and ap (but quality of fitting is better, see Fig. 6.31). This is because

p influence only deviation of points from the straight line in <a(¢,w)>{hk,}vs. siny plot

but does not change its slope. Finally, it can be concluded that results difference between
results corrected and not corrected for reflection effect increase significantly for incident
angle 0.< 10° (r < 2.4 um).
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Fig. 6.31. The influence of fitting or not fitting of the p parameter on the results of calculated

stresses and ap parameter.

6.4. CONCLUSIONS

In this chapter the interpretation of the MGIXD was significantly developed in order
to determine c/a parameter in hexagonal materials and the probabilities of finding stacking
fault p between neighboring planes {111}. The method of c/a determination was tested on
polished Ti (grade 2) sample showing that for the material having low elastic anisotropy the
stresses, strain free parameter ao as well as c/a value can be determined using presented in this
work self-consistent iteration method (the experimental values determined in the case of
tensile as well compressive stresses were compared with literature). Significantly better fitting
of the theoretical values to experimental ones was obtained when c/a was adjusted. It should
be underlined the c/a value can be estimated in good approximation for elastically isotropic
material (as Ti) or if the XSF are known (measured or verified). The second case was not
considered in the present work but this test is an important issue for further development of

MGIXD method (using for example elastically anisotropic Zr alloy sample).
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Probability of finding stacking fault p was determined for polished austenitic stainless
steel (alloy having low stacking fault energy). Reasonable values were of p was determined in
the case compressive stress in the polished sample. Similar calculation has been done
previously for ground sample (the same austenitic steel) by Baczmanski [20] receiving similar
value of p. This methodology also requires knowledge of XSF for anisotropic material (like
austenite stainless steel). This is why it is important to verify different models of XSF
calculations what has been done in the second part of this chapter.

The best verification of the XSF can be done measuring lattice relative strains during
tensile test (we avoid influence of initial residual stresses, stacking faults, systematic errors

due to misalignments, refraction and other effects). From the performed tests it is evident that
both the experimental and the calculated <é&(@,y )>{ﬁ'k|}vs. sin?y  functions based on

different hkl reflections exhibit nonlinerities in the case of sample having elastic anisotropy
(austenite stainless steel), in contrary for elastically isotropic sample (like Ti) this dependence
is almost linear. Anisotropy of XSF was also observed on the {hkl} < a(4,y) > vs. sin®y plots
obtained when the residual stresses were measured in Ni alloy, austenite stainless steel and
CrN samples. In view of the nature of presented results obtained using MGIXD and standard
method, it can be concluded that Reuss and free surface grain interaction models are in the
best agreement with the experimental results. These models reflect in the best way the elastic
anisotropy of the studied samples. This conclusion does not agree with the previous studies
[1] in which the Kroner type XEC/XSFs were positively verified for quasi-isotropic materials
(without texture) or in some cases for textured samples [1]. However, it was also shown that
in the case of textured samples the anisotropy of XSF is better predicted by Reuss or free
surface models than by the Kroner approach [1,100]. The coupling of the grains in the
measured sample depends on the material but also on the depth above the sample surface.
Indeed in the case of MGIXD method the penetration depth is usually lower than in the case
of standard measurement, thus the conditions of free surface are better fulfilled for the
measured volume.

Concluding, reliable diffraction stress analysis is only possible when an appropriate
grain interaction model is applied for anisotropic sample. Therefore the free surface model
(having physical explanation in contrast to Reuss model) was applied to determine probability
of finding stacking fault (o) in polished austenite stainless steel. In this chapter the examples
of stress analysis for isotropic (W) as well anisotropic samples samples (Ni alloy, austenite

stainless steel, CrN) were performed taking into accounts uncertainty due to refraction effect.
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7. MGIXD METHOD USING DIFFERENT WAVELENGTHS OF
SYNCHROTRON RADIATION

In the previous chapter the role of XSF, refraction and other effect influencing results
of MGIXD measurements were considered. In this part the attention will be paid on the
possibility of measuring stress evolution vs. depth below the sample surface. Moreover the
methodology of data interpretation is developed in order to treat data obtained not only for
different incident angles but also using simultaneously different wavelengths. Finally, it will
be shown that using our software also the results of energy dispersion diffraction
measurements can be successfully treated. Therefore, the new elaborated method is not only
‘multi-reflection’ but also ‘multi-wavelength’. The advantage of the method is that more
experimental data are available to calculate the stresses. Moreover, application of different
wavelengths enables verification of the MGIXD measurements.

The preliminary experiments were performed for two samples exhibiting low crystal
anisotropy: Al — fcc structure and Ti — hcp structure, using X-Pert Philips X-ray
diffractometer (Cu K, radiation) equipped with a Gobel mirror in incidence beam optic
(Table 5.4). The results obtained using classical X-ray diffraction were verified by
synchrotron radiation in order to test the MGIXD method and to precisely designate the
variation of stresses in function of depth. Measurements were performed at G3 beamline at
the DORIS 11l (HASYLAB) storage ring. For selected samples, MGIXD geometry was used
to measure stresses at different depths below the surface.

Secondly, selected samples which did not exhibit the stress gradient when measured
on the classical diffractometer, were investigated using EDDI method with the synchrotron
radiation at BESSY (EDDI beamline). This method was used to perform the measurements in

the deeper regions of the sample in order to reveal if the stress gradient occurs.
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7.1. X-RAY MEASUREMENTS
At first measurements were performed using MGIXD method on a PANalytical —

X’Pert MRD (AGH, Krakow) and PANalytical - X’Pert MRD (ENSAM, Paris) both equipped
with a Gobel mirror in incidence beam optic (configuration given in Table 5.4). The Al2107
alloy and Ti samples were ground or polished. In the case of grinding the speed of rotation of
the grinding wheel (external diameter equal to 300 mm, internal diameter equal to 127 mm
and width equal to 40 mm) was 2000 rpm while the work speed was 9 m/min. Several passes
were carried and in each pass the layer of 20 um was removed. Such treatments were applied
for Al2017 alloy and Ti (grade 2) samples (compositions are given in Table 6.1). Two types
of mechanical two-directional manual polishing were applied for other samples:

I) with 5 steps using emery papers: 800, 1200, 2000, 2500, 4000 grit and the last
treatment was performed with pressing force of 5 N, next polishing paste was used for final
treatment (size of the polished surface: 1.5 mm per 1.5 mm);

I1) one polishing with emery paper 2000 grit and without any pressing.

Polishing type | was applied for the Al2017 and Ti (grade 2) samples, while polishing
Il was performed for Al2017 and Ti6Al4V alloys (composition given in Table 5.1). The
surface roughness R, parameter for all mechanically treated samples was gathered in
Table 7.1.

Table 7.1. Values of surface roughness parameter (R,) for investigated sample.

Surface treatment R, (um)

Al2017

Polishing type I (5 N) 0.13

Polishing type 1l 0.27

Grinding 1.18

Ti (grade 2)

Polishing type I (5 N) 0.04

Grinding 1.87
Ti6Al4V

polishing type Il 0.29

The orientation distribution functions were determined using Cu radiation for all
mechanically treated samples (Fig. 7.1). It can be seen that grinding process change texture
significantly for both Al 2017 and Ti (grade 2) samples. Initial texture (before grinding) for Ti
sample is given in Fig. 6.9, while the initial texture of Al2017 was almost random. These
texture has not sample symmetry and the ODFs are presented for 0°< ¢; < 360 °. Polishing
also modifies texture but the changes are smaller, i.e. the texture of Al 2017 remains almost

isotropic after both types of polishing, while the preferred texture orientations in Ti (grade2)
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are shifted with respect to the initial after polishing type 1. Polished Ti and Ti6Al4V samples
exhibit orthorhombic sample symmetry, and the range 0°< ¢; < 90 ° was shown.

Al 2017 grinding
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Fig. 7.1. Orientation distribution functions (ODF) determined using Cu radiation for ground
and polished Ti, Ti6Al4V and Al2017 samples. The ranges of Euler angles depending on
sample and crystal symmetry are given.

Al samples
The example peak profiles for powder Al, polished (type 1) and ground aluminum

alloy obtained using pseudo-Voigt function, are presented in Fig.7.2 while the example
<a(e, w)>hiy VS. sin?y plots are shown in Figs. 7.3 for polished (type I1) and ground Al2017,

respectively.
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Fig. 7.2 Example of the peak profiles for ground Al powder (a), Al2017 polished type 11 (b) and ground (c) samples, fitted by pseudo-Voigt function.
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Fig. 7.3. Example of the <a(g, ¥)>gy vs. sin“y plots for polishing type 11 (a) and grinding (b) Al2017 samples, for different penetration depths. Significant
difference between plots for ¢ = 0° and ¢ = 90° is shown in the case of ground sample.
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Fig. 7.4. The in-depth profile of stress and ap parameter for mechanically polished (type I
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Analyzing peak profile it can be concluded that the polished as well as ground samples
exhibit significant broadening of diffraction peaks in comparison with those obtained for
recrystallized Al powder. The peak profiles can be successfully fitted by two pseudo-Voigt
functions corresponding to K,; and K lines. The <a(¢, y)>{nii;y Vs. siny plots were fitted
using procedure based on Eq. 3.23, in which the XSF calculated by Kroner method from
single crystal elastic constants given in Table 3.3. Because of low crystal anisotropy for Al
samples all methods of XSF calculation give almost the same results, moreover effect of
texture is also not significant. As shown in Fig. 7.3 significant difference between ¢ = 0° and
¢ = 90° was found, while no such difference was observed in the case of polished samples.

The in-depth stress and ay lattice parameter profiles as a function of penetration depth
(r) determined for different incident angles (o) for all studied Al2017 samples are compared
with measurements performed for Al powder sample (Fig. 7.4). Refraction correction was
taken into account; however it is not significant for the studied range of incident angles as
shown in Fig 5.10. Moreover, the stresses obtained using two methods for determination of
peak positions were compared in the case of sample for which stress gradient occurs
(polishing type I1), i.e., fitting by pseudo-Voigt function (Fig. 7.5a) and center of gravity
method (Fig.7.5b). Analyzing Figs. 7.4 and 7.5, it can be concluded that:

e Stresses close to zero were measured in Al powder.

e Tensile stresses were generated after grinding. This is caused due to temperature
gradient effect because of interaction between sample body and the heated surface
layer (this layer contracts during cooling). The stress along direction of grinding o711 is
higher than in the transverse direction (c22). No significant evolution of stresses occurs
in the depth penetrated by X-rays.

e Compressive stresses 11 =~ a2, were found in the polished samples. No significant in-
depth evolution was found for polishing type | (5N pressing force), while stress
gradient occurs after type Il of polishing.

e No significant in-depth evolution was found for ag lattice parameter. Large difference
was found between ay determined for Al powder and Al2017 alloy.

e Approximately the same stresses were obtained using both method for determining of
peak position (fitting with pseudo-Voigt and center of gravity - CG).
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Finally, the Williamson-Hall method was used for investigation of the in- depth
evolution of root mean square of the third order strain and crystallite size (coherent domain).
The fitted linear functions to the experimental points in Williamson-Hall method for both
polished and ground Al2017 are presented on Figs. 7.6. The calculated results are summarized

in Table 7.2. As the reference the LaBg powder was used.
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Fig. 7.6. The linear function fitted to the experimental data in Williamson-Hall method for
polished — type Il (a) and ground (b) Al2017 samples (analysis with Gaussian approximation,
see chapter 2.3.1).

Table 7.2. The root mean square of the third order strain (4f<gz>) and crystallite size (D)

calculated with Williamson-Hall method for Al 2017 ground and polished (type Il) samples.

a(®) T (um) J<&?> D (A)
Al2017 polished (type 1)

5 5.8 0.0017 =+0.0002 619 +231
15 14 0.0015 +0.0001 540 +94
Al2017 ground
5 5.8 0.0019 +0.0001  ---  ----
15 14 0.0016 +0.0001 791 =+168

It can be concluded that similar values of the third order strains (1,<gz> ) were found

for polished (type Il) and ground samples. The strain 4/<gz> decreases with depth. Large

uncertainties of the determined crystallite size (D) unable study of D evolution with depth.
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Measurement of D is close to the limit of method sensibility, i.e. only D smaller than about
500 A can be measured using applied configuration of the diffractometer (instrumental

broadening is about FWHMyg-¢- =~ 0.3° verified using LaBg powder).

Tisamples
As it was mentioned the second series of samples was prepared from Ti and Ti alloy.

The example of peak profiles for all investigated samples and Ti powder, obtained with
pseudo-Voigt fitting function are presented in Figs. 7.7 and 7.8. The example <a(¢, y)>{nkiy
vs. siny plots for polished (type 1) Ti6AI4V alloy are shown in Figs. 7.9, while similar plots
for Ti (grade 2) sample were already presented in Figs. 6.1 and 6.2 (chapter 6).
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Fig. 7.7. Example of the peak profiles for ground Ti powder (a); and Ti (grade2) polished type I (b) and ground (c), fitted by pseudo-Voigt function.
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Fig. 7.8. Example of the peak profiles for polished (type 2) titanium alloy (Ti6AI4V), fitted by pseudo-Voigt function.
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Fig. 7.9. Example of the <a(, w)>g Vs. sin’y plots for polished (type 11) titanium alloy (Ti6AI4V), for different penetration depths.
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Fig. 7.10. The in-depth profiles of stress, ap and c/a parameters for mechanically polished (type 1) and ground Ti- grade 2 samples and polished (type 1)
Ti6Al4V alloy, as well as the reference powder sample, obtained by MGIXD method (Cu K, radiation and pseudo-Voigt profile used for fitting).
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Fig. 7.11. The stress in-depth profiles (stress, a; and c/a parameters) for mechanically polished Ti6Al4V alloy (type 1) measured by MGIXD method.
Comparison of the results obtained: a) using Kroner and stress free XSF (peaks are fitted by) pseudo-Voigt function and b) the peak position determined by
fitting of pseudo-Voigt function and using center of gravity method (are compared for XSF calculated with Kroner method).
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Similarly like for Al2017 samples, the polished and ground Ti samples exhibit
significant broadening of diffraction peaks in comparison with recrystallized powder. The
pseudo-Voigt functions fit correctly the experimental peaks measured for ground or
polished (with pressing force equal 5 N - type I) Ti (grade 2) sample while disagreement
between theoretical and experimental profiles was found in the case of polished Ti6AI4V
alloy (type 11); see asymmetries indicated by arrows in Fig. 7.8. The disagreement is
particularly evident for high 26 angles. The <a(g, ¥)>g vs. sin“y plots were fitted using
procedure based on Egs. 6.1 and 3.23, in which the XSF are calculated by Kroner method
from single crystal elastic constants given in Table 3.3 and c/a parameter was adjusted.
Similarly, as in the case of Al sample low crystal anisotropy causes that the choice of
XSF model and crystallographic texture is not significant. It should be stated that the
a4, w)>qniy Vs. sin?y plots were limited to the range of sin”y for which acceptable fitting
of pseudo-Voigt function was obtained (Fig. 7.9).

The in-depth stress and lattice parameters (ap and c/a) profiles as a function of
penetration depth (t) were determined from measurements performed for different incident
angles (a), and compared with analogical measurements performed for the Ti powder
sample (Fig. 7.10). Refraction correction (taken into account) is not significant for the
studied range of incident as shown in Fig. 5.11. The stresses obtained using two methods
(fitting by pseudo-Voigt function and center of gravity) for determination of peak positions
were compared in the case of polished Ti6AI4V alloy (type I1) exhibiting significant stress
gradient (Fig. 7.11). Analyzing the presented above results concerning residual stresses for
Ti and Ti alloy samples, it can be concluded that (see Figs. 7.10 and 7.11):

e Stresses close to zero were measured in Ti powder.
o Different types of stresses were generated after application both surface treatments,

i.e. tensile stresses after grinding (higher stress along direction of grinding) and

compressive stress after polishing. No significant evolution of stresses occurs in the

depth penetrated by X-rays for ground and polished (with pressing force) samples,
while the significant gradient of stresses occurs for polished Ti alloy in accessible
on the classical diffractometer range of penetration depth.

e No significant in-depth evolution was found for a, and c/a parameters for all
measured samples. The values of ag lattice parameters for Ti (grade 2) polished and
ground samples are comparable with each other and are close to the lattice

parameters of powder sample (similar to the values characterizing pure material:
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ap=2.95111 + 0.00006A, and c/a = 1.5873 [93]). On the other hand the value of
the lattice parameters of Ti6Al4V alloy, as it was expected, is significantly different
from those obtained for Ti (grade 2) sample (Ti6Al4V parameters are close to
ap=2.9323 A and c/a = 1.5957, obtained by Bernier et al. [107] for similar alloy,
using synchrotron radiation).

e The determined c/a parameter does not depend on depth if stress gradient does not
occur, thus for Ti powder and polished or ground Ti (grade 2). However, in the case
of stress gradient in polished Ti6Al4V alloy, c/a exhibits small monotonic in depth
dependence which is slightly more significant in the case of XSF given by Kroner
than in the case of free surface model (Fig. 7.11a). On the other hand, also ag shows
small deviation close to the surface, which in turn, is smaller for Kréner model
(Fig. 7.11a). Because the deviations of ao are c/a are small and could be caused by
another reasons, it is not possible to decide which model better describes grain
interactions in the studied sample. However, the hypothesis that stress relaxation
close to the surface causes different grains interaction at different depths should be
in future verified.

o Different values of stresses and ap and c/a parameters were obtained depending if
the peak positions were determined by fitting pseudo-Voigt function or calculating
the center of gravity (Fig. 7.11b). This important problem will be considered in this
work and it is expected that such difference is due to asymmetry of peak caused by
stress gradient (the measured peak is integrated from different depths exhibiting

different lattice strains).

Williamson-Hall analysis was used for investigation of the in- depth evolution of
root mean square of the third order strain and crystallite size (coherent domain). The fitted
linear functions to the experimental points in Williamson-Hall method for investigated Ti
samples are presented in Fig. 7.12 (as the reference the LaBg powder was used). The

calculated results are summarized in Table 7.3.
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Fig. 7.12. The linear function fitted to the experimental data in Williamson-Hall method
for Ti (grade 2) polished — type | (a) and for polished (type IlI) Ti6Al4V alloy (b) -
Gaussian approximation.

Table 7.3. The root mean square of the third order strain (,/<52> ) and crystallite size (D)

calculated with Williamson-Hall method for Ti and Ti6Al4 samples.

o (°) T (wm) J<&> D (A)

Ti6Al4V polished — Type Il

5 0.9 0.0018 =+ 0.0003 438 +143

15 2.1 0.0006 +0.0006 408 =66
Ti (grade 2) polished — type |

5 0.9 0.0025 =+ 0.0001 501 +123

15 2.1 0.0016 +0.0002 430 +83

Ti (grade 2) ground
5 0.9 0.0039 +0.0008 238 +152
15 2.1 0.0020 #+0.0002 474 +163

The values of the third order strains (1K52>) in polished (type 1) and ground
Ti (grade 2) samples are higher than in Ti6Al4 alloy, for which polishing type Il was

applied. In all samples the strain a/(gz> decreases with depth. In the case of slightly

polished Ti6Al4 alloy very small value of strain 4/<gz> was measured in the depth

7=2.1 um where material is not deformed plastically. Similarly as for Al sample due to

large uncertainty of the determined crystallite size the study of D evolution is not possible.
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As mentioned before, the clasicall X-ray measurements were an introduction to the
study performed with synchrotron diffraction. X-ray measurements enabled to choose
appropriate samples, i.e. the samples having important in-depth gradients (Al2017 and
Ti6Al4 - type 11 of polishing). Next these samples were studied using similar wavelengths
(energies), as used on the laboratory diffractometers, with synchrotron radiation.
Additionally for the ground and polished (with pressing force) Ti (grade 2) samples much
higher energies was used (EDDI — energy dispersion diffraction) to study stress behavior in

deeper layers.

7.2. SYNCHROTRON MEASUREMENTS USING MGIXD WITH DIFFERENT
WAVELENGTHS AND INCIDENT ANGLES.
The results for samples exhibiting a high in-depth stress gradient (the results

obtained using classical X-ray diffraction) were verified using synchrotron radiation. The
experiment was performed at HASYLAB, DORIS IIlI storage ring, on beamline
G3 spectrometer, using soller collimator (with divergence 0.15°) and scintillation detector.
The double-crystal germanium monochromator was used. The beam dimension at
monochromator was about 5 mm per 10 mm. All monochromator movements were driven
by stepper motors. The tilted gold mirror was used for suppression of the higher
harmonics. The advantages of synchrotron radiation are its perfect collimation,
monochromatization, high intensity and possibility of wavelength variation. Moreover,
very valuable advantage is that penetration depth can be change for the same incident angle
by changing wavelength. In Fig. 7.13 the penetration depths for different wavelengths are
shown. Three different wavelengths (A=1.2527 A, A =1.5419 A and A =1.7512 A) were
chosen and the incidence angles («), for which the penetration depth is the same, were
calculated. The important question verifying the methodology was if the same stresses will
be determined for such combination of wavelengths and incident angles. The sets of
incident angles and wavelengths corresponding to the same penetration depths were
determined drawing horizontal lines in Fig. 7.13.
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Fig. 7.13. The penetration depth vs. incidence angle o for Al (a) and Ti (b) samples. Curves
for three, different, selected wavelengths are shown. Horizontal lines are drawn for
constant penetration depths.

Al2017 sample
Fist studied sample was mechanically polished (type Il) Al 2017 alloy for which the

significant gradient of stresses was determined using classical X-ray diffractometer. The
MGIXD method with radiations having three different wavelengths: A=1.2527 A,
A=1.5419 A and A =1.7512 A were applied. Synchrotron radiation enabled to extend the
penetration depth (z) for which the stresses are determined. The measured peaks were fitted
by the pseudo-Voigt function. The example of peak profiles are presented in a Fig. 7.14.
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Fig. 7.14. Example peak profiles fitted with the pseudo-Voigt function presented for
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512 A.
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In the case of synchrotron radiation having better resolution (FWHM,g—9p- = 0.1°) in
comparison with X’Pert PANalitical diffractometer (FWHMjg-90- =~ 0.3°) the diffraction
data measured at G3 spectrometer shows more accurate peak profiles. Consequently peak
asymmetry occurs when peaks are fitted by pseudo-Voigt function and the physical reason
of this asymmetry will be discussed later (Fig. 7.14).

In order to check agreement of the in-depth profiles obtained for different
absorption of synchrotron radiation (depending on energy), the stresses and a, parameter as
the functions of penetration depth (z), were determined for each wavelength independently.
The positions of peaks were found by fitting of pseudo-Voigt function (Fig. 7.15a) or
calculating the center of gravity (Fig. 7.15b), and next the fitting procedure based on

Eq. 3.23, with Kroner, XSF was applied to calculate the values of stresses o,,' =0,

(this assumption was previously confirmed by X-ray measurements) and a, parameter.
When peaks were fitted by pseudo-Voigt function, a very good agreement was achieved
between data obtained using synchrotron radiation (for three different wavelengths) as well
as classical diffractometer (preliminary measurements on PANalytical — X’Pert MRD
(ENSAM, Paris)). If the peak positions are calculated as center of gravity (Fig. 7.15b) the
agreement is worse but the stresses are still equal, in the margin of uncertainty, for
different wavelengths and classical diffractometer. Both methods (pseudo-Voigt and center
of gravity) give very similar results. To confirm that the determined stresses really depend
on the penetration depth and not on the geometrical conditions also the stresses as the
function of incident angle a were drawn in Fig. 7.16. As expected, due to different
absorption significant difference of stresses measured with different wavelengths are seen
for the same value of o angle.
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Fig. 7.17. The <a(¢,w)>{kiy VS. sinzz// plots for polished AlI2017 sample obtained with
three wavelengths and different incident angle («). In each figure experimental data
corresponding to the same penetration depth are shown together with fitted theoretical line.
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The agreement between results obtained with different wavelengths allows
developing the MGIXD. The idea is to collect <a(g, y)>miy Values corresponding to the
same penetration depth z on the same sin?y plot. Therefore <a(g, W)=y VS. siny curves
(containing information obtained using different wavelengths) are presented on separate
plots corresponding to chosen penetration depths (Fig. 7.17). Subsequently, for the first
time the MGIXD method based on Eg. 3.23 was simultaneously applied for all
<a(¢ w)>niy Values measured at the same penetration depth and being combination of
chosen wavelength and incident angle (XSF calculated by Kréner method). As seen in
Fig. 7.17 the experimental points are close to the fitted lines and systematic decrease of the
negative slope of the <a(g, ¥)>{y Vs. siny plot (representing compressive stress) with
penetration depth is seen for both experimental and fitted results. The stress in-depth
profile obtained with the developed method is presented in Fig. 7.18a. The advantage of
this approach is that each point on the in depth dependence was obtained not only with
different reflections hkl corresponding to different incident angles (multi-reflection) but
also with different wavelengths (multi-wavelengths).

Having values of mean stress vs. penetration depth r the variation of stress vs. z —
‘real depth’ can be calculated using the inverse Laplace transform applied to polynomial

function (see chapter 3). It was found that the solutions (&;,(z) ) are similar for polynomial

of 2" and 3" degree as presented in Fig. 7.18b.
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Fig. 7.18. The stress profile for polished Al2017 sample for all experimental points
obtained for three different wavelengths as a function of z - penetration depth (a) and z -
real depth in sample (b). The uncertainty bounds are given for polynomial of 2" degree.
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Although the stress profile was found and presented in Fig. 7.18b two important

questions must be answered, i.e.:

a) for which maximum z- depth the presented approximation can be applied, and

b) does the determined stress gradient explains asymmetry of diffraction peak

measured using synchrotron radiation?

To answer the above question the inverse analysis was performed, i.e., assuming the

determined stress distribution &,,(z) the experimental results were simulated.

a) The mean stress denoted by &;,(r) and calculated using equation:
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(7.1)

up to different limits x , instead of x — o0 as in the real thick sample (where &),(2)

is the dependence of stress vs. real depth z). The results were compared with the

measured mean stresses which should correspond to the recalculated o), (z) values.

It was found that the recalculated profiles does not change significantly and agree

with experiment if the integration is performed at least up to x = 40 pum, i.e. the

stresses over 40 um does not influence significantly measured values. Therefore,

the distribution of stresses o),(z) up to the depth of 40 um was correctly

determined, however it was not proved that the solution is unique.
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Fig. 7.19. The stress profiles for polished Al2017 sample: o},(z) calculated from inverse
Laplace transform, o,,(r) measured or recalculated from o/, (z) using Eq. 7.1. Polynomial
of 2" (a) and 3" (b) degree were applied to fit the o, (r) experimental values.
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b) The experimental diffraction peak profiles were simulated. Each peak was modeled
as superposition of pseudo-Voigt functions having positions corresponding to the

interplanar spacing modified by different stresses o) (z)at different depths z.

In calculation of lattice strains the XSF (Kroner method) were used. The main
problem of such modeling is that both FWHM and # (contribution of Lorentz
component) are unknown and they can depend on the depth z. Only the dependence
of peak intensity is known and described by absorption law. In this work the
n parameter was assumed constant for different depths and it was determined by
fitting pseudo-Voigt function to experimental peak for given hkl reflection (and
corresponding 26 ). In the simulation, the superposed pseudo-Voigt profiles were
weighted by intensity depending on absorption (corresponding to the depth z) and
different dependences of FWHM on the depth were assumed in order to reproduce
one of the most asymmetric peaks (1 =1.5419 A, 20 =~ 38.6° and a = 15°).
The following in-depth profile of FWHM = b was assumed:
b=Db,+bexp(-z/¢) (7.2)
where by is the FWHM for z — o and &, by describes the evolution of FWHM for
decreasing depth z, caused by microstructure variation due to polishing.
The evolution of FWHM described by Eq. 7.2 and arbitrarily assuming
bo = b; with different & parameters is shown in Fig. 7.20. It was found that the
experimental asymmetrical peak (1 =1.5419 A, 26 = 38.6° and o = 15°) is correctly

modeled for &10 um and by = bs. In calculations the determined o,(2)

dependence was used and the model peak profiles were compared with
experimental points as well as with calculations assuming zero stress
(see Fig. 7.21a). In Fig. 7.21b similar comparison but assuming constant FWHM is
shown. Important question is if the other peaks (at different a, 26 and for
different 1) are also correctly reproduced for the FWHM evolution described by
&=10 pm. In this aim different peaks were modeled assuming the same variation of

microstructure (described by =10 pm) and stress dependence o/,(z). Only the
values of by (assuming by = b;) was adjusted for different reflections hkl
(see Table 7.4). In Fig. 7.22 the experimental profiles were compared with the
modeled ones assuming stress variation o,(z) or stress equal to zero. Very good

agreement between experimental and theoretical peaks confirms that the o,(2)
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function correctly describes in-depth stress dependence. Moreover, it can be also
seen that the stress gradient differently influences the diffraction peaks measured

for different penetration depth. If penetration depth z is relatively small (in

comparison with stress variation distance), compressive stress causes significant

shift of the diffraction peak (t = 3.7 um, Tt =5.9 um in Fig. 7.22 and t = 2.6 um in
Fig. 7.23), while for deeper penetration depth (t = 14.5 pm, T = 17.5 um in
Fig. 7.22 and T =31 um in Fig. 7.23) the peak is not much shifted but significant

asymmetry appears due to superposition of the intensities from regions where

compressive stress decreases and next change to tensile one.
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Fig. 7.20. Variation of FWHM described by
Eq. 7.2 with different values of & parameter

(assuming bg = by).
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Fig. 7.21. Comparison of diffraction peak profiles: experimental, simulated for &,(z)

stress function and assuming zero stress (A=1.5419 A, 2 6 = 38.6° and « = 15°). Results for
FWHM variation described by Eq. 7.2 with £&=10 um (a) and for constant FWHM (b) are

shown.
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It can be concluded that inverse analysis (integration of stress o,(z) with intensity

weight) allowed to determine range of the depth from which the stresses influence

diffraction results (about 40 um), i.e., for which the &,(z) was determined. Moreover, the
inverse analysis applied for peak profiles confirmed the stress distribution given by &/, (z) .

In the latter calculation increase of FWHM for the peaks coming from the regions closer to
the surface was assumed. This effect is due to microstructure change caused by mechanical
polishing (increase of number of defects and decrease of crystallite in deformed material).
It should be mentioned that similar simulation of peak profile was also done by
Genzel et al. [36] in order to explain influence of stress gradient on the profile asymmetry.
However, calculations were performed for one peak in the case of the deposited coating,

i.e. when constant FWHM can be assumed.

Table 7.4. Values of by (assuming by = b;) used in modeling of the peaks for different
26 angles and wavelengths.

2=1.5419 A A=1.7512A A=1.2527A
20(°) | 386 827 1382 |440 916 1515 |31.15 848 1327
bo(® [012 020 075 |0.12 026 090 |[0.115 0.22 0.65
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Fig. 7.22. Comparison of diffraction peak profiles: experimental, simulated for o, (z)

stress function and assuming zero stress. For all peaks (A=1.5419 A) the same variation of
FWHM described by Eq. 7.2 with &=10 um was used in calculations (by = b is given in

Table 7.4).
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Fig. 7.23. Similar comparison as in Fig 7.18 but for example peaks measured with
L =1.7512A (a) and A=1.2527A (the same variation of FWHM as in Fig. 7.18, described by
Eq. 7.2 with £&=10 um was used in calculations and by = b; given in Table 7.4).

Finally the root mean square strains -/<e&? > corresponding to density of
dislocations but also influenced by stress gradient o/ (z) were calculated using

Williamson-Hall method for polished AI2017 sample. Fitted linear function to
experimental data is shown in Fig. 7.24. The results of calculation are summarized in

Table 7.5. As the reference the LaBg powder was used.
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Fig. 7.24. The linear function fitted to the experimental data using Williamson-Hall
method for polished AI2017 (Gauss approximation). Results compered for different
wavelengths but for the same penetration depth (a) and for the same wavelength but
different incidence angle o (different penetration depth) (b).

Table 7.5. The root mean square of the third order strain (J(gz)) and crystallite size (D)

calculated with  Williamson-Hall method for Al 2017 polished samples

(different wavelengths and incident angles).

MA) o) T(um) <gt> D (A)

1.2527 2.6 5.9 0.0015 +0.0001 596 + 96
1.7512 7.6 5.9 0.0015 +£0.0001 747 +261
1.5419 5 5.9 0.0016 +0.0001 915 +413
1.5419 10 10 0.0015 +0.0001 868 =330
1.5419 15 15 0.0014 +0.0001 438 + 55

1.5419 20 17 0.0012 +0.0001 553 + 48

It can be concluded that results obtained using Williamson-Hall analysis are in

a good agreement for the data collected with different wavelengths and comparable with
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those obtained using classical diffractometer (in the margin of uncertainty). As expected
the third order strain systematically decreases with the depth in the sample (this supports
the above analysis concerning simulation of peak profiles), however the uncertainty of D is
too large to determine the variation of the coherently diffracting domain size with depth.
The results of Wiliamson-Hall analysis have rather qualitative character, showing tendency
of variation, because it should be underlined that the x/<572> strain is influenced not only

by the defects (third order stresses) but also by the gradient of stress o, (z) integrated over

diffracting volume.

Ti6Al4V sample
Second studied sample was polished Ti6Al4V alloy (polishing type Il) for which

the gradient of stresses was observed for data obtained from classical diffractometer
(Fig. 7.11). The example peak profiles obtained using synchrotron radiation is presented in
Figs. 7.25-7.27 (for the comparison the diffraction peak profile from classical
difractometer is presented on a Fig. 7.28). In this case strong asymmetry of diffraction
peak suggest that two irradiated regions of the sample have different microstructure,
i.e. layer of about 0.5-1 um which has been severely plastically deformed (region of high
density of dislocations) and the base material, under this layer, having much lower density
of dislocations (smaller plastic deformation). Indeed the diffraction peaks can be easily
separated into two pseudo-Voigt functions having different integral widths and position
(Figs. 7.25-7.27). This effect was not clearly visible for diffraction peak from the classical
diffractometer because of larger divergence of the beam and the presence of Cuk line.
But still it is possible to separate two peaks for chosen profiles as shown in Fig. 7.28
(compare also the same peak measured by synchrotron radiation, shown in Fig. 7.25b).
It should be underlined that in this case the separated peaks represent different regions in
the sample and they can be treated independently. The broad peak (representing ‘hard’
deformed material in the layer) shifts relatively to the narrow one (coming from ‘soft’ base
material), i.e. when w=6-a angle increases (together with 26, for constant «) the broad peak
shifts from the left to the right site of the narrow one (see Fig. 7.25). It was also found that

the relative contribution of the narrow peak increases for deeper penetration depths when
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larger volume under the layer is irradiated. This effect is presented for chosen
measurements, showing:

e almost constant intensity ratio for different 26, but constant A and o (Fig. 7.25a and
b), as well as for combinations of 1 and « giving the same ¢ (Fig. 7.27);

e increase of the severely deformed (‘hard’) layer contribution when penetration
depth decreases, i.e. when a decreases for constant A (compare Fig. 7.25a with
7.25b) or when 4 increases for approximately the same « (Fig. 7.26).

The above qualitative analysis shows that upper layer is more deformed (‘hard’) than the

deeper base material.
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Fig. 7.25. Comparison of fitted with pseudo-Voigt function peak profiles for A=1.5419 A
and for two incident angles: 5° (a) and 15° (b).
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Fig. 7.26. The example peak profiles for more less the same incident angle « but for
different wavelengths and penetration depths. Two pseudo-Voigt functions were fitted to
the experimental data.
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Fig. 7.27. The example peak profiles for the same penetration depth 7= 1.5 pum.
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At first, the residual stresses were determined using lattice parameters
<a( @,y )>muy Vs. sin?y measured by three different wavelengths. Due to the presence of
heterogeneity of the layers in sample the peak position was determined by centre of gravity
method (one pseudo-Voigt function cannot be fitted to the measured peaks). The in-depth
profiles of the determined stresses o/,(z), lattice stress free a; and c/a parameters are

compared with those obtained using laboratory diffractometer (Fig. 7.29). The Kroner XSF

was used in procedure based on Egs. 6.1 and 3.23)
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Fig. 7.29. The in-depth profiles of the stresses o,,(z), a and c/a parameters, for Ti6AI4V

sample. Comparison for three different wavelengths (synchrotron) and laboratory
diffractometer using pseudo-Voigt fitting (p-V) and centre of gravity method (CG) for
determining of peak position.

The in-depth profile of stresses presented on Fig. 7.29 is similar for the three
different wavelengths used in experiment. Furthermore the results obtained from
synchrotron measurements are not far from those obtained on classical diffractometer.
The largest uncertainty and significant shift disagreement of the results (with other data)
was obtained when centre of gravity method was used to determine peak position

measured on laboratory diffractometer.
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The above results represent an average values weighted by absorption, but more
superior analysis can be performed for synchrotron data. As it was mentioned before the
diffraction peaks can be easily separated into two pseudo-Voigt functions and the
calculation of stresses can be performed for both of the regions in sample. To do this

<a( @,y )>muy VS. siny functions were determined independently from the positions of
broad (‘hard’ region) and narrow (‘soft’ region) peaks. The sin?y plots are almost linear
(Fig. 7.30) and they allow to determine stresses o,(z), @ and c/a parameters for each

region, independently. Significant negative slope of the curves suggests large compressive
stress in the ‘hard’ region and almost horizontal lines correspond to small stress in the

‘soft’ region.
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Fig. 7.30. The example <a(g w)>guy VS. sinzz// plots for polished Ti6AlI4V sample
obtained with three wavelengths and different incident angle (o) (the same penetration
depth t=0.84 pum). The plots for the ‘soft’ (a) and ‘hard’ (b) regions are separated. In each
figure experimental data are shown together with fitted theoretical lines.

174



200

x
O
0 s
[N
~ ~
E -200 1 =a -
= e
= w
= -400 ~§ E % A soft %=1.2527 A (p-V)
e} o soft A =1.5419 A (p-V)
L] soft A =1.7512 A (p-V)|
600 1 s { A hard 7. =1.2527 A (p-V
. hard A =1.5419 A( p-V.
% E L] hard %=1.7512 A (p-V,
-800 . . —®— mean synchr. (CG)
0 1 2 3 4 5 6 7
 (um)
2.934 1.600
2.932 4 soft A=1.2527 A (p-V)
| e soft A=1.5419 A (p-V) |
2.930 ®  soft =1.7512 A (p-V) 1.598
2.928 A
- & i § * * L
o 2.926 - i B oa 3z N 1.596 T
> | I I E
2.924 A i (3
< 2.922 | g 1.594 4 4 soft A=1.2527 A (p-V)
2.920 | * soft A=1.5419 A (p-V)
’ A hard % =1.2527 A (p-V) = soft A =1.7512 A (p-V)
2.918 ® hard 1=1.5419 A (p-V) 1.592 - 4 hard A=1.2527 A (p-V)
2.916 1 = hard A=1.7512 A (p-V) ® hard »=1.5419 A (p-V)
= hard %=1.7512 A (p-V)
2914 T T T T T T T 1.590 T T T T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

T (um) T (um)

Fig. 7.31. The in-depth profiles of the stresses o;,(z), a and c/a parameters, for Ti6AI4V

sample. Results after peak separation are plotted as the function of penetration depth z.
The results are compared with those obtained using center of gravity method for peak
position.

In-depth profiles of the measured values for ‘hard’ and ‘soft’ regions of the sample
are presented in Fig. 7.31. High compressive stress of about 500-700 MPa has been found
in the layer (irradiated for all wavelengths and geometrical conditions), while in the base
material a small tensile stress increases with penetration depth within the range of about 0-
120 MPa. The stress determined using centre of gravity method is approximately equal to
the average from the values measured in the layer and base material, weighted by the
intensity of reflected beam. For smaller penetration depth contribution of the layer causes
relatively higher value of the measured stress, while for deeper penetration stress value
approaches to this measured in the base material. It should be also noted that using

synchrotron radiation (A=1.2527 A) the stress was determined for much deeper regions in
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comparison with classical X-ray results (in this case stresses in the layer cannot be
determined because of very low contribution of the broad peaks). It should be underline
that almost the same values of ap; and c/a parameters were obtained both for ‘soft’ and
‘hard’ regions (after separation of two peaks), as well as for the mean results calculated

using centre of gravity method. These parameters do not vary with penetration depth.

Now, it is possible to evaluate the thickness of the deformed layer. As it was
mentioned before, the information gained from the diffraction experiment is weighted by
the absorption of X-ray in the material. On the basis of the exponential attenuation law it is
possible to find the thickness of the layer from the relative intensities of the diffraction
peaks. The intensities of the separated pseudo-Voigt profiles corresponding to the ‘hard’

(Ihara) and “soft’ (1., ) regions of the sample, respectively can be expressed as:

to .z fm oz t
lhard = Ioje sz/.fe rdz= Io[l—e Tj (7.3)
0 0

® 2 ® 2 t
o = Ioje fdz/Ie rdz=1e " (7.4)
t 0

where t is the thickness of the severely deformed (‘hard’) layer and Iy is the total peak
intensity.

By dividing both sides of above equations by each other and after simple transformation
the thickness of the layer is given by:

soft

tzrln(lhﬂ+1j. (7.5)

I
Using Eq. 7.5 the values of t- thickness were determined from -2 for all peaks for which

soft
separation of two peaks is possible (for some peaks the position of both peaks is the same
and separation cannot be done, however the positions of both peaks can be determined).
The results presented in Fig. 7.32 show that the uncertainty of t thickness increases for low
26 as well as for decreasing wavelength 2 and not all peaks can be used to determine

thickness of the ‘hard’ layer. In order to precisely estimate the thickness of the layer peaks
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with the smallest uncertainty were chosen for each wavelength. The ratio lnarg/lsort as
a function of penetration depth for chosen diffraction peaks is presented on a Fig. 7.33a,

where an increase of contribution of I, , intensity with decreasing penetration depth is

seen. The results obtained for three different wavelengths and incident angles « coincide
when they are plotted vs. z. This proves that the lnad/lsort ratio really depends on the

absorption phenomenon.

Knowing the ratio Inaa/lsort ratios the layer thicknesses were calculated. Fig. 7.33b
shows the estimated size of the layer as a function of the penetration depth. As it can be
seen the thickness of the layer is about 1.38 um and does not change for the data obtained
with different experimental conditions (determined t thickness is constant for various depth

7, penetrated by the beam).
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Fig. 7.32. The thickness of the layer calculated for all used wavelengths: 1.2527 A (a),
1.5419 A (b) and 1.7512 A (c) and for different diffraction peaks.
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Fig. 7.33. The ratio Ihad/lsort (@) and calculated layer thickness t (b) as a function of
penetration depth for chosen diffraction peaks fitted with two pseudo-Voigt profiles.

After estimation of the layer thickness it is possible to present results from the

synchrotron measurements as a function of the information depth z defined by Eq. 3.4.
Fig. 7.34 presents the in-depth profile of stresses and lattice parameters. The results

coming from both parts of the sample are gathered separately. As it can now be clearly

seen there are two regions in the sample: the ‘hard’ region, where z is calculated for

a layer having thickness t =1.38 um and the ‘soft’ material for which 7=1 is defined for
the infinite base material, starting at depth of 1.38 um. The high compressive stresses is
present in the layer of the thickness up to 1.38 pum, on the other hand the part of the
sample, deeper than 1.38 um, exhibits a small value of increasing tensile stress. Values of

calculated lattice parameters ap and a/c are nearly constant in both parts (Fig. 7.34).

In the above analysis the sample was divided into two different parts having
different properties and stresses. The reason of such treatment was that two peaks were
seen and well separated from the diffraction profile. However, this approximation is
artificial because the properties of the sample and stresses (for example FWHM) changes
more or less smoothly. Therefore, it is necessary to compare the obtained results with
another approach in which the stresses change gradually. It can be done, by using inverse
Laplace transformation for the data obtained from the peak positions determined by the
center of gravity method (presented in Fig. 7.29). The assumption of this approach is that
the evolution of the stresses can be approximated by polynomial i.e., the step change of

stress is not possible. Therefore, the results are ‘smoothed’ too much and the separation of
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two profiles should not be seen in the diffraction peak. The result of the invert Laplace
transform (using polynomial of 2 degree) together with the results of peak separation
method are shown in Fig. 7.35. A quantitative agreement of both methods is seen,
i.e. compressive stress close to the surface, zero stress at the same depth (2-3 um) and
tensile stress in the base material were obtained for both approaches. Also, the values of
stresses are not very different. Concluding it can be stated that the results of the method
with separation of two peaks are more reasonable because they have confirmation in peak
profiles and some smoothing of the stress distribution between two separated parts of the

sample should not introduce significant errors (a shown using invers Laplace method).
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Fig. 7.34. The in-depth profiles of the stresses o;,(z), ap and c/a parameters, for Ti6Al4V

sample. Results for different wavelengths after peak separation and with division into two
regions in the sample separated by dashed vertical line.
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Fig. 7.35. The in-depth profiles of stresses for Ti6Al4V sample. Results after peak
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Laplace method (center of gravity for peak position).
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Finally the root mean square strains J<e?> corresponding to density of defects
and influenced by the stress gradient were calculated using Williamson-Hall method
independently for two separated peaks obtained from polished Ti6AI4V alloy (the LaBsg
powder was used as reference). As expected higher value of <& >=0.2%-0.3% was

obtained from the severely deformed layer in comparison with the base material

(V<&®>=0.08%-0.1%). For the ‘hard’ region the \<&” > strain does not depend on

the value of penetration depth z (in the margin of uncertainty), while small but systematic

decrease of /< &® > appears in the ‘soft’ region (Table 7.6). Indeed, the whole volume of

‘hard’ layer always contribute in the broad diffraction peak, while the gauge volume of the

‘soft” part increases with larger penetration depth z, showing small decrease of \/<872> in
deeper volumes measured using narrow peak.

The size of coherently diffracting domain was determined only in the case of the
broad peak coming from ‘hard’ region, but still with large uncertainty (Table 7.6). Some
results are not shown because uncertainty exceeds D value. In the case of the ‘soft’ part,
the D size is too large to be determined in this experiment for all results, i.e., the

experimental uncertainty exceeds few times the obtained D values.
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Fig. 7.36. The linear function fitted to the experimental data in Williamson-Hall method
for polished Ti6Al4V (Gauss approximation). Results compared for different wavelengths
but for the same penetration depth from the ‘hard’ (a) and ‘soft’ (b) regions of the sample.
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Fig. 7.37. Similar presentation as in Fig. 7.36, but the results are compared for the same
wavelength (1.5419 A) and for different incident angles « (i.e. for different depths in the
sample). Plots for ‘hard’ (a) and ‘soft’ (b) regions are shown separately.

Table 7.6. The root mean square of the strain (,/<52>) and crystallite size (D) calculated

with Williamson-Hall method for Al2017 polished samples (different wavelengths and

incident

angles).
VAL a®) t(um) J<&2> D (A)

Hard region

1.2527 2.4 0.8 0.0020 +0.0005 441 +280

1.7512 7.4 0.8 0.0023 +0.0003 406 +149

1.5419 5 0.8 0.0029 +0.0004

1.5419 10 15 0.0020 +0.0003 478 +217

1.5419 15 2.1 0.0021 +0.0001

1.5419 20 25 0.0022 +0.0004
Soft region

1.2527 2.4 0.8 0.0011 +0.0002

1.7512 74 0.8 0.0010 +0.0002

1.5419 5 0.8 0.0013 +0.0001

1.5419 10 1.5 0.0010 +0.0001

1.5419 15 2.1 0.0009 +0.0001

1.5419 20 2.5 0.0008 +0.0001
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On the basis of presented results obtained measuring mechanically polished
samples with synchrotron radiation on G3 spectrometer (DESY, HASYLAB), it appears
that for three different wavelengths the same in-depth profiles of stresses o-l'l(E) were
obtained analyzing shifts of the peak positions. What is more the results perfectly agree
with those obtained previously using classical X-ray diffraction (Acuke1i=1.54056 A).
As the result, it was verified that absorption phenomenon limits the penetration depth of X-
rays and stress gradient can be measured using MGIXD method. Furthermore, synchrotron
radiation (A=1.2527 A) allowed to measure the stress profile for deeper regions in
comparison with classical X-rays (Acuka1=1.54056A). In all measurements constant and
independent on the depth values of ay and c/a were determined.

The analysis of peak profiles brings more information concerning dependence of

the stress vs. real depth (o/,(z)). In the case of polished Al2017, the asymmetry and/or
shift of the peak correctly reflects the stress gradient calculated applying inverse Laplace
transform for the 01'1(2) function. On the other hand, two different regions having different

microstructure were separated when diffraction peak was fitted by two pseudo-Voigt
function. (it was clearly seen that the diffraction peak is composed from two profiles).

Finally, the Wiliamson - Hall method was applied to determine evolution of the root mean

square of the strain (,/<g"—> ) from the depth. A small decrease of this value was found for

polished Al 2017 sample and in the soft region of. Significantly, larger <52> strain was

measured in the severely deformed upper layer of polished Ti6Al4V alloy. The size of

coherently diffracting domain (D) cannot be determined, because of large uncertainty.
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7.3. ENERGY DISPERSION MEASUREMENT USING SYNCHROTRON RADIATION.
In the next experiment multireflection method was applied for the energy

dispersion method in which white beam containing radiation having different wavelengths
was used (A (A): 0.3-0.18/ E (keV): 40-68). The measurements were performed in polished
(type 1) and ground Ti (grade 2) samples on the EDDI beamline at BESSY synchrotron
(Berlin, Germany). These specimens did not exhibit stress gradient when measured using
laboratory diffractometer (see section 7.1). The synchrotron white beam was generated by
the 7T-Wiggler and passed about 30 m through few optical components up to the place of
the experiment. An absorber mask limits the beam diameter to 3.9 mm per 3.9 mm.
In order to gain required characteristics of the beam, system of slits and filers is provided.
The stress analysis was performed using three different methods (the XSF were
calculated by Kroner model):
e The first was the standard sin’y method (i - geometry) in which constant 26 = 16°

was used. Each <a(¢,y )>giy Vs. siny plot was measured for different reflection

hkl using appropriate wavelengths. Due to various absorption corresponding to
different energies (and wavelengths) of radiation, each plot was determined for
different average penetration depth. However, the penetration depth is not constant
and varies vs. sin’y .

e Universal plot method (described in section 3.1.2) was applied for 100 reflection and
stresses close to the surface were determined.

e Using multireflection analysis it was possible to separate the data for chosen and
constant penetration depth (within interval +lpm). In this method only values
<a(¢.w )>mpy for the same penetration depth (different wavelengths and
hkl reflections) were chosen to create one sin®y plot. Using iteration fitting procedure

based on Egs. 3.23 and 6.1 the stresses were determined for constant depths.

The example <a(¢,y )>gmay VS. sin?y plots for standard analysis are shown in

Figs.7.38 and 7.39, while similar plots for multireflection method are presented in
Figs. 7.40 and 7.41. The comparison of the in-depth stress profiles determined with all

used methods of analysis, is presented in the Fig. 7.42.
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Fig. 7.42. The in-depth profile of stresses for polished (type I) and ground Ti (grade 2)
sample. Comparison of the results from classical diffractometer (MGIXD) and synchrotron
EDDI experiment, for which tree different methods of analysis were used (standard sin®y,
multireflection, universal plot). Two different ranges of penetration depth are compared:
a) 0-50 um and b) 0-15 um.

In the light of presented results (Fig. 7.42) it is visible that for the range of the
penetration depth 0-50 the relevant spread of experimental points occurs. In view of the
nature of these results it appears that the spread of the experimental points is caused by
rather weak intensity of the large energy line which leads to poor experimental data fitting.
Furthermore the deeper the penetration depth, the number of available reflections is
decreasing since the small energy lines are no longer sensitive in this region. Narrowing
the analyzed range of penetration depth to 0-15 um shows the convergence of the results
obtained from different methods in smaller depths. Moreover the synchrotron data
perfectly agree with the results obtained on laboratory diffractometer (Cu K, radiation)
close to the surface. The results obtained for larger depth that 14 um the experimental

points exhibit significant spread and do not agree with the results of standard method.
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Concluding, for the range of penetration depth 0-15 um the results of different methods
agree. Results obtained using with synchrotron radiation confirmed values of stresses
measured close to surface using Cu K, radiation. Moreover, it was shown, that the
multireflection method, in which the experimental data are collected for the same depth in

one plot, can be used for data obtained with white beam (EDDI).

7.4. CONCLUSIONS
Summarizing the results obtained with synchrotron radiation (MGIXD) it can be

stated that using different wavelengths (energies) of radiation the same similar in-depth
stress profiles were obtained. In addition the determined values of a, and c/a vs. depth do
not vary significantly with depth. For the first time also the multireflection method in
which the data for the same penetration depth are selected was successfully used to analyze
the EDDI data.

Perfect agreement was obtained between the measurements performed using
synchrotron radiation as well as Cu K, radiation on laboratory diffractometer (for MGIXD
and also for EDDI methods). Certainly, synchrotron radiation with higher energies allowed

measurements for larger depths in comparison with laboratory X-rays.

Synchrotron radiation (with better resolution) shows asymmetry of diffraction peak
caused by stress gradient. If the asymmetry is small (polished Al2017) the analysis of this
effect is difficult to analyze directly but inverse analysis, i.e. simulation of peak profile
with stress gradient can be used as the confirmation of the stress measurements. It also
happens that two regions exhibiting significant difference of microstructure can produce
big asymmetry of the peak which can be fitted by two peaks. In this case the data can be

separately treated for these regions.

The stress in-depth distribution vs. real depth z can be determined from stress
profile measured as the function of information (or penetration) depth using inverse

Laplace transform. In this work the limit of z for which the stress dependence is calculated

was established using inverse analysis, i.e. comparing function &,,(z) integrated with the

weight of intensity with experimental 01'1(2). It should be also underline that it was not

proven that the result of Laplace transform is unique. In the case of separated two peaks
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corresponding to two regions in the sample, the thickness of the upper layer having
different stress and microstructure can be determined analyzing contribution of intensities
of these regions in the diffraction peak.

Finally the Wiliamson Hall analysis allowing determination of the root mean square

strains +/< &> > and size of coherent domain D was used. It was found that the uncertainty

of D is too large to obtain reasonable results when parallel geometry is used in
MGIXD method. The values of +/< &* > measured using synchrotron and Cu K, radiations

agree very well. It should be stated that in the case of stress gradient, the +/< &” > value is

influenced by third order stresses but also by the stress heterogeneity in the measured

volume.
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8. GENERAL CONCLUSIONS
The MGIXD (multireflection grazing incident X-ray diffraction) is one of the

methods used for determination of in-depth stress distribution. Such measurement is
possible due to small angle between incidence beam and sample surface, and consequently
constant penetration depth of X-ray radiation in the studied material. The information
depth can be changed by setting different angles of incidence. As it was presented in the
thesis the MGIXD method has very important advantages in comparison with other
diffraction methods of stress determination. The important feature of this method is that the
lattice strains are measured in different crystallographic direction and next simultaneously
used in analysis. This enables study of elastic anisotropy and choice of appropriate model
of grains interaction for the interpretation of the experimental results. Furthermore not only
stresses but also strain free a; and also c/a (for hexagonal structure) parameters and their

in-depth variation can be determined. Finally in-depth evolution of the root mean square

strain «/@T and crystallite size (coherent domain) can be studied using Williamson-
Hall method. The main disadvantage of the MGIXD method is the requirement of perfect
adjustment of the experimental setup. To obtain reasonable results the measurements must
be performed using parallel beam configuration of the diffractometer.

In this work the MGIXD was developed and applied to measure in-depth stress
distribution in coating and surface layers of the materials subjected to different mechanical
treatments. The effect of physical and geometrical factors on the XSA was considered.
The method of c/a parameter determination was proposed for hexagonal samples and the
influence of stacking faults on the XSA was taken into account. Moreover in the thesis the
mechanical properties of the polycrystals such as: elastic anisotropy of elastic constants
and grain interactions were investigated. Different theoretical grain elasto-plastic
interaction models were considered and applied in XSA. Finally, the MGIXD method was
verified using synchrotron radiation and for the first time it was applied for EDDI
experiment.

In the light of presented in thesis results, the following conclusions can be drawn:
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for the samples investigated in the thesis, the LPA correction did not influence
significantly the results of XSA, even in the case of relatively broad diffraction
peak. However this correction should be always applied when MGIXD is used
beacause diffraction peaks having different 26 positions are measured..

The refraction can significantly influence the results of the MGIXD method.
The new approach, presented in this thesis, takes into account the refraction effect
as well as the accompanying wavelength change. It was shown that the effect of
refractive index n<l1 on the stress measurement strongly depends on value of the
o parameter (and thereby the type of material), wavelength, incident angle.
The study of the literature indicates that also surface roughness can strongly affect
the influence of refraction correction on XSA. This problem was not analysed in
the thesis but study of the problem would be a valuable addition to the research.

In the case of parallel beam geometry used for MGIXD method z-position
imprecision does not significantly influence the obtained results, however special
attention should be paid to adjust accurately the 26-zero position. Moreover, both
statistical error and the misalignment error can be significantly reduced when the
Gobel mirror is used in the primary optic of the diffractometer or synchrotron

radiation is applied for measurements.

Secondly in the thesis following issues were developed:

190

the method of c/a determination was proposed and tested for hexagonal samples
with residual stresses (polished Ti - grade 2). It was shown that for the material
having low elastic anisotropy the stresses, strain free parameter ao as well as c/a
value can be determine using presented in this work self-consistent iteration
method (the experimental values determined in the case of tensile as well
compressive stresses were compared with those found in literature). Significantly
better fitting of the theoretical values to experimental ones was obtained when c/a
was adjusted.

Probability of finding stacking fault p was determined for polished austenitic
sample (alloy having low stacking fault energy). Reasonable values of p but with
very large uncertainty were determined in the case compressive stress in the

polished sample.



e The influence of XSF (X-ray stress factors) anisotropy on XSA was considered.
Verification of the XSF was done by measuring lattice relative strains during

‘in situ’ tensile test. From the presented results it is evident that both experimental

rel

and calculated <8(¢,l//)>{hk|} vs. sin‘y functions based on different

hkl reflections exhibit nonlinearities in the case of elastically anisotropic samples
(austenite stainless steel) but for elastically isotropic sample (titanium) this
dependence is almost linear. Anisotropy of XSF was also observed on the

<a(g,y) >ty VS sin?y plots obtained when the residual stresses were measured

in ground Ni alloy, polished austenite stainless steel and CrN coating. The results
presented in thesis, obtained using MGIXD and standard method, shows that Reuss
and free surface grain interaction models are in the best agreement with the
experimental results. Both models reflect in the best way the elastic anisotropy of
the sample but the free surface model has a physical explanation in contrast to

Reuss model.

Thirdly, in thesis the MGIXD method was verified using synchrotron radiation. In this aim

two experiments were performed.

e In the first measurement performed at G3 spectrometer (DESY, Hamburg) three
different wavelengths (energies) of radiation were used in MGIXD method.
As the result:

o almost the same in-depth stress profiles were obtained for all applied
wavelengths.

o The determined values of a, and c/a vs. depth do not vary significantly with
depth.

o Due to its very good resolution of applied synchrotron radiation it was
possible to observe the diffraction peak asymmetry caused by stress gradient.

o The stress in-depth distribution vs. real depth z was determined from stress
profile measured as the function of information (or penetration) depth using
inverse Laplace transform. It should be underline that it was not proven that
the result of Laplace transform is unique.

o In the case of sample having strong diffraction peak asymmetry (polished

Ti alloy) the separation of two peaks, corresponding to two regions in the
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sample, was performed and the thickness of the upper layer having different
stress and microstructure was determined analyzing contribution of intensities
of these regions in the diffraction peak.

o The Wiliamson-Hall analysis showed that the uncertainty of D is too large to

obtain reasonable results when parallel geometry is used in MGIXD method.

The values of +/<&”> measured using synchrotron and Cu K, radiations

agree very well. It should be stated that in the case of stress gradient, the

\/<6‘72> value is influenced by the third order stresses but also by the stress
heterogeneity in the measured volume.

e For the first time also the proposed multireflection method (data selected for the
same penetration depth) was successfully used to analyze the EDDI data. Very
good agreement was obtained between the measurements performed using
synchrotron radiation as well as Cu K, radiation on the laboratory diffractometer
(for MGIXD and also for EDDI methods). The great advantage of using high-
energy synchrotron radiation was the possibility to measure stresses for larger

depths in comparison with laboratory X-rays.

Concluding, it can be stated that MGIXD method is indispensable tool to study the
distribution of stresses in the surface layers, but the applicability of this method is limited
by factors such as refractive correction or interpretation problem associated with the
anisotropy of elastic constants. On the basis of considered results, if MGIXD method is
used, it is advised to perform the stress analysis with and without refraction correction and
when the difference is significant the results should be rejected or accepted with so
estimated large uncertainty. This is one of the limitations of MGIXD method which is
significant for small incidence angle . What is more, the special attention must be paid to
accurate adjustment of the diffractometer (parallel beam configuration) and the 26 - zero
position must be carefully verified. It should be also underlined, that the reliable diffraction
stress analysis is only possible when an appropriate grain interaction model is applied in
calculation of XSF for anisotropic sample. On the bases of the results presented in this
thesis it appears that free surface model is the one which not only correctly reflects the
anisotropy of XSF well but also has a physical explanation concerning elastic interaction

of the grains.
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