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Summary

MULTI-OBJECTIVE PORTFOLIO OPTIMIZATION BY MIXED

INTEGER PROGRAMMING

Summary: In this PhD dissertation the mathematical programming methods of

operations research for multi-criteria optimization are presented. The PhD disserta-

tion deals with the problem of selection of methods and numerical tools for solving

portfolio optimization problems with different objectives. In particular, the research

efforts were concentrated on mixed integer programming formulations. The need for

solving multi-objective portfolio optimization models by mixed integer programming

can be illustrated for the portfolio models with Value-at-Risk (V aR) as a risk measure,

as well as, when the number of assets (investment ventures) is one of the optimality

criteria. An alternative, multi-objective portfolio optimization problems is formulated

with Conditional Value-at-Risk (CV aR) as a risk measure or with symmetric measure

of risk - covariance (variance) of return - as in Markowitz portfolio.

The portfolio models with CV aR and with covariance (variance) of historical return

were being solved with the use of mathematical programming with the continuous vari-

ables. The proposed multi-objective portfolio models are constructed with the expected

return as a performance measure and the expected worst-case return as a risk measure,

using Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR). These measures

allow the evaluation of worst-case return and shaping of the resulting return distribu-

tion through the selection of the optimal portfolio. The mathematical programming

models are constructed and solved using weighting, lexicographic and reference point

approach. The presented portfolio models are single-, bi- and triple-objectives and the

optimization criteria considered are risk, return and number of stocks.

The main research problem considered in this Ph.D. dissertation is the way for

finding the best multi-objective portfolio formulation with risk. The additional research

problem is to find the relation between the optimization results with Value-at-Risk

solved by mixed integer programming and the results obtained with the use of linear

and quadratic programming portfolio models (Conditional Value-at-Risk, Markowitz).

Computational experiments have been conducted for multi-criteria portfolio models

of stock exchange investments. The input data for computations consist of historical

daily returns of stocks quoted on Warsaw Stock Exchange. The number of selected

securities for input data varies from 46 to 240 assets. The historical stocks quotations

come from the period from March 10th, 1997 to February 2nd, 2009. This time period
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includes data from the increase of stock exchange quotations, as well as the economic

crisis period. The considered number of data in historical time series is from 500 to

3000 days with assets quoted each day in the whole historical horizon. The portfolios

were optimized in an increased time window, which was helpful in evaluating the results

of optimization (time-varying optimal portfolio).

The multi-criteria portfolio optimization models with Conditional Value-at-Risk

(CV aR) as a risk measure can be used to support on-line stock market investments,

since the computational times required to find the optimal solution is relatively short,

regardless of the size of the input data. The presented models provide a decision maker

with a tool for evaluating the relationship between expected and worst-case returns.

The results obtained from computational experiments proved, that multi-objective

portfolio optimization models with Value-at-Risk (V aR) and Conditional Value-at-Risk

(CV aR) could be used to shape the distribution of portfolio returns in a favorable way

for a decision maker. The portfolios obtained with both methods (mixed-integer or

linear programming) are often similar results, which shows their capability of solving

the corresponding problems. It means that a suboptimal portfolio for the integer pro-

gram with Value-at-Risk (V aR) as optimality criterion can be found by solving the

corresponding linear program for the portfolio problem with Conditional Value-at-Risk

(CV aR) as an optimality criterion. The proposed scenario-based portfolio optimization

problems under uncertainty, formulated as a single- or multi-objective mixed integer

program were solved using commercially available software (AMPL/CPLEX) for mixed

integer programming.

In addition to the multi-objective approach for portfolio optimization of securities

(e.g. stocks) from stock exchanges presented in this dissertation, the selected multi-

objective mixed integer programming models are shown for supporting services in med-

ical care institutions, based on an assignment problem.

Key words: Multi-Criteria Decision Making, Mathematical Programming, Mixed

Integer Programming, Linear Programming, Quadratic Programming, Portfolio Op-

timization, Conditional Value-at-Risk, Value-at-Risk, Weighting Approach, Lexico-

graphic Approach, Reference Point Method.

Mathematics Subject Classification: 90C05, 90C11, 90C20, 90C29, 90C90,

91G10.
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Preface

In this PhD dissertation the mathematical programming methods of operations re-

search for multi-criteria optimization are presented. The PhD dissertation deals with

the problem of selection of methods and numerical tools for solving portfolio opti-

mization problems with different objectives. In particular, the research efforts were

concentrated on mixed integer programming formulations. The need for solving multi-

objective portfolio optimization models by mixed integer programming can be illus-

trated for the portfolio models with Value-at-Risk (V aR) as a risk measure, as well as,

when the number of assets (investment ventures) is one of the optimality criteria. An

alternative, multi-objective portfolio optimization problems is formulated with Condi-

tional Value-at-Risk (CV aR) as a risk measure or with symmetric measure of risk -

covariance (variance) of return - as in Markowitz portfolio.

The portfolio models with CV aR and with covariance (variance) of historical return

were being solved with the use of mathematical programming with the continuous vari-

ables. The proposed multi-objective portfolio models are constructed with the expected

return as a performance measure and the expected worst-case return as a risk measure,

using Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR). These measures

allow the evaluation of worst-case return and shaping of the resulting return distribu-

tion through the selection of the optimal portfolio. The mathematical programming

models are constructed and solved using weighting, lexicographic and reference point

approach. The presented portfolio models are single-, bi- and triple-objectives and the

optimization criteria considered are risk, return and number of stocks.

The main research problem considered in this Ph.D. dissertation is the way for

finding the best multi-objective portfolio formulation with risk. The additional research

problem is to find the relation between the optimization results with Value-at-Risk

solved by mixed integer programming and the results obtained with the use of linear

and quadratic programming portfolio models (Conditional Value-at-Risk, Markowitz).

Computational experiments have been conducted for multi-criteria portfolio models
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of stock exchange investments. The input data for computations consist of historical

daily returns of stocks quoted on Warsaw Stock Exchange. The number of selected

securities for input data varies from 46 to 240 assets. The historical stocks quotations

come from the period from March 10th, 1997 to February 2nd, 2009. This time period

includes data from the increase of stock exchange quotations, as well as the economic

crisis period. The considered number of data in historical time series is from 500 to

3000 days with assets quoted each day in the whole historical horizon. The portfolios

were optimized in an increased time window, which was helpful in evaluating the results

of optimization (time-varying optimal portfolio).

The multi-criteria portfolio optimization models with Conditional Value-at-Risk

(CV aR) as a risk measure can be used to support on-line stock market investments,

since the computational times required to find the optimal solution is relatively short,

regardless of the size of the input data. The presented models provide a decision maker

with a tool for evaluating the relationship between expected and worst-case returns.

The results obtained from computational experiments proved, that multi-objective

portfolio optimization models with Value-at-Risk (V aR) and Conditional Value-at-Risk

(CV aR) could be used to shape the distribution of portfolio returns in a favorable way

for a decision maker. The portfolios obtained with both methods (mixed-integer or

linear programming) are often similar results, which shows their capability of solving

the corresponding problems. It means that a suboptimal portfolio for the integer pro-

gram with Value-at-Risk (V aR) as optimality criterion can be found by solving the

corresponding linear program for the portfolio problem with Conditional Value-at-Risk

(CV aR) as an optimality criterion. The proposed scenario-based portfolio optimization

problems under uncertainty, formulated as a single- or multi-objective mixed integer

program were solved using commercially available software (AMPL/CPLEX) for mixed

integer programming.

The nature of the problem is to find a compromise between the construction of ob-

jectives, constraints and decision variables in a portfolio and the problem complexity

of the implemented mathematical models. There is always a trade off between com-

putational time and the size of an input data, as well as the type of mathematical

programming formulation (linear or mixed integer).

The computational results obtained by modeling the decision criteria (e.g. lexico-

graphically choosing one objective function with the highest priority) in constructed

multi-objective portfolio optimization models, could be used by a decision maker for

evaluation of his/her investment strategy. It is easy to compare obtained optimal (ideal)
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solution values of selected objectives with a real investment situation in a stock market.

The portfolio optimization models with CV aR could be used for supporting on-

line stock market investments, since computational times required for finding optimal

solutions are relatively short, regardless of the size of input data for computations (e.g.

more than 200 stocks with 3000 quotations).

In addition to the multi-objective approach for portfolio optimization of securities

(e.g. stocks) from stock exchanges presented in this dissertation, the selected multi-

objective mixed integer programming models are shown for supporting services in med-

ical care institutions, based on an assignment problem.

Several publications on multi-objective portfolio optimization have been written by

the author of this PhD dissertation (see e.g. [101, 102, 103, 104, 105, 109, 107, 108,

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128]).

Scope

Chapter 1 describes state-of-the-art of portfolio formulations, including formal basis

for implemented multi-criteria methods and numerical tools in portfolio optimization.

Literature review on risk measures used in portfolio optimization is also placed in this

chapter. The proposed methodological framework for the weighting, lexicographic and

reference point approaches of multi-criteria portfolio selection process are presented.

The historical and theoretical background of mathematical programming methods of

multi-criteria optimization is also explained. A list of available computer software pack-

ages typically used to solve mathematical programming, (especially linear and mixed-

integer problems) is added. Moreover, short descriptions and analysis of input data sets

used for computational experiments are presented.

Chapter 2 shows weighting approach to multi-objective portfolio optimization mod-

els. The portfolio models are constructed using different risk measures. Bi-Objective

models with Conditional Value-at-Risk (CV aR), Value-at-Risk (V aR) and covariance

matrix as risk measures are presented in the first part of this chapter. In the second

part, models are formulated as triple-objective portfolio optimization with maximiza-

tion or minimization of number of securities (e.g. stocks) in optimal portfolio as a third

criterion.

Chapter 3 presents lexicographic approach to multi-objective portfolio optimization

models. The first part of this chapter presents portfolio models with two optimization

criteria: risk and return. In the second part, the auxiliary criterion is the number of
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securities (e.g. stocks). The models are solved lexicographically.

Chapter 4 contains reference point approach to multi-objective portfolio optimiza-

tion models. Considered multi-objective portfolio models presented in this chapter are

solved using ideal values for each objective and minimizing a distance from obtained

to ideal value for each objective. Presented models are constructed for bi- and triple-

objective portfolio optimizations.

Chapter 5 shows selected examples of multi-period portfolio models.

Chapter 6 presents some alternative portfolio formulations.

Chapter 7 deals with selected multi-objective mixed integer programming models for

supporting services in medical care institutions, based on assignment problem, together

with some computational examples.

Chapter 8 presents the results of computational experiments with the proposed

optimization models.

Chapter 9 contains final conclusion and comments on future research directions.

In the additional chapter - appendix - some more computational results are pre-

sented.
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Aims and Theses

Goals

The purpose of the study is to update and develop new decision models for a multi-

objective portfolio optimization under uncertainty, using the modern probability man-

agement approach. Probability management shifts the focus away from single numbers

to probability distributions, which is a prerequisite for the effective management of risk,

real portfolios, real options, etc. The purpose of the study is to update the knowledge

and to elaborate new methods in portfolio optimization, modeling uncertainty, time

series analysis, and stochastic optimization in financial engineering and new methods

of operation research, especially in multi-objective optimization approaches.

The portfolio problem objective is to allocate wealth among different assets to max-

imize a set of performance functions.

The portfolio problem is formulated as an optimization problem involving two crite-

ria: the reward of the portfolio that should be maximized, and the risk of the portfolio

that should be minimized. In the presence of two criteria there is not a single opti-

mal solution (portfolio structure), but a set of optimal portfolios, the so-called efficient

portfolios, which trade-off between risk and return.

In the classical portfolio approach, future returns are random variables that can

be controlled by two parameters: the portfolio efficiency, which is measured by the

expected return, while risk is calculated by the standard deviation of returns. As

a result the classical problem is formulated as a quadratic programming task with

continuous variables and some side constraints.

In this dissertation bi-objective portfolio models are constructed with the expected

return as a performance measure and the expected worst-case return as a risk measure.

Weighted-sum, lexicographic and reference point approaches have been implemented

to find solutions for bi- and triple-objective portfolio optimization problems. The first

objective function defines risk of portfolio venture, this objective aims ta minimization

of risk subject to specific constraints. The second objective is to maximize portfolio

expected return. The third objective function is the number of securities in optimal

portfolio to be maximized or minimized (According to a decision maker preferences.).

Computational experiments with the linear and mixed integer programming ap-

proach, modeled after a real data from the Warsaw Stock Exchange were performed.

The portfolio optimization problem is formulated as a multi-objective mixed integer

linear program, which allows commercially available software (e.g. AMPL/CPLEX) to
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be applied for solving medium size, yet practical instances.

A decision maker’s preferences are an important factor to be considered in a port-

folio formulation. If a portfolio’s loss is under Value-at-Risk (V aR) (e.g. a risk of

bancruptcy), then mixed integer programming Value-at-Risk (V aR) portfolio model

with risk probability calculated as 1 − α needs to be considered (see e.g. M2, M5,

M10, M11, M12, M17, M20, M22, M23).

In case when a decision maker is willing to minimize value of worst expected return,

a portfolio model should be formulated with Conditional Value-at-Risk (CV aR) as a

risk measure (see e.g. M1, M4, M7, M8, M9, M16, M19).

When a decision maker is trying to find a solution which will satisfy both sides of

a transaction (for instance an investor and a market), in that case Markowitz portfolio

model with symmetric risk measure should be considered (see e.g. M3, M6, M13,

M14, M15, M18, M21).
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Theses

This Ph.D. dissertation is going to prove the theses presented below.

Thesis I: Real life decision making problems in the portfolio selection can be solved

using formal methods of multi-objective optimization with percentile risk measures such

as Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR) or with covariance ma-

trix (the Markowitz model).

Thesis II: The optimization models formulated by mixed integer programming can

be effectively implemented in the decision support systems for the multi-objective port-

folio optimization, in which variance of return (cost) from the risky ventures is replaced

with Value-at-Risk (V aR) or Conditional Value-at-Risk (CV aR) of return (cost).

Thesis III: The multi-criteria portfolio optimization models with Conditional Value-

at-Risk (CV aR) as a risk measure can be used to support on-line stock market invest-

ments, since the computational times required to find optimal solution is relatively

short, regardless of the size of input data.

Thesis IV: Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR) allow for

the evaluation of worst-case return (cost) and for shaping of the resulting return (cost)

distribution through the selection of optimal portfolio.

Thesis V: A suboptimal portfolio for the integer program with Value-at-Risk (V aR)

as optimality criterion can be found by solving the corresponding linear program for the

portfolio problem with Conditional Value-at-Risk (CV aR) as an optimality criterion.

Thesis VI: The scenario-based portfolio optimization problem under uncertainty,

formulated as a single- or multi-objective mixed integer program can be solved using

commercially available software for mixed integer programming.

Thesis VII: A multi-objective portfolio problem with minimum number of assets

as an auxiliary criterion is a mixed integer program.

Thesis VIII: The proposed models provide the decision maker with a simple tool

for evaluating the relationship between expected and worst-case returns (costs).
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The theses presented in this dissertation will be proved by the literature review, the

portfolio models formulations and the results of computational experiments.
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Chapter 1

Formal Basis and Numerical Tools

1.1 Portfolio Formulations

The development of new techniques in operational research, as well as the progress in

computer and information technologies, has given rise to new approaches for modeling

the problem for portfolio selection. The multi-criteria decision making provides a solid

methodological basis for resolving the inherent multi-criteria nature of the problem.

The multi-dimensional nature of the portfolio selection problem has been emphasized

by many researchers, from the fields of financial engineering and multi-criteria decision

making (see e.g. White, 1990; Spronk and Hallerbach, 1997; Steuer and Na, 2003;

Steuer et al., 2005, 2006a, 2006b, 2007a, 2007b; Xidonas and Psarras, 2008; Zeleny,

1981; Zopounidis et al., 1998; Zopounidis, 1999; Zopounidis and Doumpos, 2002 [151,

137, 140, 141, 142, 143, 144, 145, 155, 162, 164, 165, 166]).

Research activity regarding the more specific level of applying the multi-objective

optimization approaches in the field of portfolio selection is the most representative in

the studies of Mansini et al., 2003b, 2007; Ehrgott et al., 2004; Ehrgott and Wiecek,

2005; Ogryczak, 2000; Zopounidis et al., 1998; Wierzbicki, 1977 [78, 79, 42, 43, 91, 164,

153].

The portfolio management process can be divided into three fundamental phases:

planning, execution and feedback (see e.g. Maginn et al., 2007; Esch et al., 2005; Reilly

and Brown, 2005; Xidonas et al., 2008 [75, 44, 96, 156]). In the planning phase, invest-

ment objectives and policies are formulated, capital market expectations are formed and

strategic asset allocations are established. In the execution phase, the decision maker

constructs the portfolio and integrates the investment strategies with capital market

expectations to select the specific assets for the portfolio. In the feedback phase, the
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decision maker monitors and evaluates the portfolio compared with the plan.

The portfolio problem, which involves computing the proportion of the initial budget

that should be allocated among the available securities, is at the core of the field of

financial management. A fundamental answer to this problem was given by Markowitz

(1952, 1997 [80, 81]) who proposed the mean-variance model which laid the basis of

modern portfolio theory. In Markowitz’s approach the problem is formulated as an

optimization problem involving two criteria: the reward of portfolio, which is measured

by the mean or expected value of return that should be maximized, and the risk of the

portfolio, which is measured by the variance of return that should be minimized. In

the presence of two criteria there is not a single optimal solution (portfolio structure),

but a set of optimal portfolios, the so-called efficient portfolios, which trade-off between

risk and return. Since the mean-variance theory of Markowitz, an enormous amount of

papers have been published extending or modifying the basic model in three directions.

The first path goes to simplification of the type and the amount of input data (see e.g.

Bana and Soares, 2004; Benati and Rizzi, 2009; Bertsimas and Pachamanova, 2008;

Brennan, 1975; Duda et al., 2011; Feinstein and Thapa, 1993; Zopounidis et al., 1998

[11, 17, 19, 25, 40, 45, 164]). The second direction concentrates on the introduction

of an alternative measure of risk (e.g. Angelelli et al., 2007; Gaivoronski and Pflug,

2005; Konno et al., 1993; Lin, 2009; Ma and Wong, 2010; Michalowski and Ogryczak,

2001; Natarajan et al., 2009; [7, 51, 66, 71, 74, 87, 88]). Finally, the third involves the

incorporation of the additional criteria and/or constraints (see e.g. Anagnostopoulos

and Mamanis, 2010; Li and Xu, 2009; Martel et al., 1988; Bouri et al., 2002; Gaivoronski

et al., 2005, Hamacher et al., 2010; Perez et al., 2007; Steuer et al., 2005; Xidonas et

al., 2010 [6, 70, 83, 22, 52, 58, 93, 141, 157]).

The overall process of selecting a portfolio is divided into two stages (Markowitz,

1952 [80]). The first stage starts with observation, experience and ends with beliefs

about the future performances of available securities. The second stage starts with

relevant beliefs about future performances and ends with the choice of portfolio. One

type of rule concerning choice of portfolio is that the investor should maximize the

capitalized value of future returns. A decision maker places all his funds in the security

with the greatest discounted value. Investor diversifies his founds among all those

securities which give maximum expected return. If two or more securities have the

same value, then any of these or any combination of these is as good as any other.

However, the portfolio with maximum expected return is not necessarily the one with

minimum risk. The law of large numbers (LLN) will insure that the actual yield of
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the portfolio will be almost the same as the expected yield. The size of input portfolio

for computations is also important. Considered number of securities (stocks) taken as

an input data for computation is often at least ten or more (see e.g. Guerard, 2010;

Li and Xu, 2009; Mavralexakis et al., 2011; Salo et al., 2011 [55, 70, 76, 99]). The

selection of stocks to an input data could be done by many ways. For example by

taking all securities quoted each day, during the whole historical period or choosing

some of them, for instance only the stocks from banking sector or it could be defined

by a decision maker.

There is a rate at which the investor can gain expected return by taking on risk

measure, or reducing risk by giving up expected return (Ogryczak, 2000, [91]). In the

classical Markowitz model future returns are random variables that can be controlled

by the two parameters: a portfolio’s efficiency calculated by the expectation, and a risk,

which is measured with variance. The classical problem is formulated as a quadratic

program with continuous variables and some side constraints. Bai et al. (2009a, 2009b

[9, 10]) have developed a new bootstrap-corrected estimator of the optimal return for

the Markowitz mean-variance optimization. Markowitz and van Dijk (2003 [82]) find

that under certain conditions, the single-period mean-variance model provides a good

approximation to multi-period expected utility maximization.

Although the original Markowitz model forms a quadratic programming problem,

following Sharpe (1971 [133]), many attempts have been made to linearize the portfolio

optimization procedure (for instance Speranza, 1993 [136]). The linear program solv-

ability is very important for applications to real-life financial and other decisions where

the constructed portfolios have to meet numerous side constraints. The examples of

them are minimum transaction lots, transaction costs or mutual funds characteristics

etc. The introduction of these features leads to mixed integer programming problems.

For some basic investment decision-making approaches, the decision maker may

be restricted to choosing only one of a discrete number of alternatives. For other

scenarios, a diversified portfolio comprised of a convex combination of two or more

alternatives may be feasible and will often better balance risk and return. Sharpe (1971,

1999 [133, 134]) stated that ”if the essence of the portfolio analysis problem could be

adequately captured in a form suitable for linear programming methods, the prospect for

application would be greatly enhanced”. Linear programming efforts a decision maker

the opportunity to determine an optimal balance between risk and return for modeling

portfolio optimization problems with diversification among alternatives.

There is a vast literature on portfolio selection devoted to the balancing of risk and
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return in financial markets. The most celebrated of these (as it was previously written)

is the approach of Markowitz (1952, 1997 [80, 81]) where a quadratic mean-variance

model with risk measured by the covariance matrix of returns was developed. Konno

and Yamazaki (1991 [65]) noted that the derivation of the covariance matrix can be

cumbersome, attempting to solve a quadratic model has computational limitations in

practice, and the optimal solution may consist of purchasing a large number of securities.

They suggest employing linear objectives to alleviate these computational limitations.

In spite of the fact that Sharpe (1963, 1999 [131, 134]) developed a methodology for

practical solution of the quadratic objective, many approaches have been taken to

linearize the model. Sharpe (1967, 1971, 1999 [132, 133, 134]) and Stone (1973 [146])

both showed how the quadratic model could be transformed to an equivalent model with

a separable quadratic function making it much easier to solve with linear approximation

approaches. Leung and Wong (2008 [69]) have developed a multivariate Sharpe ratio

statistic to test the hypothesis of the equality of multiple Sharpe ratios.

Biglova et al. (2004 [20]) identified several other criteria for estimating portfolio

theory risk that can be employed in LP models instead of the covariance risk mea-

sure of Markowitz (1952, 1997 [80, 81]). Among these include Gini’s mean absolute

difference as incorporated by Yitzhaki (1982 [158]) resulting in a LP for constructing

efficient portfolios. In their linear optimization model, Konno (1990 [64]) and Konno

and Yamazaki (1991 [65]) employed absolute deviation rather than covariance to mea-

sure the risk. They solved a problem with 224 stocks over 60 months on a real-time

basis and found results similar to that of the mean-variance model but requiring much

less computational effort. Speranza (1993 [136]) generalized this approach using a risk

function that is a linear combination of two semi-absolute deviations of return from the

mean.

Ogryczak (2000 [91]) formulated and solved a multi-objective LP consisting of one

objective for each time period and showed the mean-variance approach of Markowitz

(1952, 1997 [80, 81]), the absolute deviation approach of Konno and Yamazaki (1991

[65]), and the mini-max approach of Young (1998 [160]) to be special cases.

Young (1998 [160]) formulated an LP portfolio model for maximizing the minimum

return to select a diversified portfolio based on historical returns data. He referred to

the LP as a mini-max model because of its greater familiarity and this convention will

be followed. The performance of the model was compared to other similar linear and

nonlinear models and statistical analysis and simulation were employed to find that the

mini-max approach outperformed the mean-variance approach with respect to mean
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square estimation error under the widely used log-normal distribution. He showed the

mini-max modeling approach to be compatible with expected utility maximization and

explored the incorporation of fixed transaction charges.

Cai et al. (2000 [29]) considered an objective of minimizing the expected absolute

deviation of the future returns from their mean for several stocks and found that the

problem could be solved analytically rather than solving a LP model. Similarly, Teo

and Yang (2001 [147]) minimized the average of maximum individual risk over a number

of time periods and the resulting optimization model was found to be solvable as a bi-

objective piecewise LP problem. Benati (2003 [15]) replaced the covariance objective

of Markowitz (1952, 1997 [80, 81]) with the worst conditional expectation resulting in

a LP and developed an efficient algorithm for practical solutions to real-world sized

problems. Ding (2006 [38]) considered LP models for maximizing the minimum returns

but without the constraint for a minimum required average return for the portfolio as in

Young (1998 [160]). For these simpler LP models he was able to develop optimal control

policies for four cases of assumptions regarding evaluations (forecasts) for the potential

returns. Gulpinar and Rustem (2007 [57]) proposed multiple alternative return and

risk scenarios and developed a min-max algorithm to determine an optimal worst-case

investment strategy.

Rockafellar and Uryasev (2000 [97]), Krokhmal et al. (2002 [67]), and Mansini et

al. (2007 [79]) all focused upon minimizing Conditional Value-at-Risk (CV aR) and de-

veloped LP models, properties, and solution approaches for this setting. Schrage (2001

[129]) devoted a chapter to portfolio optimization featuring a LP model to maximize

the minimum return and another to minimize expected downside risk. His wide-ranging

treatment of this topic also included approximations for the covariance matrix, inclu-

sion of transaction costs, and inclusion of taxes for the Markowitz (1952, 1997 [80, 81])

model as well as the Value-at-Risk (V aR) model and several deterministic equivalents

of other stochastic optimization models. Alexander and Baptista (2002, 2004 [1, 2])

incorporated V aR and CV aR as constraints in the Markowitz (1952, 1997 [80, 81])

model and found the CV aR approach dominant for managing risk. Benati and Rizzi

(2007 [16]) formulated an integer linear programming model with V aR replacing the

covariance for the objective and developed properties for which polynomial time al-

gorithms exist. Mansini et al. (2003a, b [77, 78]) provided a systematic overview,

discussion of properties, and a computational comparison for LP solvable models for

portfolio selection.

Kahneman and Tversky (1979 [62]) who have thoroughly examined under-weighting
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and over-weighting of probabilities as key issues, which may make insurance against

losses attractive. These approaches for instance modeling began with Leland (1980

[68]) and Brennan and Solanki (1981 [26]) who examine maximizing expected utility

subject to a budget constraint. But investor’s preferences and probability belief may

be difficult to ascertain and analyze thus Aliprantis et al. (2000 [3]) introduced a LP

approach to minimize the cost of a portfolio subject to a minimal payoff. Katsikis

(2007 [63]) further refined computational approaches for this model. Aliprantis et al.

(2002 [4]) extended the LP model by taking advantage of the situation where portfolio

dominance information is also available.

Gilboa and Schmeidler (1989 [56]) employed a set of multiple prior probability dis-

tribution to model situation where the decision maker has too little information to

discern a single prior distribution and expressed investor preferences as a utility func-

tion over this set. Chateauneuf et al. (2005 [32]) developed theoretical underpinnings

for a number of important applications of the multiple priors. Gajdos et al. (2004

[53]) introduced a partial order on the set of multiple priors based on a reference prior

distribution within the set termed an anchor. They proceeded to show that a decision

maker who is averse to information imprecisions tends to maximize the minimum ex-

pected utility with respect to a subset of the multiple priors. Garlappi et al. (2007 [54])

employed confidence intervals around estimated expected returns to reflect decision

making under multiple prior and modeled ambiguity aversion in terms of minimization

of a function over these priors.

Sawik (2008e [109]) constructed the three stage lexicographic approach and the

corresponding mixed integer programming formulations for the multi-criteria portfolio

optimization problem. The primary objective is to maximize expected portfolio return,

then the minimization of risk probability of portfolio loss versus the maximization of

amount of capital to be invested in portfolio is considered and finally, the minimization

of number of stocks in optimal portfolio is achieved. Some additional examples of

the portfolio multi-criteria mixed integer programming formulations with use the of

V aR and CV aR can be found in Sawik (2006a, 2006b, 2007a, 2007b, 2008a, 2008c,

2008d, 2009a, 2009b, 2009c, 2009d, 2009e, 2009f, 2009g, 2009h, 2010a, 2010b, 2010c,

2010f, 2011a, 2011b, 2012a, 2012b, 2012c [101, 102, 103, 104, 105, 107, 108, 110, 111,

112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128])(Presented in

these publications multi-criteria portfolio optimization models are parts of this PhD

dissertation.).

Polak et al. (2010 [94]) constructed mini-max portfolio model with linear program-
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ming approach. Employed risk measured as the worst-case return and a portfolio from

maximizing returns subject to a risk threshold. They proceeded to show parametric

analysis of the risk threshold connected their model to expected value along a contin-

uum, revealing an efficient frontier segmenting investors by risk preferences.

Chen and Kwon (2010 [33]) developed a robust portfolio selection model for tracking

a market index using a subset of its assets. The model is a binary program that

seeks to maximize similarity between selected assets and the assets of the target index.

Presented optimization model allows uncertainty in the objective function by using

a computationally tractable robust framework that can control the conservativeness of

the solution. This protects against worst-case realizations of potential estimation errors

and other deviations.

Chen et al. (2011 [35]) developed tight bounds on the expected values of several

risk measures. The basic settings was to find a portfolio that maximizes (respectively,

minimizes) the expected utility (respectively, disutility) values in the midst of infinitely

many possible ambiguous distributions of the investment returns fitting the given mean

and variance estimation.

1.1.1 Definition of Multi-Objective Portfolio Optimization

A multi-objective optimization problem is formulated as follows:

Optimize (Maximize or Minimize) F (x) = [f1(x), ..., fk(x)]

Subject to x ∈ X

where x = (x1, ..., xn) is the vector of decision variables and X is the set of feasible

solutions. The objective function vector F (x) which contains the values of k objectives

maps the feasible set X into the set F (the feasible region in the objective space) which

represents all possible values of the objective functions. The objective function may all

be maximized, minimized or be in a mixed form. The usual process in multi-objective

optimization is to find all non-dominated or Pareto optimal solutions of the problem, for

instance, every solution which we cannot improve with one objective function without

deteriorating another.
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1.2 Definitions of Percentile Measures of Risk

Let α ∈ (0, 1) be the confidence level.

The percentile measures of risk, V aR and CV aR can be defined as below:

• Value-at-Risk (V aR) at a 100α% confidence level is the targeted return of the

portfolio such that for 100α% of outcomes, the return will not be lower than

V aR. In other words, V aR is a decision variable based on the α-percentile of

return, i.e., in 100(1 − α)% of outcomes, the return may not attain V aR.

• Conditional Value-at-Risk (CV aR) at a 100α% confidence level is the expected

return of the portfolio in the worst 100(1 − α)% of the cases. Allowing 100(1 −

α)% of the outcomes not exceed V aR, and the mean value of these outcomes is

represented by CV aR.

Figure 1.1: Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR)

Figure 1.1 illustrates Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR)

for a given portfolio and the confidence level α.

Value-at-Risk (V aR) represents the minimum return (maximal loss accepted by a

decision maker; for instance V aR = −1 – minus one percent) associated with a specified

confidence level of outcomes (i.e. the likelihood that a given portfolio’s return will not

be less than the amount defined as V aR).
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However, V aR does not account for properties of the return distribution beyond the

confidence level and hence does not explain the magnitude of the return when the V aR

limit is exceeded.

On the other hand, CV aR (Conditional Value-at-Risk) focuses on the tail of the

return distribution, that is, on outcomes with the lowest return.

Since V aR and CV aR measure different parts of the return distribution, V aR may

be better for optimizing portfolios when good models for tails are not available, other-

wise CV aR may be preferred, e.g. (Rockafellar and Uryasev, 2000, 2002; Sarykalin et

al., 2008; Uryasev, 2000 [97, 98, 100, 149]).

When using CV aR to maximize worst-case return (minimizing maximal accepted

portfolio loss), CV aR is always less than V aR. On the other hand, V aR is a better

choice to measure the risk of critical portfolio returns.

1.3 Percentile Measures of Risk in the Literature

Risk measures in portfolio optimization can be divided into two main categories

Natarajan et al., 2009 [88]: moment based and quantile based. The roots of moment-

based risk measures can be traced to classical economic utility theory, whereas quantile-

based risk measures have arisen as a consequence of advances in the theory of stochastic

dominance. Commonly used risk measures are mean-standard deviation, or equivalently

mean-variance, Value-at-Risk (V aR), and finally Conditional Value-at-Risk (CV aR).

In the mean-variance context of Markowitz (1952, 1997 [80, 81]), the variance or

standard deviation is adopted to measure the risk exposure of financial portfolios (see

e.g. Bai et al., 2009a, 2009b; Leung and Wong, 2008; Sniedovich, 2007 [9, 10, 69, 135]).

However, these measures fail to capture the downside risk. To circumvent this problem,

many academics have proposed V aR (Holton, 2003; Jourion, 2006 [59, 61]) and the

CV aR (Alexander and Baptista, 2002, 2004; Sarykalin et al., 2008; Zhu and Fukushima,

2009 [1, 2, 100, 163]).

Generally risk management has received much attention from practitioners and reg-

ulators as well as academics in the last few years, with V aR emerging as one of the most

popular tools (see Wong, 2011 [154]). Jourion (2006 [61]), Linsmeier and Pearson (2000

[73]), Alexander and Baptista (2002, 2004 [1, 2]), Hull (2003 [60]), and Chance (2004

[31]) note that V aR is widely used as a risk management tool by corporate treasurers,

dealers, fund managers, financial institutions, and regulators (see Basel Committee on

Banking Supervision 1996, 2003 [13, 14]).
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In contrast, some researchers have extensively criticized the use of V aR as a measure

of risk. For instance Artzner et al. (1999 [8]) pointed out that V aR is not a coherent

measure of risk since it fails to hold the sub-additivity property. Moreover, V aR does

not explain the magnitude of the loss when the V aR limit is exceeded. Furthermore, it

is difficult to optimize when using calculated scenarios, and this leads to the use of an

alternative measure, which is CV aR. Basak and Shapiro (2001 [12]) show that when an

agent faces a V aR constraint at the initial date in a continuous-time model, the agent

may select a larger exposure to risky securities than he or she would have chosen in its

absence. Yiu (2004 [159]) shows that imposing a dynamic constraint in a continuous-

time model leads an agent to select a smaller exposure to risky stocks than it would

have been chosen in case of its absence. These reasons incline previously mentioned

researchers to propose the use of CV aR rather than V aR. Pflug (2000 [95]) proved that

CV aR is a consistent measure of risk for its sub-additivity and convexity properties.

Uryasev (2000 [149]) presented a description of both: (a) an approach for minimizing

CV aR and (b) optimization problems with CV aR constraints. Alexander and Baptista

(2004 [2]) noticed that the presence of a V aR constraint will cause a slightly risk-averse

agent to select a portfolio that has a smaller standard deviation than the one that

would have been selected in its absence. However, there are also conditions under

which the constraint causes a highly risk-averse agent to select a portfolio that has a

larger standard deviation. CV aR constraint is tighter than a V aR constraint when

the CV aR and V aR bounds coincide, these portfolio choice results are also true and

to a greater extent if a CV aR constraint is imposed. Therefore, a CV aR constraint

is more effective than a V aR constraint as a tool to control slightly risk-averse agents,

but has a more perverse effect on highly risk-averse agents. However, this perverse

result weakens or even disappears when a risk-free security is available, or the CV aR

bound is larger than the V aR bound. Moreover, if the CV aR bound is set at a level so

that CV aR constraint has the same perverse effect on highly risk-averse agents as the

V aR constraints. Then the CV aR constraint will result in slightly risk-averse agents

selecting portfolios with small standard deviations than those when a V aR constraint is

imposed. If the CV aR bound is set at an even larger level so that the CV aR constraint

decreases the standard deviations of the optimal portfolios of slightly risk-averse agents

to select portfolios with smaller standard deviations than those when a V aR constraint

is imposed. Hence, when the CV aR bound is set between these two levels, a CV aR

constraint dominates a V aR constraint as a risk management tool.

The proposed multi-criteria portfolio approach allows aforementioned two percentile
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measures of risk in financial engineering: V aR and CV aR to be applied for managing

the risk of portfolio loss. The proposed mixed integer and linear programming models

provide the decision maker with a simple tool for evaluating the relationship between

expected and worst-case loss of portfolio return.

A risk measure can be linear program computable in the case of discrete random

variables, i.e., in the case of returns defined by their realizations under specified scenar-

ios.

V aR and CV aR have been widely used in financial engineering in the field of port-

folio management (e.g. Sarykalin et al., 2008 [100]). CV aR is used in conjunction

with V aR and is applied for estimating the risk with non-symmetric cost distributions.

Uryasev (2000 [149]) and Rockafellar and Uryasev (2000, 2002 [97, 98]) introduced a

new approach to select a portfolio with the reduced risk of high losses. The portfolio is

optimized by calculating V aR and minimizing CV aR simultaneously.

Polak et al. (2010 [94]) noticed that objectives such as minimizing variation or

the popular V aR objective may be quite effective especially during periods of slow or

moderate economic changes.

1.4 Mathematical Programming

The Mathematical programming methods of operations research for multi-criteria

optimization are presented in this PhD dissertation. Not only for portfolio optimization

of securities from stock exchanges, but also selected models for supporting services in

medical care institutions, based on assignment problem.

The vast majority of the decision models are mathematical programming models

(see e.g. Filipowicz, 1998; Ogryczak, 1997; Steuer, 1986; Toczýlowski, 2002; Zak, 2005;

[46, 92, 138, 148, 161]).

The term ”programming” was in use by 1940 to describe the planning or schedul-

ing of activities within a large organization. ”Programmers” found that they could

represent the amount or level of each activity as a variable whose value was to be de-

termined. Then they could mathematically describe the restrictions inherent in the

planning or scheduling problem as a set of equations or inequalities involving the vari-

ables. A solution to all of these constraints would be considered an acceptable plan

schedule (Dantzig, 1991; Fourer et al., 1990 [37, 47]).

Experience showed soon that it was hard to model a complex operation simply

by specifying constraints. If there were too few constraints, many inferior solutions
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could satisfy them; if there were too many constraints, desirable solutions were ruled

out, or in the worst case no solutions were possible. The success of programming

ultimately depended on a key insight that provided a way around this difficulty. One

could specify, in addition to the constraints, an objective: a function of the variables,

such a cost or profit, that could be used to decide whether one solution was better than

another. Then it didn’t matter that many different solutions satisfied the constraints -

it was sufficient to find one such solution that minimized or maximized the objective.

The term mathematical programming came to be used to describe the minimization or

maximization of an objective function of many variables, subject to constraints on the

variables (Dantzig, 1991; Fourer et al., 2003 [37, 48]).

In the development and application of mathematical programming, one special case

stands out; that in which all the costs, requirements and other quantities of interest

are terms strictly proportional to the levels of the activities, or sums of such terms. In

mathematical terminology, the objective could be a linear function, and the constraints

are in such case linear equations and inequalities. Such a problem is called a linear

program, and the process of setting up such a problem and solving it is called linear

programming. Linear programming is particularly important because a wide variety of

problems can be modeled as linear programs, and because there are fast and reliable

methods for solving linear programs even with thousands of variables and constraints

(Dantzig, 1991; Fourer and Gay, 2006 [37, 49]).

All useful methods for solving linear programs require a computer. Thus most of

the study of linear programming has taken place since the late 1940’s, when it became

clear that computers would be available for scientific computing. The first successful

computational method for linear programming, the simplex algorithm (Bertsimas and

Tsitsiklis, 1997; Nemhauser and Wolsey, 1999 [18, 89]), was proposed at this time,

and was the subject to increasingly effective implementations over the next decade.

Coincidentally, the development of computers gave rise to a now much more familiar

meaning for the term ”programming” (Bisschop and Meeraus, 1982; Brooke at al., 1988

[21, 27]).

The assumption of linear programming also break down if some variables must take

on whole (integer) number, or integral values. Then the problem is called integer pro-

gramming, and in general becomes much harder. Nevertheless, a combination of faster

computers and more sophisticated methods have large integer programs increasingly

tractable in recent years (Fourer et al., 1990, 2003; Fourer and Gay, 2006; Fourer, 2007

[47, 48, 49, 50]).
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Mathematical programming models presented in this PhD dissertation involve linear

and integer variables, so for finding optimal solution of presented problems mixed integer

programming was used.

1.4.1 Selected Mathematical Programming Methods of Multi-

Objective Portfolio Optimization

Consider the following multi-objective problem (P):

maximize z1 = f1(x)

...

maximize zk = fk(x)

subject to x ∈ X,

where X ⊂ ℜn denotes the non-convex set of feasible solutions defined by a set

of functional constraints, x ≥ 0 and xj integer j ∈ J ⊆ 1, . . . n. It assumed that X

is compact (closed and bounded) and non-empty. The integer variables can either be

binary or take on general integer values. (P) is a multi-objective integer programming

problem if all variables are integer. Otherwise (P) denotes a multi-objective mixed

integer programming problem.

In linear multi-objective integer or mixed-integer problems, the functional con-

straints can be defined as Ax ≤ b, and the objective functions fi(x) = cix, i = 1, . . . , k

where A is a m×n matrix, b is a m-dimensional column vector and ci, i = 1, . . . , k, are

n-dimensional row vectors.

The concept of efficiency of non-dominance in multi-objective (mixed-)integer pro-

gramming is defined as usually for multi-objective mathematical programming (Alves

and Climaco, 2007; Ogryczak, 1997, Steuer, 1997; [5, 92, 139]).

A solution x̄ ∈ X is efficient for the problem (P) if and only if there is no x ∈ X

such that fi(x) ≥ fi(x̄) for all i ∈ 1, . . . , k and fi(x) > fi(x̄) for at least one i.

A solution x̄ ∈ X is weakly − efficient for the problem (P) if and only if there is

no x ∈ X such that fi(x) > fi(x̄) for all i ∈ 1, . . . , k.

Let ℜk be the image of the feasible region X in the objective functions (criteria)

40



space. A point z̄ ∈ Z corresponding to a (weakly) efficient solution x̄ ∈ X is called

(weakly) non − dominated.

Since the feasible region of (P) is non-convex, unsupported non − dominated solu-

tions may exist. A non-dominated point z̄ ∈ Z is called unsupported if it is dominated

by a convex combination (which does not belong to Z) of other non-dominated criteria

points (belonging to Z) (Alves and Climaco, 2007 [5]).

1.4.2 Weighting and Lexicographic Approach

Mathematical programming approach deals with optimization problems of maxi-

mizing or minimizing a function of many variables subject to inequality and equality

constraints and integrality (being, containing, or relating to one or more mathemat-

ical integers or relating to or concerned with mathematical integrals or integration)

restrictions on some or all of the variables (Crescenzi and Kann, 2005; Merris, 2003;

Nemhauser and Wolsey, 1999 [36, 86, 89]). In particular model equations consist of

linear, integer and (representing binary choice) 0-1 variables. Therefore, the optimiza-

tion models presented in this paper are defined as mixed integer or linear programming

problems.

The lexicographic optimization generates efficient solutions that can be found by

sequential optimization with elimination of the dominating functions. The weighted

objective functions also generate various efficient solutions. It provides a complete

parametrization of the efficient set for multi-criteria mixed integer programs.

An efficient solution to the multi-criteria portfolio optimization problem can be

found by applying the weighting and lexicographic approach (Ehrgott, 2000; Sawik,

2007b, 2008e, 2009e, 2009g, 2010b; Steuer, 1986; Wiecek, 2007 [41, 104, 109, 114, 116,

119, 138, 152]).

The nondominated solution set of multi-objective mixed integer, linear or quadratic

program models M (All optimization models presented in chapter 2.) can be partially

determined by the parametrization on λ of the following weighted-sum program.

Model Mλ

Maximization or minimization
∑m

l=1 λιfι

subject to some specific model constraints (As it is formulated in models presented

in chapter 2.), where λ1 > λ2 > ... > λm, λ1 + λ2 + ... + λm = 1.

It is well known, however, that the nondominated solution set of a multi-objective

mixed integer or linear or quadratic program such as Mλ cannot by fully determined

even if the complete parametrization on λ is attempted (e.g., Steuer, 1986 [138]). To
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compute unsupported non-dominated solutions, some upper bounds on the objective

functions should be added to Mλ (e.g., Alves and Climaco, 2007 [5]).

Considering the relative importance of the two or the three objective function (see

optimization models presented in chapter 3) the multi-objective mixed integer or linear

or quadratic program M can be replaced with Mι, where ι ∈ 1, 2 in case of two objective

functions or ι ∈ 1, 2, 3 in case of three objectives, that could be solved subsequently.

Model Mι, ι = 1, 2, 3

Maximization or minimization fι

subject to some specific model equations (As it is formulated in models presented

in chapter 2.) with additional constraints, in which upper or lower bounds are the

optimal solution values of all objectives except the one with highest priority (fl) -

objective actually optimized:

fl = f ∗
ι ; l < ι : ι > 1, where f ∗

ι is the optimal solution value to the mixed integer

or linear or quadratic program Mι, ι = 1, 2 (considering three objective lexicographic

problems).

1.4.3 Reference Point Method

The reference point method (RPM) is a very effective technic for the multi-objective

optimization problems.

The reference point method for LP and MIP programming is based on the Chebyshev

metric (Alves and Climaco, 2007; Bowman, 1976; Skulimowski, 1996; Wiecek, 2007

[5, 23, 130, 152]).

Let us denote by ‖f(x)−f
¯
‖λ the λ-weighted Chebyshev metric, i.e., min1≤l≤q{λl|fl(x)−

f
¯
|}, where λl ≥ 0 ∀l,

∑q
l=1 λl = 1, and f

¯
denotes a reference point of the criteria space.

Considering f(x) > f
¯

for all x ∈ X, it has been proven (Bowman, 1976 [23]) that the

parametrization on λ of minx∈X‖f(x) − f
¯
‖λ generates a non-dominated set.

The program minx∈X‖f(x)− f
¯
‖λ may yield weakly non-dominated solutions, which

can be avoided by considering the augmented weighted Chebyshev program:

Minimize δ + γ
∑q

l=1 fl(x)

subject to λl(fl(x) − f
¯
) ≤ δ, 1 ≤ l ≤ q

x ∈ X
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λ ≥ 0,

where γ is a small positive value. It has been proven (e.g. Steuer, 1986 [138]) that

there always exists γ small enough that enable to reach all the non-dominated set for

the finite-discrete and polyhedral feasible region cases (Alves and Climaco, 2007 [5]).

1.5 Selected Computational Methods for Mixed In-

teger Programming

There are three classical approaches for solving integer (IP) and mixed integer pro-

grams (MIP): branch-and-bound, cutting plane and group theoretic. Although all ap-

proaches are capable of solving integer and mixed integer programs, their degrees of

success vary in software implementation. The cutting plane approach, when used as

a stand-alone solver, has potential to solve IP programs of limited size, but may not

work well in large-scale application. Similarly limited is the group theoretic approach,

which has not been implemented as a stand-alone solver practice. However, the valid

inequality cuts generated by both cutting plane and group theoretic approaches can

be useful when combined with branch-and-bound to yield a powerful branch-and-cut

approach (Chen et al., 2010 [34]).

The branch-and-bound had been the prevailing solution method until the emergence

of the branch-and-cut in early 1990s. Branch-and-cut combined branch-and-bound with

the generated cutting planes into a much more efficient ”hybrid” approach. Similarly,

the group cuts generated from the group theoretical approach have also been incorpo-

rated, but at a lesser degree of integration. As a whole, extracting the strengths of these

two approaches and injecting them into the branch-and-bound may greatly increase the

modern solution power for integer and mixed integer programs (Chen et al., 2010 [34]).

Branch-and-Bound is a general-purpose approach capable of solving pure IP, mixed

IP, and binary IP problems. Theoretical, any pure IP problem with finite bounds

on integer variables can be solved by enumerating all possible combinations of integer

values and determining a combination (solution) that satisfies all constraints and yields

the maximal (minimal) objective value - hence the name of complete enumeration.

Unfortunately, the number of all possible combinations is prohibitively large to be

evaluated even for a small problem. A problem of n integer variables with m values each

has a total of mn possible combinations (feasible and infeasible solutions). Therefore,

complete enumeration is theoretically simple but practically intractable (Chen et al.,
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2010 [34]).

As a better alternative, implicit enumeration applies an intelligent enumeration

scheme that can cover all possible solution by explicitly evaluating only a small number

of solutions while ignoring (or implicitly enumerating) a large number of inferior solu-

tions. One such strategy is called divide and conquer. Basically, this strategy divides

the given problem into a series of easier to solve subproblems that are systematically

generated and solved (or conquered). The solutions of these generated subproblems are

then put together to solve the original problem (Chen et al., 2010 [34]).

1.5.1 Branch-and-Bound

Branch-and-bound can be viewed as a divide-and-conquer approach to solving the IP

problem, in which a branching process for dividing and a bounding process for conquer-

ing are used. Throughout the algorithm, a series of LP subproblems are systematically

generated and solved. Then upper and lower bounds are progressively tightened on the

objective value of the original IP problem (Chen et al., 2010 [34]).

A typical way of represent such a process is via a branch-and-bound (B&B) tree,

which is a specialized enumeration tree for keeping track of how LP subproblems are

generated and solved. The B&B tree by convention drawn upside down with its root

node at the top. The root node that represents the linear programming (LP) relaxation

of the original IP problem is solved. If the LP optimum solution satisfies the integer

requirement, the IP problem is solved. Otherwise, the LP objective value becomes the

initial upper bound on the IP optimal objective value and the root node is partitioned

into two successor nodes (subproblems) by two branches. These branches are valid cuts

in term of simple inequality constraints that have the following properties:

• they cut off the current non-integer LP optimum point and other fractional region,

• the two successor nodes are mutually exclusive and their union contains the same

integer feasible region as that of their predecessor (i.e. no integer points are

eliminated).

The solution of an LP relaxation on a node provides information about whether a

further branching from this node is needed (or whether the node can be pruned1), and

a better lower bound (for maximization problem) on the objective of the original IP

problem (Chen et al., 2010 [34]).

1In some texts about B&B method, the term pruned may be replaced by fathomed, to indicate that

no further exploration beyond that point is necessary.
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There are three cases indicating that a node can be pruned:

1. the subproblem has no feasible LP solution

2. the subproblem has an integer optimum solution

3. the upper bound of the subproblem optimum is less than or equal to the lower

bound of the original problem.

These three cases are, respectively, referred to as pruned by infeasibility, pruned by

optimality, pruned by bound. If a node is pruned by optimality, its optimum solution can

be used to increase the lower bound on the objective value of the original IP problem

(Chen et al., 2010 [34]).

Whenever an integer solution to a subproblem is obtained, it is a candidate optimum

to the original IP problem. In the solution process of B&B, the best integer solution

found so far is continuously updated. Such a solution is called an incumbent solution

(Chen et al., 2010 [34]).

1.5.2 Cutting Plane

In geometry, an equation in two variables is called a plane and an equation in n

variables a hyperplane, speaking strictly. However, both in practice are often referred to

as a plane, regardless of the number of variables. An inequality constraint in n variables

is called a half-space, not a hyper-plane. But an inequality constraint can always be

converted to an equation by adding or subtracting a nonnegative slack variable. The

term cutting plane is often used for an equality or inequality constraint that can cut

off a fractional part of an LP feasible region, without excluding any integer feasible

solution. In the cutting plane approach, one or more such cutting planes are added

to the current LP simplex tableau, which in turn are resolved for a new LP optimum.

This process is repeated until the prescribed integer requirements are satisfied (Chen

et al., 2010 [34]).

The cutting plane approach often takes a large number of cuts to reach an integer

solution even for a small or moderate sized IP problem, although it can be shown that

the fractional cutting plane method is ensured to converge to an IP optimum after a

finite number of cuts (Chen et al., 2010 [34]).
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1.5.3 Branch-and-Cut

Since the development of the branch-and-bound (B&B), cutting plane, and group

theoretical approaches in the 1960s, progress on methods for solving large-scale IP

and MIP problems was very limited for two decades. Then in the mid-1980s, a novel

solution approach known as branch-and-cut (B&C) was introduced, which marked a

breakthrough milestone in the power of MIP solution algorithms. This approach and its

variations, coupled with the advances in modeling techniques, preprocessing techniques,

LP software, and computer hardware, make the solution of large-scale MIP problems

possible. As of today, the solution power has leapt from solving problems with up to

one hundred integer variables in the early 1980s to solving problems with thousands of

integer variables, and even in many instances with millions of 0-1 variables (Chen et

al., 2010 [34]).

1.5.4 Branch-and-Price

Branch-and-bound is first generalized to include generation of columns by solving

pricing problems, hence the name branch-and-price, and yet another generalization

includes generation of columns and rows, hence the name branch-and-price-and-cut.

Basically, all these generalization solve a sequence of LP relaxations of a given IP.

Branch-and-cut tightens the LP relaxation (or polyhedra) by adding cuts or constraints

(rows). Branch-and-price tightens the LP relaxations by generating a subset of prof-

itable columns associated with variables to join the current basis. These columns are

generated iteratively by solving subproblems or pricing problems (Chen et al., 2010;

Toczýlowski, 2002 [34, 148]).

1.6 Commercial Software Solutions and Solvers for

Mathematical Programming

After a linear program (LP) or mixed integer program (MIP) is formulated, some

computer software package (e.g. the CPLEX solver) is typically used to solve the

problem. CPLEX is from ILOG, and IBM company. Hence, an input mechanism

is needed to translate the mathematical/algebraic description of the problem into a

format that the software recognizes. Such input mechanisms are often offered to as

modeling tools. Fourer et al. (1990, 2003, 2006, 2007 [47, 48, 49, 50]) call this the

problem of translation from ”modeler’s form” to ”algorithm’s form”, the latter referring
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to the simplex algorithm and the simplex-based branch-and-bound and branch-and-cut

methods, found in commercial solvers. Common modeling tools for LP or MIP problems

were developed chronologically, and they fall into three categories:

1. MPS format files,

2. LP-format files,

3. Algebraic modeling languages.

1.6.1 AMPL Programming Language

Practical mathematical programming is seldom as simple as running some algorith-

mic method on a computer and printing the optimal solution. The full sequence of

events is more like this:

• Formulate the model - the abstract system of variables, objectives, and constraints

that represent the general form of the problem to be solved.

• Collect data that define one or more specific problem instances.

• Generate a specific objective function and constraint equations from the model

and data.

• Solve the problem - run a program to apply an algorithm that finds optimal values

of the variables.

• Analyze the results.

• Refine the model and data as necessary, and repeat.

AMPL belongs to filed of algebraic modeling languages for mathematical program-

ming. This language is notable for the similarity of its arithmetic expressions to custom-

ary algebraic notations, and for the generality of its set and subscripting expressions.

AMPL language extends algebraic notation to express common mathematical program-

ming structures.

The computational experiments for this PhD dissertation have been performed

mainly using AMPL programming language (Fourer et al., 1990, 2003 [47, 48]) and

the CPLEX v.11 solvers (with the default settings) on a laptop with Intel Core 2 Duo

T9300 processor running at 2.5GHz and with 4GB RAM.
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1.6.2 LINGO Programming Language

LINGO is a Fortran-based optimization tool designed by LINDO Systems, Inc., first

offered in 1988. A unique features of LINGO is that all solvers (linear, integer, nonlinear,

quadratic, etc.) are integrated and directly linked to its modeling environment. When

a model is run, LINGO will automatically pass the problem to the appropriate solver.

Hence, LINGO is capable of solving a wide variety of optimization problems, including

linear programming, integer programming (binary, pure, and mixed), and nonlinear

programming problems (LINDO Sys., 2004 [72]).

1.6.3 MPL Programming Language

MPL [85], which stands for Mathematical Programming Language, is a product of

Maximal Software, Inc. MPL is another algebraic modeling language, such as AMPL

and LINGO. Some notable features of building optimization models in MPL are:

• MPL can dynamically store models of any size like LINGO; the only limitation is

how much memory is available on the machine

• Variables and constraints can be written on both sides of a constraint - the so-

called free format input of constraints, which means no conversion to standard

form is required of the modeler

• Expansion of similarly structured constraints; a single line enables to express

multiple constraints of identical form, such as monthly inventory balance someone

want to repeated for each month in a planning horizon; for instance.

• Extensive flexibility when working with subsets of indexes, functions of indexes,

and multidimensional index sets.

1.6.4 MATLAB Optimization Tools for mathematical program-

ming

Optimization Toolbox in MATLAB provides widely used algorithms for standard

and large-scale optimization. These algorithms solve constrained and unconstrained

continuous problems. The toolbox includes functions for linear programming, quadratic

programming, nonlinear optimization, nonlinear least squares, systems of nonlinear

equations, and multi objective optimization. This toolbox can be used to find optimal
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solutions, perform tradeoff analysis, balance multiple design alternatives, and incorpo-

rate optimization methods into algorithms and models. Optimization Toolbox includes

the most widely used methods for performing minimization and maximization. The

toolbox implements both standard and large-scale algorithms, enabling you to solve

problems by exploiting their sparsity or structure [84].

Optimization Toolbox includes three algorithms used to solve linear programming

problems: interior point, active-set, and simplex. The interior point algorithm is based

on a primal-dual predictor-corrector algorithm used for solving linear programming

problems. Interior point is especially useful for large-scale problems that have structure

or can be defined using sparse matrices. The active-set algorithm minimizes the objec-

tive at each iteration over the active set (a subset of the constraints that are locally

active) until it reaches a solution. The simplex algorithm is a systematic procedure

for generating and testing candidate vertex solutions to a linear program. The simplex

algorithm is the most widely used algorithm for linear programming [84].

This MATLAB toolbox implements two algorithms for solving quadratic program-

ming problems: large-scale and medium-scale. The large-scale algorithm switches be-

tween the trust-region reflective algorithm and the preconditioned conjugate gradient

algorithm. The medium-scale algorithm uses the active-set algorithm. The trust-region

reflective algorithm is used for bound constrained problems. The preconditioned con-

jugate gradient algorithm is used for problems subject to equality constraints. The

active-set algorithm is used for problems that have inequality constraints or bounds

and equalities [84].

Multi-objective optimization is concerned with the minimization of multiple objec-

tive functions that are subject to a set of constraints. MATLAB Optimization Tools

provides functions for solving two formulations of multi-objective optimization prob-

lems: goal attainment and mini-max. The goal attainment problem involves reducing

the value of a linear or nonlinear vector function to attain the goal values given in a goal

vector. The relative importance of the goals is indicated using a weight vector. The goal

attainment problem may also be subject to linear and nonlinear constraints. The mini-

max problem involves minimizing the worst-case value of a set of multivariate functions,

possibly subject to linear and nonlinear constraints. Optimization Toolbox transforms

both types of multi-objective problems into standard constrained optimization problems

and then solves them using an active-set approach. Global Optimization Toolbox pro-

vides a multi-objective genetic algorithm solver for calculating multi-objective Pareto

fronts [84].
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1.7 The Input Data Sets

The input data used for computational experiments consist of four sets of 500, 1000,

2000 and 3000 historical daily quotations from the Warsaw Stock Exchange.

First data set includes 240 securities (i.e. stocks) with daily percentage price returns

of each stock for period of 500 days from January 31st, 2007 to February 2nd 2009.

Second input data set for numerical experiments consist of 120 stocks with 1000

days from March 4th, 2005 to February 2nd, 2009.

Third set of historical quotations includes 127 securities with 2000 historical returns

from time period since February 11th, 1999 till February 2nd, 2007.

Finally, fourth data set incorporates percentage price returns of 46 securities quoted

each day in the Warsaw Stock Exchange during March 10th, 1997 to February 2nd,

2009, altogether 3000 days.

Figure 1.2: Historical daily returns of stocks from 500, 1000, 2000, 3000 data sets

Figure 1.2 illustrates historical daily returns of stocks from input data sets consist

of 500, 1000, 2000, and 3000 historical daily quotations of 240, 120, 127 and 46 stocks.

Histograms presented below in figures from 1.3 to 1.15 show the statistical analysis

of input data sets. For each histogram a selected data set has been divided into 250

days. For each period of 250 days mean value, standard deviation and Chi-square test

ratio has been calculated. Normal distribution is presented by a theoretical line and
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confidence level is illustrated by the points above and under the line.

Figure 1.3: Histograms of input data set of 500 days with daily returns of 240 stocks.

Periods of time form day 1 to 250 and from day 251 to 500

Figure 1.3 presents two histograms of input data with 500 days and 240 stock from

January 31st, 2007 to February 2nd 2009 separate into two parts of 250 days in each

histogram.

Figure 1.4 shows histograms for time period of 1000 days data set from first to 250th

day and from 251st to 500th day.

Figure 1.5 illustrates two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 120 stocks with

historic quotations from 501st and 751st day.

Figure 1.6 presents two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 127 stocks with

historic quotations from first and 251st day.

Figure 1.7 shows two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 127 stocks with

historic quotations from 501st and 751st day.

Figure 1.8 illustrates two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 127 stocks with

historic quotations from 1001st and 1251st day.
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Figure 1.4: Histograms of input data set of 1000 days with daily returns of 120 stocks.

Periods of time form day 1 to 250 and from day 251 to 500

Figure 1.5: Histograms of input data set of 1000 days with daily returns of 120 stocks.

Periods of time form day 501 to 750 and from day 751 to 1000
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Figure 1.6: Histograms of input data set of 2000 days with daily returns of 127 stocks.

Periods of time form day 1 to 250 and from day 251 to 500

Figure 1.7: Histograms of input data set of 2000 days with daily returns of 127 stocks.

Periods of time form day 501 to 750 and from day 751 to 1000
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Figure 1.8: Histograms of input data set of 2000 days with daily returns of 127 stocks.

Periods of time form day 1001 to 1250 and from day 1251 to 1500

Figure 1.9: Histograms of input data set of 2000 days with daily returns of 127 stocks.

Periods of time form day 1501 to 1750 and from day 1751 to 2000
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Figure 1.9 presents two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 127 stocks with

historic quotations from 1501st and 1751st day.

Figure 1.10: Histograms of input data set of 3000 days with daily returns of 46 stocks.

Periods of time form day 1 to 250 and from day 251 to 500

Figure 1.10 shows two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 46 stocks with historic

quotations from first and 251st day.

Figure 1.11 illustrates two histogram for 250 days, each - with calculated mean

values, standard deviations and Chi-squared ratios for data set consist of 46 stocks

with historic quotations from 501st and 751st day.

Figure 1.12 presents two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 46 stocks with historic

quotations from 1001st and 1251st day.

Figure 1.13 shows two histogram for 250 days, each - with calculated mean values,

standard deviations and Chi-squared ratios for data set consist of 46 stocks with historic

quotations from 1501st and 1751st day.

Figure 1.14 illustrates two histogram for 250 days, each - with calculated mean

values, standard deviations and Chi-squared ratios for data set consist of 46 stocks
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Figure 1.11: Histograms of input data set of 3000 days with daily returns of 46 stocks.

Periods of time form day 501 to 750 and from day 751 to 1000

Figure 1.12: Histograms of input data set of 3000 days with daily returns of 46 stocks.

Periods of time form day 1001 to 1250 and from day 1251 to 1500
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Figure 1.13: Histograms of input data set of 3000 days with daily returns of 46 stocks.

Periods of time form day 1501 to 1750 and from day 1751 to 2000

Figure 1.14: Histograms of input data set of 3000 days with daily returns of 46 stocks.

Periods of time form day 2001 to 2250 and from day 2251 to 2500
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with historic quotations from 2001st and 2251st day.

Figure 1.15: Histograms of input data set of 3000 days with daily returns of 46 stocks.

Periods of time form day 2501 to 2750 and from day 2751 to 3000

Figure 1.15 presents two histogram for 250 days, each - with calculated mean val-

ues, standard deviations and Chi-squared ratios for data set consist of 46 stocks with

historic quotations from 2501st and 2751st day.
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Chapter 2

Weighting Approach to

Multi-Objective Portfolio

Optimization

The non-dominated solution set of multi-objective mixed integer, linear or quadratic

program models M (All optimization models presented in this chapter.) can be partially

determined by the parametrization on λ of the following weighted-sum program.

Model Mλ

Maximization or minimization
∑m

l=1 λιfι

subject to some specific model constraints (As it is formulated in models presented

in this chapter.), where λ1 > λ2 > ... > λm, λ1 + λ2 + ... + λm = 1.

It is well known, however, that the nondominated solution set of a multi-objective

mixed integer or linear or quadratic program such as Mλ cannot by fully determined

even if the complete parametrization on λ is attempted (e.g., Steuer, 1986 [138]). To

compute unsupported non-dominated solutions, some upper bounds on the objective

functions should be added to Mλ (e.g., Alves and Climaco, 2007 [5]).

2.1 Bi-Objective Portfolio Models with Objectives

of Portfolio Return and Risk

This section includes bi-objective portfolio models. Weighting approach for objective

functions has been implemented. The first objective defines risk of portfolio venture, this

objective minimizes risk subject to specific constraints. The second objective function
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maximizes portfolio expected return. In the first subsection of this chapter presented

bi-objective portfolio model is constructed with implementation of conditional value-

at-risk as a main risk measure. The portfolio model presented in the second subsection

has value-at-risk as a basic measure of risk. Third subsection of this chapter includes

modified classical Markowitz portfolio bi-objective model, which is added for results

comparison between presented portfolio approaches.

Table 2.1: Notations for mathematical models M1, M2, M3, M4, M5, M6

Indices

i = historical time period, i ∈ I = {1, . . . , m} (i.e. day, week, month, etc.)

j = security, j ∈ J = {1, . . . , n}

Input parameters

α = input parameter in selected problems - confidence level. The mathe-

matical models, where α is the input parameter are M1, M4.

β1, β2, β3, λ = weights in the objective functions

cov(ri, rj) = matrix of covariance - the input parameter in the mathematical models:

M3, M6.

pi = probability assigned to the occurrence of past realization i

rij = observed return of jth stock in ith time period

rMin = minimum return observed in the market

V aR = return Value-at-Risk. The mathematical models, where V aR is the

input parameter are M2, M5.

2.1.1 Conditional Value-at-Risk Bi-Criteria Portfolio Model

The proposed model M1 provides a decision maker with a tool for evaluating the

relationship between expected and worst-case returns. The portfolio problem presented

(Sawik, 2010f [123]) below provides flexibility in how a decision maker wants to balance

his/hers risk tolerance with the expected portfolio returns. The bi-criteria weighted-

sum portfolio problem consists of two objective functions (2.1). The first objective is to

maximize Conditional Value-at-Risk (CV aR) and the second objective is to maximize

portfolio expected return.
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Chapter 3

Lexicographic Approach to

Multi-Objective Portfolio

Optimization

This chapter includes bi- and triple-objective portfolio models. Lexicographic ap-

proach for objective functions has been implemented. The first objective defines risk of

portfolio venture, this objective minimizes risk subject to specific constraints, including

constraints with following objectives placed as upper and lower bounds values. The

second objective function, which is maximized has been defined as portfolio expected

return. The third objective function is the number of securities in optimal portfolio.

In the first subsection of this chapter presented multi-objective portfolio models are

constructed with implementation of conditional value-at-risk as a main risk measure.

The portfolio models presented in the second subsection have value-at-risk as a ba-

sic measure of risk. The third subsection of this chapter includes modified classical

Markowitz portfolio multi-objective models, which are added for results comparison

between presented portfolio approaches.

Then one criterion is maximized or minimized in objective function, the following

are upper or lower bounds in optimization models constraints.

Considering the relative importance of the two or the three objective function (see

optimization models presented in this chapter) the multi-objective mixed integer or

linear or quadratic program M can be replaced with Mι, where ι ∈ 1, 2 in case of

two objective functions or ι ∈ 1, 2, 3 in case of three objectives, that could be solved

subsequently.

Model Mι, ι = 1, 2, 3
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Chapter 4

Reference Point Approach to

Multi-Objective Portfolio

Optimization

This chapter includes bi- and triple-objective portfolio models. Reference Point

Method (in which the relative importance of the objective functions is weighted in

the constraint set) has been implemented as an approach for multi-criteria objective

functions. The first objective defines risk of portfolio venture, this objective minimizes

risk subject to specific constraints. The second objective function maximizes portfolio

expected return. The third objective function is the number of securities in an optimal

portfolio. In the first subsection of this chapter a presented multi-objective portfolio

model is constructed with implementation of Conditional Value-at-Risk (CV aR) as a

main risk measure. The portfolio model presented in the second subsection has Value-

at-Risk (V aR) as a basic measure of risk. Third subsection of this chapter includes

modified classical Markowitz portfolio multi-objective model, which is added for the

results comparison between presented portfolio approaches.

4.1 Bi-Objective Portfolio Models

4.1.1 Conditional Value-at-Risk Portfolio Model

In the objective function (4.1) of the bi-criteria CV aR portfolio optimization model

M16 with the augmented weighted Chebyshev metric is presented. The portfolio cri-

teria aims are Conditional Value-at-Risk and the expected return in the portfolio.
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xj ≥ 0; j ∈ N (4.27)

Constraint (4.27) (see equation (2.5)) defines continuous variable xj - percentage of

wealth that is allocated to security (asset) j. This formula prevents short-selling.

δ ≥ 0 (4.28)

Equation (4.28) (see (4.9)) is a non-negativity condition for deviation from the ref-

erence solution.

4.2 Triple-Objective Portfolio Models

This section includes triple-objective portfolio models. Chebyshev program (in

which the relative importance of the objective functions is weighted in the constraint

set) for objective functions has been implemented. The first objective defines risk of

portfolio venture, the second objective function, which is maximized has been defined

as portfolio expected return, finally the third objective has been defined as the number

of stocks in portfolio. In the first subsection of this chapter a presented triple-objective

portfolio model is constructed with implementation of Conditional Value-at-Risk CV aR

(CV aR) as a main risk measure. The portfolio model presented in the second subsec-

tion has Value-at-Risk (V aR) as a basic measure of risk. The third subsection of this

chapter includes modified classical Markowitz portfolio triple-objective model, which is

added for the results comparison between presented portfolio approaches.

4.2.1 Conditional Value-at-Risk Portfolio Model

In the objective function (4.29) of the triple-criteria CV aR portfolio optimization

model M19 with the augmented weighted Chebyshev metric is presented. The portfolio

criteria aims consist of Conditional Value-at-Risk (CV aR), expected return in portfolio

and the number of assets2) in the optimal portfolio.

Model M19.

Minimize

2Maximization or minimization according to a decision maker preferences.
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Chapter 5

Selected Multi-Period Portfolio

Models

This chapter includes...

5.0.4 Problem Formulation

Suppose that n securities are available in the market with historical quotations in t

intervals (investment periods), each of h multi-period intervals, in total m samples.

Table 5.1: Notations for mathematical model M22

Indices

i = historical time period, i ∈ I = {1, . . . , m} (i.e. day)

j = security, j ∈ J = {1, . . . , n}

k = historical multi-period interval k ∈ K = {1, . . . , t} (i.e. year, quarter

or month, etc)

Input parameters

h = number of historical quotations in each multi-period interval

pi = probability assigned to the occurrence of past realization i

rij = observed return of jth stock in ith time period

rMin = minimum return observed in the market

V aR = return Value-at-Risk

α = confidence level
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Chapter 6

Alternative Portfolio Formulations

This chapter includes alternative portfolio formulations. The explanations that

some computational results obtained for selected models can be used for comparison

with other models presented in this dissertation is also included in this chapter, together

with mathematical proof.

Table 6.1: Notations for mathematical models M24, M25, M26, M27

Indices

i = historical time period, i ∈ I = {1, . . . , m} (i.e. day, week, month, etc.)

j = security, j ∈ J = {1, . . . , n}

Input parameters

α = input parameter in selected problems - confidence level. The mathe-

matical models, where α is the input parameter are M24.

β1, β2, β3, β4, λ = weights in the objective functions

pi = probability assigned to the occurrence of past realization i

rij = observed return of jth stock in ith time period

rMin = minimum return observed in the market

V aR = return Value-at-Risk
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jective function, given V = V aR with fixed α parameter.

The computational results obtained for model M24 can be used for comparison

with model M3 (modified Markowitz portfolio).

Similarly, the results obtained for model M1 can be used for comparison with model

M2 for the same values of α parameter.

Model M1 could be also used for finding optimal value of V aR for different value

of confidence level α.

Figure 6.1: Results for V , πV and function J(V ) with the use of random sampling

techniques (Monte Carlo calculations)

The results presented in figures 6.1 and 6.2 were calculated numerically for 20000
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samples (Monte Carlo calculations) of Gaussian distribution N(0, 1), where results were

computed for dV = 0.001.

Figure 6.2: Results for V , πV and function J(V ) with the use of random sampling

techniques (Monte Carlo calculations)

In the figure 6.1 relation between V , πV and function J(V ) has been shown for V

(V aR) range from −2.10 to −1.95, presumed πV = 1 − α = 0.0228 for V aR = −2.00.

Found: maximum of function J(V ) for πV = 0.0228 and computed V aR = −2.016.

In the figure 6.2 relation between V , πV and function J(V ) has been shown for V

(V aR) range from 1.95 to 2.10, presumed πV = 1−α = 0.0228 for V aR = 2.00. Found:

minimum of function J(V ) for πV = 0.0228 and computed V aR = 1.980.

Description of axes for figures 6.1 and 6.2. are as follows:
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Chapter 7

Multiple Criteria Optimization

Models for Assignment of

Supporting Services in Health Care

7.1 Introduction to optimization in healthcare

The assignment of service positions plays an important role in healthcare institu-

tions. Poorly assigned positions in hospital departments or over-employment may result

in increased expenses and/or degraded customer service. If too many workers are as-

signed, capital costs are likely to exceed the desirable value (Brandeau at al., 2004 [24]).

The supporting services have a strong impact on performance of healthcare institutions

such as hospitals. In hospital departments, the supporting services include financial

management, logistics, inventory management, analytic laboratories, etc. This paper

presents an application of operations research model for optimal supporting service jobs

allocation in a public healthcare institution. The optimality criterion of the problem

is to minimize operations costs of a supporting service subject to some specific con-

straints. The constraints representing specific conditions for resource allocation in a

hospital were modified, compared to previous publications (Sawik, 2008b, 2010d, 2010f

[106, 121, 123]). The overall problem is formulated as a mixed integer program in the

literature known as the assignment problem (Bertsimas at al., 1997; Burrkard at al.,

2008; Nemhauser at al., 1999 [18, 28, 89]). The binary decision variables represent

the assignment of people to various services. This paper shows practical usefulness of

mathematical programming approach to optimization of supporting services in health-

care institutions. The results of some computational experiments modeled after a real
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data from a selected Polish hospital are reported.

7.2 Data used for computations

The real data from a selected Polish public healthcare institution from a one month

period were used for computations. The data include 17 supporting service hospital de-

partments, in which there are 74 types of supporting service jobs (Sawik, 2008b, 2010d,

2010f [106, 121, 123]). Permanent employment is defined as a percent of permanent post

between 25% (0.25) to 100% (1.00) according to the size of a job position (part-time or

full time) for a selected job in a selected department. It is possible that a department

has four half time permanent employees and this could be for example an equivalent to

two full time permanent employments. Supporting service departments in the hospital

consist in total of 78.50 permanent employments with 192 workers employed before the

optimization. Specific data consists of the average salaries for selected jobs in the de-

partments defined as costs of assignment of workers to jobs. Furthermore, the average

amount of money paid monthly for services in each department was used. Additional

parameters include the number of permanent employments in each department and

the size of permanent employments (i.e. 0.25, 0.50, 0.75, 1.00) for each job defined as

partial or full time. In addition, the minimum number of permanent employments for

each job in each department was given, and the maximal number of positions which

can be assigned to a single worker.

Table 7.1 presents the number of workers and service jobs in the hospital depart-

ments and the total number of workers in all departments before the optimization.

Table 7.2 shows the number of types of permanent employments and the maximum

amount of money paid for services in the hospital departments before optimization.

7.3 Problem Formulation

Mathematical programming approach deals with optimization problems of maxi-

mizing or minimizing a function of many variables subject to inequality and equality

constraints and integrality restrictions on some or all of the variables. In particular,

0-1 variables represent binary choice. Therefore, the model presented in this paper is

defined as a mixed integer programming problem. Suppose there are m people and p

jobs, where m 6= p. Each job must be done by at least one person; also, each person

can do at least, one job. The cost of person i doing job k is c̄ik. The problem objective
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Table 7.1: Number of workers and service jobs in the hospital departments before

optimization

Supporting service Number Number

departments of workers of jobs

Central Heating Department 16 5

Power Department 15 3

Medical Bottled Gases Department 6 2

Ventilation & Air-condition Department 8 4

Heating & Air-condition Department 11 4

Distribution Department 6 3

Medical Equipment Department 8 4

Technical Department 11 5

Economy Department 21 5

Hospital Pharmacy 20 11

Sterilization Department 27 5

Material Monitoring Department 13 5

Information Department 7 4

Business Executive Department 8 5

Technical Executive Department 4 4

Law Regulation Department 7 3

Attorneys-at-law Department 4 2

Number of workers in all department 192 74

Table 7.2: Number of Permanent employments and the maximum amount of money

paid for services in the hospital departments before optimization

Supporting Number Amount

service of types of money

departments of permanent paid for services

employments [PLN]

Central Heating Department 5 29250

Power Department 3 31050

Medical Bottled Gases Department 2 11400

Ventilation & Air-condition Department 4 16650

Heating & Air-condition Department 4 21200

Distribution Department 3 13600

Medical Equipment Department 4 17500

Technical Department 5 20950

Economy Department 5 31360

Hospital Pharmacy 11 43400

Sterilization Department 5 41500

Material Monitoring Department 5 27150

Information Department 4 16100

Business Executive Department 5 15450

Technical Executive Department 4 7150

Law Regulation Department 7 16100

Attorneys-at-law Department 2.5 7950

Money paid for services in all departments 78.5 367760
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is to assign the people to the jobs so as to minimize the total cost of completing all of

the jobs.

The optimality criterion of the defined problem is to minimize operations costs of a

supporting service subject to some specific constraints. The constraints represent spe-

cific conditions for resource allocation in a hospital. The overall problem is formulated

as a modified assignment problem. The decision variables represent the assignment of

people among various services. Compared to previously published papers (Sawik 2008b,

2010d, 2010f [106, 121, 123]).

Table 7.3: Notations for mathematical models M28, M29, M30

Indices

i = worker, i ∈ I = {1, . . . , m}

j = supporting service hospital department, j ∈ J = {1, . . . , n}

k = type of supporting service job, k ∈ K = {1, . . . , q}

Input parameters

c̄ik = cost of assignment of a worker i to job k (i.e. monthly salary)

C̄j = maximal monthly budget for salaries in a department j

ēk = size of permanent (partial or full time) employment for job k (i.e. ēk=

0.25 or 0.50 or 0.75 or 1.00)

Ēj = maximal number of permanent employments in a department j

h̄jk = minimal number of permanent employments for job k in a department

j

β̄i = weight of the objective functions f̄i, i = 1, 2, 3

γ = small positive value
¯f
opt
1 = ideal solution value of number of workers selected for an assignment to

any job in any department
¯f
opt
2 = ideal solution value of operational costs of the supporting services
¯f
opt
3 = ideal solution value of number of permanent employments for all jobs

in all departments

7.4 Optimization Models

The problem of optimal assignment is formulated as a single objective (M28, M29)

or triple objective mixed integer program (M30), which allows commercially available
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7.4.1 Computational Results

In this section numerical examples and some computational results are presented to

illustrate possible applications of the proposed formulations of integer programming of

optimal assignment of service positions. Selected problem instances with the examples

are modeled on a real data from a Polish hospital. In the computational experiments

the historical data is considered. Computational time takes only a fraction of a sec-

ond to find optimal solution if any exists. The computational results for models M28

and M29 have been obtained using AMPL with solver CPLEX 9.1 on computer Com-

paq Presario 1830 with Pentium III; RAM 512MB. The computational experiments for

model M30 have been performed using AMPL programming language (Fourer, 1990

[47]) and the CPLEX v.11 solver (with the default settings) on a laptop with IntelCore

2 Duo T9300 processor running at 2.5GHz and with 4GB RAM.

Table 7.5 shows the comparison of CPU time requirement for finding optimal solu-

tion (models M28 and M29) with the use of constraint (7.7) or (7.12).

Table 7.5: Comparison of computational results (models M28 and M29) with alterna-

tive constraints

Operational Number of MIP

costs assigned simplex

Scenario [PLN] workers iteration CPU Constraint

A 153,251 77 2 10.49 (7.7)

A 153,251 77 0 12.25 (7.12)

B 209,751 108 3 12.46 (7.7)

B 209,751 108 0 12.08 (7.12)

C 248,951 131 3 9.17 (7.7)

C 248,951 131 0 12.80 (7.12)

D 311,651 166 4 7.47 (7.7)

D 311,651 166 0 7.47 (7.12)

*CPU seconds for proving optimality on Pentium III, RAM 512MB / CPLEX v.9.1

Table 7.6 presents the reference point values of parameters for computational ex-

periments with the method optimization model (M30) and the size of adjusted problem.

Table 7.7 presents comparison of computational results (model M30) with alterna-

tive scenarios.

126



Table 7.6: The values of parameters for computational experiments and the size of

adjusted problem

Scenario
¯

f
opt

1
¯

f
opt

2
¯

f
opt

3 All Binary Constraints

variables variables

A 70 150000 75 4448 3188 566

B 110 200000 105 4416 3156 526

C 130 250000 120 4416 3156 526

D 160 300000 155 4404 3144 512

γ = 0.01 β1 = 0.33 · 1000 β2 = 0.34 β3 = 0.33 · 1000

Table 7.7: Comparison of computational results (model M30) with alternative scenarios

Scenario δ Number Operational Number MIP B-&-B CPU

of workers costs of permanent simplex nodes seconds

[PLN] employments iterations

A 1320.00 74 147,201 71.50 297 6 0.265

B 3842.51 109 211,302 105.75 161 0 0.202

C 330.00 131 248,952 121.75 433 0 0.296

D 1802.51 162 305,302 159.00 310 0 0.171

*CPU seconds for proving optimality on IntelCore 2 Duo T9300 processor running at 2.5GHz, 4GB RAM / CPLEX v.11

In tables 7.5 and 7.7 column ”MIP simplex iteration” shows the number of mixed

integer programming simplex iterations until the solution is presented. Column ”B-

&-B nodes” shows the number of searched nodes in the branch and bound tree until

presented solution.

In table 7.8 the number of workers assigned to the supporting service hospital de-

partments and the number of permanent employments is presented (model M30).

As it has been recommended by the hospital managers four different scenarios of

the assignment have been implemented. In scenario A, a minimal number of people is

employed in each supporting service department so that each type of a job has at least

one worker assigned. This rule is implemented in input parameter h̄jk. In scenario B at

least two workers were assigned to each job. Scenario C secured the level of supporting

service workers. In each department there are at least two workers assigned to each job,

but for some special cases, more than two workers are assigned to each job. Finally,

scenario D presents the optimal assignment of workers to jobs with a high service level
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Table 7.8: Number of workers assigned and number of permanent employments in

departments

Assignment of workers in departments according to scenario

Supporting service workers permanent workers permanent workers permanent workers permanent

departments employments employments employments employments

Number of workers and

permanent employments 74 (A) 71.5 (A) 109 (B) 105.75 (B) 131 (C) 121.75 (C) 162 (D) 159 (D)

in all Departments

Attorneys-at-law 2 (A) 1.5 (A) 3 (B) 2.5 (B) 3 (C) 2 (C) 3 (D) 2.5 (D)

Department

Law Regulation 3 (A) 3 (A) 5 (B) 5 (B) 5 (C) 4 (C) 5 (D) 5 (D)

Department

Technical Executive 4 (A) 3.5 (A) 4 (B) 3.5 (B) 4 (C) 3.5 (C) 4 (D) 3.5 (D)

Department

Business Executive 5 (A) 5 (A) 6 (B) 6 (B) 6 (C) 6 (C) 7 (D) 7 (D)

Department

Information 4 (A) 3.5 (A) 5 (B) 4.5 (B) 5 (C) 4.5 (C) 6 (D) 5.5 (D)

Department

Material Monitoring 5 (A) 5 (A) 7 (B) 7 (B) 8 (C) 8 (C) 11 (D) 11 (D)

Department

Sterilization 5 (A) 5 (A) 8 (B) 8 (B) 14 (C) 13.5 (C) 21 (D) 21 (D)

Department

Hospital Pharmacy 11 (A) 10.5 (A) 15 (B) 14.5 (B) 17 (C) 14.5 (C) 19 (D) 18.5 (D)

Economy 5 (A) 5 (A) 9 (B) 9 (B) 14 (C) 13.5 (C) 18 (D) 18 (D)

Department

Technical 5 (A) 5 (A) 8 (B) 8 (B) 8 (C) 7.5 (C) 9 (D) 9 (D)

Department

Medical Equipment 4 (A) 4 (A) 6 (B) 5.75 (B) 6 (C) 5.75 (C) 7 (D) 6.5 (D)

Department

Distribution 3 (A) 3 (A) 5 (B) 5 (B) 5 (C) 4.5 (C) 5 (D) 5 (D)

Department

Heating and

Air-condition 4 (A) 4 (A) 5 (B) 5 (B) 7 (C) 7 (C) 9 (D) 9 (D)

Department

Ventilation and

Air-condition 4 (A) 3 (A) 6 (B) 6 (B) 6 (C) 5.5 (C) 7 (D) 7 (D)

Department

Medical Bottled Gases 2 (A) 2 (A) 3 (B) 3 (B) 4 (C) 3.5 (C) 5 (D) 5 (D)

Department

Power Department 3 (A) 3 (A) 5 (B) 5 (B) 8 (C) 8 (C) 12 (D) 12 (D)

Central Heating 5 (A) 4.5 (A) 9 (B) 8 (B) 11 (C) 10.5 (C) 14 (D) 13.5 (D)

Department

*Scenarios A, B, C & D considered subject to hospital authority requirements
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with all currently employed workers. The results obtained have indicated the problem

of over-employment in the hospital.

7.4.2 Conclusions for Multiple Criteria Optimization Models

for Assignment of Supporting Services in Health Care

Operations research techniques, tools and theories have long been applied to a wide

range of issues and problems in healthcare. This paper proves the practical useful-

ness of mathematical programming approach to optimization of supporting service in

a hospital. The results of computational experiments modeled after a real data from a

hospital in Lesser Poland indicate that the number of hired workers can be reduced in

almost all departments of the hospital.

The proposed modified multi-objective assignment problem and a reference point

approach can be easily implemented for management of supporting services in another

institution, not only healthcare. Obtained results consist of the monthly expenses for

salaries, the number of workers and the amount of permanent employments needed for

jobs in all considered supporting service departments.

Computational time takes only a fraction of a second to find the optimal solution

because of a relatively small size of the input data. Presented optimization model is

NP-hard, but computable. Implementation of reference point method ensures to obtain

results with non-dominated set of solutions. The global optimums for considered three

objective functions are presented.
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Chapter 8

Computational Experiments

All presented in this chapter computational experiments were conducted on a laptop

with IntelCore 2 Duo T9300 processor running at 2.5GHz and with 4GB RAM. For the

implementation of portfolio models, the AMPL programming language and the CPLEX

v.11 solver (with the default settings) were applied.

In this section the strength of CV aR and V aR approach and MIP models is demon-

strated on computational examples. The data sets for the example problems were based

on historic daily portfolios of the Warsaw Stock Exchange.

In the computational experiments the five levels of the confidence level was applied

α ∈ {0.99, 0.95, 0.90, 0.75, 0.50}, and for the weighted-sum program the subset of non-

dominated solutions were computed by parametrization on λ.

Table 8.1 presents the influence of different parameters on CPU run time.

Table 8.1: Problem parameters vs. Central Processing Unit run time

1 − α increases CPU decreases

V aR increases CPU increases

m increases CPU increases

Figure 8.1 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.99.
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Figure 8.1: Computed expected returns for time-varying optimal portfolios with λ =

0.99

Figure 8.2 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.95.

Figure 8.3 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.90.

Figure 8.4 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.75.

Figure 8.5 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.50.

Figure 8.6 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.25.

Figure 8.7 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.10.

Figure 8.8 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.05.

Figure 8.9 shows comparison of computed expected returns for time-varying optimal

portfolios for models M1 and M2 with objective weight λ = 0.01.

Figure 8.10 presents computed Value-at-Risk (V aR) in model M1, which in model

M2 is an input parameter V aR = −1 (for presented computational example) - λ = 0.99.

Figure 8.11 presents computed Value-at-Risk (V aR) in model M1, which in model
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Figure 8.2: Computed expected returns for time-varying optimal portfolios with λ =

0.95

Figure 8.3: Computed expected returns for time-varying optimal portfolios with λ =

0.90

132



Figure 8.4: Computed expected returns for time-varying optimal portfolios with λ =

0.75

Figure 8.5: Computed expected returns for time-varying optimal portfolios with λ =

0.50
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Figure 8.6: Computed expected returns for time-varying optimal portfolios with λ =

0.25

Figure 8.7: Computed expected returns for time-varying optimal portfolios with λ =

0.10
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Figure 8.8: Computed expected returns for time-varying optimal portfolios with λ =

0.05

Figure 8.9: Computed expected returns for time-varying optimal portfolios with λ =

0.01

135



Figure 8.10: Value-at-Risk for time-varying optimal portfolios with λ = 0.99

M2 is an input parameter V aR = −1 (for presented computational example) - λ = 0.50.

Figure 8.12 presents computed Value-at-Risk (V aR) in model M1, which in model

M2 is an input parameter V aR = −1 (for presented computational example) - λ = 0.05.

Figure 8.13 shows comparison of α (upper curve) and πV (lower curve) - λ = 0.99,

where πV = 1 − α (see Chapter 6).

Figure 8.14 shows comparison of α and πV - λ = 0.50.

Figure 8.15 shows comparison of α and πV - λ = 0.05.

Figure 8.16 presents comparison of number of assets in optimal portfolio - λ = 0.99.

Figure 8.17 presents comparison of number of assets in optimal portfolio - λ = 0.50.

Figure 8.18 presents comparison of number of assets in optimal portfolio - λ = 0.05.

Figure 8.19 shows comparison of computational times - λ = 0.99.

Figure 8.20 shows comparison of computational times - λ = 0.50.

Figure 8.21 shows comparison of computational times - λ = 0.05.

Figure 8.22 presents the Pareto Frontier for time-varying model M1 - CV aR vs.

expected portfolio return for α = 0.99.

Figure 8.23 presents the Pareto Frontier for time-varying model M2 - α vs. expected

portfolio return for V aR = −1.

Figure 8.24 presents the Pareto Frontier for time-varying model M3 with cutting

constraint - matrix of covariance for selected portfolio vs. expected portfolio return.

Figure 8.25 presents the Pareto Frontier for time-varying model M3 without cutting
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Figure 8.11: Value-at-Risk for time-varying optimal portfolios with λ = 0.50

Figure 8.12: Value-at-Risk for time-varying optimal portfolios with λ = 0.05
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Figure 8.13: α and πV for time-varying optimal portfolios with λ = 0.99

Figure 8.14: α and πV for time-varying optimal portfolios with λ = 0.50
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Figure 8.15: α and πV for time-varying optimal portfolios with λ = 0.05

Figure 8.16: Number of selected assets for time-varying optimal portfolios with λ = 0.99
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Figure 8.17: Number of selected assets for time-varying optimal portfolios with λ = 0.50

Figure 8.18: Number of selected assets for time-varying optimal portfolios with λ = 0.05
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Figure 8.19: Computational times for time-varying optimal portfolios with λ = 0.99

Figure 8.20: Computational times for time-varying optimal portfolios with λ = 0.50
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Figure 8.21: Computational times for time-varying optimal portfolios with λ = 0.05

Figure 8.22: Pareto Frontier for time-varying model M1
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Figure 8.23: Pareto Frontier for time-varying model M2

Figure 8.24: Pareto Frontier for time-varying model M3 with cutting constraint
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constraint - matrix of covariance for selected portfolio vs. expected portfolio return.

Figure 8.25: Pareto Frontier for time-varying model M3 without cutting constraint

Figure 8.26 presents comparison of portfolio expected return (M1, M2, M3) for

different λ and for 500 historical quotations.

Figure 8.27 presents comparison of computational times of solved portfolios (M1,

M2, M3) for different λ and for 500 historical quotations.

Figure 8.28 presents comparison of number of stocks (securities) in portfolios (M1,

M2, M3) for different λ and for 500 historical quotations.
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Figure 8.26: Comparison of portfolio expected return (M1, M2, M3) for different λ -

500 historical quotations

Figure 8.27: Comparison of computational times of solved portfolios (M1, M2, M3)

for different λ - 500 historical quotations

145



Figure 8.28: Comparison of number of stocks (securities) in portfolios (M1, M2, M3)

for different λ - 500 historical quotations
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Chapter 9

Summary and Conclusion

9.1 Conclusions

The purpose of this dissertation was to present and compare the weighting, lexico-

graphic and reference point approach and the corresponding mixed integer programming

formulations for the multi-criteria portfolio optimization problem.

In particular, the research efforts were concentrated on mixed integer programming

formulations. The need for solving multi-objective portfolio optimization models by

mixed integer programming has been illustrated for the portfolio models with Value-

at-Risk (V aR) as a risk measure, as well as, when the number of assets (investment

ventures) is one of the optimality criteria. An alternative, multi-objective portfolio

optimization problems was formulated with Conditional Value-at-Risk (CV aR) as a

risk measure or with symmetric measure of risk - covariance (variance) of return - as in

Markowitz portfolio.

The proposed multi-objective portfolio models were constructed with the expected

return as a performance measure and the expected worst-case return as a risk measure,

using Value-at-Risk (V aR) and Conditional Value-at-Risk (CV aR). These measures

have allowed for the evaluation of worst-case return and shaping of the resulting re-

turn distribution through the selection of the optimal portfolio. The mathematical

programming models were constructed and solved using weighting, lexicographic and

reference point approach. The presented portfolio models have been single-, bi- and

triple-objectives and the optimization criteria considered are risk, return and number

of stocks.

The main research problem considered in this Ph.D. dissertation was how to find the

best multi-objective portfolio formulation with risk. The additional research problem
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was to find the relation between the optimization results with Value-at-Risk solved by

mixed integer programming and the results of optimization obtained with the use of lin-

ear and quadratic programming portfolio models (Conditional Value-at-Risk, Markowitz).

Computational experiments have been conducted for multi-criteria portfolio models

of stock exchange investments. The number of selected securities for input data varies

from 46 to 240 assets. The historical stocks quotations came from the period from March

10th, 1997 to February 2nd, 2009. This time period includes data from the increase

of stock exchange quotations, as well as the economic crisis period. The considered

number of data in historical time series is from 500 to 3000 days with assets quoted

each day in the whole historical horizon. The portfolios were optimized in an increased

time window, which was helpful in evaluating the results of optimization (time-varying

optimal portfolio).

The multi-criteria portfolio optimization models with Conditional Value-at-Risk

(CV aR) as a risk measure can be used to support on-line stock market investments,

since the computational times required to find the optimal solution is relatively short,

regardless of the size of the input data. The presented models provide a decision maker

with a tool for evaluating the relationship between expected and worst-case returns.

The results obtained from computational experiments proved, that multi-objective

portfolio optimization models with Value-at-Risk (V aR) and Conditional Value-at-Risk

(CV aR) could be used to shape the distribution of portfolio returns in a favorable way

for a decision maker. The portfolios obtained with both methods (mixed-integer or

linear programming) were often similar, which have shown their capability of solving

the corresponding problems. It means that a suboptimal portfolio for the integer pro-

gram with Value-at-Risk (V aR) as optimality criterion can be found by solving the

corresponding linear program for the portfolio problem with Conditional Value-at-Risk

(CV aR) as an optimality criterion. The proposed scenario-based portfolio optimization

problems under uncertainty, formulated as a single- or multi-objective mixed integer

program were solved using commercially available software (AMPL/CPLEX) for mixed

integer programming.

The nature of the portfolio problem focuses on a compromise between the construc-

tion of objectives, constraints and decision variables in a portfolio and the problem com-

plexity of the implemented mathematical models. There is always a trade off between

computational time and the size of an input data, as well as the type of mathematical

programming formulation (linear or mixed integer).

The computational results obtained by modeling the decision criteria (e.g. lexico-
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graphically choosing one objective function with the highest priority) in constructed

multi-objective portfolio optimization models, could be used by a decision maker for

evaluation of his/her investment strategy. It is easy to compare obtained optimal (ideal)

solution values of the selected objectives with a real investment situation in the stock

market.

In addition to the multi-objective approach for portfolio optimization of securities

(e.g. stocks) from stock exchanges presented in this dissertation, the selected multi-

objective mixed integer programming models are shown for supporting services in med-

ical care institutions, based on assignment problem.

The proposed portfolio optimization models formulated by mixed integer program-

ming can be effectively implemented in decision support systems for the bi- and triple-

objective portfolio optimization, in which variance of return from the risky ventures

(investments) was replaced with V aR or CV aR.

The scenario-based portfolio optimization problems under uncertainty, formulated

as a single- or multi-objective mixed integer program have been easily solved using com-

mercially available software, like AMPL Programming Language with use of CPLEX

solver for mixed integer programming.

The computational experiments modeled on a real data from the Warsaw Stock

Exchange have indicated that the approach is capable of finding proven optimal solu-

tions for all real-world problems considered, in a reasonable computation time using

commercially available software for mixed integer programming.

The total computation time ranges from a few seconds to minutes or even hours

depending on the number of historical quotations in the optimization problem and type

of optimization problem formulation.

The portfolio optimization models with CV aR could be used for supporting on-

line stock market investments, since computational times required for finding optimal

solutions are relatively short, regardless of the size of input data for computations (e.g.

more than 200 stocks with 3000 quotations).

The computational experiments show that the proposed solution approach based on

mixed integer programming models provides the decision maker with a simple tool for

evaluating the relationship between the expected and the worst-case portfolio return.

The decision maker can assess the value of portfolio return and the risk level, and

can decide how to invest in a real life situation comparing with the ideal (optimal)

portfolio solutions. A risk-aversive decision maker wants to maximize the CV aR. Since

the amount by which losses in each scenario exceed V aR has been constrained of being
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positive, the presented models try to increase V aR and hence positively impact the ob-

jective functions. However, large increases in V aR may result in more historic portfolios

(scenarios) with tail return, counterbalancing this effect. The concave efficient frontiers

illustrate the trade-off between the CV aR and the expected return of the portfolio.

In all cases the CPU time increases when the confidence level decreases. The num-

ber of securities selected for the optimal portfolio for all the models varies between 1

and more than 50 assets. Those numbers show very little dependence on the confidence

level α and the size of historical portfolio used as an input data.

The most important results presented in the PhD dissertation are:

• Based on the recent, available publications on portfolio optimization methods,

the critical analysis of the literature was made.

• The computational experiments are based on the real data from the time of the

increase of stock exchange quotations as well as from the economic crisis period.

• A review of multi-criteria optimization methods for portfolio optimization with

the comparison of obtained results was performed.

• The portfolios were optimized in the increased time window, which enabled the

evaluation of the results of optimization (time-varying optimal portfolio).

• The comparison of obtained results for portfolio optimization models with sym-

metric (covariance of return) and percentile measures (V aR and CV aR) of risk

was presented.

• The single- and multi-period portfolio problems formulations were proposed.

• The formulation of multi-objective portfolio problems was presented with the

consideration of different optimization criteria.

• In addition, selected multi-objective mixed integer programming models were

shown for supporting services in medical care institutions, based on assignment

problem, which could be also transformed into a portfolio problem.
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9.2 Future research

In the future research it is planned to perform the multi-objective portfolio optimiza-

tion for a multi-market portfolio with a different level of risk at each market of ventures.

Furthermore it is intended to improve mixed integer programming approach for a multi-

period, multi-criteria portfolio optimization by applying some methods from graphs and

game theory. The main idea is to define vector of historical optimal portfolio at time t

as a vertex in a graph, in which edges will be defined as possible changes of stocks in

new optimal portfolio at time t + 1. This method could lead to an improved combina-

torial algorithm for finding optimal portfolio in a multi-period environment. The multi

period portfolio optimization over a rolling planning horizon can be enhanced with the

addition of short-selling variables 1.

Some application of the game theory (see e.g. von Neumann and Morgenstern, 1944

[90]) will be helpful to find non-dominated optimal solution for multi-objective portfolio

optimization, when stocks in optimal portfolio are considered as players who compete

for amount of money to be invested in selected stock.

Finally, for a comparison it is intended to conduct some computational experiments

using the models developed and the input data from the other markets such as NYSE,

ZURICH SMI and, if possible, or from the industry or services, e.g. medical supporting

services. The supporting services have a strong impact on performance of health-

care institutions such as hospitals. For example in a hospital, the supporting services

include financial management, logistics, inventory management, analytic laboratories,

etc. Switching from stock exchange to supporting services the optimal portfolio of

service positions in selected department of a hospital - could be considered with a dual

objective to reach both high quality and low cost of service.

1Going short on security (i.e. stock) j means that the corresponding share value xj is negative:

xj < 0. In this way, the signs of the portfolio shares x1, ..., xn are not restricted anymore (Wanka and

Gohler, 2001 [150])
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Politechnika Poznańska, Rozprawy, Nr 394.

[162] Zeleny M. (1981): Satisficing optimization, and risk in portfolio selection. In:

Derkinderen F.G.H., Crum R.L. (eds.) Readings in Strategies for Corporate In-

vestment, Pitman Publishing, Boston, pp. 200–219.

[163] Zhu S., Fukushima M. (2009): Worst-Case Conditional Value-at-Risk with Ap-

plication to Robust Portfolio Management. Operations Research, Vol. 57: 1155–

1168.

[164] Zopounidis C., Despotis D.K., Kamaratou I. (1998): Portfolio selection using

the ADELAIS multiobjective linear programming system. Computer Economics,

Vol. 11(3): 189–204.

[165] Zopounidis C. (1999): Multicriteria decision aid in financial management. Euro-

pean Journal of Operational Research, Vol. 119(2): 404–415.

[166] Zopounidis C., Doumpos M. (2002): Multicriteria decision aid in financial de-

cision making: Methodologies and literature review. Journal of Multi-Criteria

Decision Analysis, Vol. 11: 167–186.

166



Appendix - More Computational

Examples

In this section numerical examples and some computational results are presented to

illustrate possible applications of the proposed formulations of linear and mixed integer

programming of portfolio problems. Selected problem instances with the examples are

modeled on a real data from the Warsaw Stock Exchange.

In the computational experiments the historical data is considered. Computational

time range is from a few seconds to minutes or even hours. The computational experi-

ments have been performed using:

• AMPL with solver CPLEX v.9.1 on a PC Pentium III, RAM 512MB

• AMPL with solver CPLEX v.9.1 on a PC Pentium IV, RAM 512MB

• AMPL with solver CPLEX v.11 on a PC IntelCore 2 Duo T9300 with 2,5GHz,

RAM 4GB

Figure 9.1 presents the solution results for maximization of expected portfolio (model

M22) return for 3500 historical quotations, divided into 14 multi-period intervals, for

the multi-period portfolio (model M22) with 1−α = 0.05 and in figure 9.2 the solution

results are indicated for 1 − α = 0.10.

For comparison table 9.1 shows the results for single-period portfolio optimization.

Figure 9.3 presents the solution results (model M22) for maximization of expected

portfolio return for 4020 historical quotations, divided into 20 multi-period intervals, for

the multi-period portfolio with 1−α = 0.1 and in figure 9.4 shows the number of secu-

rities in computed portfolios for each historical multi-period interval k with 1−α = 0.1.

Figures 9.5–9.6 shows results of problem M22 with 1−α = 0.5. For comparison figure
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Figure 9.1: The example of solution results for the multi-period portfolio (model M22)

with 1 − α = 0.05
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Figure 9.2: The example of solution results for the multi-period portfolio (model M22)

with 1 − α = 0.10

Table 9.1: Solution results for the single-period portfolio with 1−α ∈ {0.05; 0.10} with

V aR = −3, rMin = −100, m = 3500

1 − α Portfolio Number MIP simplex

Return of assets iteration B-&-B CPU*

0.05 0.075821 3 6872886 664295 34770

0.10 0.118745 3 3270492 627711 26289
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Figure 9.3: The example of solution results for the multi-period portfolio (model M22)

with 1 − α = 0.10
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Figure 9.4: Number of securities in portfolios for each historical multi-period interval k

with 1 − α = 0.10
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9.7 shows the results for single-period portfolio optimization.

Figure 9.5: The example of solution results for the multi-period portfolio with 1− α =

0.5

Figure 9.6: Number of securities in portfolios for each historical multi-period interval k

with 1 − α = 0.5

Figures 9.8–9.11 present example of the solution results for bi-objective multi-period

portfolio M23 - weighting approach for V aR = −2.50.

In this section numerical examples and some computational results are presented

to illustrate possible applications of the proposed formulations of this multi-period op-

timization model M23. The examples are modeled on a real data form the Warsaw

Stock Exchange.

Suppose that n=241 securities with historical quotations in t=20 investment peri-

ods, each of h=201 days, in total 4020 samples.
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Figure 9.7: Solution results for the single-period portfolio with 1 − α ∈

{0.01; 0.05; 0.10; 0.20; 0.50}, h = 4020, t = 1

Figure 9.8: The solution results for bi-objective multi-period portfolio M23 - weighting

approach λ = 0.5, for successive investment period k = 1, 2, 3, 4, 5, 6
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Figure 9.9: The solution results for bi-objective multi-period portfolio M23 - weighting

approach λ = 0.5, for successive investment period k = 7, 8, 9, 10, 11, 12
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Figure 9.10: The solution results for bi-objective multi-period portfolio M23 - weighting

approach λ = 0.5, for successive investment period k = 13, 14, 15, 16, 17, 18

The eighteen years horizon from 30th Jan 1991 to 30th Jan 2009 - consist of m=4020

historic daily quotations divided into t=20 investment periods (h=201 daily quotations

each), with the selection of n=241 input securities for portfolio, quoted each day in the

historical horizon. Probability of realization for expected securities returns is the same

for each day and summed up for whole period to one.

The computational experiments have been performed using AMPL programming

language and the CPLEX v.11 solver (with the default settings) on a laptop with Intel

Core 2 Duo T9300 processor running at 2.5GHz and with 4GB RAM. Computational

time range is from a few seconds to minutes.

Figure 9.12 presents the comparison of computational time range for all multi-period

portfolios - model M23 - weighting approach.

Figures 9.13–9.16 presents results for model M23 formulated by Reference Point

Approach.
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Figure 9.11: The solution results for bi-objective multi-period portfolio M23 - weighting

approach λ = 0.5, for successive investment period k = 19, 20

Figure 9.12: Computational time range
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The accepted number of securities in portfolio is at least one security in each suc-

cessive investment period. The basic parameters for the reference point method take

on the following values: f
opt
1 = 1, f

opt
2 = 0.05, λ = 0.5, γ = 0.01.

Figure 9.13: The solution results for objective function 1 − α

Figure 9.13 presents the solution results (model M23 formulated by Reference Point

Approach) for objective function 1−α probability that return of investment is not less

than in each successive investment period k.

Figure 9.14 presents the solution results (model M23 formulated by Reference Point

Approach) for the objective function of expected portfolios return in each successive

investment period k.

Figure 9.15 presents number of securities in the computed portfolios (model M23

formulated by Reference Point Approach) for each successive investment period k.

Figure 9.16 presents computational time range and the solution values (model M23

formulated by Reference Point Approach) of γ - the deviation from the reference solu-

tion.
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Figure 9.14: The solution results for objective function - the expected portfolios return
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Figure 9.15: Number of securities in computed portfolios for each historical successive

investment period

Figure 9.16: Computational time range and the solution results for γ
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Table 9.2: The solution results for the weighting approach (model M26) with 100

historical quotations

Amount Number MIP CPU

Portfolio of of simplex B-&-B /

β1 β2 β3 1 − α return capital assets iteration nodes GAP

0.80 0.10 0.10 0.000 0.658086 1 7 1061 101 4.11%

0.10 0.80 0.10 0.280 1.738270 1 1 56 0 0.17%

0.10 0.10 0.80 0.270 1.731680 1 2 112 17 0.82%

0.70 0.15 0.15 0.040 0.861917 1 13 25788 3910 65.30%

0.15 0.70 0.15 0.280 1.738270 1 1 56 0 1.59%

0.15 0.15 0.70 0.270 1.731680 1 2 112 17 0.77%

0.60 0.20 0.20 0.230 1.633050 1 8 4741 1008 19.17%

0.20 0.60 0.20 0.280 1.738270 1 1 56 0 0.16%

0.20 0.20 0.60 0.270 1.731680 1 2 112 17 0.71%

0.50 0.25 0.25 0.260 1.713360 1 4 712 124 4.12%

0.25 0.50 0.25 0.280 1.738270 1 1 63 0 0.22%

0.25 0.25 0.50 0.270 1.731680 1 2 112 17 0.71%

0.40 0.30 0.30 0.270 1.731680 1 2 188 37 1.92%

0.30 0.40 0.30 0.270 1.731680 1 2 76 2 0.50%

0.30 0.30 0.40 0.270 1.731680 1 2 112 17 0.88%

*CPU seconds for proving optimality on a PC Pentium III, RAM 512MB/CPLEX 9.1

Column ”number of assets” defines amount of stocks in optimal solutions.

In the tables, column ”MIP simplex iteration” shows the number of mixed integer

programming simplex iterations until the solution is presented.

Column ”B-&-B nodes” shows the number of searched nodes in the branch and
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bound tree until the solution presented.

Column ”GAP” shows percentage difference between obtained solution and the best

LP-relaxation based bound calculated by the CPLEX solver.

Table 9.2 presents solution results for the weighting approach (model M26) with

100 historical quotations.

Table 9.3 shows the solution results for maximization of expected portfolio return

(model M26) with 500 historical quotations.

Table 9.4 presents the results for the maximization of expected portfolio return

(model M25) with 1758 historical quotations.

Table 9.5 presents the solution results for the weighting approach (model M25) with

500 historical quotations.

Table 9.6 shows the solution results for the weighting approach (model M25) with

1758 historical quotations.

Table 9.7 presents the number of assets in optimal portfolio for lexicographic ap-

proach (model M12) with 500 historical quotations.

Table 9.8 shows the number of assets in optimal portfolio for lexicographic approach

(model M12) with 1758 historical quotations.

Table 9.8 presents examples of CPU time for computational experiments for optimal

portfolio for lexicographic approach (model M12) with 1758 historical quotations.

The computational time for the optimization model with objective function (model

M12) requires several CPU minutes for finding the first feasible solution.

The total computational time ranges from a few seconds to minutes or even hours

depending on the number of historical quotations in the optimization problem.
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Table 9.3: The solution results for the weighting approach (model M26) with 500

historical quotations

Amount Number MIP CPU

Portfolio of of simplex B-&-B /

β1 β2 β3 1 − α return capital assets iteration nodes GAP

0.80 0.10 0.10 0.018 0.473987 1 35 190977472 7709994 71271.21

0.10 0.80 0.10 0.360 1.295300 1 1 361 1 0.51%

0.10 0.10 0.80 0.338 1.280820 1 6 7896177 1660831 4280.88

0.70 0.15 0.15 0.042 0.600772 1 34 62253914 5882993 22595.40

0.15 0.70 0.15 0.360 1.295300 1 1 766 21 1.00%

0.15 0.15 0.70 0.340 1.281930 1 5 11217491 2391321 5431.07

0.60 0.20 0.20 0.062 0.666516 1 34 30208779 5402504 12736.50

0.20 0.60 0.20 0.360 1.295300 1 1 3419 901 4.72%

0.20 0.20 0.60 0.338 1.280660 1 6 6192835 1402627 3520.78

0.50 0.25 0.25 0.274 1.186270 1 10 23069048 5320236 39033.00

0.25 0.50 0.25 0.358 1.294360 1 2 114568 61391 164.66

0.25 0.25 0.50 0.334 1.277550 1 6 41459235 10512354 26839.90

0.40 0.30 0.30 0.332 1.273370 1 9 29281271 5992131 13337.90

0.30 0.40 0.30 0.340 1.282980 1 4 2047901 560025 1731.51

0.30 0.30 0.40 0.336 1.278810 1 6 49893067 11875407 30246.80

0.34 0.33 0.33 0.336 1.278810 1 6 36991485 7984601 20446.20

*CPU seconds for proving optimality on a PC Pentium III, RAM 512MB/CPLEX 9.1
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Table 9.4: The results for the maximization of expected portfolio return (model M25)

for 1758 quotations

Portfolio Amount of Number of MIP simplex B-&-B

1 − α V aR return capital assets iteration nodes GAP CPU

0.10 -2.00 0.406521 1.0000 16 22203 2601 10.24% 3671.41

0.15 -2.00 0.450744 1.0000 8 43873 9401 0.66% 3599.88

0.15 -1.00 0.357077 1.0000 33 17534 1101 7.14% 3600.14

0.15 -0.50 0.223021 0.8436 61 105900 2601 99.43% 32182.40

0.50 -0.25 0.109703 0.3421 28 3813 100 319.88% 1176.50

*CPU seconds for proving optimality on PC Pentium III, RAM 512MB /CPLEX 9.1

The selected results obtained for models M7, M1 are presented in table 9.11 and

in figures 9.17–9.24.

Table 9.11 shows the optimal values of CV aR, V aR, and the expected portfolio

return for different confidence level α and the size of the input data set. In all cases

the CPU time increases when the confidence level decreases. The number of securities

in the optimal portfolios varies between 14 and 39 assets. The relation between the

conditional value-at-risk CV aR and the confidence level α is also shown in figure .

V aR and CV aR increase as the confidence level decreases.

Figure 9. shows the number of securities in the computed portfolio and the compu-

tational time range for different size of input data set and model M1. The number of

stocks selected for the optimal portfolio is independent on the confidence level and the

size of input data set.

The computational results for model M1 are presented in figures 9.17–9.4 and tables

9.11–9.12.

The conditional value-at-risk is more negative than value-at-risk, which is clearly

shown in Figures 9.17, 9.19 and 9.20.

The confidence level α has a strong impact on obtained values CV aR and V aR.
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Table 9.5: The results for the maximization of expected portfolio return (model M25)

for 500 quotations

Portfolio Amount of Number of MIP simplex B-&-B

1 − α V aR return capital assets iteration nodes GAP/CPU

0.01 -10.00 1.221675 1.0000 3 47 6 3.35

0.01 -5.00 0.937749 1.0000 10 1044 91 19.72

0.01 -4.00 0.849007 1.0000 10 2588 192 31.42

0.01 -3.00 0.743942 1.0000 13 12139 512 84.64

0.01 -2.00 0.629044 1.0000 17 33359 1105 242.11

0.01 -1.50 0.532917 1.0000 23 111944 2498 544.31

0.01 -1.00 0.396546 1.0000 30 297576 5462 1689.62

0.01 -0.50 0.198811 0.5314 31 826053 11333 5295.86

0.01 -0.25 0.099405 0.2657 31 671318 8527 4690.36

0.05 -10.00 1.295303 1.0000 1 34 0 0.88

0.05 -5.00 1.225334 1.0000 5 273 22 7.47

0.05 -4.00 1.141190 1.0000 9 11445 2450 161.97

0.05 -3.00 1.020270 1.0000 13 334933 33001 2.84%

0.05 -2.00 0.883416 1.0000 19 86761 3401 16.13%

0.10 -3.00 1.160440 1.0000 10 53836 6801 2.87%

0.15 -2.00 1.118940 1.0000 14 32074 3790 7.73%

0.20 -2.00 1.221670 1.0000 7 39648 7501 1.87%

0.25 -1.50 1.234330 1.0000 8 38871 8801 1.56%
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Table 9.6: The solution results for the weighting approach (model M25) with 1758

historical quotations

Portfolio Amount of Number of MIP simplex

β1 β2 V aR f
opt
2 1 − α return capital assets iteration CPU

0.9 0.1 -2.00 0.40 0.111490 0.400819 1 4 222 4.78

0.5 0.5 -2.00 0.40 0.112059 0.400921 1 4 222 4.95

0.1 0.9 -2.00 0.40 0.114334 0.400459 1 4 224 4.73

0.9 0.1 -2.00 0.45 0.151308 0.450515 1 3 294 5.33

0.5 0.5 -2.00 0.45 0.150171 0.450000 1 3 294 5.06

0.1 0.9 -2.00 0.45 0.150171 0.450000 1 3 293 4.73

0.9 0.1 -1.00 0.34 0.134243 0.340825 1 18 615 10.10

0.5 0.5 -1.00 0.34 0.135381 0.340647 1 18 671 10.00

0.1 0.9 -1.00 0.34 0.133675 0.340722 1 18 721 12.03

0.9 0.1 -0.50 0.20 0.110353 0.202772 1 56 1040 30.81

0.5 0.5 -0.50 0.20 0.111490 0.204490 1 56 1123 34.82

0.1 0.9 -0.50 0.20 0.110353 0.202382 1 56 1185 37.07

0.9 0.1 -0.25 0.10 0.192833 0.141738 1 66 1748 49.60

0.5 0.5 -0.25 0.10 0.191126 0.142552 1 68 1733 49.98

0.1 0.9 -0.25 0.10 0.191695 0.142652 1 68 1559 57.72
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Table 9.7: The solution results for the weighting approach (model M27) with 500

historical quotations

Portfolio Amount of Numer of MIP simplex

V aR f
opt
2 1 − α return capital assets iteration CPU

-10.00 1.22168 0.010 1.221670 1 3 14 2.31

-5.00 0.94774 0.016 0.937749 1 6 124 1.04

-4.00 0.84900 0.014 0.849007 1 9 180 1.32

-3.00 0.74394 0.016 0.752234 1 12 213 3.35

-2.00 0.62900 0.016 0.629000 1 12 254 3.79

-1.50 0.53300 0.020 0.533000 1 21 198 3.74

-1.00 0.39560 0.022 0.421036 1 21 295 3.46

-0.50 0.19900 0.050 0.219878 1 30 392 3.46

-0.25 0.09940 0.104 0.232379 1 41 499 4.78

-10.00 1.29530 0.022 1.295300 1 1 19 3.13

-5.00 1.22530 0.060 1.226390 1 2 39 1.53

-4.00 1.14000 0.060 1.140000 1 8 47 3.02

-3.00 1.02000 0.058 1.020000 1 8 54 0.88

-2.00 0.88000 0.070 0.880000 1 12 101 1.15

-3.00 1.16044 0.124 1.160440 1 7 86 0.88

-2.00 1.11894 0.160 1.122190 1 8 106 1.10

-2.00 1.22167 0.212 1.221670 1 5 119 0.88

-1.50 1.23433 0.264 1.234330 1 5 146 0.99

* λ = 0.5; Objective function: 1 − α and expected portfolio return
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Figure 9.17: Comparison of CV aR, V aR and the expected return for model M1 with

1000, 3500 and 4020 historical input data.
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Figure 9.18: Number of securities in an optimal portfolio and computational time range

for model M1.
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Figure 9.19: Conditional Value-at-Risk for different confidence levels - model M1
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Figure 9.20: Value-at-Risk for different confidence levels - model M1
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Table 9.8: Number of assets in optimal portfolio for lexicographic approach (model

M12) with 1758 historical quotations

Number of

1 − α V aR f
opt
2 assets sumn

j=1zj

0.10 -2.00 0.40 16 4

0.15 -2.00 0.45 8 3

0.15 -1.00 0.34 33 18

0.15 -0.50 0.20 61 56

0.50 -0.25 0.10 68 68

The expected portfolio returns for different confidence level α and weight λ and for

the three different historical portfolios are shown in Figure 9.17 and 9.21.

Figures 9.18 and 9.22 shows that the number of securities selected for the optimal

portfolio does not clearly depend either on the confidence level α, or on the size of the

historical input data set. In weighted-sum program the weight λ only slightly influences

the number of selected stock.

Figure 9.23 presents the efficient frontiers of the bi-objective model M1 - conditional

value-at-risk vs. expected return for the three different historical scenarios. The trade-

off between the conditional value-at-risk and expected portfolio return is clearly shown

as a concave efficient frontier.

Figure 9.18 presents the CPU time required to obtain the optimal solution for M1

model for different historical input data set.

The computational time increases with the confidence level α and the size of input

data set.

The examples of nondominated solutions for model M1 with different values of the

confidence level alpha and for historic portfolios (scenarios) are presented in table 9.12.
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Table 9.9: Number of assets in optimal portfolio for lexicographic approach (model

M12) with 500 historical quotations

Number of

1 − α V aR f
opt
2 assets zj sumn

j=1zj

0.01 -10.00 1.2217 3 3

0.01 -5.00 0.9377 10 6

0.01 -4.00 0.8490 10 9

0.01 -3.00 0.7439 13 12

0.01 -2.00 0.6290 17 12

0.01 -1.50 0.5330 23 21

0.01 -1.00 0.3956 30 21

0.01 -0.50 0.1990 31 30

0.01 -0.25 0.0994 31 31

0.05 -10.00 1.2953 1 1

0.05 -5.00 1.2253 5 2

0.05 -4.00 1.1400 9 8

0.05 -3.00 1.0200 13 8

0.05 -2.00 0.8800 19 12

0.10 -3.00 1.1604 10 7

0.15 -2.00 1.1189 14 8

0.20 -2.00 1.2217 7 5

0.25 -1.50 1.2343 8 5
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Figure 9.21: Expected portfolio return for different confidence levels - model M1
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Figure 9.22: Number of assets in the optimal portfolio for 1000, 3500, 4020 historical

input data - model M1
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Figure 9.23: Pareto frontier for the bi-objective model M1 for the three different sce-

nario sizes.
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Figure 9.24: Central processing unit - computational time for model M1 and the three

different historical scenarios.
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Table 9.10: Examples of CPU time for computational experiments for optimal portfolio

for lexicographic approach (model M12) with historical quotations

MIP simplex B-&-B

1 − α V aR f
opt
2 iteration nodes CPU

0.01 -10 1.2217 27 10 110.02

0.01 -5 0.9377 610 192 880.79

0.01 -4 0.8490 3217 1024 5045.62

0.01 -3 0.7439 7779 2300 10272.80

0.01 -2 0.6290 19980 4014 21677.90
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Table 9.11: Solutions results for model M7 and M1 with 4020, 3500, 1000 historical

input data.

Confidence level α 0.99 0.95 0.90 0.75 0.50

input data, Var.=1136, Cons.=1001, Nonz.=118100

CVaR -2.329320 -1.674800 -1.316210 -0.839905 -0.458828

VaR -1.968690 -1.225590 -0.767942 -0.316816 0.120616

Expected portfolio return 0.088178 0.086781 0.077124 0.077459 0.085606

No. of securities in portfolio 16 25 30 30 39

Dual simplex iterations 226 506 948 1716 2202

CPU (a) 0.124 0.202 0.358 0.686 0.951

(1 − α)−1
∑m

i=1 piRi 0.360628 0.449209 0.548270 0.523088 0.579444

No. of non-zero Ri 4 38 86 270 478

Confidence level α 0.99 0.95 0.90 0.75 0.50

input data, Var.=3736, Cons.=3501, Nonz.=332550

CVaR -0.492633 -0.133975 -0.066987 -0.026795 -0.013398

VaR -0.260505 0.000000 0.000000 0.000000 0.000000

Expected portfolio return 0.014985 0.008625 0.008625 0.008625 0.008625

No. of securities in portfolio 37 14 14 14 14

Dual simplex iterations 883 2065 2062 2800 4871

CPU (a) 1.029 2.854 3.385 4.336 8.127

(1 − α)−1
∑m

i=1 piRi 0.232127 0.133975 0.066987 0.026795 0.013397

No. of non-zero Ri 20 56 56 56 56

Confidence level α 0.99 0.95 0.90 0.75 0.50

input data, Var.=4189, Cons.=4021, Nonz.=349555

CVaR -2.039670 -1.106810 -0.733006 -0.312627 -0.156314

VaR -1.464350 -0.570700 -0.183289 0.000000 0.000000

Expected portfolio return 0.040122 0.029419 0.019309 0.014214 0.014214

No. of securities in portfolio 23 34 39 27 27

Dual simplex iterations 582 2217 3414 6058 8019

CPU (a) 0.702 2.730 3.993 9.048 12.854

(1 − α)−1
∑m

i=1 piRi 0.575319 0.536106 0.549717 0.312627 0.156314

No. of non-zero Ri 30 184 384 557 557
(a) CPU seconds for proving optimality on a laptop with Intel Core 2 Duo T9300, 2.5GHz,

RAM 4GB, CPLEX v.11.

198



Table 9.12: Nondominated solutions for the weighted-sum program M1 for different

confidence levels α and for 4020, 3500, 1000 historical input data

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α = 0.99

Var.=4189, Cons.=4021, Nonz.=349555

CVaR -23.6607 -2.1309 -2.0491 -2.0437 -2.0420 -2.0414 -2.0408 -2.0401 -2.0397 -2.0397 -2.0397

VaR -23.6607 -1.6186 -1.5172 -1.5021 -1.4748 -1.4680 -1.4699 -1.4664 -1.4644 -1.4644 -1.4644

Expected return 0.2096 0.0578 0.0459 0.0443 0.0434 0.0430 0.0423 0.0410 0.0401 0.0401 0.0401

No. of assets 1 19 19 20 20 21 21 22 23 23 23

Dual simplex iter. 0 412 609 518 640 730 636 668 693 739 582

CPU 0.173 1.341 0.733 0.561 0.748 1.060 1.045 1.856 0.967 1.950 0.733

(1 − α)−1
∑

m

i=1
piRi 0.0000 0.5123 0.5320 0.5416 0.5672 0.5735 0.5709 0.5737 0.5753 0.5753 0.5753

No. of non-zero Ri 0 30 30 30 31 31 29 30 30 30 30

α = 0.95

Var.=4189, Cons.=4021, Nonz.=349555

CVaR -23.6607 -1.2846 -1.1268 -1.1134 -1.1091 -1.1084 -1.1075 -1.1070 -1.1068 -1.1068 -1.1068

VaR -23.6607 -0.7719 -0.6147 -0.5743 -0.5708 -0.5712 -0.5660 -0.5611 -0.5677 -0.5692 -0.5707

Expected return 0.2096 0.0621 0.0390 0.0349 0.0326 0.0320 0.0310 0.0301 0.0295 0.0295 0.0294

No. of assets 1 32 39 37 34 35 34 35 35 35 34

Dual simplex iter. 0 1232 1426 1388 1745 1797 1784 1780 2148 2013 2217

CPU 0.234 0.780 3.276 0.951 1.872 1.872 1.669 1.840 2.917 2.995 4.118

(1 − α)−1
∑

m

i=1
piRi 0.0000 0.5127 0.5121 0.5391 0.5383 0.5372 0.5415 0.5459 0.5391 0.5376 0.5361

No. of non-zero Ri 0 183 182 184 185 185 186 182 185 186 180

α = 0.90

Var.=4189, Cons.=4021, Nonz.=349555

CVaR -23.6607 -1.0003 -0.7620 -0.7430 -0.7365 -0.7344 -0.7336 -0.7333 -0.7331 -0.7330 -0.7330

VaR -23.6607 -0.4936 -0.2721 -0.2461 -0.2238 -0.2152 -0.2057 -0.1954 -0.1890 -0.1828 -0.1833

Expected return 0.2096 0.0683 0.0332 0.0273 0.0238 0.0221 0.0211 0.0206 0.0200 0.0195 0.0193

No. of assets 1 39 38 40 41 39 40 38 37 38 39

Dual simplex iter. 0 1912 2204 2639 2378 2480 2526 2926 3278 3349 3414

CPU 0.156 1.185 1.404 2.137 1.669 2.340 1.874 2.745 3.463 4.087 4.149

(1 − α)−1
∑

m

i=1
piRi 0.0000 0.5068 0.4899 0.4969 0.5127 0.5193 0.5279 0.5379 0.5441 0.5502 0.5497

No. of non-zero Ri 0 388 384 379 383 380 383 383 383 384 391

α = 0.75

Var.=4189, Cons.=4021, Nonz.=349555

CVaR -23.6607 -0.8647 -0.3461 -0.3206 -0.3151 -0.3140 -0.3131 -0.3128 -0.3127 -0.3126 -0.3126

VaR -23.6607 -0.2573 -0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Expected return 0.2096 0.1077 0.0282 0.0205 0.0178 0.0168 0.0157 0.0152 0.0150 0.0144 0.0142

No. of assets 1 34 52 25 26 27 27 27 27 27 27

Dual simplex iter. 0 3420 4191 4156 3904 3551 3961 4015 4885 6022 6058

CPU 0.171 1.326 2.090 2.496 2.683 2.012 3.416 2.854 5.023 11.856 9.235

(1 − α)−1
∑

m

i=1
piRi 0.0000 0.6074 0.3323 0.3206 0.3151 0.3140 0.3131 0.3128 0.3127 0.3126 0.3126

No. of non-zero Ri 0 1089 723 554 596 549 453 489 553 478 557

α = 0.50

Var.=4189, Cons.=4021, Nonz.=349555

CVaR -23.6607 -0.7286 -0.3386 -0.1802 -0.1631 -0.1586 -0.1574 -0.1569 -0.1564 -0.1564 -0.1563

VaR -23.6607 0.0454 0.0107 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Expected return 0.2096 0.1480 0.0794 0.0310 0.0226 0.0189 0.0176 0.0166 0.0152 0.0149 0.0142

No. of assets 1 20 41 47 25 26 26 27 27 27 27

Dual simplex iter. 0 4176 4715 5400 5031 4401 4310 4756 5611 6899 8019

CPU 0.171 1.185 1.622 2.636 2.418 1.934 2.277 3.042 4.820 9.703 13.104

(1 − α)−1
∑

m

i=1
piRi 0.0000 0.7741 0.3493 0.1802 0.1631 0.1586 0.1574 0.1569 0.1564 0.1564 0.1563

No. of non-zero Ri 0 1729 1806 1112 546 346 547 547 553 553 557
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