PRACA DOKTORSKA

mgr inż. Marcin Madej

KSZTAŁTOWANIE STRUKTURY I WŁASNOŚCI INFILTROWANYCH KOMPOZYTÓW NA OSNOWIE STALI SZYBKOTNĄCEJ

Promotor:

dr hab. inż. Jan Leżański, prof. AGH

KRAKÓW 2007
8. WŁASNOŚCI POROWATYCH KSZTAŁTEK PRZEZNACZONYCH DO INFILTRACJI79
8.1 Własności porowatych wyprask ...……………………………………………...79
8.2 Badania dylatometryczne procesu spiekania porowatych kształtek …………..81
8.3 Własności porowatych spieków …………………………………………………...83
8.3.1 Gęstość względna i porowatość spieków ………………………………………...83
8.3.2 Zmiany objętości porowatych kształtek w procesie spiekania …………..85
8.3.3 Twardość porowatych spieków …………………………………………………86
8.3.4 Mikrostruktura porowatych spieków ……………………………………………87
8.3.5 Rentgenowska analiza fazowa porowatych spieków ……………………..88
8.4 Morfologia kapilar w porowatych wypraskach i spiekach ……………………..89
9. BADANIE WYBRANYCH WŁASNOŚCI FIZYCZNYCH I MECHANICZNYCH
INFILTROWANYCH KOMPOZYTÓW ………………….. …………………...93
9.1 Stopień wypełnienia kapilar, gęstość oraz porowatość kompozytów …………..93
9.2 Twardość infiltrowanych kompozytów ……………………………………………97
9.3 Wytrzymałość na zginanie infiltrowanych kompozytów ………………………98
9.4 Odporność na zużycie cierne i współczynnik tarcia infiltrowanych kompozytów …100
9.5 Wyniki badań odporności na utlenianie w podwyższonych temperaturach i analiza
fazowy produktów utleniania…………………………………………………103
9.6 Badania mikroskopowe i rentgenowska analiza fazowa ……………………..106
9.6.1 Badania struktury za pomocą mikroskopu świetlnego ……………………..106
9.6.2 Mikrotwardość infiltrowanych miedzią kompozytów M50Fe …………..111
9.6.3 Badania mikrostruktury za pomocą mikroskopu skaningowego i mikroanalizatora
rentgenowskiego ………………………………………………………………112
9.6.4 Rentgenowska analiza fazowa …………………………………………………120
10. ANALIZA WYNIKÓW ………………….. …………………...124
10.1 Własności porowatych kształtek …………………………………………………124
10.1.1 Własności porowatych wyprak …………………………………………………124
10.1.2 Analiza dylatometryczna procesu spiekania ………………………………………126
10.1.3 Własności porowatych spieków …………………………………………………128
10.2 Morfologia kapilar porowatych kształtek …………………………………………129
10.3 Wybrane własności fizyczne i mechaniczne infiltrowanych kompozytów ………132
10.3.1 Stopień wypełnienia kapilar, gęstość i porowatość kompozytów …………..132
10.3.2 Twardość infiltrowanych kompozytów …………………………………………..134
10.3.3 Wytrzymałość na zginanie infiltrowanych kompozytów ………………………135
10.3.4 Odporność na zużycie cierne i współczynnik tarcia infiltrowanych kompozytów …138
10.3.5 Odporność na utlenianie w podwyższonych temperaturach …………………140
10.4 Mikrostruktura infiltrowanych kompozytów ………………………………………141
10.5 Podsumowanie ………………………………………………………………………146
10.5.1 Kompozyty stal szybkotnąca – miedź …………………………………………..147
10.5.2 Kompozyty stal szybkotnąca – żelazo – miedź ………………………………..149
10.5.3 Kompozyty stal szybkotnąca – węgiel wolframu – miedź …………………150
11 WNIOSKI ………………………………………………………………………………152
12. LITERATURA …………………………………………………………………………155

WPROWADZENIE

Nowoczesne metody wytwarzania stali szybkotnących i kompozytów na osnowie stali szybkotnących różnych gatunków oparte są na procesach metalurgii proszków. Kompozyty na osnowie stali szybkotnących to materiały odznaczające się dużą odpornością na zużycie cierne, wynikającą przede wszystkim z odporności na zużycie cierne stali szybkotlanej tworzącej osnowę kompozytów. Przez regulację liczby i udziału komponentów oraz ich wzajemnego oddziaływania można wpływać na strukturę i własności kompozytu, w celu uzyskania materiału o regulowanych własnościach, w szczególności o wysokiej odporności na zużycie cierne, dobrym przewodnictwie cieplnym, małym współczynniku tarcia i wysokich własnościach wytrzymałościowych.

Prowadzone obecnie w różnych ośrodkach naukowych [1÷27] badania ukierunkowane są na wytwarzanie kompozytów na osnowie stali szybkotnących o podwyższonej odporności na zużycie cierne oraz na obniżenie kosztów wytwarzania stali szybkotnących i kompozytów na osnowie stali szybkotnących.

Prace prowadzone w celu poprawy odporności na zużycie cierne kompozytów na osnowie stali szybkotnących dotyczą także wpływu dodatków podnoszących pewne własności użytkowe tych kompozytów. Stosowane są następujące dodatki:

- węglik wolframu WC, tytanu TiC, wanadu VC oraz niobu NbC w kompozytach na osnowie stali szybkotnących gatunków M2, M3/2 i T15 spiekanych w próżni lub prasowanych na gorąco [1÷11],
- azotek tytanu w kompozytach na osnowie stali szybkotlanej gatunku M3/2 spiekanych w próżni [1, 2, 9],
- tlenek glinu Al₂O₃ w kompozytach na osnowie stali szybkotlanej gatunku M2, lub M3/2, spiekanych w próżni [1, 2, 10].

Zastosowanie dodatków węglków WC oraz TiC powoduje aktywację procesu spiekania w próżni kompozytów na osnowie stali szybkotnacznych, w wyniku ich reakcji z osnową stali [1-4, 8].

Poszukiwanie sposobu obniżenia kosztów wytwarzania stali szybkotnacznych oraz kompozytów na osnowie stali szybkotlanej polega na:

- dążeniu do opracowania technologii wytwarzania pozwalającej na znaczne zmniejszenie temperatury spiekania, do około 1150°C, przez wprowadzenie węgla
Wprowadzenie

w postaci grafitu dodatków stopowych do proszku stali szybkotnącej, głównie miedzi i fosforu [11÷25],
- zastosowaniu do spiekania takich atmosfer gazowych, np. zdysocjowanego amoniaku [27, 28],
- zastosowaniem procesu infiltracji do wytwarzania kompozytów na osnowie stali szybkotnącej z dodatkiem miedzi [29÷32], gdzie jako porowate kształtki do infiltracji stosowane są wypraski lub pieki ze stali szybkotnej lub stali szybkotnej z dodatkami.

Wykorzystując nieliczne informacje i dane zawarte w specjalistycznej literaturze dotyczące infiltrowanych miedzi kompozytów na osnowie stali szybkotnej, uznano za celowe podjęcie badań dotyczących wytwarzania takich kompozytów. Przedmiotem zainteresowania są infiltrowane miedzą kompozyty na osnowie stali szybkotnej gatunku M3/2, z dodatkami innych komponentów, w postaci proszku węgliku WC oraz proszku żelaza. Przez regulację liczby i udziału objętościowego składników kompozytu, oraz w wyniku wyboru metody i parametrów wytwarzania, oddziaływano na strukturę i własności fizyczne a także mechaniczne kompozytów w celu wytworzenia materiału odpornego na zużycie cierne, w szczególnie trudnych warunkach pracy.

W części kompilacyjnej rozprawy przedstawiono stan zagadnień dotyczących kompozytów na osnowie stali szybkotnej o podwyższonej odporności na zużycie cierne i wytwarzanych metodą infiltracji, charakterystyki i metod wytwarzania stali szybkotnych oraz opisano sposoby i czynniki wpływające na przebieg infiltracji.
1. **Kompozyty**

1.1 **Ogólna charakterystyka kompozytów**

Kompozyty stosowane w technice od wieków nie doczekały się powszechnie akceptowanej definicji. W Polsce używane są różne definicje, jednak najszerzej stosowana jest definicja podana przez Encyklopedię Powszechną, wydaną przez PWN w 1988 roku [33]. Brzmi ona: „Kompozyt to materiał utworzony z co najmniej dwóch komponentów (faz) o różnych własnościach w taki sposób, że ma własności lepsze i (lub) własności nowe (dodatkowe) w stosunku do komponentów użytych osobno lub wynikających z prostego sumowania tych własności – kompozyt jest materiałem zewnętrznie monolitycznym, jednakże z wyraźnie widocznymi granicami między komponentami”.

W literaturze światowej brak jest zgodności w sposobie definiowania kompozytów. Można wyróżnić cztery elementy wspólne poszczególnych definicji [34÷36]:

1. kompozyt jest materiałem wytworzonym przez człowieka,
2. kompozyt musi składać się z co najmniej dwóch różnych pod względem chemicznym materiałów z wyraźnie zaznaczonymi granicami rozdziału między tymi komponentami (fazami),
3. komponenty tworzą kompozyt przez udział w całej objętości,
4. kompozyt powinien mieć własności różne od jego komponentów.

Definicja ta wyklucza tzw. kompozyty naturalne, a także materiały warstwowe.

Ze względu na rodzaj osnowy kompozyty dzieli się na [34]:

1. kompozyty o osnowie metalicznej,
2. kompozyty o osnowie niemetalicznej (polimerowej, ceramicznej i półprzewodnikowej).

Ze względu na wpływ kształtu i wymiarów komponentu umacniającego na mechanikę pracy, kompozyty konstrukcyjne dzieli się na trzy zasadnicze grupy:

1) kompozyty umacniane włóknami:
2) kompozyty umacniane dyspersyjnie,
3) kompozyty umacniane dużymi cząstkami.
Kompozyty umacniane włóknami

W kompozytach umacnianych włóknami obciążenia przenoszone są głównie przez włókna. Włókna stosowane do ich produkcji mogą być ciągłe lub nieciągłe. Aby uzyskać efekt umocnienia minimalny udział objętościowy włókien w kompozytach musi przekroczyć tzw. objętość krytyczną V_{kryt}. Udział objętościowy włókien mieści się zazwyczaj w przedziale od kilku do około 70%, a średnica włókien jest zazwyczaj mniejsza od 15µm. Wytrzymałość kompozytu umacnianego włóknami jest funkcją wytrzymałości i udziału objętościowego poszczególnych komponentów, czyli włókien i osnowy. Własności użytkowe kompozytów w dużym stopniu zależą od zjawisk zachodzących na granicy włókno – osnowa, gdzie tworzy się wiązanie, przenoszące obciążenia między tymi komponentami kompozytu [34, 37].

Kompozyty umacniane dyspersyjnie

Średni wymiar cząstek dyspersyjnych wynosi od 0,01 µm do 0,1 µm [34]. Udział objętościowy tych cząstek w kompozycie nie przekracza 15%. Efektywność umocnienia cząstkami dyspersyjnymi zależy od ich udziału objętościowego, rodzaju, wielkości, kształtu, oraz od wzajemnego oddziaływania dyslokacji z cząstkami [34, 37].

Rozróżnia się dwa sposoby oddziaływania dyslokacji z cząstkami dyspersyjnymi:

- dyslokacje mogą poruszać się tylko w sieci krystalicznej osnowy,
- dyslokacje mogą przecinać cząstki dyspersyjne.

Przemieszczającą się dyslokacją, która napotyka niekoherentne cząstki fazy umacniającej, wygina się wokół nich i po całkowitym ich minięciu pozostawia pętlę dyslokacyjną wokół tej cząstki, zgodnie z mechanizmem Orowana [34]. Dalszy ruch dyslokacji wymaga przyłożenia wyższego naprężenia. Obserwuje się wówczas zwiększenie granicy plastyczności kompozytu. Wprowadzenie do osnowy kompozytu cząstek dyspersyjnych powoduje zmniejszenie skłonności materiału do pełzania oraz zwiększenie odporności materiału na pełzanie w szerokim zakresie temperatur, sięgającym nawet do około 80% bezwzględnej temperatury topnienia osnowy.

Kompozyty umacniane dużymi cząstkami

Kompozyty umacniane dużymi cząstkami to materiały, w których udział objętościowy cząstek o wielkości powyżej 1 µm może sięgać nawet do 90% objętościowych. W kompozytach tych obciążenia przenoszone są przez osnowę i cząstki.
Umocnienie kompozytów dużymi cząstkami wynika z:

- oddziaływania sprężystego cząstek z osnową,
- ograniczenia ruchu dyslokacji,
- utworzenia ciągłego szkieletu cząstek fazy umacniającej.

Zaletami zastosowania cząstek do umacniania kompozytów są [34]:

- znacznie mniejszy koszt wytwarzania kompozytu w porównaniu do kompozytów umacnianych włóknami,
- możliwość wytwarzania metodami metalurgicznymi, takimi jak metalurgia proszków i odlewanie,
- własności niejednokrotnie zbliżone do izotropowych.

Osnową kompozytów umacnianych dużymi cząstkami mogą być różne metale lub ich stopy. Cząstki umocniające mogą stanowić tlenki, węglinki oraz fazy wprowadzane w celu uzyskania innych, dodatkowych własności [34].

1.2 Kompozyty na osnowie stali szybkotnących umacniane cząstkami

Do grupy materiałów kompozytowych umacnianych cząstkami zaliczane są kompozyty na osnowie stali szybkotnącej o zwiększonej odporności na zużycie cierne z dodatkami węglków WC, TiC, NbC, oraz kompozyty z dodatkiem miedzi, miedzi fosforowej i żelaza o dodatkowych i innych własnościach.

1.2.1 Kompozyty o zwiększonej odporności na zużycie cierne

Badania opisane w literaturze, prowadzone w celu opracowania kompozytów na osnowie stali szybkotnącej o podwyższonej odporności na zużycie cierne, obejmowały zagadnienia wpływu dodatków węglków, azotków oraz tlenku glinu [1÷11].

W tabeli 1.1 przedstawiono stosowane dodatki oraz wybrane parametry wytwarzania tych kompozytów [2].
Tabela 1.1 Cząstki umacniające stosowane do poprawy odporności na zużycie cierne oraz skrawalności kompozytów na osnowie stali szybkotnących [2]

<table>
<thead>
<tr>
<th>Rodzaj osnowy</th>
<th>Rodzaj i udział umocnienia</th>
<th>Metoda wytwarzania</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>Al₂O₃</td>
<td>Prasowanie na zimno, spiekanie w próżni</td>
</tr>
<tr>
<td></td>
<td>TiC</td>
<td>Formowanie wtryskowe</td>
</tr>
<tr>
<td></td>
<td>VC</td>
<td>Prasowanie na zimno, spiekanie w próżni</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>Prasowanie na zimno, spiekanie w próżni lub prasowanie izostatyczne na gorąco</td>
</tr>
<tr>
<td>M3/2</td>
<td>Al₂O₃ pokrywane TiN</td>
<td>Prasowanie na zimno, spiekanie w próżni</td>
</tr>
<tr>
<td></td>
<td>TiN</td>
<td>Prasowanie na zimno, spiekanie w próżni, często z dodatkiem CuP</td>
</tr>
<tr>
<td></td>
<td>TiC</td>
<td>Prasowanie na zimno, spiekanie w próżni, często z dodatkiem MnS</td>
</tr>
<tr>
<td></td>
<td>VC</td>
<td>Prasowanie na zimno, spiekanie w próżni, często z dodatkiem CuP</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>Prasowanie na zimno, spiekanie w próżni lub prasowanie izostatyczne na gorąco, często stosowany jest dodatek Co</td>
</tr>
<tr>
<td>T15</td>
<td>TiC</td>
<td>Prasowanie na zimno, spiekanie w próżni lub atmosferze N₂-H₂, często z dodatkami MnS i TiC</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>Prasowanie izostatyczne na gorąco, często z dodatkiem 4,6%Mo i 0,3%Si</td>
</tr>
</tbody>
</table>

1.2.2 Infiltrowane kompozyty na osnowie stali szybkotnej

Nieliczne publikacje dotyczą zastosowania procesu infiltracji do wytwarzania kompozytów na osnowie stali szybkotnej [29÷32]. Greetham prowadził badania dotyczące wytwarzania kompozytów metodą infiltracji stopu na osnowie miedzi, lub czystej miedzi, do porowatych kształtek ze stali szybkotnej gatunku M3/2 i stali szybkotnej z dodatkiem żelaza [29, 30]. Dodatek żelaza do proszku stali szybkotnej gatunku M3/2 stosowano w celu obniżenia kosztów wytwarzania tych kompozytów i zwiększenia zgrubości w czasie prasowania. Porowate kształtki do infiltracji wytwarzano metodą prasowania pod ciśnieniem 620 MPa i spiekania w temperaturach: 1120°C i 1150°C. Nakładki do infiltracji przygotowano ze stopu na osnowie miedzi: Cu-0,9Ni-0,9Mn-5,0Fe-1,3Zn oraz z czystej miedzi. Prowadzone badania wykazały tylko nieznaczne zmiany
wymiarów kształtek w czasie spiekania i infiltracji. Infiltrację prowadzono w piecu próżniowym, w temperaturach: 1120 i 1150°C, przez 30 minut. Stwierdzono że dodatek żelaza korzystnie wpływa na proces infiltracji; kąt zwilżania żelaza przez miedź w temperaturze 1150°C jest w przybliżeniu równy 0. Uzyskane w wyniku infiltracji, w temperaturze 1150°C, kompozyty na osnowie stali szybkotnącej były prawie pozbawione porowatości. Osiągane wyniki dotyczące zastosowania do infiltracji stopu i czystej miedzi były zbliżone, co pozwoliło wnioskować o celowości stosowania czystej miedzi do infiltracji kompozytów na osnowie stali szybkotnącej gatunku M3/2. Greetham zaproponował i przeprowadził pierwsze testy dotyczące zastosowania tych kompozytów na gniazda i prowadnice zaworów.

Badania Greethama rozwinął Rodrigo H. Palma stosując do wytwarzania porowatych kształtek do infiltracji proszki stali szybkotnących gatunków T15 i M42 [31], jednak w czasie badań, ze względu na trudności z uzyskiwaniem zadowalającego stopnia wypełnienia kapilar porowatych kształtek wykonanych ze stali M42 zrezygnowano z publikacji wyników dotyczących tej grupy kompozytów. Porowate kształtki do infiltracji ze stali szybkotnącej i stali szybkotnącej z dodatkiem proszku grafitu wytwarzano metodą prasowania pod ciśnieniem 800 MPa. Infiltrację prowadzono metodą nakładkową. Nakładki do infiltracji przygotowano ze stopu Cu-3,1Fe-3,5Mo. Dodatek żelaza do miedzi stosowano w celu zapobiegania erozji porowatej kształtki ze stali szybkotnej. Optymalną temperaturę infiltracji ustalono na 1150°C, a czas infiltracji na 20 minut. Stosowano piec z atmosferą składającą się z 90%N₂-10%H₂. W pracy tej zamieszczono wyniki badań dotyczących infiltracji miedzi do porowatych kształtek ze stali szybkotnej gatunku T15. W wyniku infiltracji uzyskano kompozyty o gęstości względnej wynoszącej 95±96%. Struktura kompozytów składa się z osnowy ze stali szybkotnej z rozmieszczonymi w niej, bardzo drobnymi, węglikami typu MC i M₆C oraz obszarów stopu miedzi i porów. Ze względu na rodzaj zastosowanej atmosfery, stwierdzono obecność w mikrostrukturze węglikoazotków typu MC₀,₃N₀,₇ oraz zwiększony udział austenitu szczątkowego w osnowie stali szybkotnej.

Stosowany powszechnie przebieg obróbki cieplnej stali szybkotnych, wytwarzanych zarówno w sposób konwencjonalny jaki i techniką metalurgii proszków, przedstawiony w podrozdziale 2.5 można zastosować do infiltrowanych miedzi kompozytów na osnowie stali szybkotnej. Zalecana temperatura austenityzowania, ze względu na obecność w kompozycie miedzi, której temperatura topnienia wynosi 1083°C, wynosi 1050°C [29±31].
2. **Stale szybkotnące**

2.1 **Ogólna charakterystyka stali szybkotnących**

Stale szybkotnace są znane już od ponad stu lat [38÷43]. Opracowana przez Mushet’a, w drugiej połowie XIX wieku, stal o składzie Fe-2C-2.5Mn-7W jest uważana za pierwszą stal szybkotnącą [38]. Stale szybkotnace należą do tak zwanych wysoko-stopowych stali specjalnych, które można opisać wzorem Fe – C – X, gdzie X oznacza grupę pierwiastków stopowych, takich jak: Cr, W, Mo, V i Co. Określenie „szybkotnące” wskazuje na ich zastosowanie do skrawania materiałów z dużymi prędkościami. Jest to możliwe dzięki temu, że wytrzymują one wysokie temperatury pracy, 550÷600°C, bez utraty twardości, gdyż są odporne na odpuszczanie. Własności te wynikają z ich składu chemicznego oraz zastosowanej obróbki cieplnej. Rysunek 2.1 przedstawia zestawienie stosowanych materiałów na narzędzia do obróbki skrawaniem i ogólną charakterystykę ich własności:

Rys 2.1 Zakresy występowania podstawowych własności materiałów narzędziowych [40]
Zawartość pierwiastków stopowych w stalach szybkotnących wytwarzanych metodą metalurgii konwencjonalnej dochodzi do 30%, natomiast zastosowanie technologii metalurgii proszków umożliwia dalsze zwiększenie zawartości pierwiastków stopowych w tych stalach [41]. Porównanie zawartości pierwiastków stopowych w stalach wytwarzanych w sposób klasyczny i metodą metalurgii proszków przedstawiono w tabeli 2.1.

Tabela 2.1 Zawartości pierwiastków stopowych w stalach szybkotnących konwencjonalnych i spiekanych [38, 41]

<table>
<thead>
<tr>
<th>Pierwiastek stopowy</th>
<th>Stal konwencjonalna</th>
<th>Stal spiekana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[%]</td>
<td>[%]</td>
</tr>
<tr>
<td>C</td>
<td>0,8±1,4</td>
<td>0,6±2,3</td>
</tr>
<tr>
<td>Cr</td>
<td>4,0</td>
<td>3,5±5,0</td>
</tr>
<tr>
<td>W</td>
<td>2,0±19,5</td>
<td>0±20,0</td>
</tr>
<tr>
<td>Mo</td>
<td>5,0±10,0</td>
<td>0±9,0</td>
</tr>
<tr>
<td>V</td>
<td>1,2±4,5</td>
<td>1,0±6,0</td>
</tr>
<tr>
<td>Co</td>
<td>0±10,0</td>
<td>0±15,0</td>
</tr>
</tbody>
</table>

Projektując nowy gatunek stali szybkotnącej należy zbilansować jej skład chemiczny, co oznacza związywanie zawartości węglikotwórczych pierwiastków stopowych i zawartości węgla, według wzoru (1) [39]:

\[
C_E = C + W + Mo + V, \quad \text{masowe}
\]

gdzie:

- \(C_E\) – równoważnik węgla,
- \(W, Mo, V\) – zawartości odpowiednich pierwiastków w % masowych.

Zgodnie ze wzorem (1) równoważnik węgla \(C_E\) bilansuje się z zawartością pierwiastków węglikotwórczych, takich jak: wolfram, molibden i wanad.

Obok składu chemicznego, na własności stali szybkotnących ma wpływ także metoda jaką zostały one wytworzone. Stosowane obecnie metody produkcji stali szybkotnących można podzielić na trzy grupy [39, 41]:

1. wytwarzanie przez odlewanie metodą traconego wosku,
2. wytwarzanie przez odłanianie wlewka i następującą po tym przeróbkę plastyczne na gorąco,
3. wytwarzanie na drodze metalurgii proszków.
Stale szybkotnące

Na podstawie dotychczasowej wiedzy metaloznawczej i obserwacji zachowania się wyrobów wytworzonych ze stali szybkotnących w czasie ich eksploatacji, stwierdzono, że właściwości użytkowe spiekanych stali szybkotnących są lepsze niż stali konwencjonalnych, co wynika przede wszystkim z ich drobnoziarnistej i jednorodnej struktury [38, 41]. Osiągnięcie w stalach wytworzonych w sposób konwencjonalny struktury zbliżonej do jednorodnej wymaga zastosowania kosztownych procesów obróbki cieplnej: hartowania, kilkukrotnego odpuszczania, wymrażania oraz wyzarzania zmiękczającego. Zastosowanie na szeroką skalę metody ciągłego odlewnia stali (COS) w ostatnich latach nie wpłynęło znacząco na poprawę właściwości otrzymanych w ten sposób stali szybkotnących. W stalach wytworzonych w sposób konwencjonalny węglik tworzą łańcuchy, strukturę pasową, są duże i rozmieszczone nierównomiernie. Cząstki węglów w tych stalach mają zróżnicowaną wielkość i kształt, powoduje to defekty podczas obróbki cieplnej, rozrzut właściwości i obniża właściwości mechaniczne – szczególnie ciągliwość i szlifowalność stali. Małe rozmiary cząstek proszku i duża szybkość jego chłodzenia (10⁵÷10⁶K/s) po rozpylaniu powodują, że zjawisko segregacji zostaje praktycznie wyeliminowane. Każda cząstka proszkowa jest w istocie mikrowlewkiem pozbawionym wad makrowleka, to jest segregacji i likwacji. Faza węglowozaśredniej wielkości 0,6÷0,8 μm jest rozmieszczona w formie drobnej siatki na granicach ziarn i w przestrzeniach międzydendrytycznych. Niektóre stale szybkotnące ze względu na wysoką zawartość pierwiastków stopowych można wytwarzać jedynie metodą metalurgii proszków np. stal ASP 60. Maksymalna wytrzymałość na zginanie spiekanych sali szybkotnących, po obróbce cieplnej o twardości około 65 HRC może osiągać około 4000 MPa a konwencjonalnych maksymalnie około 2500 MPa (rys. 2.2).

Rys. 2.2 Zależność wytrzymałości na zginanie od twardości konwencjonalnych i spiekanych stali szybkotnących gatunku T15 [40]
Stale szybkotnące

W porównaniu z konwencjonalnymi spiekane stale szybkotnące:

- można łatwiej formować plastycznie na gorąco,
- można łatwiej obrabiać mechanicznie,
- są bardziej podatne na obróbkę cieplną,
- po hartowaniu i odpuszczeniu wykazują dużą stabilność wymiarów.

Zmiany wymiarów spiekanych stalach szybkotnych, zachodzące w wyniku przemiany martentyzycznej oraz odpuszczenia, można przewidzieć i w przeciwieństwie do stali konwencjonalnych łatwiej uwzględnić w naddatkach na szlifowanie [38, 40]. Stale szybkotnące wytwarzane na drodze metalurgii proszków odznaczają się lepszą szlifowalnością niż stale konwencjonalne o tym samym składzie chemicznym, przy czym stale wytwarzane metodą prasowania izostatycznego na gorąco wykazują lepszą podatność na szlifowanie niż stale szybkotnące spiekane w próżni [40]. Narzędzia wykonane ze spiekanych stali szybkotnych wykazują na ogół lepsze własności skrawne od narzędzi wykonanych ze stali konwencjonalnych o tym samym składzie chemicznym.

Mimo znacznie lepszych własności użytkowych spiekanych stali szybkotnych w porównaniu ze stalami konwencjonalnymi, ich szersze zastosowanie jest ograniczone wysoką ceną, która może wynikać z produkcji na mniejszą skalę a co za tym idzie z wysokich jednostkowych kosztów wytwarzania. Jednakże jak wynika z analiz relacji cen konwencjonalnych i spiekanych stali szybkotnych dokonanych dla okresu ostatnich trzydziestu lat można stwierdzić, że z upływem czasu nastąpiło znaczne zbliżenie cen, a w przypadku niektórych gatunków stali szybkotnych ich wyrównanie (rys. 2.3) [40].

Rys 2.3 Porównanie zmian cen stali szybkotnej konwencjonalnej i spiekanej [40]
Stale szybkotnące

Ponadto z analizy cen katalogowych wynika, że niektóre wyroby, jak np. wielostrzowe płytki narzędziowe wykonane ze spiekanych stali szybkotnących, są w końcowym rozrachunku tańsze o około 40% od analogicznych wyrobów wykonanych ze stali konwencjonalnych [40].

2.2 Rola węgla i pierwiastków stopowych w stalach szybkotnących

Składniki stopowe pełnią w spiekanych stalach szybkotnących podobną funkcję jak w stalach wytwarzanych według technologii konwencjonalnej.

Węgiel w połączeniu z pierwiastkami stopowymi jest składnikiem koniecznym do utworzenia faz węglikonickich, a jego zawartość w typowych gatunkach stali szybkotnących mieści się w zakresie 0,6 ± 1,6%. W stalach wytwarzanych w sposób konwencjonalny zawartość węgla rzadko przekracza 1,25%. Na poszczególnych etapach produkcji stali szybkotnących zmienia się stosunek zawartości węgla w osnowie i fazach węglikonickich.

W stanie wyżarzonym węgiel związany jest w węglitkach, ferryt praktycznie nie zawiera węgla. W stali szybkotnaczej w stanie po ulepszaniu cieplnym, węgiel w większości związany jest w węglitkach, a tylko niewielka jego część jest rozpuszczona w osnowie. W czasie austenityzowania węglitki ulegają rozpuszczeniu w austenitycznej osnowie stali, co powoduje wzbogacenie jej w węgiel. Efektywność wpływu węgla na własności stali jest największa, jeżeli jego zawartość odpowiada stechiometrycznemu zapotrzebowaniu, niezbędnemu do uformowania węglitków stopowych w stali w stanie po ulepszaniu cieplnym, zgodnemu ze wzorem (1). To, jakie węglitki i w jakich iloścach występują w stali szybkotnaczej zależy od jej składu chemicznego i parametrów obróbki cieplnej. Mogą występować następujące węglitki typu: M₆C, M₁₂C₆, MC, M₂C i M₃C. Porównanie twardości poszczególnych typów węglitków oraz martenzytu przedstawiono na rysunku 2.4 [38].

![Rys. 2.4 Twardość węglitków występujących w mikrostrukturze stali szybkotnaczych [38]](image-url)
Stale szybkotnące

Węgiel rozpuszczony w austenicie silnie obniża temperaturę początku przemiany martenzytycznej M\textsubscript{S} i temperaturę końca przemiany martenzytycznej M\textsubscript{f}, natomiast nie wpływa na temperatury charakterystyczne dla przemiany bainitycznej. Wprowadzenie dodatku węgla do spiekanych stali szybkotnących powoduje rozrost ziarn w czasie austenityzowania oraz zwiększenie zawartości austenitu szczątkowego po zahartowaniu. Efekty te można usunąć prowadząc trzykrotnie odpuszczanie [38÷43]. Dodatek węgla obniża wyraźnie temperaturę linii solidus stali, co powoduje obniżenie maksymalnej temperatury do jakiej można nagrzeć stal podczas hartowania. Dodatek 0,1% węgla obniża temperaturę solidus o ok. 9÷10°C [38]. Nadmierne zwiększanie zawartości węgla w stali szybkotnającej powoduje pojawienie się fazy ciekłej na granicach ziarn austenitu w czasie austenityzowania.

Stal szybkotnacz gatunku M2 zawiera 0,85% węgla, co według wzoru (1) pozwala na zbilansowanie zawartości takich pierwiastków, jak: wanad, molibden i wolfram. W stali M2 i M3/2 występują węglki typu MC i M\textsubscript{6}C. Dodatek 0,25% węgla do stali M2 powoduje powstanie w strukturze węglków typu M\textsubscript{23}C\textsubscript{6}, głównie Cr\textsubscript{23}C\textsubscript{6}. Na rysunku 2.5 przedstawiono fragment pseudopodwójnego wykresu równowagi dla stali szybkotnacej gatunku M2, na którym zaznaczono skład fazowy stali, w zależności od temperatury i zawartości węgla.

![Rys. 2.5 Pseudopodwójny wykres równowagi faz stali szybkotnacej gatunku M2 [38]](image)

Stal M2 bez dodatku węgla po hartowaniu zawiera 20% austenitu szczątkowego podczas gdy w stanie zahartowanym, w strukturze tej stali z dodatkiem 0,25% węgla udział austenitu
szczątkowego zwiększa się do 55%. Temperatura austenityzowania stali gatunku M2 o standardowej zawartości węgla 0,85% wynosi 1220°C. Zwiększenie zawartości węgla do 1,1% powoduje konieczność obniżenia temperatury austenityzowania do 1190°C ze względu na obniżenie temperatury solidus. Dodatek 0,25% węgla do stopu o składzie stali M2 powoduje obniżenie temperatury początku przemiany martensytycznej Ms z 182°C do 104°C \[38\].

Chrom zwiększa hartowność i ciągliwość stali szybkotnących oraz poprawia ich odporność na utlenianie. Stale szybkotnace bez dodatku chromu są osiem razy bardziej podatne na tworzenie zgorzeliny, niż stale szybkotnace z dodatkiem 4% chromu \[39, 41\]. Chrom zwiększa efekt twardości wtórnej, gdyż hamuje wydzielenie się węglków, przez co mikrostruktura stali jest bardziej stabilna podczas pracy w podwyższonych temperaturach. Zwiększenie zawartości chromu powoduje zwiększenie udziału austenitu szczątkowego. Węgliki chromu rozpuszczają się podczas austenityzowania jako pierwsze, wzbogacając osnowę w węgiel. Tlenki chromu zawarte w proszku stali szybkotnącej praktycznie nie ulegają redukcji, nawet w czasie spiekania w próżni \[38\].

Molibden i wolfram pełnią podobne funkcje w spiekanych stalach szybkotnących, przy czym 1% masowy molibdenu jest równoważony przez 1,6÷2% wolframu. Różnica w cenie i dostępności sprawiła, że w pewnym okresie na rynku dominowały stale szybkotnace wolframowe, oznaczane powszechnie literą T, a w Wielkiej Brytanii jako BT. Pierwiastki te nadają stalom szybkotnacym żarowytrzymałość i twardość w podwyższonych temperaturach. Obydwa przyczyniają się do występowania zjawiska twardości wtórnej. Molibden, wyraźniej od wolframu, obniża temperaturę solidus przez co zawęża okno spiekania stali molibdenowych. Powoduje to trudności podczas ich spiekania związane z koniecznością ścisłej kontroli temperatury spiekania w piecu z dokładnością do kilku stopni. Dodatek molibdenu do stali wolframowych zwiększa zagęszczenie w czasie spiekania. W przeważającej części wolfram i molibden tworzą węgliki typu M₆C, np. Fe₃W₃C, Fe₄W₂C i złożone (Fe, W, Mo)₆C. Skład chemiczny pierwotnych węglków w stalach szybkotnaczych M2 i M3/2 przedstawiono w tabeli 2.2 \[51\].
Tabela 2.2 Skład chemiczny pierwotnych węglików w stalach szybkoczących M2 i M3/2 [51]

<table>
<thead>
<tr>
<th>Gatunek stali</th>
<th>Typ węglika</th>
<th>Fe</th>
<th>Cr</th>
<th>W</th>
<th>V</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>MC</td>
<td>18,2</td>
<td>6,0</td>
<td>7,3</td>
<td>53,7</td>
<td>14,8</td>
</tr>
<tr>
<td>M2</td>
<td>M6C</td>
<td>49,5</td>
<td>5,3</td>
<td>18,1</td>
<td>7,1</td>
<td>20,0</td>
</tr>
<tr>
<td>M3/2</td>
<td>MC</td>
<td>4,0</td>
<td>4,4</td>
<td>9,0</td>
<td>66,3</td>
<td>16,3</td>
</tr>
<tr>
<td>M3/2</td>
<td>M6C</td>
<td>50,3</td>
<td>4,7</td>
<td>16,5</td>
<td>6,9</td>
<td>21,6</td>
</tr>
</tbody>
</table>

Wolfram i molibden mogą tworzyć także metastabilne węgliki typu M₂C, które w trakcie chłodzenia reagują z żelazem z osnowy stali, tworząc węgliki typu M₆C. Badania prowadzone przez producentów proszków stali szybkoczących wykazały, że stosunek masowy wolframu do molibdenu 1/1,6 w składzie chemicznym stali szybkoczącej zwiększa odporność stali na odwęglanie w czasie spiekania [38, 41].

Wanad jest stosowany jako dodatek stopowy we wszystkich gatunkach stali szybkoczących, a jego zawartość zmienia się w przedziale od 1% do nawet 6%. Głównym zadaniem wanadu w stalach szybkoczących jest wytworzenie bardzo twardych i stabilnych węglików typu MC, takich jak V₄C₃ lub V₇C₆. Węgliki te zapewniają bardzo dobrą skrawalność, wynikającą z wysokiej odporności na zużycie cierne. Dodatek 1% wanadu wymaga dodatku węgla 0,176% [38]. Ze względu na stabilność węglików wanadu, węgiel w nich zawarty nie powoduje utwardzenia osnowy w czasie obróbki cieplnej. Stabilność węglików oznacza niewielkie rozpuszczanie w austenicie. Węgliki wanadu wydzielają się jako pierwsze w czasie krzepnięcia stali. Wanad hamuje możliwość powstawania eutektyk w czasie krzepnięcia. Całkowite zablokowanie powstawania eutektyk jest niekorzystne, gdyż ogranicza ilość powstających węglików typu M₆C, istotnych w procesie obróbki cieplnej stali szybkoczących. W związku z tym w stalach wolframowych zaleca się dodawanie 1% wanadu, a w stalach molibdenowych od 2% do 3%. W stalach odlewanych wyższa zawartość wanadu utrudnia przeróbkę plastyczną tych stali i późniejszą obróbkę cieplną. W stalach szybkoczących wytwarzanych według technologii metalurgii proszków zwiększenie zawartości wanadu nie stanowi problemu, istnieje jednak konieczność zbilansowaniu zawartości wanadu i węgla. Zawartość wanadu wpływa na udział objętościowy węglików w stalach szybkoczących oraz na udziały objętościowe poszczególnych typów węglików [38].

Kobalt samodzielnie nie tworzy węglików, pomimo to jest składnikiem stopowym wielu stali szybkoczących, w tym także spiekanych. Kobalt rozpuszcza się w osnowie
Stale szybkotnące

Krzem, przy zawartości najczęściej ok. 0,3% masowych, sprzyja wystąpieniu zjawiska twardości wtórnej, nie powodując jednocześnie zmniejszenia plastyczności stali. Pierwiastek ten rozpuszcza się w osnowie oraz podwyższa rozpuszczalność w niej węgla, dzięki czemu stał po hartowaniu ma wyższą twardość. Wpływ krzemu na własności stali może się zmienić w przypadku obecności w stali azotu.

Niob i tytan. Niob ma wpływ podobnie jak wanad na własności stali, tworzy węgliki typu MC i może zastępować wanad w złożonych węglikach typu M₆C. Tytan w niektórych stalach zachowuje się podobnie do wanadu. Tworzy węgliki TiC, a przy zawartości 1% wagowych całkowicie hamuje powstawanie eutektyki w czasie krzepnięcia.

Tlen. Zasadniczą różnicę w składzie chemicznym pomiędzy stalami wytwarzanymi w sposób klasyczny a stalami wytwarzanymi według technologii metalurgii proszków stanowi zawartość tlenu w stalach spiekanych. Tlen jest niepożądanym składnikiem rozpylanych proszków stali szybkotnących. W warunkach spiekania, ze względu na dostatecznie wysoką temperaturę następuje redukcja tlenu węglem zawartym w stali, co wiąże się z obniżeniem jego zawartości. Wraz ze wzrostem zawartości tlenu w proszku rosną liniowo straty węgla podczas spiekania.

Kierunek i intensywność wpływu pierwiastków stopowych na podstawowe własności stali szybkotnących przedstawiono w tabeli 2.3 [42, 43].
Tabela 2.3 Kierunek i intensywność wpływu podstawowych pierwiastków stopowych na własności stali szybkotnących [42]

<table>
<thead>
<tr>
<th>Właściwości</th>
<th>Pierwiastki stopowe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Węglikotwórcze</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>Odporność na ścieranie</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>Twardość w podwyższonych temperaturach</td>
<td>↑↑</td>
</tr>
<tr>
<td>Ciągliwość</td>
<td>↓</td>
</tr>
<tr>
<td>Odporność na zmianę kształtu*</td>
<td>↑↑</td>
</tr>
<tr>
<td>Obrabialność</td>
<td>↓↓↓</td>
</tr>
</tbody>
</table>

Gdzie:
- ↓↓↓ - bardzo silne obniżenie,
- ↓↓ - silne obniżenie,
- ↓ - słabe obniżenie,
- ↑↑↑ - bardzo silne podwyższenie,
- ↑↑ - silne podwyższenie,
- ↑ - słabe podwyższenie.

* w przypadku narzędzi do przeróbki plastycznej

Zestawienie składów chemicznych wybranych stali szybkotnących produkowanych na świecie metodami metalurgii proszków i w sposób konwencjonalny przedstawiono w tabeli 2.4.
Tabela 2.4 Wybrane stale szybkotnące produkowane według technologii metalurgii proszków i sposobem konwencjonalny, wg ASTM [44]

<table>
<thead>
<tr>
<th>ASTM</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Cr</th>
<th>W</th>
<th>Mo</th>
<th>V</th>
<th>Co</th>
<th>Inne</th>
</tr>
</thead>
<tbody>
<tr>
<td>T15PM</td>
<td>1.60</td>
<td>0.30</td>
<td>0.30</td>
<td>4.25</td>
<td>12.25</td>
<td>0.75</td>
<td>5.00</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>T15</td>
<td>1.55</td>
<td>0.30</td>
<td>0.30</td>
<td>4.00</td>
<td>12.25</td>
<td>0.75</td>
<td>4.80</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>M7N</td>
<td>1.00</td>
<td>0.30</td>
<td>0.40</td>
<td>3.60</td>
<td>1.60</td>
<td>8.55</td>
<td>1.90</td>
<td>-</td>
<td>0.045 N</td>
</tr>
<tr>
<td>M52</td>
<td>0.90</td>
<td>0.30</td>
<td>0.30</td>
<td>4.00</td>
<td>1.15</td>
<td>4.50</td>
<td>1.95</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M50</td>
<td>0.83</td>
<td>0.30</td>
<td>0.50</td>
<td>4.10</td>
<td>-</td>
<td>4.20</td>
<td>1.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M48</td>
<td>1.55</td>
<td>0.20</td>
<td>0.40</td>
<td>4.00</td>
<td>10.00</td>
<td>5.25</td>
<td>3.10</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>M42</td>
<td>1.08</td>
<td>0.30</td>
<td>0.45</td>
<td>3.85</td>
<td>1.50</td>
<td>9.50</td>
<td>1.20</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>1.33</td>
<td>0.25</td>
<td>0.30</td>
<td>4.50</td>
<td>5.50</td>
<td>4.50</td>
<td>3.85</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>1.45</td>
<td>0.25</td>
<td>0.25</td>
<td>4.50</td>
<td>5.50</td>
<td>5.20</td>
<td>3.85</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M35</td>
<td>0.93</td>
<td>0.30</td>
<td>0.30</td>
<td>4.20</td>
<td>6.25</td>
<td>5.00</td>
<td>1.90</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>M3-2</td>
<td>1.21</td>
<td>0.25</td>
<td>0.30</td>
<td>4.10</td>
<td>6.00</td>
<td>5.50</td>
<td>2.90</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M3-1</td>
<td>1.04</td>
<td>0.25</td>
<td>0.30</td>
<td>3.90</td>
<td>5.90</td>
<td>4.90</td>
<td>2.35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>0.85</td>
<td>0.25</td>
<td>0.30</td>
<td>4.15</td>
<td>6.00</td>
<td>4.80</td>
<td>1.85</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>0.82</td>
<td>0.25</td>
<td>0.40</td>
<td>3.75</td>
<td>1.55</td>
<td>8.50</td>
<td>1.15</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DIN 1.3343</td>
<td>0.91</td>
<td>0.25</td>
<td>0.30</td>
<td>4.00</td>
<td>6.15</td>
<td>4.85</td>
<td>1.75</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DT(^1)</td>
<td>1.28</td>
<td>0.30</td>
<td>0.30</td>
<td>4.20</td>
<td>6.40</td>
<td>5.00</td>
<td>3.10</td>
<td>8.00</td>
<td></td>
</tr>
</tbody>
</table>

Nazewnictwo i podział stali szybkotnących wynika z zawartości w nich wolframu i molibdenu.

\(^1\) nowy gatunek posiadający jedynie oznaczenie producenta.
Stale szybkotnące

Stale wolframowe mają na pierwszym miejscu w nazwie literę T, co wynika z angielskiego tłumaczenia: tungsten – wolfram. W stalach tych jako dodatki stopowe stosuje się wanad – w celu zwiększenia twardości i odporności na ścieranie oraz kobalt, który zwiększa dopuszczalną prędkość skrawania.

Stale molibdenowe na pierwszym miejscu w nazwie mają literę M od słowa molybdenum – molibden. Skład chemiczny tych stali uzupełniany jest przez wanad i wolfram. Wyróżnia się też grupę pośrednią, tzw. stale wolframowo-molibdenowe, czego przykładem jest stal M2 i cała grupa stali, które powstały przez modyfikację składu chemicznego stali tego gatunku, w tym stosowana w niniejszej pracy stal gatunku M3/2. Można także spotkać stale, które określane są jako „super twarde stale szybkotnące”. Tym mianem określane są stale, których twardość wynosi ok. 1000HV. Do tego typu stali zaliczane są gatunki o podwyższonej zawartości węgla i kobaltu, np. stal M33, M42 lub stal wolframowa T42.

W tabeli 2.5 przedstawiono zestawienie wybranych własności i krótkie charakterystyki najpopularniejszych obecnie gatunków stali szybkotnących dostępnych zarówno w Europie jak i w Stanach Zjednoczonych. Oznaczenia gatunków stali szybkotnących odpowiadają normom ASTM. Wielka Brytania stosuje obecnie inne nazewnictwo stali szybkotnących. Oznaczenie stali dostępnej na rynku brytyjskim rozpoczyna się dla większości gatunków stali szybkotnących od litery B (British) i tak np. stal T15 w Wielkiej Brytanii występuje pod handlową nazwą BT15, a stal M2 pod nazwą BM2.

Tablica 2.5 Wybrane własności najpopularniejszych gatunków stali szybkotnących [44]

<table>
<thead>
<tr>
<th>Gatunek stali wg ASTM</th>
<th>Charakterystyka stali</th>
<th>Twardość HRC</th>
<th>Plastyczność</th>
<th>Odporność na zużycie przez tarcie</th>
<th>Ciągłość</th>
<th>Twardość w podwyższonych temperaturach</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Uniwersalny gatunek stali szybkotnącej stosowany do przerywanej obróbki skrawaniem.</td>
<td>65</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M2</td>
<td>Bardzo szeroko stosowany gatunek stali szybkotnącej z bardzo dobrym stosunkiem własności do ceny.</td>
<td>65</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>DIN 1.3343</td>
<td>Wariant stali M2 z podwyższoną zawartością węgla.</td>
<td>65</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M3/1</td>
<td>Kolejny wariant stali M2 ze zwiększoną zawartością węgla i wanadu, co pozwala na podwyższenie odporności na ścieranie.</td>
<td>66</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M3/2</td>
<td>Kolejna odmiana stali szybkotnącej gatunku M2 szeroko stosowana np. na narzędzia skrawające</td>
<td>66</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M4</td>
<td>Stal szybkotnąca o podwyższonej odporności na ścieranie ze względu na zwiększoną zawartość węglików typu MC.</td>
<td>65</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M4-HC</td>
<td>Gatunek produkowany na drodze metalurgii proszków ze zwiększoną zawartością węgla.</td>
<td>65</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M7N</td>
<td>Stal szybkotnąca M7 modyfikowana dodatkiem azotu, bardzo popularna na wiertło.</td>
<td>66</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M35</td>
<td>Stal M2 z dodatkiem kobaltu, który podnosi twardość w podwyższonych temperaturach, stal powszechnie używana w Europie.</td>
<td>65</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M42</td>
<td>Stal szybkotnąca z dodatkiem kobaltu o bardzo dobrych własnościach skrawających wynikających z wysokiej twardości.</td>
<td>68</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M48</td>
<td>Gatunek stali szybkotnącej stosowany na frezy.</td>
<td>69</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M50</td>
<td>Stal szybkotnąca stosowana na narzędzia do obróbki drewna i wiertła do miękkich materiałów.</td>
<td>63</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>M52</td>
<td>Średnio awansowany gatunek stali szybkotnych, będący rozwinięciem stali M50 o wyższej odporności na ścieranie.</td>
<td>63</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>T15</td>
<td>Wzbogacony w wolfram gatunek stali szybkotnej z dużą zawartością węglików typu MC.</td>
<td>67</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
<tr>
<td>T15</td>
<td>Stal szybkotnąca produkowana na drodze metalurgii proszków.</td>
<td>67</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
<td>▲▲▲▲</td>
</tr>
</tbody>
</table>

Skład chemiczny produkowanych w Polsce stali szybkotnych według normy PN-EN ISO 4957:2004 podano w tabeli 2.6. Stale te posiadają znak składający się z liter HS i liczb rozdzielonych kreskami, podających średnie stężenie w % ciężarowych pierwiastków w kolejności:
Stale szybkotnące

W, Mo, V, Co. Litera C na końcu znaku oznacza stal o zwięksonym stężeniu węgla w porównaniu ze stalą o takim samym stężeniu podstawowych pierwiastków stopowych. Stale szybkotnące produkowane w Polsce i ujęte w normie należą do klasy jakości stali stopowych specjalnych i dostarczane są na rynek w postaci produktów hutniczych walcowanych na gorąco lub na zimno, kutych, ciągnionych, a także jako produkty powierzchni jasnej (łuszczone, szlifowane, polerowane).

Tabela 2.6 Skład chemiczny oraz orientacyjne warunki obróbki cieplnej i twardość stali szybkotnących wg PN-EN ISO 4957:2004

<table>
<thead>
<tr>
<th>Grupa stali</th>
<th>Znak stali</th>
<th>Średnie stężenie pierwiastków*, %</th>
<th>Temperatura, °C</th>
<th>Minimalna twardość po obróbce cieplnej HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>bezkobaltowe</td>
<td>HS0-4-1</td>
<td>C 0,81 Cr 4,2 W 4,3 Mo 1,0 V - Co -</td>
<td>1120 560</td>
<td>60</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS1-4-2</td>
<td>C 0,90 Cr 4,0 W 1,1 Mo 4,5 V 2,0 Co -</td>
<td>1180 560</td>
<td>63</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS3-3-2</td>
<td>C 0,99 Cr 4,2 W 2,9 Mo 2,7 V 2,3 Co -</td>
<td>1190 560</td>
<td>62</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS1-8-1</td>
<td>C 0,82 Cr 4,0 W 1,7 Mo 8,5 V 1,2 Co -</td>
<td>1190 560</td>
<td>63</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS2-9-2</td>
<td>C 1,00 Cr 4,0 W 1,8 Mo 8,7 V 2,0 Co -</td>
<td>1200 560</td>
<td>64</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS18-0-1</td>
<td>C 0,78 Cr 4,2 W 18 Mo - V - Co 1,1</td>
<td>1260 560</td>
<td>63</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS6-5-2</td>
<td>C 0,84 Cr 4,2 W 6,3 Mo 5,0 V 1,9 Co -</td>
<td>1220 560</td>
<td>64</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS6-5-2C</td>
<td>C 0,90 Cr 4,2 W 6,3 Mo 5,0 V 1,9 Co 1,1</td>
<td>1210 560</td>
<td>64</td>
</tr>
<tr>
<td>bezkobaltowe</td>
<td>HS6-5-3C</td>
<td>C 1,29 Cr 4,2 W 6,3 Mo 5,0 V 3,0 Co 1,1</td>
<td>1210 560</td>
<td>65</td>
</tr>
<tr>
<td>bezkobaltowe o zwiększonym stężeniu C</td>
<td>HS6-5-2-5</td>
<td>C 0,91 Cr 4,2 W 6,3 Mo 5,0 V 1,9 Co 4,8</td>
<td>1210 560</td>
<td>64</td>
</tr>
<tr>
<td>bezkobaltowe o zwiększonym stężeniu C</td>
<td>HS2-9-1-8</td>
<td>C 1,10 Cr 4,0 W 1,6 Mo 9,5 V 1,1 Co 8,0</td>
<td>1190 550</td>
<td>66</td>
</tr>
<tr>
<td>bezkobaltowe o zwiększonym stężeniu C</td>
<td>HS6-5-3-8</td>
<td>C 1,28 Cr 4,2 W 6,3 Mo 5,0 V 3,0 Co 10,0</td>
<td>1180 560</td>
<td>65</td>
</tr>
<tr>
<td>bezkobaltowe o zwiększonym stężeniu C</td>
<td>HS10-4-3-10</td>
<td>C 1,27 Cr 4,2 W 9,5 Mo 3,6 V 3,3 Co 10,0</td>
<td>1230 560</td>
<td>66</td>
</tr>
</tbody>
</table>

* P ≤ 0,03 Mn ≤ 0,4 Si ≤ 0,45÷0,7

Według Polskich Norm stal HS6-5-4 posiada bardzo zbliżony skład chemiczny do stali M3/2 wg oznaczeń ASTM, natomiast stal HS6-5-2 jest odpowiednikiem bardzo popularnej na rynku stali M2. Dotychczas produkowane w Polsce stale szybkotnące były ujmowane w normie PN-86/H-85022.

25
2.3 Metody wytwarzania proszków stali szybkotnących

Surowcem do produkcji spieków i kompozytów na osnowie stali szybkotnącej klasycznymi metodami metalurgii proszków są proszki stopowe stali różnych gatunków, wytworzony metodą rozpylania ciekłej strugi gazem obojętnym lub wodą [38, 45, 46]. Ogólny schemat uniwersalnego urządzenia do rozpylania metali i ich stopów za pomocą gazu lub cieczy przedstawia rysunek 2.6.

Rys. 2.6 Schemat rozpylania gazem lub cieczą oraz podstawowe czynniki mające wpływ na przebieg rozpylania: 1 – tygiel, 2 – dysza rozpylająca, 3 – doprowadzenie ośrodka rozpylającego, 4 – struga ciekłego metalu, 5 – ośrodek chłodzący

Rozpylanie to rozpad cieczy na krople w wyniku działania sił. Siły te mogą być zarówno wewnętrzne jak i zewnętrzne [45, 46]. Pod ich wpływem zwiększa się amplituda drgań cieczy metalu lub stopu poddanego procesowi rozpylania, przez co rozpad się ona na krople o wielkości zależnej od wielkości tych sił oraz rodzaju i własności rozpylanej substancji. Proces rozpylania metali lub stopów charakteryzuje się dużą wydajnością, ale małą sprawnością, wynoszącą około 1% [46]. Mała sprawność jest spowodowana stratami energii na nadawanie prędkości kropłom cieczy i gazowi wypełniającemu komorę rozpylania oraz zjawiskiem koalescencji cząstek cieczy.

Proces rozpylania można podzielić na trzy stadia [45, 46]:

- formowanie się strugi cieczy,
- rozpad pierwotnej strugi na microstrugi,
formowanie się kropel i ewentualny rozpad wtórny kropel pod wpływem sił aerodynamicznych, o ile wartość tych sił jest dostatecznie duża.

2.3.1 Wytwarzanie proszków stali szybkotnącej metodą rozpylania wodą

Proces rozpylania wodą polega na rozpyleniu strugi ciekłej stali szybkotnącej o określonym składzie chemicznym strumieniem albo strumieniami wody wypływającymi z dyszy pod ciśnieniem 3,5÷21 MPa. Strumienie wody mogą przyjmować kształt litery V, lub może być stosowany układ o większej liczbie strumieni tworzących wielobok oraz kilka strumieni w układzie pionowym. Zwiększenie objętościowej szybkości wypływu ciekłej stali wymaga zwiększenia liczby strumieni wody.

Główne korzyści wypływające z zastosowania wody jako medium do rozpylania, to:

- większa lepkość wody od lepkości gazu,
- większa szybkość chłodzenia, dochodząca do \(10^5\) K/s [46],
- niski koszt zastosowania wody,
- prostota całego procesu technologicznego.

Dzięki swym zaletom rozpylanie wodą, zyskało duże znaczenie ekonomiczne i techniczne.

W wyniku rozpylania wodą otrzymuje się proszek o kształcie nieregularnym. Zawartość tlenu w takim proszku może sięgać około 2000 ppm, a przy dużej aktywności proszku, wartość ta często jest przekraczana. Można temu zapobiec dodając do wody inhibitory korozji, które wpływają na ograniczenie reakcji utleniania [45, 46]. Proszek rozpylany wodą musi być poddany wyżarzaniu w wodorze o punkcie rosy -50÷-60°C w temperaturze 900÷950°C w celu obniżenia zawartości tlenu do poziomu poniżej 1000 ppm. Wyżarzanie takie jest konieczne także w celu ujednorodnienia składu chemicznego. Proszki rozpylane wodą o wysokiej zawartości węgla wyżarza się w próżni \(\sim10^{-2}\)Pa w temperaturze 1200°C, co powoduje obniżenie zawartości węgla i tlenu.

2.3.2 Wytwarzania proszków stali szybkotnących metodą rozpylania gazem obojętnym

Rozpylanie gazem obojętnym pozwala na uzyskanie proszków stali szybkotnących, a w konsekwencji także i wyrobów z tych stali cechujących się drobnoziarnistą strukturą o równomiernym rozmieszczeniu węglików [38, 47]. W tej metodzie rozpylania rozpad strugi ciekłego metalu lub stopu następuje pod wpływem działania strumienia gazu obojętnego.

Wybór gazu do rozpylania uzależniony jest ściśle od zakładej końcowej zawartości tlenu w rozpylanym proszku. Do rozpylania stali szybkotnących stosuje się zamiennie azot lub argon.
Stale szybkotnące [38]. Czysty gaz obojętny jest konieczny ze względu na duże powinowactwo pierwiastków stopowych, zawartych w stali szybkotnącej, do tlenu. Chrom i wanad, działając jako gettery, wiążą nawet słabe ilości tlenu. Rozpylane argonem proszki stosuje się do produkcji stali szybkotnących metodą ASP opracowaną przez firmę ASEA-STORA.

Schemat rozpylania za pomocą argonu przedstawia rysunek 2.7 [38]:

Rys. 2.7 Schemat rozpylania stali szybkotnącej argonem

1 – komora próżniowa, 2 – komora rozpylania, 3 – tygiel z ciekła stalią, 4 – układ dysz, 5 – doprowadzenie argonu, 6 – podłączenie pompy próżniowej, 7 – układ chłodzenia i zawierania gazu, 8 – chłodnica, 9 – zbiornik [38]

Stal o odpowiednim składzie chemicznym topiona jest zazwyczaj w piecu indukcyjnym. Z niego ciekły stop trafia do tygla. W dnie tygla znajduje się otwór, przez który ciekła stal płynie do dysz i jest rozpylana do cylindrycznej komory o długości ok. 12m. Osiągnięciu jednorodnej struktury cząstek proszku sprzyja duża szybkość chłodzenia, uzyskana poprzez cyrkulację gazu oraz poprzez zminimalizowanie rozmiaru rozpylanych kropel. Zastosowanie argonu jako medium rozpylającego pozwala uzyskać proszki stali szybkotnących o zawartości tlenu ok. 100 ppm. Aby ograniczyć koszt stosowania argonu, gaz ten w czasie rozpylania znajduje się w obiegu zamkniętym, przepływając przez odpowiednie kompresory, filtry, chłodnice i zbiorniki wyrównawcze ciśnienia. Stosowanie argonu do rozpylania może powodować powstawanie wewnątrz cząstek proszku w czasie jego krzepnięcia porowatości o kształcie sferoidalnym. Wynika to z nieznacznej rozpuszczalności
argonu w ciekłej stali szybkotlanej oraz całkowitego braku jego rozpuszczalności w zakrzepłej stali.

Czynnikiem decydującym o rozkładzie wielkości cząstek proszku stali szybkotlanej wytwarzanego metodą rozpylania gazem obojętnym jest ciśnienie tego gazu. Rysunek 2.8 przedstawia wpływ ciśnienia gazu na rozkład wielkości cząstek rozpylanej stali gatunku M2 [38].

![Diagram](image.png)

Rys. 2.8 Wpływ ciśnienia gazu rozpylanego na wielkość cząstek proszku otrzymanych w wyniku rozpylania [38]

2.4 Metody wytwarzania spiekanych stali szybkotlanych

Metody wytwarzania półwyrobów i gotowych wyrobów proszków stali szybkotlanych można podzielić na dwie grupy:

- pierwsza grupa obejmuje specjalistyczne lub klasyczne metody metalurgii proszków, pozwalające na produkcję gotowych wyrobów lub wyrobów o kształcie i wymiarach zbliżonych do końcowego,
- druga grupa obejmuje metody, w których połączono technologię metalurgii proszków i konwencjonalnej przeróbki plastycznej, w wyniku czego otrzymuje się wielkogabarytowe bloki, kęsy lub pręty, z których metodami obróbki skrawaniem wykonywane są gotowe produkty.

Typowa metoda wytwarzania stali szybkotlanych została opracowana i opatentowana w Wielkiej Brytanii w latach siedemdziesiątych. Polega ona na prasowaniu na zimno rozpylanego proszku stali szybkotlanej a następnie spiekaniu „supersolidus” w próżni.
Obecnie do wytwarzania stali szybkotnących stosuje się kilka metod, różniących się rodzajem stosowanego proszku stali oraz sposobem i parametrami procesu prasowania i spiekania.

2.4.1 Metoda ASP i STAMP

Najpowszechniej stosowana jest metoda otrzymywania spiekanych stali szybkotnących opracowana przez szwedzką firmę ASEA–STORA i jest określana skrótem ASP. Pierwszym etapem metody ASP jest utworzenie proszku stali szybkotnącej, przez rozpylanie ciekłego stopu gazem obojętnym (opisane w podrozdziale 2.4.4). Uzyskany proszek zasypuje się do cylindrycznego pojemnika i poddawany wibracjom w celu uzyskania jego usadu. Po zagęszczeniu proszku do gęstości nasypowej z usadem, pojemnik ten zamyka się szczelnie i prasuje wraz z proszkiem izostatycznie na zimno pod ciśnieniem 400 MPa. Po prasowaniu pojemnik z wsadem poddaje się wygrzewaniu w temperaturze 500°C. W czasie wygrzewania następuje odgazowanie sprasowanego proszku za pomocą pompy rotacyjnej, zdolnej zapewnić próżnię na poziomie 1 Pa. Po odgazowaniu pojemnik dodatkowo wyżarza się w piecu z atmosferą ochronną w temperaturze 1100°C. Po wyżarzaniu blok stalowy umieszczany jest z kolei w komorze prasy do prasowania izostatycznego na gorąco. Prasowanie na gorąco prowadzi się w temperaturze 1100÷1150°C, pod ciśnieniem 100 MPa. W wyniku prasowania na gorąco uzyskuje się całkowicie zagęszczone bloki ze stali szybkotnącej, o masie do 1500 kilogramów. Otrzymana w wyniku prasowania na gorąco stal szybkotnaczna odznacza się jednorodną strukturą z bardzo drobnymi wydzieleniami węglików, co odróżnia ją od stali szybkotnących wytwarzanych w sposób klasyczny. Stale szybkotnaczne produkowane metodą ASP mają oznaczenia rozpoczynające się od liter ASP.

Rozwinięciem metody ASP jest metoda STAMP. W odróżnieniu od metody ASP, w procesie STAMP rozpylanie proszku gazem obojętnym następuje w komorze poziomej. Ponadto w metodzie STAMP nie stosuje się prasowania izostatycznego na gorąco. Pojemnik z proszkiem, wstępnie zagęszczonym przez prasowanie izostatyczne na zimno, jest podgrzewany w matrycy i prasowany za pomocą prasy hydraulicznej. Zaletą opisanej metody jest ograniczenie kosztów inwestycyjnych oraz uproszczenie i skrócenie procesu wytwarzania stali szybkotnacznych.
2.4.2 Metoda firmy Creuston – Loire i Crucible Steel

Wytwarzanie stali szybkotnących według metody firmy Creuston – Loire polega na wytwarzaniu proszku przez rozpylanie ciekłej stali szybkotnej azotem o dużej czystości, co pozwala uzyskać końcową zawartość tlenu w proszku stali szybkotnej poniżej 200 ppm. Proszek ten zasypuje się do stalowych matryc. Następnie wypełnioną proszkami odpowiedzieloną matrycę prasuje się izostatycznie na gorąco lub wyciska na gorąco za pomocą prasy poziomej. Otrzymany w wyniku prasowania lub wyciskania blok stalowy poddaje się przeróbce plastycznej przez kucie na gorąco [49].

Identyczny proces technologiczny stosowany jest przez firmę Crucible Steel. Jedyna różnica polega na zastosowaniu azotu technicznego do rozpylania ciekłej stali. Firma Crucible Steel produkuje obecnie 10 gatunków stali szybkotnych, w tym jako jedna z niewielu firm na świecie, gatunki stali szybkotnych zawierające w swoim składzie chemicznym azot [49].

2.4.3 Metoda fulldens

Technologię wytwarzania stali szybkotnych metodą fulldens opracowała i opatentowała firma Consolidated Metallurgical Industries. Technologia ta pozwala na uzyskanie ze stali szybkotnych produktów gotowych, odznaczających się wysoką gęstością i wytrzymałością. Proszek uzyskany w wyniku rozpylania wodą ciekłej stali szybkotnej dodatkowo rozdrabnia się mechanicznie. Do zagęszczania proszku stosuje się dwie metody:

- izostatyczne prasowanie na zimno w przypadku wyrobów względnie dużych i o skomplikowanym kształcie,
- klasyczne prasowanie w matrycach o kształcie wyrobów gotowych.

Spiekanie kształtek prowadzi się w piecach próżniowych w warunkach dostosowanych do gatunku stali szybkotnej, w temperaturze wyższej od temperatury linii solidus (spiekanie supersolidus). Metoda ta pozwala na uzyskanie wyrobów o żadanym kształcie lub wymagających nieznacznej obróbki wykańczającej, odznaczających się gęstością powyżej 98% gęstości teoretycznej. Dodatkową zaletą tej metody jest uzyskiwanie powtarzalnych tolerancji wymiarowych. Można ją stosować do wytwarzania płytek wielostrzowych służących do obróbki skrawaniem [50].
2.5 Obróbka cieplna stali szybkotnących i infiltrowanych miedzi kompozytów na osnowie stali szybkotnącej

Stale szybkotnace muszą się cechować wysoką twardością, uzyskiwaną w sposób powtarzalny, jak również wysoką odpornością na ścieranie. Takie szczególne własności stali szybkotnących uzyskiwane są w efekcie obróbki cieplnej, dzięki rozpuszczaniu i wydzielaniu z jej osnowy stali znacznych ilości węglków typu $M_{23}C_6$ lub M_6C. Po szeregu zabiegów cieplnych w wyniku występowania zjawiska twardości wtórnej stal szybkotnaca uzyskuje dużą zdolność skrawania i odporność na ścieranie. Schemat obróbki cieplnej stali szybkotnących przedstawiono na rysunku 2.8.

Sposób przeprowadzania obróbki cieplnej spiekanych stali szybkotnących jest podobny do technologii obróbki stali szybkotnących wytwarzanych w sposób konwencjonalny. Spiekane stale austenityzuje się w niższych temperaturach niż porównywalnych stali konwencjonalnych, co wynika z ograniczonej początkowej wielkości węglków. Bardzo drobne węglki szybciej rozpuszczają się w osnowie stali spiekanych niż grubsze w stalach wytwarzanych w sposób konwencjonalny. Efekty obróbki cieplnej spiekanych stali szybkotnących lub kompozytów na osnowie stali szybkotnącej można osiągnąć w przypadku, gdy jej kształtki cechują się równomiernym rozmieszczeniem węglków. Zabieg obróbki cieplnej nie pozwala jednak na usunięcie skutków niewłaściwie przeprowadzonego procesu spiekania.

Rys. 2.8 Typowy przebieg obróbki cieplnej konwencjonalnych i spiekanych stali szybkotnących [41]
Materiałem wyjściowym do właściwej obróbki cieplnej jest zazwyczaj stal szybkotnąca poddana uprzednio zabiegowi wyżarzania zmiękczającego, które ma na celu także usunięcie naprężeń wewnętrznych. Przeprowadza się go w zakresie temperatur $A_{C1} \div A_{C3}$. Po nagrzaniu powyżej temperatury A_{C1} zachodzi przemiana austenityczna. Po wyżarzaniu zmiękczającym zalecane jest bardzo wolne chłodzenie, nawet ok. 30K na godzinę [47, 48]. Mikrostruktura stali szybkotnącej w takim stanie składa się z ferrytu zawierającego pierwiastki stopowe oraz węglików. Są to węgliki pierwotne typu MC i M_6C i wydzielone podczas wyżarzania, bogate głównie w chrom węgliki typu $M_{23}C_6$.

Istnieje wąski przedział temperatur austenityzowania, optymalny dla poszczególnych gatunków stali szybkotnacych, pozwalający otrzymać w wyniku obróbki cieplnej optymalne ich własności. Aby uzyskać pewność, że podczas austenityzowania została rozpuszczona maksymalna ilość węglików, stal powinna być nagrzaną do możliwie najwyższej, dopuszczalnej temperatury, powyżej której następuje rozrost ziarna. Gdy temperatura austenityzowania nie osiągnie zakresu właściwych temperatur, twardość zahartowanej i odpuszczonej stali jest zaniżona, a gdy przekroczymy ten zakres – uzyskuje się stal kruchą, a w skrajnym przypadku znacznego przegrzania i przekroczenia linii solidus, obrabiany element traci pierwotny kształt, wskutek pojawienia się filmu fazy ciekłej między ziarnami austenitu.

Austenityzowanie stali w temperaturze leżącej kilkadziesiąt stopni poniżej temperatury odpowiadającej położeniu na wykresie równowagi fazowej linii solidus, z reguły bywa poprzedzone co najmniej jednym przystankiem izotermicznym. Najczęściej stosuje się wygrzewanie wstępne w temperaturze $800 \div 850^\circ C$. W tym zakresie temperatur zachodzi przemiana struktury złożonej z ferrytu i węglików w strukturę złożoną z austenitu i węglików. Kolejne wygrzewanie (drugi przystanek izotermiczny) można przeprowadzać w temperaturze $1000 \div 1050^\circ C$. Obecne w stali węgliki typu $M_{23}C_6$ zaczynają rozpuszczać się w austenicie w zakresie temperatur $850 – 900^\circ C$, a kończą w temperaturze $1050^\circ C$. Węgiel i pierwiastki stopowe zawarte w tych węglikach rozpuszczają się w osnowie stali szybkotnej. Bogate w wolfram i moliobden węgliki typu M_6C rozpuszczają się i przechodzą do osnowy już w temperaturze $1050^\circ C$. Może się okazać, że pomimo wytrzymywania przez dłuższy czas w temperaturze austenityzowania, w stali pozostanie jeszcze pewna ilość węglików typu M_6C. Bogate w wąsikę węgliki typu MC rozpuszczają się bardzo trudno. Ich rola w czasie austenityzowania polega na hamowaniu rozrostu ziarn austenitu. Kayser i Cohan prowadzili badania nad składem chemicznym oraz udziałem objętościowym poszczególnych typów węglików w różnych gatunkach stali szybkotnacych, w optymalnej dla nich...
temperaturze austenityzowania [38]. Na podstawie ich prac można stwierdzić, że w osnowie stali szybkotnącej w trakcie austenityzowania można rozpuścić węgły w ilości nawet do 75% objętościowych początkowej ich zawartości. Dodatkowym efektem nagrzania wolframowych stali szybkotnących do temperatur z zakresu 1200 ÷ 1250°C jest tendencja do zmiany kształtu węglików ze sferoidalnego na wielosienny. W praktyce jednak efekt ten jest pomijalnie mały, ze względu na krótki czas wygrzewania w temperaturze austenityzowania.

W przypadku bardzo dużych wyrobów ze stali szybkotnących przed austenityzowaniem stosuje się wygrzewanie wstępne w temperaturze 400 ÷ 450°C, mające na celu wyrównanie temperatury w całej objętości kształtki i obniżenie jej naprężeń wewnętrznych.

Wybór temperatury i czasu austenityzowania zależy ścisłe od składu chemicznego danego gatunku stali szybkotnącej oraz rodzaju pieca używanego do obróbki cieplnej. W przypadku do obróbki cieplnej stosowania pieca próżniowego, czas austenityzowania musi być dłuższy w stosunku do czasu stosowanego w innych piecach i może dochodzić nawet do 10 minut. W przypadku pieców z atmosferami ochronnymi i pieców z atmosferą powietrza, czas austenityzowania stali szybkotnych wynosi 2 ÷ 5 minut. W przypadku pieca próżniowego nawet 10 minut nie pozwala na uzyskanie austenitu, którego skład chemiczny zbliżony jest do odpowiadającego równowadze termodynamicznej i dodatkowo zależy od szybkości nagrzewania [38].

Do nagrzewania, wygrzewania i chłodzenia stali szybkotnych do niedawna stosowano kąpiele solne. W przypadku małych elementów wykorzystywano chłodzenie za pomocą strumienia sprężonego powietrza, którego skutkiem ubocznym było odwężenie ich powierzchni. Obecnie dąży się do tego, aby wymienione zabiegi przeprowadzane były w piecach próżniowych, lub w piecach z atmosferami ochronnymi. W piecu próżniowym, wyposażonym w dodatkowy układ chłodzenia gazem, ośrodkiem ożebrającym hartowaną stal może być gaz obojętny o wymuszonym obiegu, zwykle argon lub azot. Zastosowanie azotu z powodu jego cech fizycznych, pozwala na szybse chłodzenie i na uniknięcie niekorzystnej przemiany bainitycznej w stalach o niższej hartowności. Chłodzenie stali często przerywa się w temperaturze 500 ÷ 530°C. Przystanek ten ma na celu wyrównanie temperatury oraz obniżenie ryzyka powstania odkształceń i pęknięć hartowniczych. Po okresie wytrzymania izotermicznego następuje chłodzenie do temperatury pokojowej, lub niższej. Rozpuszczalność pierwiastków stopowych w austenie maleje silnie z obniżaniem temperatury; co powoduje, że niektóre węgliky wydzielają się przed rozpoczęciem przemiany martensytycznej. Przemiana martensytyczna w temperaturze pokojowej nie przebiega do końca, co sprawia, że
w zahartowanej stali szybkotnącej nie przemienione pozostaje od 15 do 30% austenitu. Aby zapobiec stabilizacji austenitu szczątkowego, odpuszczanie powinno następować natychmiast po hartowaniu.

Pierwszemu odpuszczaniu martentytu w niskiej temperaturze może towarzyszyć nieznaczny spadek twardości stali, gdyż wydzielaniu się węglików towarzyszy obniżenie zawartości węgla w osnowie. Optymalna temperatura odpuszczania, umożliwiająca uzyskanie maksymalnej twardości wtórnej, dla większości gatunków stali szybkotnących mieści się w przedziale 500 ÷ 600°C. W celu osiągnięcia w stali minimalnej zawartości austenitu szczątkowego, którego ostateczna zawartość nie powinna przekraczać 5% [38, 41], stosuje się dwu-, trzy-, a w szczególnych przypadkach nawet czterokrotnie odpuszczanie. Każde odpuszczanie powinno trwać od około 0,5 godziny do nawet 2 godzin. Rysunek 2.9 pokazuje wpływ krotności odpuszczania na pik twardości wtórnej.

Rys. 2.9 Wpływ krotności odpuszczania na pik twardości wtórnej; 1x – odpuszczanie jednokrotne, 3x- odpuszczanie trzykrotnie, 6x- odpuszczanie sześciokrotne [40]

Analiza pików przedstawionych na rysunku 2.9 w przypadku dla jedno-, trzy- i sześciokrotnego odpuszczania stali szybkotnących wykazuje słuszność prowadzenia trzykrotnego odpuszczania. W przypadku pojedynczego odpuszczania uzyskuje się niższą twardość przy wyższej temperaturze. Sześciokrotnie odpuszczanie znacznie podnosi koszty procesu obróbki cieplnej, a maksimum twardości jest co prawda uzyskiwane w niższej temperaturze, ale jest niższe niż w przypadku trzykrotnego odpuszczania.

Węglikami odpowiedzialnymi za wystąpienie zjawiska twardości wtórnej, dochodzącej zwykle do 1000 HV, są w zależności od składu chemicznego stali węgliky typu: MC i M₃C, M₅C i M₂₃C₆.
3. **SPIEKANIE STALI SZYBKOTNĄCYCH**

3.1 Wytwarzanie stali szybkotnących metodą spiekania w próżni

Zabieg spiekania jest krytycznym etapem produkcji wyrobów ze stali szybkotnących technologią metalurgii proszków przy zastosowaniu metody spiekania w próżni. Powodem tego jest konieczność przeniesienia drobnoziarnistej, jednorodnej struktury cząstek proszku stali na cały materiał spiekany oraz doprowadzenie do uzyskania gęstości końcowej spieku zbliżonej bądź równej gęstości teoretycznej. Spełnienie tych warunków jest bardzo trudne, gdyż konieczne jest bardzo precyzyjne dobranie parametrów technologicznych procesu spiekania.

Temperatura spiekania zależy od składu chemicznego stali i mieści się w zakresie \(1150 \div 1350^\circ\text{C}\) [51÷56]. Precyzyjne określenie temperatury linii solidus jest możliwe przy dokładnej znajomości składu chemicznego oraz pseudopodwójnego układu równowagi faz konkretnej stali. Można w tym celu wykonać także badania dylatometryczne. Spiekanie poniżej temperatury solidus nie daje efektu, w postaci eliminacji porów ze względu na powolną dyfuzję w stanie stałym zachodzącą w czasie takiego spiekania. Właściwa temperatura spiekania powinna leżeć nieco powyżej temperatury solidus. Mieści się ona w tzw. „oknie spiekania” Spiekanie tuż powyżej temperatury solidus określane jest jako spiekanie supersolidus. Spiekanie stali szybkotnących wykonuje się najczęściej w piecach próżniowych, zapewniających najkorzystniejsze warunki do zagośczania kształtek, jakkolwiek możliwe jest także spiekanie w atmosferze ochronnej.

Schematyczną krzywą spiekania, oraz położenie „okna spiekania” przedstawia rysunek 3.1.

![Schematyczna krzywa spiekania](image)

Rys. 3.1 Schematyczna krzywa zmian gęstości stali szybkotnającej podczas spiekania z wyszczególnieniem składników strukturalnych [54]
Szerokość okna spiekania wynosi najczęściej od kilku do najwyższej kilkunastu stopni [38, 51, 54], ponieważ niewielkie zmiany temperatury mogą powodować drastyczne zmiany w ilości fazy ciekłej w stosunku do objętości fazy stałej. Z analiz danych literaturoowych [54] wynika, że jest bardzo trudno określić dokładne granice okna spiekania. Góra granica okna spiekania jest obserwowana w momencie pojawiensie się zniekształceń (dystorsji) spiekanego elementu, czego pierwzszym objawem są zaokrąglzenia na krawędziach. Zniekształcenia zbiegają się ściśle z pojawieniem się w spiekanym układzie eutektycznej fazy ciekłej. W rzeczywistości górna granica okna spiekania leży tuż poniżej temperatury, w której pojawia się zniekształcenie, zwane „stratą kształtu”. Mikrostruktura stali spiekanych w temperaturze zbliżonej do górnej granicy okna spiekania zawiera duże wydzielenia węglków pierwotnych oraz siatkę węglków na granicach ziem i pierwotnych cząstek proszku stali, tzw. „film węglkowy”. Są to czynniki strukturalne powodujące obniżenie własności mechanicznych stali, a niejednokrotnie wykluczające możliwość stosowania takiej stali.

Spiekanie powyżej temperatury solidus związane jest z występowaniem w stali szybkotnącej eutektycznej fazy ciekłej odpowiedzialnej za zagęszczenie kształtek. Minimalna ilość fazy ciekłej niezbędna do zagęszczenia jest określona na 5% objętości kształtek. Taka ilość fazy ciekłej umożliwia przegrupowanie cząstek w kształtek. Gdy udział fazy ciekłej w objętości jest za duży, to obserwuje się „stratę kształtu”. Zjawisko to jest niekorzystne, gdyż powoduje konieczność stosowania obróbki ubytkowej, lub całkowicie eliminuje wyrób. W procesie spiekania stali szybkotnaczych ilość fazy ciekłej ściśle zależy nie tylko od temperatury, lecz także od czasu spiekania. Dlatego wyznaczenie optymalnej temperatury spiekania pozwala na skrócenie czasu spiekania, nawet do kilku minut. W zależności od gatunku stali szybkotnącej, czas spiekania w optymalnej temperaturze mieści się w przedziale od kilku do kilkunastu minut. Skrócenie czasu spiekania pozwala na uniknięcie niekorzystnego z punktu widzenia własności rozrostu ziem węglków i osnowy.

przegrupowanie wtórne powstałych mniejszych cząstek, które jest procesem decydującym o dużym zagęszczeniu spiekanej kształtki ze stali szybkotnącej. Przegrupowanie zachodzi pod wpływem działania sił kapilarnych mechanizmem płynięcia lepkościowego i występuje tylko przy wystarczającej ilości fazy ciekłej.

W przypadku zbyt niskiej temperatury spiekania, wskutek małego ułamka objętościowego fazy ciekłej, większą rolę w zagęszczeniu odgrywa proces rozpuszczania i wydzielania, który prowadzi do akomodacji kształtu ziarn oraz spłaszczania ich granic kontaktowych.

Zestawienie dla wybranych gatunków stali szybkotnaczych składników strukturalnych, które powinny występować w spiekanej kształtcie po osiągnięciu optymalnej temperatury spiekania przedstawia się następująco [54]:

- w stali wolframowej T1: austenit + węgliki typu \(M_6C \) + faza ciekła,
- w stali z molibdenem M2: austenit + węgliki typu \(MC \) i \(M_6C \) + faza ciekła.

Oznacza to, że kierując się wykresem równowagi fazowej układu, spiekanie należy prowadzić w zakresie temperatur występowania tych składników strukturalnych.

Podczas chłodzenia spieków ze stali szybkotnej wraz z piecem, zachodzi przemiana eutektyczna, w wyniku której z cieczy o składzie zbliżonym do eutektycznego wydziela się mieszanina eutektyczna złożona z austenitu i węglików. Przemianę eutektyczną poprzedza jednak wydzielanie się węglików z cieczy, tak by ciecz osiągnęła skład eutektyczny. Niezależnie od tego, wskutek malejącej rozpuszczalności węgla w żelazie \(\gamma \), wydzielają się z austenitu węgliki drugorzędowe. Rysunek 3.2 przedstawia schematycznie strukturę stali szybkotnej po spiekaniu supersolidus w próżni.

Rys. 3.2 Schemat struktury stali szybkotnej po spiekaniu supersolidus w próżni [51, 53]
Okno spiekania stali szybkotnącej gatunku M3/2 ma szerokość 10°C i mieści się w zakresie temperatur 1245÷1255°C [54]. W temperaturze 1270°C, na granicach ziarn stali szybkotnącej tworzy się ciągły film fazy ciekłej. Deformacja kształtek spiekanych ze stali gatunku M3/2 rozpoczyna się w temperaturze 1280°C.

Okno spiekania stali szybkotnącej gatunku M2 ma szerokość 5°C i mieści się w zakresie temperatur 1255÷1260°C; deformacja kształtek rozpoczyna się w temperaturze 1290°C [53, 54]. Panuje opinia, że stal gatunku M2, z powodu zbyt wąskiego okna spiekania, nie nadaje się do spiekania supersolidus.

Poza składem chemicznym i znajomością temperatury spiekania, na przebieg spiekania stali szybkotnycych wpływają następujące czynniki:

- duży udział proszku o podsitowej wielkości cząstek; warunkiem zastosowania takich proszków jest ich odpowiednie zabezpieczenie przed utlenieniem, zarówno w czasie przechowywania jak i wytwarzania, oraz ich dobra zgęszczalność,

- sferoidalny kształt cząstek proszku, który ułatwia proces przegrupowania cząstek w początkowym etapie spiekania z udziałem fazy ciekłej; kształt cząstek proszku wpływa na wielkość i morfologię kapilar w porowatych kształtach, a przez to na wielkość sił kapilarnych; zmiana wyjściowego kształtu cząstek następuje w wyniku procesu rozpuszczania i wydzielania,

- porowatość wewnętrzna cząstek proszku stali szybkotnącej; wielkość porów wewnętrznych jest z reguły znacznie mniejsza od wielkości porów występujących na granicach cząstek, przez co siły kapilarne są większe w porach wewnętrznych.

3.2 Aktywacja spiekania stali szybkotnycych

3.2.1 Wpływ miedzi na proces spiekania stali szybkotnycych

Miedź jest często stosowanym pierwiastkiem stopowym w spiekach żelaza oraz w kompozycjach na osnowie stali szybkotnej. Pozwala ona na uzyskanie spieków Fe-Cu odznaczających się dobrymi własnościami wytrzymałościowymi, przy zachowaniu bardzo dobrych własności plastycznych [12, 18], natomiast w kompozycjach stal szybkotnca - miedź pozwala uzyskać dodatkowe własności, np. lepsze przewodnictwo cieplne, odporność na korozję i obniżenie kosztów wytwarzania oraz lepsze własności ślizgowie. Zwykle zawartość miedzi w spiekanych kompozycjach stal szybkotnca – miedź i spiekach Fe-Cu waży się w granicach 1÷25%.
Spieki Fe-Cu można wytwarzać różnymi sposobami [57, 60]:
- przez prasowanie i spiekanie mieszanek proszków elementarnych Fe i Cu,
- przez prasowanie i spiekanie wstępnie zgrzanych proszków Fe-Cu otrzymanych przez rozdrobnienie lekko spieczonych proszków elementarnych,
- przez prasowanie i spiekanie proszku żelaza pokrytego warstwą miedzi,
- przez infiltrację szkieletów żelaznych miedzi lub stopem Fe-Cu [63].

Sposoby te można również stosować do wytwarzania kompozytów stal szybkotnąca – miedź.

Pojawienie się ciekłej miedzi w temperaturze 1083°C powoduje w spiekanym układzie Fe-Cu następujące zjawiska [57–59, 63]:
- penetrację miedzi po granicach kontaktowych i przegrupowanie pierwotne,
- penetrację miedzi po granicach ziarn i przegrupowanie wtórne powstałych tym sposobem cząstek,
- dyfuzję miedzi do stali,
- dyfuzję składników ze stali do miedzi.

Proces przegrupowania pierwotnego i wtornego odgrywa największą rolę w czasie spiekania z udziałem fazy ciekłej. Minimalny dodatek miedzi w postaci elementarnego proszku wprowadzonego do proszku stali szybkotnącej powinien przekraczać 4% [32]. Przy niższej zawartości nie obserwuje się wyraźnego wpływu miedzi na końcową gęstość spiekanej stali szybkotnącej. Na podstawie obserwacji struktury spiekanych stali szybkotnących z dodatkiem 6% Cu stwierdzono, że rozpuszczalność miedzi w osnowie stali szybkotnącej M3/2 jest mniejsza od 6% [32]. Miedź rozpuszczona w stali powoduje niewielkie zmniejszenie jej twardości [32].

Proszek stali szybkotnącej powlekany miedzią uzyskuje się w wyniku procesu wypierania z wodnego roztworu siarczanu miedzi [18, 61, 62]. Dzięki powleczeniu powierzchni cząstek warstewką miedzi, w procesie spiekania pomijany zostaje etap rozpylania się cieczy i penetracji granic kontaktowych cząstek. Pojawia się proces przegrupowania wtórnego. Jest on związany z wnikiem fazy ciekłej po granicach strukturalnych ziarn.

Rysunek 3.3 przedstawia wpływ zawartości miedzi na przebieg procesu spiekania stali szybkotnej, trwającego jedną godzinę, w próżni, w różnych temperaturach [19].
Rys. 3.3. Wpływ zawartości miedzi w kompozytach na osnowie stali szybkotnącej na stopień zagęszczenia kształtek podczas spiekania [19]

Wpływ miedzi na gęstość kompozytów na osnowie stali szybkotnącej jest znacznie większy w przypadku ich wytwarzania metodą infiltracji miedzi do porowatych szkieletów ze stali szybkotnącej, niż w przypadku dodatku takiej samej ilości miedzi w postaci proszku elementarnego do proszku stali szybkotnącej [32]. Infiltrację można stosować do wytwarzania stali miedzianych i kompozytów na osnowie stali szybkotnącej, jeżeli zawartość miedzi ma być większa od 10%.

3.2.2 Wpływ miedzi fosforowej na proces spiekania stali szybkotnących

Analiza termiczna procesu spiekania stali szybkotnej gatunku T6 z dodatkiem miedzi fosforowej, przedstawiona na rysunku 3.4, pozwala zidentyfikować efekty cieplne zachodzące w czasie liniowego zwiększania temperatury [21].

Rys. 3.4 Analiza termiczna różnicowa procesu spiekania stali T6 z dodatkiem miedzi fosforowej [21]
Faza ciekła odpowiedzialna za spiekanie powstaje w wyniku chemicznego oddziaływania miedzi fosforowej z osnową ze stali szybkotnącej w temperaturze około 715°C. W tej temperaturze fosfor wprowadzony w postaci fosforku miedzi reaguje z żelazem z osnowy stali szybkotnącej, tworząc fosforek żelaza Fe₃P i miedź zgodnie z reakcją (2):

\[(Cu - P \text{ lub } Cu₃P) + 3Fe \Rightarrow Fe₃P + Cu\] (2)

Obecne w stali dodatki stopowe: chrom, molibden, wanad i kobalt również rozpuszczają się w bogatej w fosfor fazie ciekłej, natomiast w miedzi rozpuszcza się żelazo. Te produkty reakcji są przyczyną występowania innych reakcji w wyższych temperaturach.

Proponowana kolejność tych reakcji jest następująca [21]:

- w zakresie temperatur 980÷1050°C, w zależności od gatunku stali, topi się eutektyka fosforowa:

- \(Fe₃P + \text{węglik typu } M₆C/MC + Fe \Rightarrow \text{faza ciekła}\) (3)

- w temperaturze 1083°C topi się miedź:

- \(Cu \Rightarrow \text{faza ciekła}\) (4)

- w temperaturach powyżej 1150°C następuje początek topnienia osnowy stali szybkotnącej, prawdopodobnie dlatego, że rozpuszczony w osnowie stali fosfor wpływa na temperaturę topnienia węglków typu M₆C:

\[\text{austenit } + \text{węglik typu } M₆C \Rightarrow \text{faza ciekła}\] (5)

Zachodzące podczas spiekania zjawiska i procesy powodują zmiany gęstości stali szybkotnącej. Stadia zagęszczenia podczas spiekania stali szybkotnącej z dodatkiem miedzi fosforowej przedstawia schemat na rysunku 3.5.
Stadium pierwsze rozpoczyna się w temperaturze około 715°C. Daje ono niewielki przyrost gęstości wywołany dyfuzją w stanie stałym. Topnienie szczątkowej ilości eutektki α+Cu₃P powoduje powstanie fazy ciekłej, ale ze względu na niewielką jej ilość, nie wpływa ona istotnie na proces zagęszczenia. Zagęszczenie kształtek ze stali szybkotnącej z dodatkiem Cu₃P w stanie stałym wynika z dyfuzji trzech pierwiastków:

- miedzi, która dyfunduje najwolniej,
- węgla, który dyfunduje szybko w austenicie,
- fosforu, który tylko nieznacznie dyfunduje do austenitu.

Bogata w fosfor faza ciekła często formuje się na granicy miedź-stal szybkotnąca według reakcji (2) i migruje w kierunku stali szybkotnej (rys. 3.6). Przeciwny strumień dyfuzji pomiędzy ferrytem i austenitem prowadzi do powstania obszarów bardziej stabilnego austenitu wokół pierwotnych cząstek miedzi fosforowej. Równocześnie zachodzi dyfuzja miedzi ze strefy reakcji do stali. Wewnątrz strefy B ziarna rozrastają się i szybciej niż w innych obszarach i zachodzi proces rozpuszczania węglików typu M₆C.
Spiekanie stali szybkotnących

Rys. 3.6 Model migracji do stali z granicy stal szybkotnąca – miedź bogatych w żelazo fosforków, przez dyfuzję w stanie stałym w temperaturze ok. 1000°C [21]:

A – Cu ze strefy reakcji między Cu-P dyfunduje do stali szybkotnącej,
B – strefa rozrostu ziarn stali,
C – strefa migracji fosforu z fosforku żelaza,
D – strefa niespieczona

Stadium drugie rozpoczyna się w temperaturze 980÷1050°C. Wzrasta znacznie zagęszczenie w porównaniu do stadium pierwszego. Głowną przyczyną tego zjawiska jest występowanie eutektycznej fazy ciekłej, powstałej w wyniku reakcji (3). Powstaje ona wokół byłych cząstek austenitu. Model ten sugeruje, że rozpuszczanie się węglków i dyfuzja fosforu stabilizują ferryt na granicy rozdziału fazy ciekłej ze stałą. Faza ciekła występuje ze względu na reakcję eutektyczną, co prowadzi do rozpuszczania osnowy stali szybkotnącej. Zagęszczenie jest wynikiem procesu rozpuszczania i wydzielenia zachodzących przez niestabilną termodynamicznie ciecz.

W przypadku, gdy dodane jest za dużo fosforu, lub zamiast miedzi fosforowej jako dodatek aktywujący spiekanie zastosujemy fosforek żelaza, w mikrostrukturze spiekanych stali wystąpią obszary eutektyczne. Mechanizm spiekania w II stadium przedstawia schemat na rysunku 3.7.
Rys. 3.7 Model migracji granicy ziarna w wyniku powstawania niestabilnej eutektycznej fazy ciekłej bogatej w fosfor w miejscu byłych granicach ziarn austenitu w temperaturze około 1050°C [21]

A – zakres stabilnego austenitu z węglikami,
B – strefa przyspieszonej stabilizacji austenitu spowodowanej przez dyfuzję Cu i C,
C – faza ciekła bogata w fosfor,
D – strefa przyspieszonej stabilizacji ferrytu w wyniku rozpuszczania węglików i dyfuzji fosforu,
E – porowata, mniej stabilna strefa złożona z austenitu i drobnych węglików

Na froncie fazy ciekłej, atomy fosforu dyfundują do stali, rozpuszczają się węgliki typu MC i M₆C, a atomy dodatków stopowych równocześnie dyfundują do stali i do fazy ciekłej. Dodatki stopowe: chrom, molibden, wanad, wolfram i fosfor stabilizują ferryt, dzięki temu przed frontem cieczy jest warstewka ferrytu. Umożliwia to ciągłe zachodzenie reakcji eutektycznej (3). Dyfundujący przez fazę ciekła węgiel stabilizuje austenit, po drugiej stronie fazy ciekłej dyfunduje do austenitu także miedź powodując dalszą jego stabilizację.

W trzecim stadium rolę fazy ciekłej spełnia tocząca się szczątkowa miedź, która powstała w wyniku przemiany Cu₃P na bogate w żelazo fosforki typu M₃P. Oddziaływanie miedzi jest takie samo, jak w przypadku spekania mieszanek proszków żelaza i miedzi. Oznacza to, że zagęszczenie następuje poprzez przegrupowanie cząstek.
Stadium czwarte. Te trzy stadia mogą być niewystarczające do całkowitego zagęszczenia spieku. Wtedy konieczne jest nagrzanie do temperatury powyżej 1150°C. Odpowiada ono spiekaniu supersolidus stali szybkotnących bez dodatku miedzi fosforowej, z tym wyjątkiem że spiekanie następuje w niższej temperaturze. Faza ciekła powstaje w wyniku reakcji eutektycznej (5).

Dane eksperymentalne potwierdziły zaproponowane powyżej reakcje występują podczas spiekania stali molibdenowych [21, 22]. Jednocześnie stwierdzono istotne różnice w pierwszym stadium spiekania pomiędzy stalami szybkotnącymi molibdenowymi i wolframowymi. Stale szybkotnące bogate w molibden wydają się być korzystniejsze dla procesu penetracji po granicach ziarn austenitu fazy ciekłej, która formuje się jako eutektka powstała z węglików i fosforków typu M₃P.

W przeciwieństwie do reakcji eutektycznej (3), występującej w stalach bogatych w molibden w stalach bogatych w wolfram, morfologia skupisk węglików otoczonych przez siatkę fosforków, sugeruje reakcję perytektyczną (6):

\[
\text{austenit} + \text{faza ciekła} \rightarrow \text{węgliki typu } MC/M₃C + M₂P \quad (6)
\]

Dalsze różnice pomiędzy tymi dwoma typami stali szybkotnących są widoczne w kinetyce ich spiekania. Bogate w wolfram stale T1 i T15 w wyniku podnoszenia temperatury spiekania w porównaniu z innymi stalami wykazują znacznie mniejsze zmiany w gęstości.

W stalach bogatych w wolfram spiekanych w zakresie temperatur, w który występuje bogata w fosfor faza ciekła, kształt krzywej spiekania pokazuje, że dominującym mechanizmem zagęszczenia jest proces rozpuszczania i wydzielania. Proces rozpuszczania i wydzielania prowadzi do spłaszczenia granic kontaktowych ziarn i akomodacji ich kształtu. Analiza termiczna procesu spiekania stali szybkotnej wolframowej z dodatkiem Cu₃P oraz badania metalograficzne struktur tych stali wykazały, że bogata w fosfor faza ciekła nie penetruje po granicach ziarn austenitu. Zatem nie występuje fragmentacja cząstek, co jest główną różnicą w porównaniu do stali szybkotnych molibdenowych. W fazie ciekłej
rozpuszczają się dodatki stopowe zawarte w stali i wydzielają się na węglikach, powodując ich rozrost. Proces ten opisuje reakcja perytektyczna (6).

Niezdolność fazy ciekłej do penetracji wzdłuż granic ziarn austenitu w przypadku nieobecności molibdenu w składzie stali jest zgodna z danymi na temat wpływu molibdenu na obniżenie energii granic ziarn i na zwilżalność [21]. Wyśmienia to różnice w kinetyce spiekania i strukturze spiekanych stali szybkotnących molibdenowych i wolframowych.

3.2.3 Wpływ dodatku grafitu na przebieg spiekania stali szybkotnących

Dodatek grafitu do proszku stali szybkotnącej ma na celu zwiększenie zawartości węgla w stali, obniżenie temperatury solidus oraz zwiększenie gęstości kształtek podczas spiekania. Wpływ dodatku węgla na przebieg spiekania i szerokość okna spiekania przedstawiono na rys. 3.8 [44].

![Diagram okna spiekania]

Rys. 3.8 Wpływ dodatku grafitu na przebieg spiekania oraz szerokość okna spiekania molibdenowych stali szybkotnących [44]

Jak już wspomniano, techniczne zastosowanie znajdują stale szybkotnące, w których zawartość węgla może osiągać nawet 2,3% (stal ASP60). Ilość dodatku grafitu zależy ścisłe od gatunku stali. Rozpatrując jako przykład stal gatunku M2 zawierającą według normy 0,85% C, wykazano że zwiększenie dodatku grafitu o 0,1% masowy powoduje zmniejszenie temperatury spiekania o ok. 9÷10°C. Dodatek 0,2% C do stali M2 istotnie poszerza okno spiekania dla tej stali. Niżej topliwa faza ciekła pojawia się na granicach cząstek, gdzie
występują lokalne niejednorodności składu stali spowodowane obecnością grafitu. Istotny wpływ na mikrostrukturę stali szybkotnącej spiekanej z dodatkiem grafitu ma szybkość nagrzewania do temperatury spiekania [12±16]. Niejednorodność składu chemicznego zmniejsza się w przypadku wolnego nagrzewania do temperatury spiekania, co umożliwia ujednorodnienie składu chemicznego w wyniku procesów dyfuzyjnych. Efektem tego może być zmniejszenie udziału fazy ciekłej w temperaturze spiekania [12±16].

Obniżenie temperatury spiekania poprzez zwiększenie zawartości węgla także przyczynia się także do ograniczenia niekorzystnego zjawiska rozrostu ziarn austenitu i węglików. Węgiel redukuje obecne w stali tlenki jeszcze przed osiągnięciem właściwej temperatury spiekania, z tego względu zmienia się w czasie jego zawartość. Znając ilość węgla potrzebną do redukcji zawartych w stali tlenków możemy precyzyjnie określić temperaturę spiekania danej stali, oraz końcową zawartość węgla. Dokładne ustalenie temperatury spiekania przy określonej zawartości węgla pozwala na uniknięcie deformacji kształtek.
4. INFILTRACJA

4.1 Ogólna charakterystyka procesu infiltracji

Cechą, a niekiedy wadą wyrobów wytwarzanych na drodze metalurgii proszków jest obecność porów. Istnieją jednak procesy technologiczne, w wyniku których można z porowatej wypraski lub spieku otrzymać wyroby pozbawione porów. Są to np.: doprasowanie na gorąco, kucie na gorąco, prasowanie izostatyczne na gorąco, wyciskanie na gorąco, prasowanie obwiedniowe ale także spiekanie supersolidus. Procesy te są niejednokrotnie bardzo kosztowne. Dlatego bardzo często w celu uniknięcia porowatości w gotowym wyrobie stosuje się infiltrację.

Zgodnie z polską normą PN-ISO 03/H-01014 - infiltracja jest przebiegającym pod działaniem sił kapilarnych wypełnianiem porów wypraski lub spieku metałem lub stopem o niższej temperaturze topnienia, niż temperatura topnienia półwyrobu.

Produkcja wyrobów metodą infiltracji składa się z dwóch etapów: wytwarzania porowatych kształtek o określonych własnościach, oraz infiltrację ich cieczą. Efektywność procesu infiltracji jest ściśle związana z czasem, w którym osiągnięty zostanie jak największy stopień wypełnienia kapilar.

Na podstawie rozważań teoretycznych oraz badań doświadczalnych stwierdzono, że proces infiltracji przebiega w trzech stadiach [64, 69]. Schematycznie ilustruje to krzywa infiltracji, przedstawiona na rys. 4.1:

![Rys. 4.1 Schemat krzywej infiltracji zwilżającej cieczy w materiale porowatym, w atmosferze gazowej, 1, 2, 3 – stadia infiltracji [64]](image-url)
w stadium 1 zachodzi kapilarna infiltracja cieczy w kapilary porowatego materiału,

w stadium 2 następuje dalsze lecz wolniejsze wnianie cieczy w kapilary nieprzezlotowe oraz w zamknięte pory gazowe, ich eliminacja w wyniku przepływu cieczy pomiędzy kapilarami o małej różnicy wielkości promieni,

w stadium 3 infiltracja zachodzi jeszcze wolniej i jest limitowana szybkością rozpuszczania się sprężonego gazu lub szybkością jego dyfuzji.

Poszczególne stadia mogą w dosyć dużym zakresie na siebie nachodzić. O tym jak długo trwają i czy wszystkie występują decyduje kilka czynników, z których najważniejsze to:

- sposób infiltracji,
- budowa kapilar,
- rodzaj stosowanej atmosfery,
- własności fizyczne i chemiczne składników układu,
- skrajny kąt zwilżania.

4.2 Termodynamiczne warunki samorzutnej infiltracji

Infiltracja to proces, w którym biorą udział fazy: ciekła, stała i gazowa. Zatem decydującą rolę odgrywają zjawiska powierzchniowe, a zmiany energii całego układu wynikają głównie ze zmian energii powierzchniowej na granicach faz.

Kryterium samorzutnej infiltracji [64÷69] w układach, w których nie występuje wzajemna rozpuszczalność porowatego materiału i infiltrującej cieczy ma postać (7):

\[\Delta \Omega = -\alpha_{CG} \cdot \Delta A_{SC} \cos \Theta < 0 \]

gdzie:

- \(\Omega \) - potencjał termodynamiczny Herringa,
- \(\alpha_{CG} \) – jednostkowa energia międzyfasowa na granicy ciecz – gaz,
- \(\Delta A_{SC} \) – zmiana powierzchni międzyfasowej ciało stałe – ciecz,
- \(\Theta \) - skrajny kąt zwilżania.

We wzorze (7) \(\Delta A_{SC} \) dla infiltracji narastającej jest zawsze większe od 0 i \(\alpha_{CG} \) także jest większe od 0, zatem zależność ta jest spełniona, gdy:

\[\cos \Theta > 0 \]

(8)
Infiltracja

Oznacza to, że w przypadku braku wzajemnej rozpuszczalności materiału porowatego w infiltrowanej cieczy kryterium samorzutnej infiltracji jest spełnione dla wszystkich wartości kąta \(0 \leq \Theta < 90^\circ\).

W przypadku, gdy występuje ograniczona rozpuszczalność materiału porowatego w infiltrowanej cieczy, spełnienie nierówności (7) jest warunkiem koniecznym do samorzutnego przebiegu infiltracji, ale niewystarczającym. W takim przypadku kryterium samorzutnej infiltracji jest nierówność (9):

\[
n \cdot \cos \frac{\varphi}{2} > 1
\]

gdzie:
- \(\varphi\) - dwuścienny kąt zwilżania,
- \(n\) – współczynnik zależny od liczby koordynacyjnej cząstek proszku.

Przy czym \(n(l_k)\) oznacza współczynnik \(n>1\) zależny od liczby koordynacyjnej \(l_k\) cząstek fazy stałej w infiltrowanej kształcie. Odwróceniem zjawiska infiltracji jest zjawisko wypacania fazy ciekłej z porowatych kształtek. Proces ten może zachodzić zarówno przy rozwartym, jak i ostrym kącie zwilżania. Warunki pojawienia się wypoczeń mogą zostać sformułowane jako odwrócenie nierówności (8) i (9) [68]

4.3 Główne czynniki mające wpływ na przebieg infiltracji

4.3.1 Budowa kapilar materiału porowatego

Kapilary materiału porowatego są utworzone przez pory ciągłe, czyli pory łączące się ze sobą w system połączonych kanałów przecinających kształtkę. Budowa kapilar w porowatym materiale metalicznym wytworzonym przez prasowanie i spiekanie cząstek proszku zależy od własności metalu lub stopu, z którego wytworzone te proszki, od geometrycznej charakterystyki cząstek: wielkości, kształtu, ukształtowania powierzchni oraz od parametrów wytwarzania: sposobu i ciśnienia prasowania, warunków spiekania. Gdy cząstki mają zwartą budowę, zbliżoną kształtem do sferoidalnej, wytworzy się z nich porowate wypraski, w których kapilary mają kształt zaokrąglony. Natomiast z cząstek spłaszczenych lub wydłużonych otrzymuje się wypraski z kapilarami w kształcie szczelin. W czasie spiekania wyprasek przeznaczonych do infiltracji następuje stopniowe wyglądanie powierzchni kapilar i zaokrąglenie ich przekroju. Na porowatość kształtki przeznaczonej do infiltracji składają się pory otwarte i zamknięte. W przypadku braku rozpuszczalności
Infiltracja materiału kształtki w cieczy, pory zamknięte nie zostają przez nią wypełnione, dlatego powinno się dążyć do zmniejszenia ich udziału.

4.3.2 Sposoby infiltracji

Wyróżnia się trzy główne sposoby infiltracji, przedstawione schematycznie na rysunku 4.1 [64].

Rys. 4.2 Schematy infiltracji: a – przez całkowite zanurzenie w cieczy, b – przez częściowe zanurzenie w cieczy, c – przez wyzarzanie porowatej kształtki z nałożoną płytką metalu, który przy temperaturze wyższej od temperatury topnienia płytki infiltruje w kapilary kształtki: 1 – porowata kształtka, 2 – infiltrująca ciecz (w przypadku c – płytki metalu niżej topliwej), 3 – elementy grzejne

Infiltracja przez całkowite zanurzenie porowatego materiału w cieczy w atmosferze gazowej (rys. 4.2 a) może doprowadzić do zamknięcia gazu w kapilarach. Umożliwia jednak skrócenie czasu infiltracji ze względu na fakt, że kapilary kształtki są wypełniane ze wszystkich jej stron równocześnie.

Infiltracja przez częściowe zanurzenie materiału porowatego w cieczy (rys.4.2 b), polega na zanurzeniu porowatej kształtki w infiltrującej cieczy tylko z jednej niżej położonej strony. Działanie sił kapilarnych powoduje wnikanie cieczy do całej objętości kapilar w kształcie.

Infiltracja nakładkowa (od góry) polega na nagrzaniu porowatej kształtki z nałożoną na nią płytką materiału, do temperatury powyżej punktu topnienia płytki, po stopieniu której, ciecz infiltruje kapilary materiału od góry (rys. 4.2 c). Na porowatą kształtkę nakłada się odpowiadającą objętości kapilar masę metalu lub stopu infiltrującego. Po
Infiltracja

osiągnięciu odpowiedniej temperatury, materiał ten topi się i ciecz infiltruje w kapilary leżącej pod nią kształtki.

Różnica w przebiegu infiltracji cieczy przy częściowym zanurzeniu lub stosowaniu nakładki nie ma praktycznego znaczenia, jeżeli ciecz infiltruje w kapilarach o małym promieniu. Ciężar słupa cieczy, w porównaniu z siłami kapilarnymi, jest wówczas niewielki, a przebieg usuwania gazu z kapilar jest w obu przypadkach identyczny.

4.3.3 Udział porowatości zamkniętej

Gdy porowaty materiał nie rozpuszcza się wcale, lub bardzo nieznacznie rozpuszcza się w infilrującej cieczy, to może ona wypełniać tylko pory otwarte. Natomiast, gdy występuje rozpuszczalność, to w określonych warunkach może nastąpić wypełnienie cieczą także porów zamkniętych, gdyż infilrująca ciecz może rozpuszczać w sobie materiał porowatego szkieletu i wnikać w pory zamknięte. Istnieje wówczas ryzyko zniszczenia wyrobu wskutek penetracji cieczy po granicach kontaktowych cząstek. Prowadzi to do utworzenia roztworu lub zawiesiny cząstek, która stanowi porowaty szkielet w cieczy. W przypadku spieków z proszków metali w zakresie porowatości całkowitej powyżej 10 do 13% udział porowatości zamkniętej w porowatości całkowitej w przybliżeniu wynosi około 1 do 3%. Udział ten zwiększa się, gdy porowatość całkowita jest mniejsza od tej granicznej wartości. Przy porowatości całkowitej w zakresie 6 do 8% w kształtach z proszków metali występują już tylko pory zamknięte.

4.3.4 Własności infilrującej cieczy

Metal lub stop użyty do infiltracji powinien charakteryzować się niższą temperaturą topnienia niż temperatura topnienia metalu porowatej kształtki. Może tylko w znikomym stopniu rozpuszczać szkielet ciała stałego, gdyż w przeciwnym wypadku straci on swój kształt i własności mechaniczne. Ważnym kryterium doboru cieczy do infiltracji jest zwilżanie przez nią ciała stałego. Trudności w uzyskaniu dostatecznej zwilżalności występują np. w układach tlenek-metal, ponieważ na ogół energia na powierzchni rozdziału między tlenkami i metalami jest wyższa, niż w układach np. metal-metal lub węgl- metal. Znane są jednak sposoby regulacji zwilżania. Pierszy polega na zmianie w pożądany kierunku własności zwilżanego ciała stałego, a drugi opiera się na wykorzystaniu efektu adsorpcyjnego przez wprowadzenie do cieczy międzyfasowo aktywnych dodatków tzw. detergentów, którymi mogą być: gazy, inne metale, organiczne lub nieorganiczne związki [64].

53
4.3.5 Gaz obecny w kapilarach

Jeśli gaz zawarty w kapilarach nie będzie miał drogi swobodnego ujścia, to będzie hamował proces infiltracji. Zamknięty w kapilarach gaz w czasie infiltracji jest sprężany przez ciecz i może całkowicie uniemożliwić przebieg procesu w sytuacji, gdy jego ciśnienie w kapilarach osiągnie wartość sumy ciśnień kapilarnego i zewnętrznego.

Ciśnienie to jest określone równaniem 10 [64]:

\[P_w = \frac{2 \cdot \alpha \cdot \cos \Theta}{r} + P_Z \] (10)

gdzie:

- \(P_w \) – ciśnienie gazu w kapilarach,
- \(P_Z \) – ciśnienie zewnętrzne, które jest sumą ciśnień atmosferycznego ciśnienia hydrostatycznego;

Obecność gazu w kapilarach infiltrowanego materiału uzależnia proces samorzutnej infiltracji od ich budowy. Budowa kapilar wpływa na to, czy w danych warunkach gaz będzie w nich zamykany, czy też będzie wypierany przez infiltrującą ciecz. W przypadku infiltracji zanurzeniowej niekorzystna jest sytuacja, gdy kapilary materiału infiltrowanego na całej swej długości mają jednakową średniicę. Gaz znajdujący się w takich kapilarach nie ma możliwości wypłynięcia z nich z powodu jednakowego ciśnienia panującego na obu ich końcach. W takim przypadku ciecz może wnikać do kapilar dopóty dopóki gaz w nich zamknięty nie zostanie sprężony do ciśnienia określonego równaniem (10). Kiedy gaz osiągnie ciśnienie \(P_w \), to dalsza infiltracja będzie możliwa jedynie w przypadku rozpuszczenia się sprężonego gazu w cieczy, lub w materiale porowatego szkieletu. Model ilustrujący wnikanie cieczy do kapilar o jednakowej średnicy na ich długości w atmosferze gazowej przedstawiono na rys 4.3 [64].

Rys. 4.3 Model ilustrujący wnikanie cieczy do kapilar o jednakowej średnicy na ich długości w atmosferze gazowej [64]
W rzeczywistości trudno jest wytwarzać porowate kształtki, w których średnice kapilar są jednakowe na całej długości. Różna średnica kapilar w określonych warunkach infiltracji może umożliwić penetrację w nich cieczy, pomimo wypełnienia ich gazem, co ilustruje rysunek 4.4. Przedstawia on rurkę kapilarną o różnych średnicach na obu jej końcach, zanurzoną w cieczy w pozycji poziomej.

Rys 4.4 Model ilustrujący wnikanie cieczy do kapilar o niejednakowym przekroju na obu końcach w atmosferze gazowej [64]

Jeżeli kapilary w materiale porowatym mają różne wymiary, to ciecz wnika do materiału porowatego przez węższą część kapilary, a gaz zawarty w kapilarach jest wypychany przez część szerszą, ponieważ ciśnienie w tej części kapilary jest mniejsze. Warunkiem koniecznym do wystąpienia procesu infiltracji jest, aby siła wciągająca ciecz do węższej części kapilary była większa od siły przeciwnie skierowanej wywołanej sprężeniem gazu. Warunek ten przedstawia wzór (11) [64, 68].

\[
\cos \Theta > \frac{r}{r_m}
\]

(11)

gdzie:

\(\Theta\) - skrajny kąt zwilżania,

\(r\) i \(r_m\) – promień węższej i szerszej części kapilary.

W materiałach porowatych, obok kapilar przelotowych istnieją pory nieprzelotowe. W przypadku prowadzenia infiltracji w atmosferze gazowej, gdy gaz zawarty w porach nie rozpuszcza się w cieczy lub w materiale kapilary, pęcherze gazowe stanowią przeszkodę dla wnikającej cieczy. Wówczas infiltracja będzie przebiegała do momentu, gdy ciśnienie
sprężonego gazu zamkniętego w kapilarze zrównoważy sumę ciśnień kapilarnego i zewnętrznego.

W materiałach przeznaczonych do infiltracji kapilary z reguły mają kształt złożony, a ich przekrój poprzeczny jest nieregularny.

4.3.6 Zagadnienie zwilżania w procesie infiltracji

Infiltracja należy do procesów technologicznych, w których kontakt ze sobą mają fazy: stała, ciekła i gazowa. We wszystkich takich procesach decydującą rolę odgrywają zjawiska powierzchniowe, a zmiany energii całego układu są wynikiem zmian energii na granicach poszczególnych faz. Podstawowym warunkiem samorzutnej infiltracji jest obniżenie energii układu w czasie procesu, a dominującą rolę odgrywa dobra zwilżalność fazy stałej przez ciecz. Zwilżanie fazy stałej przez fazę ciekłą może mieć dwa przejawy:

1. może polegać na rozpływaniu się cieczy i przyjmowaniu przez nią kształtu równowagowego na powierzchni granicy fazy stałej i gazowej,
2. może dotyczyć rozprzestrzeniania się cieczy wzdłuż granic ziarn fazy stałej.

W pierwszym przypadku równowagowa konfiguracja powierzchni rozdziału faz wyznaczana jest przez skrajny kąt zwilżania, a w drugim scharakteryzowana jest przez dwusciąenny kąt zwilżania. Wartości obydwu tych kątów zależą od energii powierzchni rozdziału faz.

Skrajny kąt zwilżania \(\Theta \). W warunkach równowagi cosinus skrajnego kąta zwilżania według równania Duprè – Younga jest określony zależnością (12) [64÷71]:

\[
\cos \Theta = \frac{\alpha_{sg} - \alpha_{sc}}{\alpha_{cg}}
\]

gdzie:

- \(\alpha_{sg} \) – energia powierzchniowa na granicy rozdziału faza stała – faza gazowa,
- \(\alpha_{sc} \) – energia powierzchniowa na granicy rozdziału faza stała – faza ciekła,
- \(\alpha_{cg} \) – energia powierzchniowa na granicy rozdziału faza ciekła – faza gazowa.

Na wartość skrajnego kąta zwilżania wpływają [68,72]:

- skład chemiczny ciała stałego (powierzchnia jedno- i wielofazowa),
- chropowatość powierzchni,
orientacji krystalograficznej powierzchni (anizotropii energii powierzchniowej),
- porowatość powierzchni ciała stałego,
- obecność powłoki tlenkowej na powierzchni kropli ciekłego metalu,
- zanieczyszczenia obecne na powierzchni fazy stałej i w fazie ciekłej,
- atmosfera,
- czas kontaktu fazy ciekłej z ciałem stałym.

Dwuścienny kąt zwilżania φ w materiale dwufazowym: polikrystaliczna faza stała – faza ciekła, jest kątem zawartym pomiędzy powierzchniami międzyfazowymi utworzonymi przez ciecz z dwoma sąsiadującymi ziarnami fazy stałej w punkcie przecięcia tych powierzchni z granicą ziarn. Dwuścienny kąt zwilżania określa zależność (13):

$$\cos \frac{\phi}{2} = \frac{1}{2} \frac{\gamma_{ss}}{\gamma_{sc}}.$$ (13)

Penetracja fazy ciekłej między ziarna fazy stałej zależy od dwuściennego kąta φ oraz od wzajemnej ich rozpuszczalności. Im mniejszy kąt φ, tym większa penetracja. Przy bardzo małych wartościach kąta φ lub gdy φ = 0, cząstki fazy stałej są całkowicie rozdzielone fazą ciekłą. Następuje wówczas fragmentacja cząstek proszku na poszczególne ziarna. Pozwala to na przegrupowanie wtórne cząstek fazy stałej, wskutek lepkościowego płynięcia w cieczy. Ma to duże znaczenie we wszystkich procesach spiekania, gdzie występuje faza ciekła, gdyż intensyfikuje proces spiekania i pozwala prawie całkowicie zagęścić materiał w stosunkowo krótkim czasie [54, 68].

4.4 Stopień wypełnienia kapilar

Miara skuteczności infiltracji jest stopień wypełnienia kapilar określony wzorem 14:

$$S_w = \frac{V_c}{V_k} \cdot 100, \%$$ (14)

gdzie:

- S_w – stopień wypełnienia kapilar,
- V_c – objętość cieczy, która wniknęła do kapilar,
- V_k – objętość kapilar.
Podsumowanie

5. Podsumowanie

W części teoretycznej pracy przedstawiono najważniejsze zagadnienia dotyczące konwencjonalnych i wytwarzanych metodami metalurgii proszków stali szybkotnących, kompozytów na osnowie stali szybkotnących, wytwarzanych metodą infiltracji a także teoretycznych podstaw procesu infiltracji. Podsumowując można stwierdzić, że badania dotyczące wpływu miedzi i miedzi fosforowej na przebieg spiekania oraz zjawiska zachodzące podczas spiekania stali szybkotnących, a także na końcowe własności kompozytów na osnowie stali szybkotnącej są szczegółowo opisane w opracowaniach literaturowych [12÷26]. Nieliczne publikacje [29÷31] wskazują na możliwość wytwarzania metodą infiltracji kompozytów na osnowie stali szybkotnącej, cechujących się dodatkowymi własnościami, których nie posiada konwencjonalna i spiekana stal szybkotnąca. Własności stali szybkotnących, a w szczególności ich wysoka twardość i wytrzymałość i odporność na zużycie cierne powodują, że mogą być one atrakcyjnym materiałem na osnowę kompozytów, a przez dodanie do stali szybkotnących innych składników w postaci proszku żelaza, proszków węglików oraz miedzi można oddziaływać na strukturę i własności kompozytów na osnowie stali szybkotnącej.

Analizując dostępne w literaturze dane, dotyczące infiltracji miedzi do porowatych kształtek ze stali szybkotnej [29÷31], a także wstępne wyniki badań tego procesu i spiekania stali szybkotnych przeprowadzone w Katedrze Metaloznawstwa i Metalurgii Proszków [12, 13, 19, 25, 26, 73÷80], uznano za celowe szersze badania dotyczące infiltracji miedzi do porowatych kształtek z proszku stali szybkotnej oraz porowatych kształtek ze stali szybkotnej z dodatkami proszku żelaza oraz proszku węglika wolframu WC. Wyniki tych badań zaprezentowano w niniejszej pracy.
6. TEZA I CEL PRACY

Na podstawie przeprowadzonej analizy dostępnych w literaturze danych dotyczących wytwarzania infiltrowanych kompozytów na osnowie stali szybkotłującej [29-31] oraz w oparciu o wyniki badań wstępnych procesu infilacji i spiekania stali szybkotłących, uzyskane w Katedrze Metaloznawstwa i Metalurgii Proszków, [12, 13, 19, 25, 26, 73÷80] przyjęto następującą tezę pracy:

W wyniku infilacji miedzi do porowatych kształtek wykonanych z proszku stali szybkotłującej można wytwarzać kompozyty o wysokich własnościach wytrzymałościowych, a przez dodatek proszku żelaza lub proszku węgliku wolframu WC można powodować zmianę ich własności, w szczególności zwiększenie odporności na zużycie cierne oraz poprawę własności ślizgowych.

Celem badań jest kształtowanie, w wyniku zmiany liczby i zawartości komponentów oraz parametrów procesu formowania mikrostruktury i własności 3 grup infiltrowanych kompozytów:

- stal szybkotłaca gatunku M3/2 – miedź,
- stal szybkotłaca M3/2 – żelazo – miedź,
- stal szybkotłaca M3/2 – węglik wolframu WC - miedź.

Po uwzględnieniu w grupie pierwszej dodatków 7,5% miedzi i 0,3% grafitu oraz w grupie drugiej dwóch zawartości żelaza (20% i 50%), a w grupie trzeciej dwóch zawartości dodatku węgliku wolframu WC (10% i 30%) oraz przez zastosowanie do infilacji porowatych wyprasek i porowatych spieków otrzymano i poddano badaniom 14 rodzajów kompozytów na osnowie stali szybkotłącej.

Proces formowania kompozytów metodą infilacji składa się z dwóch zasadniczych stadiów:

1. formowania porowatych kształtek przeznaczonych do infilacji,
2. procesu infilacji.

Własności porowatych kształtek i parametry procesu ich wytwarzania mają zasadniczy wpływ na przebieg infilacji oraz na własności infiltrowanych kompozytów [64, 65].

Określono wpływ parametrów wytwarzania na własności porowatych kształtek przeznaczonych do infilacji oraz wpływ własności porowatych kształtek na przebieg...
infiltracji, mikrostrukturę i własności 14 rodzajów infiltrowanych kompozytów na osnowie stali szybkotnącej.

Udowodnienie postawionej tezy wymagało zrealizowania szczegółowych badań struktury i własności porowatych kształtek przeznaczonych do infiltracji (porowatych wyprasek i porowatych spieków) oraz infiltrowanych kompozytów.

W związku z tym wykonano badania:

1. **właściwości i morfologia proszków stosowanych do badań**

2. **właściwości porowatych wyprasek i porowatych spieków:**
 - gęstości i porowatości kształtek przeznaczonych do infiltracji,
 - przebiegu spiekania metodą dylatometryczną,
 - morfologii kapilar na przełomach porowatych kształtek przeznaczonych do infiltracji,

3. **właściwości infiltrowanych kompozytów:**
 - stopnia wypełnienia kapilar infiltrantem,
 - gęstości i porowatości infiltrowanych kompozytów,
 - twardości,
 - mikrotwardości,
 - wytrzymałości na zginanie,
 - odporności na zużycie cierne,
 - współczynnika tarcia,
 - procesu utleniania w podwyższonych temperaturach,
 - mikrostruktury infiltrowanych kompozytów,
 - wykonano mikroanalizę rentgenowską,
 - wykonano rentgenowską analizę fazową.

Na podstawie otrzymanych wyników ustalono zależności pomiędzy rodzajem użytych składników wyjściowych i technologią wytwarzania porowatych kształtek, a strukturą i własnościami uzyskanych kompozytów.

Zgromadzone w trakcie badań wyniki pozwoliły na ustalenie optymalnych parametrów procesu wytwarzania nowoczesnych materiałów kompozytowych na osnowie stali szybkotnącej, odznaczających się dobrymi własnościami mechanicznymi, wysoką odpornością na zużycie cierne i bardzo dobrymi własnościami ślizgowymi.
7. **Metodyka badań oraz materiały stosowane do badań**

7.1 **Metodyka badań**

7.1.1 **Badania własności proszków**

Wszystkie stosowane rodzaje proszków poddano szczegółowym badaniom. Zbadano ich własności zgodnie z zaleceniami polskich i europejskich norm.

Przeprowadzono badania:

1) rozkładu wielkości cząstek proszków, wg PN-EN 24497:1999,
2) gęstości nasypowej metodą wolumetru Scotta, wg PN-EN 23923:1998,
3) gęstości nasypowej z usadem, wg PN-EN 3953:1997,
4) sypkości, wg PN-82/H-04935,
5) zgęszczenności, wg PN- 82/H-04931,
6) powierzchni właściwej oznaczonej metodą przepuszczalności,
7) morfologii cząstek proszków oraz mikrostruktury badanej za pomocą mikroskopu skaningowego,
8) mikrostruktury badanej za pomocą mikroskopu świetlnego.

7.1.2 **Badanie własności fizycznych i chemicznych porowatych kształtek oraz infiltrowanych kompozytów**

1. **Gęstość teoretyczna** porowatych kształtek oraz infiltrowanych kompozytów

Gęstość teoretyczną mieszanki proszków oraz infiltrowanych kompozytów wyznaczono na podstawie wzoru (15):

\[
\rho_t = \frac{a + b + c + \ldots}{\frac{a}{\rho_a} + \frac{b}{\rho_b} + \frac{c}{\rho_c} + \ldots}, \text{g/cm}^3
\]

(15)

gdzie:

a, b, c – zawartość składników: a, b, c, w % masowych,

\(\rho_a, \rho_b, \rho_c\) – gęstość teoretyczna składników: a, b, c w g/cm\(^3\).

2. **Gęstość względna i porowatość** porowatych kształtek przeznaczonych do infiltracji oraz infiltrowanych kompozytów:

Gęstość względna kompozytu jest wyrażona ilorazem gęstości rzeczywistej i gęstości teoretycznej kompozytu:
$
\rho_w = \frac{\rho}{\rho_t} \cdot 100, \%$

Porowatość kompozytu można zatem wyrazić zależnością:

$P = (1 - \rho_w) \cdot 100, \%$

gdzie:

ρ_w - gęstość względna,

ρ - gęstość rzeczywista kształt,

ρ_t - gęstość teoretyczna obliczona dla mieszanki składników,

P - porowatość.

3. **Stopień wypełnienia** kapilar materiału porowatego miedzią:

Stopień wypełnienia kapilar infiltrującą cieczą w procesie infiltracji jest ilorazem objętości cieczy, która wniknęła do kapilar i objętości tych kapilar:

$S_w = \frac{V_c}{V_k} \cdot 100, \%$ \hspace{1cm} (18)

gdzie:

S_w - stopień wypełnienia kapilar,

V_c - objętość ciekłej miedzi wypełniającej kapilary,

V_k - objętość kapilar.

4. **Zmiany wymiarów oraz gęstości** podczas spiekania i infiltracji:

Zmiany objętości w czasie spiekania i infiltracji wyznaczono na podstawie zależności:

$\Delta V = \frac{\Delta V}{V_p} \cdot 100% = \frac{V_k - V_p}{V_p} \cdot 100$ \hspace{1cm} (19)

gdzie:

V_p - objętość początkowa wypraski lub spieku,

V_k - objętość końcowa spieku lub infiltrowanego kompozytu.

Zmiany gęstości w czasie spiekania i infiltracji wyznaczono na podstawie zależności:

$\Delta \rho = \frac{\Delta \rho}{\rho_p} \cdot 100% = \frac{\rho_k - \rho_p}{\rho_p} \cdot 100$ \hspace{1cm} (20)

gdzie:

ρ_p - gęstość początkowa wypraski lub spieku,

ρ_k - gęstość końcowa spieku lub infiltrowanego kompozytu.
5. Twardość i mikrotwardość spieków oraz infiltrowanych kompozytów

Twardość spieków oraz infiltrowanych kompozytów badano metodą Brinella, na dwóch przeciwległych powierzchniach kształtki. Stosowano kulkę stalową lub węglikową o średnicy 2,5 mm oraz obciążenie 1840 N. Średnie wartości twardości uzyskano po wykonaniu 8 pomiarów, na co najmniej 10 kształtach spiekanych oraz infiltrowanych.

Badania mikrotwardości wykonano na zgradach metalograficznych kształtek wytrzymałościowych, uzyskanych w wyniku ich poprzecznego przecięcia w połowie długości. Stosowano mikrotwardościomierz Hanemann’a i obciążenie 65G. Na każdej badanej próbce wykonano 15 pomiarów mikrotwardości, na podstawie których obliczono wartości średnie.

6. Wytrzymałość na zginanie infiltrowanych kompozytów

Badanie wytrzymałości na zginanie przeprowadzono na co najmniej 5 kształtach z każdego rodzaju kompozytów. Stosowano próbki prostopadłościenne o wymiarach około 5 mm x 5 mm x 40 mm. Badanie przeprowadzono przy użyciu prasy mechanicznej typu ZIM z rejestratorem siły zginającej z dokładnością do 10N. Próbki zginano za pomocą przyrządu do trójpunktowej próby zginania, którego schemat przedstawiono na rysunku 7.1.

![Rys. 7.1 Schemat przyrządu do przeprowadzenia badań wytrzymałości na zginanie](image)

Próbki umieszczono na podporach o kształcie walca, których rozstaw osi wynosił 28,6 mm. W trakcie zginania rejestrowano wartość siły zginającej. Na podstawie uzyskanych danych i pomiarów geometrycznych przekroju każdej kształtki poddanej zginaniu obliczono wartość wytrzymałości na zginanie \(R_g \) (21):

\[
R_g = \frac{M_g}{W_g}, \text{ MPa} \quad (21)
\]

gdzie:

\[M_g = \frac{F \cdot l}{4} \]
\[W_g = \frac{bh^2}{6} \]

(22)
(23)

F – siła maksymalna, N,
l – odległość między podporami, mm,
b – szerokość próbki, mm,
h – wysokość próbki, mm,

7. Badanie własności tribologicznych infiltrowanych kompozytów

Badania odporności na zużycie cierne oraz współczynnika tarcia przeprowadzono testerem T-05 (rys. 7.2).

Rys. 7.2 Tester T-05 typu rolka – klocek do badań własności tribologicznych

Tester T-05 pozwala na przeprowadzanie badań zgodnie z metodami określonymi w normach amerykańskich: ASTM D 2714, D 3704, D 2981 i G 77. Zasadę działania urządzenia testowego T-05 przedstawiono na rysunku 7.3. Uchwyt próbki 4 z wkładką półkulistą 3 stanowi samonastawne zamocowanie klocka 1, które zapewnia dobre jego przyleganie do rolki 2, a tym samym równomierne rozłożenie nacisków w styku. Dwudźwigniowy układ obciążania pozwala na przyłożenie siły dociskającej klocek do rolki P z dokładnością do 1%. Rolka może obracać się ze stałą prędkością obrotową n (rys. 7.3 a), lub wykonuje ruch oscylacyjny z częstotliwością f (rys. 7.3 b).
Testy prowadzono przy ruchu postępowym w styku ślizgowym suchym, bez udziału środków smarujących. Do testów stosowano próbki cylindryczne o wymiarach φ 15x5 mm. Ustalono następujące parametry testu:

- przeciwróbka: φ 49,5 mm ze stali 55, obrobionej cieplnie na twardość 55 HRC,
- obroty wrzeciona: 500 obr/min,
- nacisk: 165 N,
- prędkość obwodowa: 1,3 m/s,
- droga posłizgu: 1000m,
- czas próby: 13 minut.

8. **Utlenianie w podwyższonych temperaturach**

Proces utleniania infiltrowanych miedzi kompozytów na osnowie stali szybkotnącej badano metodą termograwimetryczną za pomocą analizatora METTLER. Próbki umieszczano w tyglach platynowych. Wszystkie analizy prowadzono w jednakowych warunkach:

- szybkość grzania: 10°C/min,
- masa próbki: 65 mg,
- atmosfera: powietrze z szybkością przepływu 5 dm³/godz,
- zakres temperatury: 20 ÷ 1000°C.

W trakcie liniowego wzrostu temperatury termoanalizator rejestruje w sposób ciągły efekty cieplne w postaci krzywej DTA (termiczna analiza różnicowa) oraz zmiany masy w postaci krzywych TG (termograwimetrów) i jej pochodnej DTG. Do termicznej analizy różnicowej, która mierzy efekt cieplny w postaci różnicy potencjałów pomiędzy badaną próbką a próbką odniesienia, w której w badanym zakresie temperatur nie występują żadne efekty cieplne, jako odniesienie stosowano proszek Al₂O₃ cz.d.a. Próbki do badań przygotowano przez rozdrobnienie infiltrowanych kompozytów na proszek o wielkości cząstek poniżej 200µm.
7.1.3 Badanie struktury porowatych kształtek i infiltrowanych kompozytów

Badanie struktury porowatych kształtek i kompozytów na przełomach i zглядach objęło:

1. **Badania mikrostruktury wykonane za pomocą mikroskopu świetlnego**

 W celu ujawnienia mikrostruktury infiltrowanych kompozytów na osnowie stali szybkotnącej gatunku M3/2, wykonano zgłady metalograficzne poprzez szlifowanie, polerowanie i następnie trawienie ich powierzchni. Polerowanie wykonano na polerce firmy Struers, według programu dla materiałów twardych. Zgłady trawiono nitalem (3% roztwór kwasu azotowego w alkoholu etylowym). Badania mikrostruktury przeprowadzono przy użyciu mikroskopów świetlnych Neophot i mikroskopu Leica 3500N. Zastosowanie mikroskopii świetlnej pozwoliło na identyfikację faz tworzących kompozyt oraz ustalenie rodzaju i rozmieszczenia składników strukturalnych. Podstawową metodą badań w mikroskopii odbiciowej była obserwacja szczegółów mikrostruktury w jasnym polu widzenia. Obserwacja w ciemnym polu widzenia pozwoliła na identyfikację wtrąceń niemetalicznych i węglików oraz na kontrastowe ujawnienie granic ziarn. Mikroskop Leica 3500N umożliwił obserwację zgładów w kontraście interferencyjnym różniczkowym, zwany kontrastem Nomarskiego, który umożliwia dostrzeganie i odróżnianie szczegółów obrazu w oparciu o ich zróżnicowanie w kontraście barwnym.

2. **Badania mikrostruktury oraz przełomów wykonane za pomocą mikroskopu skaningowego**

 Obserwacji powierzchni zgładów metalograficznych oraz przełomów próbek dokonano przy użyciu mikroskopów skaningowych Hitachi S-3500N i Novoscan 30. W celu określenia stopnia niejednorodności składu chemicznego badanych kompozytów, przeprowadzono również mikroanalizy rentgenowskie za pomocą energodispersyjnego mikroanalizatora Ortec oraz mikrosondy elektronowej Cameca.

3. **Rentgenowska analiza fazowa**

 Rentgenowską analizę fazową wykonano dla wybranych kompozytów na osnowie stali szybkotnącej. Kompozyty poddano analizie fazowej przy użyciu aparatu rentgenowskiego Tur 62 z zainstalowanym goniometrem HZG 4 metodą zliczania krokowego, o wielkości $\Delta 2\theta = 0,01^\circ$, w zakresie $2\theta = 30^\circ-90^\circ$. Czas zliczeń $\tau = 5$ sekund. Źródłem promieniowania rentgenowskiego o długości fali $\lambda = 0,179$nm, była lampa kobaltowa. Analizę fazową przeprowadzono w wyniku nałożenia za pomocą komputera na eksperymentalny obraz dyfrakcyjny próbki obrazu tablicowego, pochodzącego od wzorców poszczególnych faz mogących występować w badanych próbkach.
7.2 Własności proszków stosowanych do badań

Do wytwarzania kompozytów stosowano proszki:
- rozpylany wodą proszek stali szybkotłotnej gatunku M3/2 produkcji firmy Powdrex,
- elektrolityczny proszek miedzi gatunku ECu1 produkcji Zakładów Metalurgicznych „Trzebinia”,
- spiekany reakcyjnie proszek węglika wolframu WC produkcji Huty Baildon,
- redukowany węglem proszek żelaza gatunku NC 100.24 produkcji firmy Höganäs,
- proszek naturalnego grafitu cejłońskiego.

Badanie własności fizycznych i technologicznych poszczególnych proszków prowadzono według wytycznych zamieszczonych w rozdziale 7.1.1.

7.2.1 Własności proszku stali szybkotłotnej

Do badań stosowano rozpylany wodą proszek stali szybkotłotnej gatunku M3/2, produkowany przez angielską firmę Powdrex. Proszek dostarczono w stanie wyżarzonym. Skład chemiczny proszku, według certyfikatu analizy przeprowadzonej przez producenta przedstawiono w tabeli 7.1.

Tabela 7.1 Skład chemiczny proszku stali szybkotłotnej gatunku M3/2

<table>
<thead>
<tr>
<th>Składnik</th>
<th>C</th>
<th>Cr</th>
<th>W</th>
<th>Mo</th>
<th>V</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Ni</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Fe</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Masowe</td>
<td>1,23</td>
<td>4,27</td>
<td>6,22</td>
<td>5,12</td>
<td>3,10</td>
<td>0,39</td>
<td>0,32</td>
<td>0,11</td>
<td>0,32</td>
<td>0,02</td>
<td>0,02</td>
<td>0,18</td>
<td>78,8</td>
<td>626 ppm</td>
</tr>
</tbody>
</table>

Własności fizyczne i technologiczne proszku stali szybkotłotnej gatunku M3/2 przedstawiono w tabeli 7.2, a szczegółową analizę sitową proszku przedstawiono w tabeli 7.3.

Tabela 7.2 Własności fizyczne i technologiczne proszku stali szybkotłotnej M3/2

<table>
<thead>
<tr>
<th>Zakres wielkości cząstek proszku, µm</th>
<th>Gęstość nasypowa, g/cm³</th>
<th>Gęstość nasypowa z usadem, g/cm³</th>
<th>Sypkość, s</th>
<th>Zgęszczalność przy 600MPa, g/cm³</th>
<th>Gęstość teoretyczna, g/cm³</th>
<th>Powierzchnia właściwa, (S_g) (wg Fishera) cm²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 200</td>
<td>2,26</td>
<td>3,13</td>
<td>38,5</td>
<td>6,08</td>
<td>8,16</td>
<td>1280</td>
</tr>
</tbody>
</table>
Tabela 7.3 Analiza sitowa rozkładu wielkości cząstek proszku stali szybkotnącej M3/2

<table>
<thead>
<tr>
<th>Klasa ziarnowa, µm</th>
<th>Udział frakcji w klasie ziarnowej, %</th>
<th>Suma udziałów frakcji w klasach ziarnowych, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 40</td>
<td>12,5</td>
<td>12,5</td>
</tr>
<tr>
<td>40 – 63</td>
<td>30,5</td>
<td>43,0</td>
</tr>
<tr>
<td>63 – 80</td>
<td>13,0</td>
<td>56,0</td>
</tr>
<tr>
<td>80 – 100</td>
<td>20,0</td>
<td>76,0</td>
</tr>
<tr>
<td>100 – 160</td>
<td>22,5</td>
<td>98,5</td>
</tr>
<tr>
<td>160 – 200</td>
<td>1,5</td>
<td>100</td>
</tr>
</tbody>
</table>

Krzywą zgęszczalnością proszku stali szybkotnącej gatunku M3/2 przedstawiono na rysunku 7.1.

Rys. 7.1 Wpływ ciśnienia prasowania na gęstość względną wyprasek ze stali szybkotnącej M3/2

Rys. 7.2 Morfologia cząstek proszku stali szybkotnącej gatunku M3/2, SEM

Rys. 7.3 Struktura cząstek proszku stali szybkotnącej gatunku M3/2, SEM

Na rysunku 7.4 przedstawiono rentgenowską analizę fazową proszku stali szybkotnącej.

Rys. 7.4 Dyfraktogram rentgenowski proszku stali szybkotnącej gatunku M3/2
Cząstki proszku stali szybkotnącej gatunku M3/2 mają strukturę złożoną z ferrytu i bainitu, z wydzieleniami bardzo drobnych węglków typu M₆C i MC w postaci W₃Fe₂C i V₆C₇. Średnia mikrotwardość proszku μHV₀,₀₆₅ = 284 ± 17.

7.2.2 Własności proszku miedzi

Do badań stosowano elektrolityczny proszek miedzi gatunku ECu₁, produkcji Zakładów Metalurgicznych „Trzebinia”. Skład chemiczny proszku miedzi ECu₁, według certyfikatu analizy przeprowadzonej przez producenta proszku przedstawiono w tabeli 7.4.

<table>
<thead>
<tr>
<th>Składnik</th>
<th>Cu</th>
<th>Pb</th>
<th>Fe</th>
<th>SO₄⁻²</th>
<th>O₂</th>
<th>H₂O</th>
<th>cz. n.</th>
</tr>
</thead>
<tbody>
<tr>
<td>% ciężarowe</td>
<td>99,71</td>
<td>0,027</td>
<td>0,002</td>
<td>0,0029</td>
<td>0,16</td>
<td>0,026</td>
<td>0,019</td>
</tr>
</tbody>
</table>

Proszek miedzi odznaczał się dużą czystością.

Własności fizyczne i technologiczne elektrolitycznego proszku miedzi przedstawiono w tabeli 7.5, a wyniki analizy sedymentacyjnej rozkładu wielkości cząstek zamieszczono w tabeli 7.6.

<table>
<thead>
<tr>
<th>Zakres wielkości cząstek proszku, μm</th>
<th>Gęstość nasypowa, g/cm³</th>
<th>Gęstość nasypowa z usadem, g/cm³</th>
<th>Sypkość, s</th>
<th>Powierzchnia właściwa Sₘ (wg Fishera) cm²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 40</td>
<td>1,60</td>
<td>2,08</td>
<td>nie sypie się</td>
<td>1702</td>
</tr>
</tbody>
</table>
Tabela 7.6 Analiza sitowa rozkładu wielkości cząstek proszku miedzi

<table>
<thead>
<tr>
<th>Klasa ziarnowa, µm</th>
<th>Udział frakcji w klasie ziarnowej, %</th>
<th>Suma udziałów frakcji w klasach ziarnowych, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10</td>
<td>10,0</td>
<td>10,0</td>
</tr>
<tr>
<td>10 – 15</td>
<td>25,0</td>
<td>35,0</td>
</tr>
<tr>
<td>15 – 20</td>
<td>35,0</td>
<td>70,0</td>
</tr>
<tr>
<td>20 – 25</td>
<td>24,3</td>
<td>94,5</td>
</tr>
<tr>
<td>25 – 30</td>
<td>2,5</td>
<td>97,0</td>
</tr>
<tr>
<td>30 – 35</td>
<td>2,0</td>
<td>99,0</td>
</tr>
<tr>
<td>35 – 40</td>
<td>1,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Morfologię cząstek elektrolitycznego proszku miedzi ECu1 przedstawiono na rysunku 7.5.

Rys. 7.5 Morfologia cząstek elektrolitycznego proszku miedzi, SEM

Proszek miedzi wytwarzany metodą elektrolizy odznaczał się dendrytycznym kształtem cząstek o dużym rozwinięciu powierzchni.

7.2.3 Własności proszku węglika wolframu

Do badań stosowano proszek węglika wolframu WC, produkcji Huty Baildon, wytworzony metodą syntezy proszku wolframu i sadzy. Własności fizyczne i technologiczne proszku węglika wolframu przedstawiono w tabeli 7.7.
Tabela 7.7 Wybrane własności fizyczne i technologiczne proszku węgliku wolframu WC

<table>
<thead>
<tr>
<th>Zakres wielkości cząstek proszku, µm</th>
<th>Gęstość nasypowa, g/cm³</th>
<th>Gęstość nasypowa z usadem, g/cm³</th>
<th>Gęstość teoretyczna, g/cm³</th>
<th>Powierzchnia właściwa S_g, cm²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 3</td>
<td>2,70</td>
<td>4,55</td>
<td>15,70</td>
<td>2070</td>
</tr>
</tbody>
</table>

Morfologię cząstek proszku węgliku wolframu WC przedstawiono na rysunku 7.6.

![Rys.7.6 Morfologia cząstek proszku węgliku wolframu WC, SEM](image1.jpg)

Na rysunku 7.7 przedstawiono rentgenowską analizę fazową proszku węgliku wolframu WC.

![Rys.7.7 Dyfraktogram rentgenowski proszku węgliku wolframu WC](image2.jpg)
Metodyka badań oraz materiały stosowane do badań

Proszek węgliku wolframu jest bardzo drobnoziarnisty i odznacza się nieregularnym kształtem cząstek. Wyniki badań rentgenowskiej analizy fazowej proszku węgliku wolframu (rys 7.7) wskazują, że ma on skład stechiometryczny WC.

7.2.4 Własności proszku żelaza

Do badań stosowano redukowany proszek żelaza gatunku NC 100.24 produkowany przez szwedzką firmę Höganäs. Skład chemiczny proszku żelaza przedstawiono w tabeli 7.8.

Tabela 7.8 Skład chemiczny proszku żelaza NC 100.24

<table>
<thead>
<tr>
<th>Składnik</th>
<th>Fe</th>
<th>C</th>
<th>Strata H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>% ciężarowe</td>
<td>reszta</td>
<td>< 0,01</td>
<td>< 0,21</td>
</tr>
</tbody>
</table>

Własności fizyczne i technologiczne proszku żelaza przedstawiono w tabl. 7.9 i 7.10.

Tabela 7.9 Wybrane własności fizyczne i technologiczne proszku żelaza NC 100.24

<table>
<thead>
<tr>
<th>Gęstość nasypowa, g/cm³</th>
<th>Gęstość nasypowa z usadem, g/cm³</th>
<th>Sypkość, S</th>
<th>Zgęszczalność</th>
<th>Powierzchnia właściwa Sg, cm²/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,00</td>
<td>2,45</td>
<td>31</td>
<td>300</td>
<td>6,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>6,79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td>7,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1495</td>
</tr>
</tbody>
</table>

Tabela 7.10 Analiza sitowa rozkładu wielkości cząstek proszku żelaza NC 100.24

<table>
<thead>
<tr>
<th>Klasa ziarnowa, µm</th>
<th>Udział frakcji w klasie ziarnowej, %</th>
<th>Suma udziałów frakcji w klasach ziarnowych, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 40</td>
<td>17,6</td>
<td>17,6</td>
</tr>
<tr>
<td>40 – 63</td>
<td>21,2</td>
<td>38,8</td>
</tr>
<tr>
<td>63 – 80</td>
<td>17,6</td>
<td>56,4</td>
</tr>
<tr>
<td>80 – 100</td>
<td>19,0</td>
<td>75,4</td>
</tr>
<tr>
<td>100 – 160</td>
<td>24,4</td>
<td>99,8</td>
</tr>
<tr>
<td>160 – 200</td>
<td>0,2</td>
<td>100,0</td>
</tr>
</tbody>
</table>
Morfologię proszku żelaza przedstawiono na rysunku 7.8.

Rys. 7.8 Morfologia cząstek proszku żelaza NC 100.24, SEM

Cząstki proszku żelaza NC 100.24 miały kształt nieregularny i były porowate.

7.2.5 Własności proszku grafitu

Do badań stosowano proszek naturalnego grafitu cejłońskiego. Wybrane własności proszku grafitu przedstawiono w tabeli 7.10.

Tabela 7.10 Wybrane własności proszku grafitu

<table>
<thead>
<tr>
<th>Wielkość cząstek, µm</th>
<th>Udział frakcji, %</th>
<th>Sumaryczny udział frakcji, %</th>
<th>Gęstość nasypowa, g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 45</td>
<td>4</td>
<td>4</td>
<td>0,25</td>
</tr>
<tr>
<td>45 – 63</td>
<td>13</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>63 – 80</td>
<td>83</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Morfologię cząstek proszku grafitu przedstawiono na rysunku 7.9.
Stosowany proszek naturalnego grafitu miał kształt płatkowy.
7.3 Skład chemiczny oraz parametry procesu wytwarzania kompozytów

7.3.1 Skład chemiczny porowatych kształtek

Do badań przygotowano siedem rodzajów mieszanek proszków o zróżnicowanym składzie chemicznym i zróżnicowanych pod względem udziału składników, które wykorzystano do wytwarzania porowatych kształtek do infiltracji.

Mieszanie proszków przeprowadzono w mieszalniku dwustożkowym przez 60 minut. Prędkość obrotowa mieszalnika wynosiła około 60 obr/min. Zawartość składników w mieszkankach proszków i sposób ich oznaczania przedstawiono w tabeli 7.11.

Tabela 7.11 Zawartość składników w mieszkankach proszków przeznaczonych do formowania porowatych kształtek oraz sposób oznaczania mieszanek i porowatych wyprasek i spieków z nich wykonanych

<table>
<thead>
<tr>
<th>Rodzaj mieszkanki proszków, % masowe</th>
<th>Sposób oznaczenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. proszek stali szybkotnącej w stanie dostawy M3/2</td>
<td>M</td>
</tr>
<tr>
<td>2. M3/2 + 7,5 % Cu</td>
<td>M7,5Cu</td>
</tr>
<tr>
<td>3. M3/2 + 0,3 % C (w postaci grafitu)</td>
<td>M0,3C</td>
</tr>
<tr>
<td>4. M3/2 + 20 % Fe</td>
<td>M20Fe</td>
</tr>
<tr>
<td>5. M3/2 + 50 % Fe</td>
<td>M50Fe</td>
</tr>
<tr>
<td>6. M3/2 + 10 % WC</td>
<td>M10WC</td>
</tr>
<tr>
<td>7. M3/2 + 30 % WC</td>
<td>M30WC</td>
</tr>
</tbody>
</table>

7.3.2 Przebieg wytwarzania porowatych kształtek

Porowate kształtki do infiltracji wytwarzano dwoma sposobami, czyli metodą prasowania lub prasowania i spiekania.

Porowate wypraski. Prasowanie kształtek cylindrycznych o wymiarach φ15 x 5÷6 mm i prostopadłościennych o wymiarach ok. 40x5x5mm prowadzono w temperaturze pokojowej, w sztywnej matrycy przy jednostronnym działaniu stempla, bez środka poślizgowego. Do prasowania stosowano prasę hydrauliczną typu ZIM. Masę proszku dobrano tak, aby uzyskać wypraski cylindryczne i prostopadłościennne o objętości ok. 1 cm³. Stosowano jedno ciśnienie prasowania, wynoszące 800 MPa.
Porowate spieki. Część wyprasek poddano spiekaniu w piecu próżniowym, stosowano następujące parametry spiekania:

- temperatura wygrzewania: 950°C
- czas wygrzewania: 30 min.
- temperatura spiekania: 1150°C
- czas spiekania: 60 min.
- ciśnienie próżni: poniżej 10⁻²Pa.
- szybkość nagrzewania: 17,5°C/min
- chłodzenie próbek prowadzono wraz z piecem.

Szybkość chłodzenia była zmienna w czasie, co ilustruje rysunek 7.10. Średnia szybkość chłodzenia w określonym przedziale temperatur wyznaczono na podstawie krzywej zmian temperatury pieca w funkcji czasu chłodzenia, wykreślonej przez rejestrator pieca próżniowego, jako ΔT/Δt.

![Rys. 7.10 Zmiana temperatury pieca próżniowego w zależności od czasu chłodzenia](image)

Rys. 7.10 Zmiana temperatury pieca próżniowego w zależności od czasu chłodzenia

Obliczona średnia szybkość chłodzenia w przedziale temperatur 1150°C – 20°C wynosiła ok. 4°C/min. Największy wpływ na średnią szybkość chłodzenia miał czas potrzebny na obniżenie temperatury z ok. 250°C, do temperatury otoczenia.

7.3.3 Przygotowanie nakładek do infiltracji

Nakładki do infiltracji z miedzi przygotowano na podstawie pomiarów gęstości wyprasek i spieków metodą geometryczną. Przygotowane nawałki proszku miedzi, prasowano przy ciśnieniu 300 MPa, a następnie redukowanego w wodorze w temperaturze...
800°C przez 30 minut. Kształt nakładek odpowiadał kształtowi i wielkości porowatych szkieletów przeznaczonych do infiltracji.

7.3.4 Przebieg i parametry procesu infiltracji

Infiltrację prowadzono metodą nakładkową zgodnie ze schematem przedstawionym na rys 4.2 c. Stosowano następujące parametry procesu infiltracji:

- temperatura infiltracji: 1150°C
- czas infiltracji: 15 min.
- ciśnienie próżni: poniżej 10⁻² Pa.
- szybkość nagrzewania do infiltracji: 17,5°/min
- chłodzenie próbek prowadzono wraz z piecem.

W każdym cyklu infiltracji w komorze pieca umieszczano 10 porowatych kształtek wraz z nakładkami z miedzi, o jednakowym lub zbliżonym składzie chemicznym.

Infiltrację wyprasek i spieków prowadzono metodą nakładkową, w piecu próżniowym VFC 025t. Na podstawie doświadczeń związanych z ilością przeprowadzonych cykli spiekania i infiltracji można jednoznacznie stwierdzić, że jednym z podstawowych czynników mających wpływ na przebieg infiltracji w piecu próżniowym jest ciśnienie gazów w komorze pieca. Stosowany piec próżniowy typu VFC 025 wyposażono w dwustopniowy układ pomp:

- pierwszy stopień, odpowiedzialny za próżnię wstępna stanowi dwustopniowa pompa rotacyjna, która pozwala uzyskać próżnię o ciśnieniu gazów 2÷5 Pa,
- drugi stopień, stanowi pompa dyfuzyjna, która według założeń dla danego pieca uzyskuje ciśnienie gazów 10⁻⁴ Pa.

Zainstalowany w piecu VFC-025 system pomiarowy pozwala mierzyć próżnię w komorze do wartości 10⁻³ Pa.
8. WŁASNOŚCI POROWATYCH KSZTAŁTEK PRZEZNACZONYCH DO INFILTRACJI

Porowate kształtki do infiltracji wytwarzano dwoma sposobami: przez prasowanie lub prasowanie i spiekanie.

Porowate wypraski poddano badaniom gęstości, porowatości oraz morfologii kapilar, natomiast porowane spieki poddano badaniom gęstości, porowatości, twardości, zmian wymiarów podczas spiekania oraz morfologii kapilar. Badania dylatometryczne przebiegu spiekania przeprowadzono za pomocą dylatometru 402E firmy NETZCH.

Metodykę badań porowatych wyprasek i spieków przedstawiono w rozdziale 7.1.2 oraz 7.1.3.

8.1 Własności porowatych wyprasek

Średnie wyniki pomiarów gęstości i porowatości co najmniej 10 porowatych wyprasek, przeprowadzonych metodą geometryczną, przedstawiono w tabeli 8.1. Z analizy uzyskanych wyników wynika, że pomiar gęstości i porowatości wyprasek metodą geometryczną daje identyczne wyniki do metody opartej na prawie Archimedesa, która polega na ważeniu w powietrzu i w wodzie. W dalszej części pracy stosowano pomiary objętości kształtek metodą geometryczną.
Własności porowatych kształtek przeznaczonych do infiltracji

Tabela 8.1 Wyniki pomiarów gęstości i porowatości wyprasek

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Objętość</th>
<th>Gęstość rzeczywista g/cm³</th>
<th>Gęstość teoretyczna g/cm³</th>
<th>Gęstość względna %</th>
<th>Porowatość %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{V})</td>
<td>(\sigma_{\bar{V}})</td>
<td>(\bar{\rho})</td>
<td>(\sigma_{\bar{\rho}})</td>
<td>(\bar{\rho}_w)</td>
</tr>
<tr>
<td>kształtki cylindryczne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1,07</td>
<td>0,01</td>
<td>6,36</td>
<td>0,07</td>
<td>8,16</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>1,06</td>
<td>0,01</td>
<td>6,65</td>
<td>0,02</td>
<td>8,22</td>
</tr>
<tr>
<td>M0,3C</td>
<td>1,04</td>
<td>0,003</td>
<td>6,51</td>
<td>0,01</td>
<td>8,10</td>
</tr>
<tr>
<td>M20Fe</td>
<td>1,02</td>
<td>0,003</td>
<td>6,61</td>
<td>0,04</td>
<td>8,10</td>
</tr>
<tr>
<td>M50Fe</td>
<td>0,99</td>
<td>0,01</td>
<td>6,77</td>
<td>0,03</td>
<td>8,01</td>
</tr>
<tr>
<td>M10WC</td>
<td>1,06</td>
<td>0,01</td>
<td>6,72</td>
<td>0,04</td>
<td>8,57</td>
</tr>
<tr>
<td>M30WC</td>
<td>1,07</td>
<td>0,002</td>
<td>7,40</td>
<td>0,02</td>
<td>9,52</td>
</tr>
<tr>
<td>kształtki prostopadłościennne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1,03</td>
<td>0,01</td>
<td>6,24</td>
<td>0,02</td>
<td>8,16</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>1,00</td>
<td>0,02</td>
<td>6,43</td>
<td>0,09</td>
<td>8,22</td>
</tr>
<tr>
<td>M0,3C</td>
<td>1,02</td>
<td>0,01</td>
<td>6,20</td>
<td>0,05</td>
<td>8,10</td>
</tr>
<tr>
<td>M20Fe</td>
<td>1,02</td>
<td>0,003</td>
<td>6,28</td>
<td>0,02</td>
<td>8,10</td>
</tr>
<tr>
<td>M50Fe</td>
<td>0,96</td>
<td>0,01</td>
<td>6,54</td>
<td>0,06</td>
<td>8,01</td>
</tr>
<tr>
<td>M10WC</td>
<td>1,03</td>
<td>0,02</td>
<td>6,54</td>
<td>0,09</td>
<td>8,57</td>
</tr>
<tr>
<td>M30WC</td>
<td>1,03</td>
<td>0,01</td>
<td>7,19</td>
<td>0,06</td>
<td>9,52</td>
</tr>
</tbody>
</table>

Na rysunku 8.1 przedstawiono wpływ składu mieszanek na gęstość względną wyprasek prostopadłościennych, otrzymannych w wyniku prasowania pod ciśnieniem 800MPa:

![Rys. 8.1 Wpływ składu mieszanek proszków na gęstość wyprasek](image)

80
Własności porowatych kształtek przeznaczonych do infiltracji

Wprowadzenie metodą mieszania do proszku stali szybkotnącej gatunku M3 klasy 2 dodatków innych proszków w postaci żelaza, miedzi i grafitu powoduje zwiększenie zgęszczalności mieszanek (tabela 8.1 i rys. 8.1). Gęstość względna wyprasek z mieszanek proszków zwiększa się, a porowatość maleje pod wpływem posiadającego własności poślizgowe grafitu lub posiadających lepsze własności plastyczne miedzi i żelaza. Dodatek węgliku wolframu powoduje nieznaczne obniżenie gęstości względnej wyprasek.

8.2 Badania dylatometryczne procesu spiekania porowatych kształtek

W celu analizy przebiegu procesu spiekania w zależności od czasu i temperatury spiekania przeprowadzono badania dylatometryczne następujących rodzajów porowatych kształtek:

1. M,
2. M7,5Cu,
3. M0,3C,
4. M30WC

Badania przeprowadzono za pomocą dylatometru typu 402E firmy NETZCH. Porowate kształtki spiekano w atmosferze próżni. Wyniki badań dylatometrycznych kształtek przedstawiono na rys. 8.2 ÷ 8.5.

Rys. 8.2 Krzywa dylatometryczna obrazująca względne zmiany długości ΔL/L₀ podczas spiekania kształtek ze stali szybkotnącej M
Rys. 8.3 Dylatometryczne krzywe obrazujące względne zmiany długości $\Delta L/L_0$ kształtek z proszków M oraz M7,5Cu w zależności od temperatury i czasu spiekania

Rys. 8.4 Krzywa dylatometryczna obrazująca względne zmiany długości $\Delta L/L_0$ podczas spiekania kształtek ze stali szybkotnącej M z dodatkiem 0,3%C
Rys. 8.5 Dylatometryczne krzywe obrazujące względnę zmiany długości ΔL/L₀ kształtek z proszków M oraz M30WC w zależności od temperatury i czasu spiekania.

Wytwarzanie kompozytów metodą infiltracji wymaga stosowania kształtek o porowatości całkowitej przekraczającej 10%, gdyż dopiero wtedy w materiale dominują pory otwarte. Stosowana temperatura spiekania 1150°C jest o około 100° niższa od optymalnej temperatury spiekania „supersolidus” stali szybkotnącej gatunku M3/2, która według danych literaturowych wynosi 1245°C [51], co uniemożliwiło znaczne zagęszczenie kształtek w wyniku procesu spiekania.

8.3 Własności porowatych spieków

8.3.1 Gęstość względna i porowatość spieków

W tabeli 8.2 przedstawiono średnie gęstości i porowatość końcową spieków, wyznaczone metodą geometryczną, z co najmniej 10 próbek. Na rysunku 8.6 przedstawiono wpływ rodzaju mieszanki i procesu spiekania na gęstość względną porowatych kształtek o kształcie prostopadłościennym.
Tabela 8.2 Wyniki pomiarów gęstości i porowatości spieków

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Objętość cm³</th>
<th>Gęstość rzeczywista g/cm³</th>
<th>Gęstość teoretyczna g/cm³</th>
<th>Gęstość względna %</th>
<th>Porowatość %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{V}</td>
<td>$\sigma_{\bar{V}}$</td>
<td>$\bar{\rho}$</td>
<td>$\sigma_{\bar{\rho}}$</td>
<td>$\bar{\rho}_w$</td>
</tr>
<tr>
<td>kształtki cylindryczne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1,07</td>
<td>0,01</td>
<td>6,33</td>
<td>0,04</td>
<td>8,16</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>1,04</td>
<td>0,02</td>
<td>6,54</td>
<td>0,03</td>
<td>8,22</td>
</tr>
<tr>
<td>M0,3C</td>
<td>1,04</td>
<td>0,004</td>
<td>6,50</td>
<td>0,02</td>
<td>8,10</td>
</tr>
<tr>
<td>M20Fe</td>
<td>1,01</td>
<td>0,01</td>
<td>6,60</td>
<td>0,05</td>
<td>8,10</td>
</tr>
<tr>
<td>M50Fe</td>
<td>0,99</td>
<td>0,02</td>
<td>6,76</td>
<td>0,03</td>
<td>8,01</td>
</tr>
<tr>
<td>M10WC</td>
<td>1,03</td>
<td>0,01</td>
<td>6,92</td>
<td>0,03</td>
<td>8,57</td>
</tr>
<tr>
<td>M30WC</td>
<td>1,01</td>
<td>0,01</td>
<td>7,83</td>
<td>0,02</td>
<td>9,52</td>
</tr>
<tr>
<td>kształtki prostopadłościenn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1,02</td>
<td>0,01</td>
<td>6,28</td>
<td>0,04</td>
<td>8,16</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>0,97</td>
<td>0,04</td>
<td>6,57</td>
<td>0,30</td>
<td>8,22</td>
</tr>
<tr>
<td>M0,3C</td>
<td>1,00</td>
<td>0,01</td>
<td>6,34</td>
<td>0,08</td>
<td>8,10</td>
</tr>
<tr>
<td>M20Fe</td>
<td>0,99</td>
<td>0,02</td>
<td>6,43</td>
<td>0,02</td>
<td>8,10</td>
</tr>
<tr>
<td>M50Fe</td>
<td>0,96</td>
<td>0,01</td>
<td>6,54</td>
<td>0,06</td>
<td>8,01</td>
</tr>
<tr>
<td>M10WC</td>
<td>1,01</td>
<td>0,01</td>
<td>6,62</td>
<td>0,08</td>
<td>8,57</td>
</tr>
<tr>
<td>M30WC</td>
<td>0,95</td>
<td>0,004</td>
<td>7,76</td>
<td>0,02</td>
<td>9,52</td>
</tr>
</tbody>
</table>

Rys. 8.6 Gęstość względna porowatych kształtek przeznaczonych do infiltracji po prasowaniu i spiekaniu

84
8.3.2 Zmiany objętości porowatych kształtek w procesie spiekania

Zgodnie z założeniem, spiekanie nie spowodowało istotnych zmian gęstości porowatych szkieletów przeznaczonych do infiltracji, a ich gęstość zbliżona była do gęstości uzyskanej w wyniku prasowania. Powyższe stwierdzenie nie dotyczy kształtek z dodatkiem 30% węgliku wolframu, w których można było zaobserwować znaczący wzrost gęstości wyprasek w wyniku ich skurczu podczas spiekania.

Zmiany objętości powstałe w wyniku spiekania przedstawiono na rysunku 8.7.

Rys. 8.7 Zmiany objętości porowatych kształtek w procesie spiekania

Pod wpływem spiekania w temperaturze 1150°C przez 60 minut, w próżni, zwiększała się gęstość i maleje porowatość kształtek. Zmiany te mieszczą się w przedziale od 1 do 6% (tabela 8.2 i rys. 8.6).

Dodatek 20% i 50% żelaza do proszku stali szybkotnącej nie powoduje istotnych zmian gęstości kształtek w czasie siekania. Węglik WC powodował aktywację spiekania stali tym większą, im większa była jego zawartość. Dodatek miedzi lub grafitu powoduje w warunkach spiekania nieznaczną aktywację procesów prowadzących do zagęszczenia spieków. Dodatek 0,3%C w czasie spiekania powoduje zwiększenie gęstości porowatych kształtek o około 2%.
8.3.3 Twardość porowatych spieków

Wyniki pomiarów twardości zamieszczono w tabeli 8.3 i na rysunku 8.8. Są to wyniki średnie, uzyskane po wykonaniu 8 pomiarów na każdej z co najmniej 5 kształtek, spiekanych w jednej partii.

Tabela 8.3 Wyniki pomiarów twardości spieków

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Twardość</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HB</td>
</tr>
<tr>
<td>M</td>
<td>285</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>266</td>
</tr>
<tr>
<td>M0,3C</td>
<td>267</td>
</tr>
<tr>
<td>M20Fe</td>
<td>248</td>
</tr>
<tr>
<td>M50Fe</td>
<td>177</td>
</tr>
<tr>
<td>M10WC</td>
<td>304</td>
</tr>
<tr>
<td>M30WC</td>
<td>352</td>
</tr>
</tbody>
</table>

Rys. 8.8 Zależność twardości spieków od składu mieszanki
8.3.4 Mikrostruktura porowatych spieków

Spieki ze sali szybkotnącej i stali szybkotnącej z dodatkiem 30% węgliku wolframu poddano badaniom mikrostruktury i mikroanalizie rentgenowskiej. Badania przeprowadzono na zgladach za pomocą elektronowego mikroskopu skaningowego wyposażonego w energodywersyjny mikroanalizator rentgenowski. Próbki poddano także rentgenowskiej analizie fazowej, zgodnie z metodyką opisaną w podrozdziale 7.1.3.

Mikrostrukturę spieku M30WC oraz wyniki punktowej analizy EDX składu chemicznego przedstawiono na rys. 8.9.

Rys. 8.9 Mikrostruktura obszaru dodatku węglika w spieku ze stali szybkotnącej z dodatkiem 30% WC oraz wyniki punktowej mikroanalizy rentgenowskiej wykonanej w punktach 1 i 2: 1 – węglik wolframu WC, 2 – węglik typu M₆C (Fe₃W₃C-Fe₄W₂C)
8.3.5 Rentgenowska analiza fazowa porowatych spieków

Na rysunkach 8.10 i 8.11 przedstawiono wyniki rentgenowskiej analizy fazowej porowatych spieków ze stali szybkotnącej M i stali szybkotnącej z dodatkiem 30% WC.

Z analizy wynika, że osnowa stali szybkotnącej w spiekach M i M30WC składa się z martenzytu oznaczonego jako Fe₆ și austenitu szczątkowego oznaczonego jako Fe₇. W spiekach M występują węgliky typu V₈C₇ i Fe₃W₃C. W spiekach M30WC dodatkowo stwierdzono węglik WC, który wprowadzono w postaci proszku do stali szybkotnącej oraz węglik Fe₃W₃C-Fe₄W₂C, który powstaje w wyniku reakcji dodatku węglika WC z osnową stali szybkotnącej.
8.4 Morfologia kapilar w porowatych wypraskach i spiekach

Morfologia kapilar w porowatych kształtach jest jednym z czynników mających istotny wpływ na przebieg infiltracji. W celu określenia morfologii kapilar w wypraskach i spiekach wykonano obserwacje ich przełomów.

Morfologię kapilar przedstawiono na rysunkach 8.12 – 8.18.

Rys. 8.12 Morfologia kapilar na przełomach porowatych kształtek z proszku M:
 a) wypraska, b) spiek, SEM

Rys. 8.13 Morfologia kapilar na przełomach porowatych kształtek z mieszanki M7,5Cu:
 a) wypraska, b) spiek, SEM

Rys. 8.14 Morfologia kapilar na przełomach porowatych kształtek z mieszanki M0,3C:
 a) wypraska, b) spiek, SEM
Rys. 8.15 Morfologia kapilar na przełomach porowatych kształtek z mieszanki M20Fe:
 a) wypraska, b) spiek, SEM

Rys. 8.16 Morfologia kapilar na przełomach porowatych kształtek z mieszanki M50Fe:
 a) wypraska, b) spiek, SEM

Rys. 8.17 Morfologia kapilar na przełomach porowatych kształtek z mieszanki M10WC:
 a) wypraska, b) spiek, SEM
Rys. 8.18 Morfologia kapilar na przełomach porowatych kształtek z mieszanki M30WC:

a) wypraska, b) spiek, SEM

Kapilary stanowią labirynt szczelin o złożonym kształcie oraz zmiennej geometrii przekroju na swojej długości. Głównym czynnikiem decydującym o morfologii kapilar wyprasek i spieków jest nieregularny kształt oraz szeroki zakres wielkości cząstek stosowanego proszku stali szybkoocinej M. Dodatkowe zmiany morfologii i wielkości kapilar można uzyskać w porowatych kształtach przeznaczonych do infiltracji w wyniku zastosowania dodatków innych proszków do proszku stali szybkoocinej oraz zastosowanie spiekania wyprasek w temperaturze 1150°С.
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

9. BADANIE WYBRANYCH WŁASNOŚCI FIZYCZNYCH I MECHANICZNYCH INFILTROWANYCH KOMPOZYTÓW

9.1 Stopień wypełnienia kapilar, gęstość oraz porowatość kompozytów

Przebieg infiltracji kontrolowano za pomocą pomiarów stopnia wypełnienia kapilar oraz gęstości i porowatości końcowej kompozytów. Metodykę badań gęstości, porowatości oraz stopnia wypełnienia kapilar infiltrowanych kompozytów przedstawiono w podrozdziałach 7.1.2 oraz 7.1.3.

Zestawienie wyników obliczeń stopnia wypełnienia kapilar, gęstości, porowatości oraz zmian wymiarów infiltrowanych kompozytów przedstawiono w tabelach 9.1 i 9.2 oraz na rysunkach 9.1÷9.4.

Tabela 9.1 Wyniki badań stopnia wypełnienia kapilar, gęstości i porowatości infiltrowanych kompozytów

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Stopień wypełnienia kapilar %</th>
<th>Gęstość rzeczywista g/cm³</th>
<th>Gęstość teoretyczna g/cm³</th>
<th>Gęstość względna %</th>
<th>Porowatość %</th>
</tr>
</thead>
<tbody>
<tr>
<td>infiltrowane wypraski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>78,13</td>
<td>0,78</td>
<td>8,00</td>
<td>0,02</td>
<td>8,31</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>76,78</td>
<td>1,20</td>
<td>8,02</td>
<td>0,03</td>
<td>8,34</td>
</tr>
<tr>
<td>M0,3C</td>
<td>75,95</td>
<td>1,43</td>
<td>7,97</td>
<td>0,01</td>
<td>8,24</td>
</tr>
<tr>
<td>M20Fe</td>
<td>77,58</td>
<td>0,48</td>
<td>7,86</td>
<td>0,02</td>
<td>8,24</td>
</tr>
<tr>
<td>M50Fe</td>
<td>79,45</td>
<td>1,08</td>
<td>7,84</td>
<td>0,02</td>
<td>8,15</td>
</tr>
<tr>
<td>M10WC</td>
<td>75,63</td>
<td>1,50</td>
<td>8,37</td>
<td>0,05</td>
<td>8,63</td>
</tr>
<tr>
<td>M30WC</td>
<td>79,72</td>
<td>1,28</td>
<td>9,18</td>
<td>0,06</td>
<td>9,40</td>
</tr>
<tr>
<td>infiltrowane spieki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>79,04</td>
<td>0,85</td>
<td>7,98</td>
<td>0,06</td>
<td>8,32</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>77,20</td>
<td>0,63</td>
<td>8,01</td>
<td>0,01</td>
<td>8,34</td>
</tr>
<tr>
<td>M0,3C</td>
<td>77,72</td>
<td>1,37</td>
<td>7,94</td>
<td>0,03</td>
<td>8,24</td>
</tr>
<tr>
<td>M20Fe</td>
<td>77,50</td>
<td>1,27</td>
<td>7,92</td>
<td>0,01</td>
<td>8,24</td>
</tr>
<tr>
<td>M50Fe</td>
<td>78,17</td>
<td>1,40</td>
<td>7,89</td>
<td>0,05</td>
<td>8,14</td>
</tr>
<tr>
<td>M10WC</td>
<td>75,92</td>
<td>0,98</td>
<td>8,34</td>
<td>0,03</td>
<td>8,63</td>
</tr>
<tr>
<td>M30WC</td>
<td>71,39</td>
<td>1,22</td>
<td>9,22</td>
<td>0,05</td>
<td>9,44</td>
</tr>
</tbody>
</table>
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.1 Stopień wypełnienia kapilar S_W w wypraskach i spiekach

Rys. 9.2 Gęstość względna kompozytów po infilracji
Tabela 9.2 Wyniki badań zmian gęstości względnej, objętości oraz zawartości miedzi w infiltrowanych kompozytach

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Zmiana gęstości kompozytów w wyniku infiltracji %</th>
<th>Zmiana objętości kompozytów w wyniku infiltracji %</th>
<th>Zawartość miedzi w infiltrowanych kompozytach % masowy</th>
<th>Σσα</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>29,21</td>
<td>0,70</td>
<td>-2,28</td>
<td>0,22</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>25,75</td>
<td>0,68</td>
<td>-1,86</td>
<td>0,38</td>
</tr>
<tr>
<td>M0,3C</td>
<td>25,68</td>
<td>0,67</td>
<td>-3,29</td>
<td>0,69</td>
</tr>
<tr>
<td>M20Fe</td>
<td>25,19</td>
<td>0,35</td>
<td>-2,12</td>
<td>0,42</td>
</tr>
<tr>
<td>M50Fe</td>
<td>18,79</td>
<td>0,74</td>
<td>-0,43</td>
<td>0,37</td>
</tr>
<tr>
<td>M10WC</td>
<td>26,17</td>
<td>0,75</td>
<td>-3,75</td>
<td>0,67</td>
</tr>
<tr>
<td>M30WC</td>
<td>28,13</td>
<td>0,37</td>
<td>-3,83</td>
<td>0,43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Zmiana gęstości kompozytów ze spieków %</th>
<th>Zmiana objętości kompozytów ze spieków %</th>
<th>Zawartość miedzi ze spieków % masowy</th>
<th>Σσα</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>24,45</td>
<td>0,78</td>
<td>-1,45</td>
<td>0,45</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>24,66</td>
<td>0,72</td>
<td>-1,34</td>
<td>0,24</td>
</tr>
<tr>
<td>M0,3C</td>
<td>23,05</td>
<td>0,39</td>
<td>-2,19</td>
<td>0,25</td>
</tr>
<tr>
<td>M20Fe</td>
<td>23,21</td>
<td>0,27</td>
<td>-1,20</td>
<td>0,14</td>
</tr>
<tr>
<td>M50Fe</td>
<td>19,44</td>
<td>0,95</td>
<td>-1,64</td>
<td>0,60</td>
</tr>
<tr>
<td>M10WC</td>
<td>25,09</td>
<td>0,73</td>
<td>-4,01</td>
<td>0,37</td>
</tr>
<tr>
<td>M30WC</td>
<td>18,98</td>
<td>0,50</td>
<td>-3,73</td>
<td>0,33</td>
</tr>
</tbody>
</table>

Rys. 9.3 Przyrost gęstości względnej kształtek poddanych infiltracji
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.4 Zmiany objętości kształtek podczas infilracji

Wyznaczono także zmiany objętości kompozytów otrzymanych w wyniku infilracji spieków, uwzględniając jednocześnie sumaryczne zmiany objętości w wyniku spiekania i infilracji. Wyniki badań przedstawiono na rysunku 9.5.

Rys. 9.5 Sumaryczne zmiany objętości kompozytów wytwarzanych przez infilrację porowatych spieków
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Stopień wypełnienia kapilar kompozytów miedzą w procesie infiltracji mieści się w przedziale 70 ÷ 80% (tabela 9.1). Różnice stopnia wypełnienia kapilar należy rozpatrywać indywidualnie dla poszczególnych grup kompozytów. Wyniki obliczeń stopnia wypełnienia kapilar są zaniżone w porównaniu do rzeczywistego stopnia wypełnienia kapilar. Wynika to ze sposobu obliczania S_w, który nie uwzględnia zmian objętości w czasie infiltracji i rozpuszczania miedzi w osnowie stali szybkotnącej.

Techniką infiltrowania miedzią porowatych wyprasek i spieków ze stali szybkotnącej M3 oraz stali szybkotnącej M3 z dodatkami stopowymi w postaci innych proszków można uzyskać kompozyty o gęstości zbliżonej do gęstości teoretycznej, sięgającej 96,5% ÷ 98,0% (tabela 9.1 i rys. 9.1). Różnice gęstości względnej kompozytów, otrzymanych w wyniku infiltracji miedzi do wyprasek lub spieków, są nieznaczne i zazwyczaj nie przekraczają 0,5%.

Porównując dane sumaryczne kompozytów otrzymanych w wyniku infiltracji miedzi do porowatych spieków i infiltracji miedzi do porowatych wyprasek można stwierdzić, że mniejsze zmiany wymiarów osiąga się w przypadku zastosowania procesu technologicznego polegającego na infiltrowaniu miedzią wyprasek.

9.2 Twardość infiltrowanych kompozytów

Twardość infiltrowanych kompozytów badano metodą Brinella, zgodnie z metodyką opisaną w podrozdziale 7.1.2, na co najmniej 5 kształtach prostopadłościennych, na dwóch przeciwległych powierzchniach. Średnie wartości twardości obliczono po wykonaniu 8 pomiarów na każdej z próbek infiltrowanych, po 4 po obu stronach próbki. Średnie wyniki pomiarów zamieszczono w tabeli 9.3 i na rysunku 9.6.

Tabela 9.3 Wyniki pomiarów twardości infiltrowanych kompozytów

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Infiltrowane wypraski</th>
<th>Infiltrowane spieki</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{HB}</td>
<td>σ_{HB}</td>
</tr>
<tr>
<td>M</td>
<td>413</td>
<td>24</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>391</td>
<td>21</td>
</tr>
<tr>
<td>M0,3C</td>
<td>507</td>
<td>33</td>
</tr>
<tr>
<td>M20Fe</td>
<td>385</td>
<td>26</td>
</tr>
<tr>
<td>M50Fe</td>
<td>363</td>
<td>19</td>
</tr>
<tr>
<td>M10WC</td>
<td>484</td>
<td>42</td>
</tr>
<tr>
<td>M30WC</td>
<td>590</td>
<td>38</td>
</tr>
</tbody>
</table>
Zmiany twardości kompozytów przedstawione w tabeli 9.3 oraz na rys. 9.6 pozwalają stwierdzić, że wyższą twardość mają kompozyty otrzymane przez infiltrację wyprasek, zarówno te otrzymane z kształtek ze stali szybkotnącej M jak i te, z kształtek z dodatkami żelaza, węgliku wolframu oraz grafitu. Twardość infiltrowanych kompozytów zależy od rodzaju i zawartości zastosowanego dodatku stopowego.

9.3 Wytrzymałość na zginanie infiltrowanych kompozytów

Średnie wyniki pomiarów i obliczeń uzyskane z co najmniej pięciu niezależnych badań wytrzymałości na zginanie przedstawiono w tabeli 9.4 i na rysunku 9.7.

Statyczną próbę wytrzymałości na zginanie infiltrowanych kompozytów prowadzono w oparciu o metodykę pomiaru opisaną w podrozdziale 7.1.2.
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Tabela 9.4 Wyniki statycznej próby wytrzymałości na zginanie infiltrowanych kompozytów

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Infiltrowane wypraski</th>
<th>Infiltrowane spieki</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F, N</td>
<td>R_g, MPa</td>
</tr>
<tr>
<td>M</td>
<td>5330</td>
<td>2051</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>5550</td>
<td>2288</td>
</tr>
<tr>
<td>M0,3C</td>
<td>4060</td>
<td>1593</td>
</tr>
<tr>
<td>M20Fe</td>
<td>5160</td>
<td>2074</td>
</tr>
<tr>
<td>M50Fe</td>
<td>4470</td>
<td>1915</td>
</tr>
<tr>
<td>M10WC</td>
<td>3490</td>
<td>1287</td>
</tr>
<tr>
<td>M30WC</td>
<td>3090</td>
<td>1174</td>
</tr>
</tbody>
</table>

Rys. 9.7 Wytrzymałość na zginanie infiltrowanych kompozytów
9.4 Odporność na zużycie cierne i współczynnik tarcia infiltrowanych kompozytów

Badania odporności na zużycie cierne oraz współczynnika tarcia przeprowadzono zgodnie z metodyką badań opisaną w podrozdziale 7.1.2.

Wyniki pomiarów odporności na zużycie cierne oraz współczynnika tarcia przedstawiono w tabeli 9.5 oraz na rysunkach 9.8 i 9.9.

Tabela 9.5 Wyniki badań odporności na zużycie cierne i współczynnika tarcia infiltrowanych kompozytów

<table>
<thead>
<tr>
<th>Skład mieszanki</th>
<th>Infiltrowane kompozyty z wyprasek</th>
<th>Infiltrowane kompozyty ze spieków</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ubytek masy, g Współczynnik tarcia</td>
<td>Ubytek masy, g Współczynnik tarcia</td>
</tr>
<tr>
<td>M</td>
<td>0,002 0,293</td>
<td>0,005 0,465</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>0,020 0,489</td>
<td>0,004 0,477</td>
</tr>
<tr>
<td>M0,3C</td>
<td>0,012 0,301</td>
<td>0,003 0,392</td>
</tr>
<tr>
<td>M20Fe</td>
<td>0,001 0,343</td>
<td>0,012 0,397</td>
</tr>
<tr>
<td>M50Fe</td>
<td>0,002 0,269</td>
<td>0,026 0,391</td>
</tr>
<tr>
<td>M10WC</td>
<td>0,002 0,367</td>
<td>0,004 0,394</td>
</tr>
<tr>
<td>M30WC</td>
<td>0,001 0,343</td>
<td>0,003 0,480</td>
</tr>
</tbody>
</table>

Rys. 9.8 Odporność na zużycie cierne infiltrowanych kompozytów
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.9 Współczynnik tarcia infiltrowanych kompozytów

Rys. 9.10 Powierzchnia infiltrowanego kompozytu ze spieku M po badaniu odporności na zużycie cierne, SEM
Rys. 9.11 Powierzchnia infiltrowanego kompozytu ze spieku M7,5Cu po badaniu odporności na zużycie cierne, SEM

Rys. 9.12 Powierzchnia infiltrowanego kompozytu ze spieku M50Fe po badaniu odporności na zużycie cierne, SEM

Rys. 9.13 Powierzchnia infiltrowanego kompozytu ze spieku M30WC po badaniu odporności na zużycie cierne, SEM
9.5 Wyniki badań odporności na utlenianie w podwyższonych temperaturach i analiza fazowa produktów utleniania

Proces utleniania w atmosferze powietrza infiltrowanych miedzi kompozytów na osnowie stali szybkotlanej badano za pomocą analizatora firmy METTLER zgodnie z procedurą opisaną w podrozdziale 7.1.2. Wykresy zamieszczone w pracy sporządzono po odczytaniu współrzędnych punktów z oryginalnych krzywych.

Wyniki analiz procesu utleniania infiltrowanych wyprasek ze stali szybkotlanej przedstawiono na rysunkach 9.14 i 9.15.

Przeprowadzono także analizy procesu utleniania infiltrowanych wyprasek ze stali szybkotlanej z dodatkiem 7,5% miedzi oraz 50% żelaza. Zestawienie krzywych TG i DTA przedstawiono na rysunkach 9.16 i 9.17.

Rys.9.14 Krzywa TG proszku z infiltrowanego kompozytu z wypraski M
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.15 Krzywa DTA proszku z infiltrowanego kompozytu z wypraski M

Rys. 9.16 Krzywe TG proszków z infiltrowanych kompozytów z wyprasek M oraz M7,5Cu i M50Fe
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.17 Krzywe DTA proszków z infiltrowanych kompozytów z wyprasek M oraz M7,5Cu i M50Fe

Uzyskane produkty utleniania z poszczególnych rodzajów kompozytów poddano rentgenowskiej analizie fazowej, w celu zidentyfikowania powstających w czasie analiz tlenków. Na rysunku 9.18 przedstawiono wynik rentgenowskiej analizy fazowej proszku z infiltrowanej wypraski ze stali szybkoścącej M po utlenianiu.

Rys. 9.18 Rentgenowska analiza fazowa proszku z infiltrowanej wypraski ze stali szybkoścącej M poddanej utlenianiu
9.6 Badania mikroskopowe i rentgenowska analiza fazowa

Badanie mikrostruktur infiltrowanych kompozytów prowadzono na zgladach metalograficznych, przygotowanych zgodnie z procedurą opisaną w podrozdziale 7.1.3. Badania przełomów infiltrowanych kompozytów wykonano za pomocą mikroskopu skaningowego.

9.6.1 Badania struktury za pomocą mikroskopu świetlnego

Wybrane charakterystyczne przykłady mikrostruktur infiltrowanych kompozytów przedstawiono na rys. 9.19 – 9.32.

Rys. 9.19 Mikrostruktura infiltrowanych miedzi kompozytów z wyprasek M:
 a) jasne pole widzenia, b) ciemne pole widzenia

Rys. 9.20 Mikrostruktura infiltrowanych miedzi kompozytów ze spieków M:
 a) jasne pole widzenia, b) ciemne pole widzenia
Rys. 9.21 Mikrostruktura infiltrowanych miedzi kompozytów z wyprasek M7,5Cu:
 a) jasne pole widzenia, b) kontrast Nomarskiego

Rys. 9.22 Mikrostruktura infiltrowanych miedzi kompozytów ze spieków M7,5Cu:
 a) jasne pole widzenia, b) ciemne pole widzenia

Rys. 9.23 Mikrostruktura infiltrowanych miedzi kompozytów z wyprasek M0,3 C:
 a) jasne pole widzenia, b) kontrast Nomarskiego
Rys. 9.24 Mikrostruktura infiltrowanych miedzi kompozytów ze spieków M0,3C:
 a) jasne pole widzenia, b) kontrast Nomarskiego

Rys. 9.25 Mikrostruktura infiltrowanych miedzi kompozytów z wyprasek M20Fe:
 a) jasne pole widzenia, b) kontrast Nomarskiego

Rys. 9.26 Mikrostruktura infiltrowanych miedzi kompozytów ze spieków M20Fe:
 a) jasne pole widzenia, b) kontrast Nomarskiego
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.27 Mikrostruktura infiltrowanych miedzią kompozytów z wyprasek M50Fe:
 a) jasne pole widzenia, b) kontrast Nomarskiego

Rys. 9.28 Mikrostruktura infiltrowanych miedzią kompozytów ze spieków M50Fe:
 a) jasne pole widzenia, b) kontrast Nomarskiego

Rys. 9.29 Mikrostruktura infiltrowanych miedzią kompozytów z wyprasek M10WC:
 a) jasne pole widzenia, b) kontrast Nomarskiego
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.30 Mikrostruktura infiltrowanych miedzią kompozytów ze spieków M10WC:
 a) jasne pole widzenia, b) kontrast Nomarskiego

Rys. 9.31 Mikrostruktura infiltrowanych miedzią kompozytów z wyprasek M30WC:
 a) jasne pole widzenia, b) kontrast Nomarskiego

Rys. 9.32 Mikrostruktura infiltrowanych miedzią kompozytów ze spieków M30WC:
 a) jasne pole widzenia, b) kontrast Nomarskiego
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

9.6.2 Mikrotwardość infiltrowanych miedzią kompozytów M50Fe

Ze względu na porównywalność wyników odporności na zużycie ciemne infiltrowanych kompozytów M50Fe do infiltrowanych kompozytów ze stali szybkotnącej wykonano pomiary mikrotwardości poszczególnych składników strukturalnych kompozytów M50Fe. Badania mikrotwardości wykonano zgodnie z procedurą opisaną w podrozdziale 7.1.2. Wyniki pomiarów zestawiono w tabeli 9.5. Na rysunku 9.33 zamieszczono przykładowe mikrofotografie mikrostruktury infiltrowanego spieku M50Fe po wykonaniu pomiarów mikrotwardości.

Tabela 9.5 Mikrotwardość poszczególnych składników strukturalnych infiltrowanych kompozytów ze spieku M50Fe według rys 9.33

<table>
<thead>
<tr>
<th>Obszar żelaza</th>
<th>µHV<sub>0.065</sub></th>
<th>σ<sub>µHV</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Obszar przy granicy żelazo – stal szybkotnąca</td>
<td>304</td>
<td>17</td>
</tr>
<tr>
<td>Środek cząstki żelaza</td>
<td>140</td>
<td>8</td>
</tr>
<tr>
<td>Obszar przy granicy żelazo – miedź</td>
<td>166</td>
<td>7</td>
</tr>
<tr>
<td>Obszar stali szybkotnącej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obszar przy granicy stal szybkotnąca – żelazo</td>
<td>756</td>
<td>21</td>
</tr>
<tr>
<td>Środek dużej cząstki stali szybkotnącej</td>
<td>860</td>
<td>19</td>
</tr>
<tr>
<td>Środek małej cząstki stali szybkotnącej</td>
<td>838</td>
<td>25</td>
</tr>
<tr>
<td>Obszar przy granicy stal szybkotnąca – miedź</td>
<td>790</td>
<td>16</td>
</tr>
<tr>
<td>Obszar miedzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Środek cząstki miedzi</td>
<td>141</td>
<td>4</td>
</tr>
<tr>
<td>Obszar przy granicy miedź – żelazo</td>
<td>147</td>
<td>5</td>
</tr>
<tr>
<td>Obszar przy granicy miedź – stal szybkotnąca</td>
<td>156</td>
<td>3</td>
</tr>
</tbody>
</table>

Rys. 9.33 Mikrostruktura infiltrowanego miedzią kompozytu ze spieku M50Fe ze śladowi odcisków po pomiarze mikrotwardości
9.6.3 Badania mikrostruktury za pomocą mikroskopu skaningowego i mikroanalizatora rentgenowskiego

Obserwacje powierzchni zglądów metalograficznych i przełomów próbek wykonano przy użyciu mikroskopów skaningowych Hitachi S-3500N i Novoscan 30. W celu określenia stopnia niejednorodności składu chemicznego badanych kompozytów, przeprowadzono również mikroanalizę rentgenowską za pomocą energodypersyjnego mikroanalizatora Ortec oraz mikrosondy Cameca.

Na rys. 9.34 – 9.39 zamieszczono mikrofotografie przełomów infiltrowanych kompozytów.

Rys. 9.34 Przełomy infiltrowanych kompozytów z wypraski i spieków M:
 a) infiltrowany kompozyt z wypraski, b) infiltrowany kompozyt ze spieku, SEM

Rys. 9.35 Przełomy infiltrowanych kompozytów z wypraski i spieków M7,5Cu:
 a) infiltrowany kompozyt z wypraski, b) infiltrowany kompozyt ze spieku, SEM
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.36 Przełomy infiltrowanych kompozytów z wyprasek i spieków M0,3C:
 a) infiltrowany kompozyt z wypraski, b) infiltrowany kompozyt ze spieku, SEM

Rys. 9.37 Przełomy infiltrowanych kompozytów z wyprasek i spieków M20Fe:
 a) infiltrowany kompozyt z wypraski, b) infiltrowany kompozyt ze spieku, SEM

Rys. 9.38 Przełomy infiltrowanych kompozytów z wyprasek i spieków M50Fe:
 a) infiltrowany kompozyt z wypraski, b) infiltrowany kompozyt ze spieku, SEM
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.39 Przełomy infiltrowanych kompozytów z wyprasek i spieków M30WC:
 a) infiltrowany kompozyt z wypraski, b) infiltrowany kompozyt ze spieku, SEM

Badania mikrostruktury infiltrowanych kompozytów przeprowadzone za pomocą mikroskopu skaningowego obejmowały kompozyty ze stali szybkotnącej, stali szybkotnącej z dodatkiem 50% żelaza oraz ze stali szybkotnącej z dodatkiem 30% węgliku wolframu.

Charakterystyczne przykłady struktur wybranych kompozytów oraz wyniki analiz rozmieszczenia pierwiastków przedstawiono na rys. 9.40–9.48.

Rys. 9.40 Mikrostruktura infiltrowanych miedzi kompozytów z wyprasek i spieków M:
 a) infiltrowana wypraska, b) infiltrowany spiek, SEM
Rys. 9.41 Mikrostruktura obszaru osnowy infiltrowanego kompozytu ze spieku M oraz wyniki punktowej mikroanalizy rentgenowskiej:

1 – węglak typu M₆C, 2 – węglak typu MC, 3 – obszar osnowy stali szybkotnącej
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.42 Mikrostruktura obszaru osnowy infiltrowanego kompozytu ze spieku M50Fe oraz wyniki liniowej mikroanalizy rentgenowskiej
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.43 Mikrostruktura infiltrowanego kompozytu z wypraski M30WC oraz wyniki punktowej mikroanalizy rentgenowskiej:

1 – obszar węgliku typu M₆C, 2 – węglik wolframu WC, 3 – obszar miedzi, 4 – obszar osnowy stali szybkotnącej

<table>
<thead>
<tr>
<th>Pierwiastek</th>
<th>% atomowy</th>
<th>% masowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>34,21</td>
<td>61,18</td>
</tr>
<tr>
<td>V</td>
<td>4,04</td>
<td>2,00</td>
</tr>
<tr>
<td>Cr</td>
<td>4,89</td>
<td>2,47</td>
</tr>
<tr>
<td>Fe</td>
<td>43,28</td>
<td>23,52</td>
</tr>
<tr>
<td>Mo</td>
<td>7,71</td>
<td>7,20</td>
</tr>
</tbody>
</table>
Rys. 9.44 Mikrostruktura infiltrowanego kompozytu ze spieku M30WC, SEM

Rys. 9.45 Mikrostruktura infiltrowanego kompozytu ze spieku M30WC oraz wyniki punktowej mikroanalizy rentgenowskiej:

1 – obszar osnowy stali szybkotnącej, 2 – obszar węgliku typu M₆C
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.46 Mikrostruktura infiltrowanego kompozytu ze spieku M30WC oraz wyniki liniowej mikroanalizy rentgenowskiej pierwiastków: W, Fe, Cu

Rys. 9.47 Mikrostruktura infiltrowanego kompozytu ze spieku M30WC oraz wyniki punktowej mikroanalizy rentgenowskiej obszaru z miedzią:
1 – obszar miedzi, 2 – węglik wolframu WC, 3 – obszar węgliku typu M₆C
9.6.4 Rentgenowska analiza fazowa

Kompozyty poddano analizie fazowej zgodnie z metodyką badań opisaną w podrozdziale 7.1.3. Rentgenowską analizę fazową wykonano dla wybranych kompozytów na osnowie stali szybkotnącej, ze szczególnym uwzględnieniem zmian zachodzących w kompozytach wytwarzanych przez infiltrację miedzi do wyprasek lub spieków.

Na rysunkach 9.49 – 9.56 przedstawiono wyniki rentgenowskich analiz fazowych wybranych kompozytów.
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.49 Rentgenowska analiza fazowa infiltrowanego kompozytu z wypraski M

Rys. 9.50 Rentgenowska analiza fazowa infiltrowanego kompozytu ze spieku M

Rys. 9.51 Rentgenowska analiza fazowa infiltrowanego kompozytu ze spieku M0,3C
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys. 9.52 Rentgenowska analiza fazowa infiltrowanego kompozytu z wypraski M50Fe

Rys. 9.53 Rentgenowska analiza fazowa infiltrowanego kompozytu ze spieku M50Fe

Rys. 9.54 Rentgenowska analiza fazowa infiltrowanego kompozytu z wypraski M30WC
Badanie własności fizycznych i mechanicznych infiltrowanych kompozytów

Rys 9.55 Rentgenowska analiza fazowa infiltrowanego kompozytu ze spieku M30WC

Z analizy wynika, że osnowa wszystkich grup infiltrowanych kompozytów składa się z martenzytu oznaczonego jako Fe₆₆ i austenitu szczątkowego oznaczonego jako Fe₇₇ oraz miedzi. Natomiast liczba i rodzaj wydzielen w osnowie stali szybkotnącej zależy od rodzaju kompozytu, liczby i zawartości składników.
10. **ANALIZA WYNIKÓW**

Podstawowym celem pracy jest kształtowanie struktur i własności 3 grup infiltrowanych miedzą kompozytów na osnowie stali szybkotnącej z uwzględnieniem szerokiego zakresu zmiennych czynników związanych ze zmianą składu chemicznego oraz parametrów wytwarzania. Projektowanie składu chemicznego i kształtowanie struktury kompozytów realizowano przez zmianę: liczby składników wyjściowych, udziału składników wyjściowych oraz zastosowanie porowatych wyprasek lub porowatych spieków do infiltracji. W przypadku zastosowania procesu infiltracji do wytwarzania kompozytów na osnowie stali szybkotnącej najistotniejszym zagadnieniem jest stopień wypełnienia kapilar przez infiltrującą ciecz. Parametr ten decyduje o końcowych własnościach kompozytu oraz o możliwości zastosowania danego materiału w technice.

10.1 **Własności porowatych kształtek**

10.1.1 **Własności porowatych wyprasek**

Na podstawie wyników zamieszczonych w tabeli 8.1 oraz na rys. 8.1 określono wpływ poszczególnych dodatków do proszku stali szybkotnącej gatunku M3/2 w postaci proszków: Cu, grafitu, Fe i WC na gęstość względną i porowatość wyprasek. Wpływ dodatków Cu i C na gęstość względną wyprasek przedstawiono na rysunku 10.1.

![Rys 10.1 Wpływ dodatku miedzi i grafitu na gęstość względną wyprasek ze stali szybkotnącej](image)

Rys 10.1 Wpływ dodatku miedzi i grafitu na gęstość względną wyprasek ze stali szybkotnącej

Gęstość względna wyprasek ze stali szybkotnej M o kształcie prostopadłościennym wynosi 76,46%. Wprowadzenie metodą mieszania do proszku stali szybkotnej M 7,5% proszku miedzi powoduje zwiększenie zgęszczalności tych mieszanek względem
Analiza wyników

Wpływ dodatku Fe na gęstość względną wyprasek przedstawiono na rysunku 10.2.

![Rys 10.2 Wpływ dodatku żelaza na gęstość względną wyprasek ze stali szybkotnącej](image)

Dodatek 20 i 50% proszku żelaza do stali szybkotnącej, ze względu na większą plastyczność proszku żelaza oraz nieregularny kształt cząstek, powoduje w zależności od zawartości żelaza zwiększenie gęstości względnej wyprasek prasowanych pod ciśnieniem 800 MPa.

Wpływ dodatku węglika wolframu WC na gęstość względną wyprasek przedstawiono na rysunku 10.3.

![Rys 10.3 Wpływ dodatku węglika wolframu WC na gęstość względną wyprasek ze stali szybkotnącej](image)

Dodatek 10% lub 30% bardzo twardego i drobnoziarnistego węglika wolframu WC powoduje nieznaczne obniżenie gęstości względnej wyprasek, tym większe im większe dodatek węglika WC.
10.1.2 Analiza dylatometryczna procesu spiekania

W celu określenia parametrów spiekania nie powodujących znacznych zmian gęstości względnej i wymiarów porowatych kształtek przeznaczonych do infiltracji przeprowadzono analizę dylatometryczną procesu spiekania.

Na rysunku 10.4 przedstawiono analizę dylatometrycznej krzywej spiekania kształtek ze stali szybkotnącej M.

Rys 10.4 Dylatometryczna krzywa zmian długości kształtki z proszku M, w zależności od temperatury i czasu spiekania

Na dylatometrycznej krzywej zmian długości kształtki z proszku M (rys. 10.4) można wyróżnić pięć stadiów procesu spiekania:

I. w stadium pierwszym zmiany długości próbek z poszczególnych proszków wynikają głównie z ich rozszerzalności cieplnej,

II. w stadium drugim spiekania skurcz próbek jest głównie spowodowany przemianą ferrytu w austenit,

III. w stadium trzecim w miarę przedłużania czasu wygrzewania izotermicznego w temperaturze 900°C i wzrostu temperatury do 1150°C występuje przyrost długości próbek spowodowany rozszerzalnością cieplną oraz rozpuszczaniem się węglików typu \(M_6C\) w osnowie stali szybkotnącej [3, 8],

IV. w stadium czwartym występuje skurcz próbek spowodowany spiekaniem w stanie stałym,
V. w stadium piątym, podczas chłodzenia próbek zachodzi przemiana austenitu, występuje skurcz próbek spowodowany powstaniem produktów tej przemiany oraz procesem chłodzenia.

Dodatek 7,5 % miedzi do proszku stali szybkotnącej powoduje w stadium trzecim spiekania przyrost długości kształtki ze względu na wzajemną rozpuszczalność w stanie stałym miedzi i niektórych składników osnowy stali szybkotnącej (rys. 8.3). Skurcz kształtek z dodatkiem miedzi w stadium czwartym spiekania wywołany jest spiekaniem z udziałem fazy ciekłej powstałej przez stopienie się miedzi w temperaturze 1083°C.

Wprowadzenie 0,3% proszku grafitu do proszku stali szybkotnącej powoduje znaczny skurcz spiekanych kształtek spowodowany spiekaniem z udziałem fazy ciekłej, powstałej w wyniku oddziaływania grafitu ze stali szybkotnącą (rys. 8.4).

Dodatek 30% węgliku wolframu WC do proszku stali szybkotnącej powoduje istotne zmiany wymiarów i gęstości względnej kształtek w porównaniu do kształtek ze stali szybkotnącej. Pozwala to przypuszczać, że w spiekanej kształcie pojawia się faza ciekła, powodująca zagęszczenie. Powiększony fragment krzywej dylatometrycznej spieków M i M30WC przedstawiono na rys. 10.5.

Rys 10.5 Dylatometryczne krzywe zmian długości \(\Delta L/L_0 \) kształtk z proszków M oraz M30WC w zależności od temperatury i czasu spiekania w zakresie temperatur 850°C–1150°C
Spadek długości próbek we wstępnym okresie nagrzewania wynika jest cechą stosowanego dylatometru. Analizując krzywe dylatometryczne procesu spiekania wyprąsek z mieszanek proszku M30WC (rys. 8.5 i 10.5), stwierdzono występowanie dodatkowego piku na krzywej zmian długości tych kształtka, w porównaniu do krzywej spiekania dla stali M. Charakter zmian wymiarów kształtki wskazuje na pojawienie się w spiekanym układzie fazy ciekłej. Temperatura początku przyrostu długości kształtki wynosi 1123°C (rys. 10.5). Rentgenowska analiza fazowa (rys. 8.11) oraz badania struktury spieków przy pomocy mikroanalizatora rentgenowskiego (rys. 8.9) wykazały, że na powierzchni cząstek stali, w wyniku reakcji dodatku węgliku WC z osnową stali szybkotnącej oraz rozpuszczania się węgliku WC, powstaje węglik typu M₆₆ o złożonym składzie chemicznym Fe₃W₃C-Fe₄W₂C (rys. 8.9 i 8.11). Według opracowań literaturowych [3, 8] dodatek WC do kompozytów na osnowie stali szybkotnących nie powoduje powstania węgliku typu W₂C, jednocześnie w pracach tych wykazano, że żelazo oraz pierwiastki stopowe zawarte w stali, takie jak Mo, Co, W i Cr mają wpływ na rozpuszczanie się węglik WC [8]. Najsilniejszy wpływ na szybkość reakcji osnowy stali szybkotnącej z węglikiem wolframu WC oraz rozpuszczanie się węglik WC wywiera molibden, który w czasie spiekania kształtke ze stali szybkotnącej z dodatkiem proszku węgliku wolframu WC dyfunduje w kierunku powierzchni między fazowej węglik wolframu WC ze stali szybkotnącą. Powstały w wyniku reakcji i rozpuszczania węglik typu M₆₆C nie stanowią bariery dyfuzyjnej dla wolframu i molibdenu, natomiast hamuje dyfuzję chromu [8].

Analiza dylatometryczna procesu spiekania porowatych kształtek przeznaczonych do infiltracji pozwoliła ustalić temperaturę spiekania w próżni na 1150°C. Stosowana temperatura spiekania pozwala uzyskać porowate kształtki, odznaczające się porowatością całkowitą większą od 15%, co umożliwia zastosowanie ich do wytwarzania kompozytów na osnowie stali szybkotnącej metodą infiltracji.

10.1.3 Własności porowatych spieków

Spiekanie porowatych kształtek przeznaczonych do infiltracji prowadzono w temperaturze 1150°C przez jedną godzinę w atmosferze próżni. Zastosowana temperatura spiekania była niższa od optymalnej temperatury spiekania dla stali szybkotnącej gatunku M3/2 o około 100°C [20]. Przyrost gęstości względnej poszczególnych kształtek w czasie spiekania wynosił od około 1 do 6 % (tabela 8.2, rys. 8.6).
Zgodnie z przyjętymi założeniami spiekanie powoduje nieznaczne zwiększenie gęstości względnej kształtek ze stali szybkotnącej M. Przyrost gęstości względnej kształtek z dodatkiem 7,5% miedzi w wyniku spiekania w temperaturze 1150°C wynosi około 1%. Według danych literaturowych równowagowa rozpuszczalność miedzi w osnowie stali szybkotnącej w temperaturze 1150°C wynosi około 6% [20]. Wynika z tego, że w warunkach spiekania udział fazy ciekłej potrzebnej do zagęszczenia kształtek jest zbyt mały i nie powoduje istotnej aktywacji procesów powodujących zwiększenie gęstości spieków.

Według danych literaturowych dodatek 0,3 % grafitu powoduje obniżenie temperatury spiekania o ponad 100°C, czyli do temperatury ok. 1150°C. Spiekanie kształtke ze stali szybkotnącej z dodatkiem 0,3%C nie powoduje istotnych zmian gęstości w czasie spiekania w przeciwieństwie do spiekania kształtke w dylatometrze, co może wynikać ze zużycia części dodantu węgla do redukcji tlenków oraz różnicy ciśnienia próźni w komorze pieca VFC 025 i w dylatometrze.

Dodatek 20% i 50% żelaza do proszku stali szybkotnącej nie powoduje znaczących zmian gęstości oraz wymiarów kształtke w czasie spiekania. Spiekanie zachodzi w stanie stałym. W czasie spiekania występuje dyfuzja węgla i pierwiastków stopowych ze stali do żelaza, co potwierdzają pomiary mikrotwardości zamieszczone w tabeli 9.5 oraz wyniki liniowej mikroanalizy rentgenowskiej, zamieszczone na rys. 9.42.

Dodatek 10% i 30% węgliku wolframu WC do proszku stali szybkotnącej powoduje aktywację procesu spiekania kształtke M10WC oraz M30WC oraz istotne zmiany ich wymiarów. Spiekanie kształtke M30WC powoduje zwiększenie gęstości względnej z 75,5% do 81,5%. W czasie spiekania występuje rozpuszczanie oraz reakcja dodatku węgliku wolframu WC z osnową stali szybkotnącej, co powoduje występowanie przejściowej fazy ciekłej, odpowiedzialnej za zagęszczenie spieków M30WC.

10.2 Morfologia kapilar porowatych kształtek

Kapilary w porowatych wypraskach i spiekach z proszków stanowią labirynt kanalików o złożonym kształcie oraz zmiennej geometrii przekroju na całej ich długości.

Wypraski

Z obserwacji przełomów wyprasek wynika, że są one pozbawione mostków formujących się podczas prasowania, które utrudniają przebieg infiltracji. Głównym czynnikiem decydującym o wielkości i morfologii kapilar w wypraskach jest szeroki zakres
Analiza wyników

wielkości cząstek oraz nieregularny kształt stosowanego proszku stali szybkotnącej gatunku M3/2 oraz wielkość ich porowatości (rys. 8.12 a). Cząstki proszku stali M3/2 (rys. 7.2) oznaczają się nieregularnym kształtem oraz gładką powierzchnią, są prawie pozbawione chropowatości. Dodatek 7,5% miedzi, w większym stopniu, niż grafit wpływa na zwiększenie gęstości wyprasek prasowanych pod ciśnieniem 800MPa. Podobnie jak w przypadku dodatku grafitu, dodatek miedzi przyczynia się do zmniejszenia wielkości kapilar (rys. 8.13a), a ponadto, cząstki proszku miedzi lokują się w przestrzeniach między cząstkami proszku stali powodując dodatkowe zmiany morfologii kapilar, od mniej złożonej w wypraskach M i M0,3C (rys. 8.14a) do bardziej złożonej w wypraskach z mieszanek M7,5Cu (rys. 8.13a). Dodatek do proszku stali szybkotnącej 0,3% grafitu nie wpływa istotnie na zmianę morfologii kapilar wyprasek M0,3C (rys. 8.14a). Grafit powoduje jednak niewielkie zwiększenie gęstości wyprasek, co może powodować zmniejszenie wielkości kapilar.

Dodatek 20% i 50% żelaza gatunku NC 100.24, który odznacza się nieregularnym kształtem cząstek oraz zbliżonym rozkładem wielkości cząstek w porównaniu do proszku stali szybkotnącej, nie wpływa znacząco na zmianę morfologii kapilar wyprasek M20Fe i M50Fe (rys. 8.15a i 8.16a). Dodatek żelaza do stali szybkotnącej M3 powoduje zwiększenie gęstości kształtek w czasie prasowania, co ma wpływ na zmniejszenie wielkości kapilar.

Dodatek 10% i 30% węgliku wolframu WC powoduje zwiększenie wymiarów kapilar wyprasek M10WC oraz M30WC (rys. 8.17a i 8.18a), co wynika z równomiernego rozmieszczenia dodatku proszku węgliku wolframu w przestrzeniach między cząstkami proszku stali szybkotnącej oraz zwiększenie chropowatości powierzchni kapilar i ich krętości. Kapilary w tych kształtach są rozmieszczone bardziej równomiernie w porównaniu do kształtek bez dodatku węgliku wolframu, charakteryzują się też mniejszym zróżnicowaniem ich wielkości.

Spieki

Spiekanie wyprasek w temperaturze 1150°C wywołuje bardzo istotne zmiany morfologii kapilar w kształtach ze stali M, na powierzchni cząstek proszku wydzieliły się drobne węgliki, powodując znaczne zwiększenie chropowatości powierzchni kapilar (rys. 8.12b).

W kształtach spiekanych z mieszanek proszków stali z dodatkiem 7,5% miedzi występują duże zmiany morfologii kapilar (rys. 8.13b) wywołane stopieniem się miedzi, jej rozpyływaniem się po powierzchni cząstek proszku stali szybkotnącej i przebiegiem procesu rozpuszczania i wydzielenia.
Analiza wyników

Na przełomach kształtek z mieszanek proszków M0,3C widoczne są zerwane złącza pomiędzy cząstkami proszku stali (rys. 8.14b), które powstały pod wpływem aktywacji procesu spiekania za pomocą dodatku grafitu. Morfologia kapilar porowatych spieków z dodatkiem grafitu M0,3C nie różni się istotnie od morfologii kapilar wyprasek (rys. 8.14).

Spiekanie kształtek z dodatkiem 20 i 50% żelaza powoduje zwiększenie ilości złączy pomiędzy cząstkami żelaza i stali. Morfologia kapilar porowatych spieków z dodatkiem żelaza M20Fe i M50Fe nie różni się istotnie od morfologii kapilar wyprasek (rys. 8.15b i 8.16b).

Spiekanie kształtek ze stali M z dodatkiem 10% i 30% węglika WC powoduje zmniejszenie chropowatości i zróżnicowania wielkości ich kapilar w porównaniu do wyprasek z mieszanek tych proszków (rys. 8.17b i 8.18b). Cząstki proszku stali szybkotnącej w spiekach z dodatkiem 30% WC pokryte są warstwą węglika M₆C z rozmieszczonymi wewnątrz nierozpuszczonymi węglikami WC (rys. 8.18b).
10.3 Wybrane własności fizyczne i mechaniczne infiltrowanych kompozytów

10.3.1 Stopień wypełnienia kapiłar, gęstość i porowatość kompozytów

Efektywność infiltracji oceniano na podstawie badań stopnia wypełnienia kapiłar, porowatości i gęstości kompozytów.

Objętości kompozytów początkowo wyznaczono metodą geometryczną i metodą Archimedesa dla co najmniej 15 kształtek. W związku z tym, że nie obserwowano różnic wyników oznaczania objętości pomiędzy obydwoma metodami pomiarów, do wyznaczania objętości kształtek stosowano metodę geometryczną.

Stopień wypełnienia kapiłar miedzią po procesie infiltracji, obliczony wg wzoru (19), mieści się w przedziale 70 ÷ 80% (tabela 9.1 i rys. 9.1). Stopień wypełnienia kapiłar należy rozpatrywać indywidualnie dla poszczególnych grup kompozytów.

W przypadku kompozytów otrzymanych w wyniku infiltracji miedzi do wypraszk lub spieków ze stali M3, stopień wypełnienia kapiłar infiltrowanego spieku jest większy o ok. 1% od infiltrowanej wypraski. Różnica na korzyść infiltrowanych spieków może wynikać z redukcji tlenków na powierzchni cząstek stali w czasie spiekania, co powoduje odsłonięcie czystych metalicznych powierzchni lepiej zwilżalnych przez ciekłą miedź, ułatwiających przebieg infiltracji. Chropowatość powierzchni cząstek stali szybkotnącej może wpływać także na zwiększenie ciśnienia kapilarnego w czasie infiltracji w wyniku zmniejszenia promieni kapiłar. Dodatek 7,5% Cu do porowatych kształtek M7,5Cu nie wpływa korzystnie na zwiększenie stopnia wypełnienia kapiłar, który jest zbliżony do stopnia wypełnienia kapiłar w kompozybach otrzymanych w wyniku infiltracji miedzi do wypraszek lub spieków ze stali M3. Są prawdopodobne dwa powody tego zjawiska:

1. zwiększenie wymiarów i zmniejszenie chropowatości kapiłar pod wpływem ciekłej miedzi w procesie spiekania kształtek, a w wypraszkach - podczas nagrzewania do infiltracji,
2. nieznaczne zmniejszenie porowatości kształtek w czasie prasowania pod ciśnieniem 800MPa, pod wpływem dodatku proszku miedzi.

Dodatek do stali 0,3% węgla w postaci grafitu powoduje zmniejszenie stopnia wypełnienia kapiłar w wypraszkach. Węgiel w czasie nagrzewania wypraszek do temperatury infiltracji częściowo zostaje zużyty na redukcję tlenków, natomiast pozostała część, jeśli nie
Analiza wyników

rozpuści się w stali, może powodować pogorszenie zwilżalności. Grafit natomiast powoduje zwiększenie stopnia wypełnienia kapilar w spiekach. W czasie spiekania kształtek do infiltracji częściowo zostaje on zużyty na redukcję tlenków na powierzchni cząstek proszku stali szybkotnącej, a pozostały dyfunduje do stali wzbogacając ją w węgiel.

Dodatek 20% żelaza do proszku stali szybkotnącej powoduje nieznaczne obniżenie stopnia wypełnienia kapilar, natomiast dodatek 50% żelaza wpływa na zwiększenie stopnia wypełnienia kapilar wyprasek i spieków. Skrajny kąt zwilżania pomiędzy żelazem a miedzią w temperaturze infiltracji 1150°C jest bliski zeru [67]. Stopień wypełnienia kapilar infiltrowanych kompozytów z dodatkiem żelaza jest nieznacznie większy w przypadku infiltrowanych wyprasek.

Nieznaczne mniejszy stopień wypełnienia kapilar osiągnięto podczas infiltracji wyprasek jak i spieków ze stali szybkotnącej z dodatkiem 10% WC. Dodatek 30% węgliku wolframu WC do stali szybkotnącej nie spowodował obniżenia stopnia wypełnienia kapilar. Skrajny kąt zwilżania węgliku wolframu przez miedź wynosi około 50°, co oznacza że jest przez nią zwilżany. Dodatek 30% węgliku WC w porowatych wypraskach rozmieszcza się w przestrzeniach między cząstkami stali powodując powstanie wąskich kapilar (rys. 8.18a) i zwiększenie ciśnienia kapilarnego, a przez to zwiększenie stopnia wypełnienia kapilar. Węglik WC powoduje równocześnie aktywację procesu spiekania stali i zwiększenie gęstości spieków (rys. 8.5 i 8.6, tabela 8.2), co prawdopodobnie jest przyczyną mniejszego stopnia wypełnienia kapilar w infiltrowanych kompozytach z kształtek spiekanych w porównaniu do infiltrowanych kompozytów z wyprasek.

Metodą infiltracji miedzi do porowatych wyprasek i spieków ze stali szybkotnącej M3 oraz stali szybkotnącej M3 z dodatkami Cu, C, Fe oraz węgliku wolframu WC można uzyskać kompozyty o gęstości zbliżonej do gęstości teoretycznej, sięgającej 96,5% ÷ 98,0% (tabela 9.1 i rys. 9.2). Różnice gęstości względnej kompozytów otrzymanych w wyniku infiltracji miedzi do wyprasek lub spieków są nieznaczne i zazwyczaj nie przekraczają 0,5%.

W czasie infiltracji rejestrowano zmiany objętości kompozytów. Zmiany wymiarów kształtek w trakcie infiltracji mieszczą się w przedziale 0,4 ÷ 4%. Analizując dane przedstawione w tabeli 9.1 i na rys. 9.2 można stwierdzić, że mniejsze zmiany wymiarów powoduje infiltracja miedzą wyprasek w porównaniu ze zmianami przy infiltracji spieków. Wyjątkiem są infiltrowane spieki z dodatkiem 50% żelaza. Kompozyty z infiltrowanych wyprasek M, M10WC, M7,5Cu oraz M0,3C odznaczają się większą gęstością względną od kompozytów z infiltrowanych spieków, a w przypadku kompozytów z porowatych kształtke
Analiza wyników

M20Fe, M50Fe oraz M30WC większą gęstością odznaczają się infiltrowane kompozyty ze spieków. Największe zmiany wymiarów występują w trakcie infiltracji miedzi do porowatych wyprasek i spieków z dodatkiem 10% i 30% węgliku wolframu. Zjawisko to można tłumaczyć, podobnie jak w przypadku spiekania kształtek M10WC i M30WC reakcją na styku osnowa stali – węglik wolframu oraz rozpuszczaniem dodatku węgliku wolframu. Przedstawione na rysunku 9.5, sumaryczne dane dotyczące zmian objętości kształtek w wyniku spiekania i infiltracji pokazują, że w przypadku kompozytów z dodatkiem 30% WC, zmiany wymiarów kształtek w całym procesie technologicznym mogą sięgać nawet około 12%.

10.3.2 Twardość infiltrowanych kompozytów

Analizując przedstawione w tabeli 9.3 i na rys 9.6 wyniki pomiarów twardości metodą Brinella można stwierdzić, że większą twardość mają kompozyty otrzymane w wyniku infiltracji miedzi do wyprasek, co wynika ze zużycia części węgla zwarte w stali szybkotnącej do redukcji tlenków na powierzchni cząstek w czasie procesu spiekania. Dodatek elementarnego proszku miedzi powoduje zmniejszenie twardości infiltrowanych wyprasek, co jest związane ze zwiększeniem zawartości miedzi w kompozycie. Twardość infiltrowanych spieków z mieszanek proszków M7,5Cu nie ulega obniżeniu w wyniku zastosowania procesu spiekania przed infiltracją i jest większa od twardości infiltrowanych kompozytów otrzymanych w wyniku infiltracji miedzi do porowatych spieków ze stali M3. Dodatek 0,3% grafitu powoduje zwiększenie twardości kompozytów otrzymanych w wyniku infiltracji miedzi do wyprasek o blisko 100 HB w porównaniu do infiltrowanych kompozytów z wyprasek ze stali M. Część dodatku węgla zostaje zużyta do redukcji tlenków w czasie nagrzewania kształtki do temperatury infiltracji, przez co nie występuje zużycie osnowy stali w węgiel, a pozostała część grafitu wzbogaca osnowę stali szybkotnącej w węgiel, co w konsekwencji powoduje tak znaczące zwiększenie twardości. Infiltrowane kompozyty ze spieków z dodatkiem 0,3% grafitu także odznaczają się wyższą twardością w porównaniu do infiltrowanych kompozytów ze spieków M.

Dodatek 20% i 50% żelaza do stali powoduje obniżenie twardości infiltrowanych kompozytów wykonanych z wyprasek i spieków, tym większe im większa jest zawartość żelaza. Obniżenie twardości wynika ze znacznie niższej twardości żelaza, od twardości stali szybkotnącej. Pomiary mikrotwardości cząstek żelaza oraz cząstek stali szybkotnącej wykazały dyfузję węgla i pierwiastków stopowych ze stali do ziarn żelaza (tabela 9.5), która
powoduje wzrost twardości żelaza przy granicy kontaktowej stal szybkotnąca – żelazo oraz nieznaczne zmniejszenie mikrotwardości cząstek stali.

Dodatek 10% lub 30% węgliku wolframu powoduje istotne zwiększenie twardości infiltrowanych kompozytów M10WC i M30WC. Zwiększenie twardości kompozytów M10WC i M30WC wynika z wyższej twardości węgliku wolframu oraz powstania dodatkowych węglków typu M₆C w wyniku reakcji dodatku węgliku WC z osnową stali oraz rozpuszczania węgliku wolframu WC. W przypadku kompozytów z dodatkiem węgliku WC, obserwowano mniejsze zmiany twardości infiltrowanych spieków, w porównaniu do zmian twardości infiltrowanych wyprasek. Można to tłumaczyć tym, że część węgla uwolnionego w wyniku rozpuszczania węgliku WC zostaje zużyty do redukcji tlenków w czasie spiekania, zmniejszając zużycie osnowy stali w węgiel.

10.3.3 Wytrzymałość na zginanie infiltrowanych kompozytów

Zakres wpływu procesu spiekania porowatych kształtek przeznaczonych do infiltracji na wytrzymałość na zginanie infiltrowanych kompozytów należy rozpatrywać oddzielnie dla poszczególnych grup kompozytów w zależności, od zastosowanych dodatków stopowych.

Wpływ dodatku 7,5% Cu i 0,3% C na wytrzymałość na zginanie infiltrowanych kompozytów z wyprasek i spieków M, M7,5Cu oraz M0,3C przedstawiono na rysunku 10.6.

Rys 10.6 Wpływ dodatku miedzi i grafitu na wytrzymałość na zginanie infiltrowanych kompozytów

Wytrzymałość na zginanie kompozytów ze stali szybkotnącej M3 otrzymanych w wyniku infiltracji miedzi do wyprasek wynosi 2051 MPa, jest znacznie większa od wytrzymałości infiltrowanych kompozytów ze spieków z tej stali (rys. 10.6). Powodem tego
Analiza wyników

jest zmniejszenie zawartości węgla w osnowie stali, który zostaje zużyty w czasie spiekania do redukcji tlenków oraz niższą o ok. 1% gęstością względna tych kompozytów. Dodatek 7,5% miedzi korzystnie wpływa na wytrzymałość na zginanie kompozytów otrzymanych w wyniku infiltracji miedzi do wyprasek i spieków, co wynika ze zwiększenia zawartości miedzi w kompozytach do około 26%. W przypadku infiltrowanych kompozytów z wyprasek M7,5Cu uzyskano średnie wyniki wytrzymałości na zginanie ok. 2300 MPa, czyli o ponad 200 MPa więcej od infiltrowanych kompozytów z wyprasek ze stali szybkotnącej M. Dodatek 0,3% grafitu znacznie obniża wytrzymałość na zginanie kompozytów z infiltrowanych wyprasek M0,3C, natomiast zwiększa wytrzymałość infiltrowanych kompozytów ze spieków M0,3C w porównaniu do infiltrowanych kompozytów ze spieków M. Niski stopień wypełnienia kapilar w infiltrowanych kompozytach z wyprasek M0,3C oraz stosunkowo niska wytrzymałość na zginanie tych kompozytów może wskazywać, że część grafitu pozostała w kształtach w postaci oddzielnich cząstek grafitu. Proszek grafitu przedstawiony na rys. 7.9 charakteryzuje się płatkowym kształtem o ostrych krawędziach, mogących stanowić karb, gdzie zarodkują pęknięcia w czasie próby zginania, obniżając wytrzymałość na zginanie. Zwiększenie wytrzymałości na zginanie infiltrowanych spieków M0,3C może wynikać z wzbogacenia osnowy stali szybkotnącej w węgiel w obszarach przy granicach cząstek oraz zużycia części dodatku grafitu do redukcji tlenków w czasie spiekania.

Wpływ dodatku 20% i 50% żelaza na wytrzymałość na zginanie infiltrowanych kompozytów z wyprasek i spieków M, M20Fe oraz M50Fe przedstawiono na rysunku 10.7.

![Diagram do 10.7 Wpływ dodatku żelaza na wytrzymałość na zginanie infiltrowanych kompozytów](image.png)

Rys 10.7 Wpływ dodatku żelaza na wytrzymałość na zginanie infiltrowanych kompozytów

Dodatek 20% i 50% żelaza nie powoduje obniżenia wytrzymałości na zginanie infiltrowanych wyprasek. Spiekanie porowatych kształtek z dodatkiem 20% żelaza przed
procesem infiltracji powoduje obniżenie wytrzymałości na zginanie kompozytów. Wytrzymałość na zginanie kompozytów z dodatkiem 50% żelaza zwiększa się w wyniku zastosowania spiekania do wytwarzania porowatych kształtek do infiltracji, co może być spowodowane dyfuzją węgla i pierwiastków stopowych ze stali szybkotnącej do żelaza i dużą plastycznością żelaza w porównaniu do stali szybkotnącej. Obserwacja przełomów spieków stali z dodatkiem 50% żelaza wykazała powstanie złączy między cząstkami proszku żelaza (rys. 8.14b).

Wpływ dodatku 10% i 30% węgliku wolframu WC na wytrzymałość na zginanie infiltrowanych kompozytów z wyprasek i spieków M, M10WC oraz M30WC przedstawiono na rysunku 10.8.

![Rys 10.8 Wpływ dodatku węgliku wolframu WC na wytrzymałość na zginanie infiltrowanych kompozytów](image)

Dodatek 10% i 30% węgliku wolframu WC powoduje znaczne obniżenie wytrzymałości na zginanie kompozytów otrzymywanych w wyniku infiltracji miedzi do porowatych wyprasek i spieków w porównaniu do infiltrowanych kompozytów ze stali M3. Zastosowanie procesu spiekania porowatych kształtek do infiltracji powoduje wzrost wytrzymałości na zginanie infiltrowanych kompozytów M10WC i M30WC w porównaniu do kompozytów z infiltrowanych wyprasek. Także zwiększenie zawartości WC powoduje obniżenie wytrzymałości na zginanie.
10.3.4 Odporność na zużycie cierne i współczynnik tarcia infiltrowanych kompozytów

Odporność na zużycie cierne jest charakteryzowana przez ubytek masy poszczególnych kompozytów. Analizując wyniki przedstawione w tabeli 9.5 i na rys. 9.8 można stwierdzić, że poza kompozytami M7,5Cu i M0,3C większą odpornością na zużycie cierne charakteryzują się infiltrowane kompozyty z wyprasek. Ubytek masy podczas testu infiltrowanych kompozytów ze spieków jest w wielu przypadkach ponad dwukrotnie większy niż w przypadku infiltrowanych kompozytów z wyprasek.

Dodatek 7,5% proszku miedzi do proszku stali szybko tnącej w określonych warunkach tarcia powoduje około dziesięciokrotne zwiększenie ubytku masy infiltrowanych wyprasek oraz znaczne zwiększenie współczynnika tarcia w porównaniu do infiltrowanych kompozytów z wyprasek z proszku samej stali szybko tnącej M, co wynika z zwiększonego udziału miedzi w infiltrowanych sprzączkach oraz obecności w mikrostrukturze infiltrowanych kompozytów duży obszarów miedzi. Odporność na zużycie cierne oraz współczynnik tarcia infiltrowanych kompozytów ze spieków M7,5Cu jest zbliżony do tych własności infiltrowanych kompozytów ze spieków ze stali M. Dodatek 0,3% grafitu powoduje zmnieszenie odporności na zużycie cierne kompozytów z infiltrowanych wyprasek M0,3C, ubytek masy w porównaniu do infiltrowanych wyprasek ze stali M3 jest większy sześciokrotnie (rys. 9.8). Może to wynikać z obecności cząstek grafitu, odznaczającego się dobrymi własnościami ślizgowymi, w strukturze infiltrowanych kompozytów z wyprasek M0,3C. W przypadku infiltrowanych kompozytów ze spieków M0,3C obserwowano zwiększenie odporności na zużycie przez tarcie oraz nieznaczne zwiększenie współczynnika tarcia, które może wynikać ze wzbogacenia osnowy stali szybko tnącej w węgiel.

Dodatek 20% lub 50% żelaza nie powoduje obniżenia odporności na zużycie cierne infiltrowanych kompozytów z wyprasek w określonych warunkach procesu tarcia. Spiekanie kształtek przeznaczonych do infiltracji powoduje około dziesięciokrotne zwiększenie ubytku masy infiltrowanych kompozytów z tych kształtek. Kompozyty te odznaczają się także
wyższym współczynnikiem tarcia. Zmniejszenie odporności na zużycie cierne infiltrowanych spieków z dodatkiem żelaza można wiązać ze zmniejszeniem twardości tych kompozytów oraz zubożeniem osnowy stali szybkotnącej w węgiel i pierwiastki stopowe, które dyfundowały do cząstek żelaza w czasie spiekania, powodując wzrost twardości żelaza tylko przy granicach żelazo – stal.

Największą odpornością na zużycie cierne charakteryzują się infiltrowane kompozyty z dodatkiem 10% lub 30% węgliku wolframu. Spiekanie porowatych kształtek M10WC i M30WC przed infiltracją wpływa nieznacznie, w porównaniu do innych grup kompozytów, na zwiększenie ubytku masy infiltrowanych kompozytów z tych spieków. Zwiększenie odporności na ścieranie połączone jest z zwiększeniem współczynnika tarcia infiltrowanych kompozytów M10WC oraz M30WC, co jest wynikiem obecności w strukturze twardego i odpornego na ścieranie węgliku WC. Rozpuszczanie węgliku WC oraz reakcja na styku węgliku wolframu i osnowy stali szybkotnącej w czasie spiekania powoduje tylko nieznaczne zmniejszenie odporności na zużycie cierne oraz zwiększenie współczynnika tarcia infiltrowanych kompozytów.

10.3.5 Odporność na utlenianie w podwyższonych temperaturach

Dodatek 50% żelaza do stali szybkośniej korzystnie wpływa na odporność na utlenianie infiltrowanego kompozytu z wypraski M50Fe. Proces utleniania tych kompozytów rejestrowany przez przyrost masy proszku z infiltrowanego kompozytu z wypraski M50Fe przebiega najwolniej w porównaniu do kompozytów M i M7,5Cu. Na krzywej DTA podczas nagrzewania powyżej temperatury 500°C nie występuje pik, charakterystyczny dla procesu utleniania pozostałych infiltrowanych kompozytów z wypraski M i M7,5Cu.

Na podstawie rentgenowskiej analizy fazowej produktów utleniany kompozytu z infiltrowanej wypraski ze stali szybkośniej M (rys. 9.18), że podczas utleniania w zakresie temperatur 20°C÷1000°C tworzą się tlenki Fe₂O₃, Fe₂MoO₄, Fe₂CuO₄ oraz Cu₄O₃.
10.4 Mikrostruktura infiltrowanych kompozytów

Mikrostruktura infiltrowanych kompozytów wynika ścisłe ze stosowanej technologii ich wytwarzania oraz rodzaju i udziału zastosowanych dodatków miedzi, grafitu, żelaza oraz węgliku wolframu WC. W przypadku niniejszej pracy stosowano dwa sposoby wytwarzania porowatych kształtek przeznaczonych do infiltracji, czyli sposobem prasowania lub sposobem prasowania i spiekania. Strukturę kompozytów, podobnie jak i inne własności kompozytów, badano w stanie po chłodzeniu wraz z piecem.

Mikrostruktura infiltrowanych miedzi kompozytów z wyprasek i spieków M (rys. 9.19 i 9.20) składa się z drobnych ziem stali szybkotnącej, oraz miedzi która wypełniła obszary między byłymi cząstek proszku stali. Struktura ziarn stali szybkotnącej poddanej infiltracji składa się z produktów bezdyfuzyjnej przemiany austenitu z wydzielonymi wewnątrz droboziarnistymi węglikiem typu M₆C i MC. Z rentgenowskiej analizy fazowej infiltrowanych kompozytów z wyprasek (rys. 9.49) i spieków (rys. 9.50) M oraz pomiarów mikrotwardości osnowy stali szybkotnącej w infiltrowanych kompozytach ze spieków M50Fe (tabela 9.5) wynika, że osnowa stali szybkotnącej składa się z martenzytu oznaczonego jako Feₓ oraz austenitu szczątkowego oznaczonego jako Feᵧ. Na podstawie rentgenowskiej analizy fazowej stwierdzono, że węgliki typu M₆C to złożony węglik Fe₃W₃C zawierający w swoim składzie chemicznym oprócz żelaza i wolframu także wanad, chrom i molibden, natomiast węglik typu MC to węglik V₆C₇, zawierający rozpuszczony wolfram, żelazo i chrom. Węgliki są rozmieszczone równomiernie w osnowie stali szybkotnącej i charakteryzują się zaokrąglonym kształtem (rys. 9.40a i b). Spiekanie porowatych kształtek przeznaczonych do infiltracji powoduje nieznaczną zwiększenie wymiaru węglików, natomiast nie wpływa wyraźnie na ich kształt. Zwiększenie wielkości węglików, zwłaszcza typu M₆C jest wynikiem procesu ich koagulacji w czasie spiekania w temperaturze 1150°C przez 1 godzinę. Skład chemiczny węglików typu M₆C, przedstawiony na rys. 9.41-obiega nieznacznie od danych literaturowych odnośnie składu chemicznego tych węglików w spiekanych stalach szybkotnących [38]. Obszary miedzi w infiltrowanych kompozytach ze spieków M odznaczają się zaokrąglonym kształtem w porównaniu do infiltrowanych kompozytów z wyprasek, gdyż proces spiekania powoduje wygładzenie powierzchni kapilar oraz ich zaokrąglenie [64]. Obserwacje mikroskopowe granicy między fazowej stał szybkotnąca – miedź przy pomocy mikroskopu świetlnego (rys. 9.19 i 9.20) oraz mikroskopu skaningowego (rys. 9.40) nie wykazały obecności warstwy dyfuzyjnej. Potwierdzeniem baroku dyfuzji miedzi
Analiza wyników
do stali i składników ze stali do miedzi jest przedstawiona rys. 9.41 mikroanaliza rentgenowska osnowy stali szybkotnącej.

Mikrostruktura infiltrowanych miedzią kompozytów z wyprasek i spieków M7,5Cu (rys. 9.21 i 9.22) podobnie jak w przypadku infiltrowanych kompozytów z wyprasek i spieków M, składa się z ziarn stali szybkotnącej oraz miedzi. Struktura ziarn stali szybkotnącej poddanej infiltracji składa się z produktów bezdyfuzyjnej przemiany austenitu z wydzielonymi wewnątrz drobnoziarnistymi węglikami typu M₆C i MC. Miedź w infiltrowanych kompozytach z wyprasek M7,5Cu występuje w postaci nierównomiernie rozmieszczonych dużych obszarów, które powstały po stopieniu się dodatku proszku miedzi oraz miedzi, która wypełnia kapilary między cząstkami stali szybkotnącej. Udział miedzi w tym kompozycie jest większy i wynosi około 26%, co wpływa korzystnie na ich wytrzymałość na zginanie. Mikrostruktura infiltrowanych kompozytów ze spieków M7,5Cu różni się nieznacznie od kompozytów z wyprasek. Miedź w tych kompozytach występuje w postaci dużych, odizolowanych obszarów, które powstały w wyniku stopienia się dodatku miedzi w czasie spikania porowatych kształtek. Nie obserwowano procesu fragmentacji cząstek stali szybkotnącej podczas spikania i infiltracji.

Mikrostruktura infiltrowanych kompozytów z wyprasek M0,3C (rys. 9.23) nie różni się istotnie od mikrostruktury infiltrowanych kompozytów z wyprasek M i składa się z ziarn stali szybkotnącej oraz miedzi. Na podstawie rentgenowskiej analizy fazowej infiltrowanych kompozytów ze spieków M0,3C (rys. 9.51) stwierdzono zmniejszenie pików od żelaza α oraz zwiększenie pików od żelaza γ, co może sugerować zwiększenie zawartości austenitu szczątkowego w mikrostrukturze tych kompozytów. Spiekanie porowatych kształtek M0,3C przeznaczonych do infiltracji powoduje nieznaczne zwiększenie wielkości węglików (rys. 9.24). Zastosowanie porowatych spieków do infiltracji powoduje zwiększenie wielkości obszarów miedzi w porównaniu do infiltrowanych kompozytów z wyprasek M0,3C (rys. 9.23) oraz M (rys. 9.20).

Mikrostruktura infiltrowanych miedzią kompozytów z wyprasek i spieków M20Fe oraz M50Fe (rys. 9.25÷9.28) składa się z ziarn stali szybkotnącej z rozmieszczonymi w niej węglikami typu MC oraz M₆C, ziarn żelaza oraz miedzi. Obserwacja mikrostruktur tych kompozytów przy pomocy mikroskopu świetlnego oraz mikroskopu skaningowego(rys. 9.33 oraz 9.42) pozwala stwierdzić brak wyraźnej granicy międzyfazowej między ziarnami stali szybkotnącej i ziarnami żelaza. Dodatkowo stwierdzono zmniejszenie zawartości węglików, głównie typu M₆C w stali szybkotnącej przy granicy kontaktowej z ziarnami żelaza, zwłaszcza w infiltrowanych kompozytach ze spieków M20Fe oraz M50Fe. Do żelaza
dyfunduje węgiel z osnowy stali szybkotnącej oraz węgiel uwolniony w wyniku rozpuszczania się węglków typu \(M_6C \). W temperaturze 1150°C nie następuje rozpuszczanie węglków typu \(MC \). W wyniku liniowej mikroanalizy rentgenowskiej infiltrowanego kompozytu ze spieku M50Fe przedstawionej na rys. 9.42 oraz pomiarów mikrotwardości zamieszczonych w tabeli 9.5, stwierdzono dyfuzję pierwiastków stopowych ze stali do żelaza. Dyfuzja pierwiastków stopowych ze stali szybkotnącej, takich jak W, V, Mo i Cr, do żelaza jest możliwa w przypadku, gdy następuje rozpuszczanie węglków typu \(M_6C \) i \(MC \) w osnowie stali szybkotnącej. Z termodynamicznego punktu widzenia w przypadku układu stal szybkotnacia – żelazo, energia tworzenia poszczególnych typów węglków rośnie w stali szybkotnącej, natomiast zmniejsza się w żelazie, co umożliwia tworzenie się węglków w żelazie [81]. W obszarze cząstek żelaza w kompozytach otrzymywanych w wyniku infiltracji miedzi do spieków M20Fe i M50Fe, przy granicy kontaktowej żelazo – stal szybkotnaca, powstają nieliczne pory dyfuzyjne, co stwierdzono także w badaniach spieków żelazo – stal szybkotnaca [83]. Mikrostruktura infiltrowanych kompozytów ze spieków z dodatkiem żelaza jest bardziej gruboziarnista od mikrostruktury infiltrowanych kompozytów z wyprasek, zarówno w obszarze stali szybkotnej jak i byłych czastek żelaza. Miedź jest rozmieszczona wokół cząstek żelaza i wewnątrz cząstek żelaza. Infiltrowanie miedzi do porowatych kształtów z wyprasek i spieków M20Fe i M50Fe powoduje częściową fragmentację cząstek żelaza. Ułatwia to gębczą strukturę proszku żelaza NC 100.24 oraz dobra zwilżalność, gdyż dwuścienny kąt zwilżania żelaza przez miedź w temperaturze 1150°C jest bliski zeru [29]. Proces fragmentacji żelaza nie powoduje istotnych zmian wymiarów kompozytów w trakcie infiltracji, co pozwala na ściśłą kontrolę wymiarów kształtek w czasie procesu wytwarzania. Na podstawie rentgenowskiej analizy fazowej stwierdzono, że w infiltrowanych kompozytach ze spieków M50Fe (rys. 9.53) zmniejsza się intensywność pików od żelaza \(\gamma \) oraz od węglków typu \(M_6C \) w porównaniu do infiltrowanych kompozytów z wyprasek M50Fe (rys. 9.52).

Mikrostruktura infiltrowanych kompozytów z wyprasek i spieków M10WC oraz M30WC (rys. 9.29 i 9.31) składa się z ziarn stali szybkotnej, węglica wolframu WC, miedzi oraz węglica typu \(M_6C \), który powstaje w wyniku rozpuszczania dodatku węglica wolframu i reakcji z osnową stali szybkotnącej. Dodatek węglica wolframu jest rozmieszczony nierównomiernie w mikrostrukturze kompozytów, co może wynikać ze skłonności proszku węglica wolframu do tworzenia trwałych aglomeratów, które nie ulegają rozpadowi w czasie mieszanina proszków. Część dodatku węglica wolframu rozpuszcza się
analiza wyników

w czasie nagrzewania do temperatury infiltracji w zakresie temperatur 1123°C–1150°C (rys. 8.5 i 10.5) i reaguje z osnową stali szybkotnącej tworząc węglik typu M₆C o złożonym składzie chemicznym (rys 9.43). Porównując wyniki badań rentgenowskiej analizy fazowej infiltrowanego kompozytu z wypraski M30WC (rys. 9.54) do infiltrowanego kompozytu z wypraski M można stwierdzić, że zwiększa się znacząco intensywność pików od węgliku zidentyfikowanego jako Fe₃W₃C oraz występują piki od węgliku wolframu WC. Przybliżony skład chemiczny węglików Fe₃W₃C przedstawiono na rys. 9.43. Mikrostruktura ziarn stali szybkotnącej składa się z produktów bezdyfuzyjnej przemiany austenitu oraz rozmieszczonych równomiernie pierwotnych węglików typu MC oraz M₆C (rys. 9.43 i 9.54). Miedź infiltrowa w przestrzeni między ziarnami stali szybkotnej oraz do kapilar w obszarze dodatku węglika.

Spiekanie porowatych kształtek M10WC oraz M30WC powoduje zwiększenie zawartości węglika Fe₃W₃C w mikrostrukturze infiltrowanych kompozytów ze spieków. Powstały w wyniku rozpuszczania dodatku węglika wolframu WC i reakcji z osnową stali szybkotnącej węgiel Fe₃W₃C otacza obszary cząstek węglika wolframu. Wyniki punktowej mikroanalizy rentgenowskiej węglika Fe₃W₃C (rys. 9.43 punkt 1, rys. 9.45 punkt 2) potwierdziły, że węgiel Fe₃W₃C ma identyczny skład chemiczny w infiltrowanych kompozytach ze spieków i wyprasek M30WC. Porównując badania składu chemicznego osnowy stali szybkotnej w infiltrowanych kompozytach ze spieku M (rys. 9.41 punkt 3) oraz infiltrowanych kompozytów ze spieków M30WC (rys. 9.45 punkt 1) można stwierdzić, że następuje zmniejszenie zawartości pierwiastków stopowych w osnowie stali szybkotnej w kompozytach z dodatkiem 30%WC, które dyfundują w kierunku granicy kontaktowej stal szybkotnąca-węgiel wolframu WC. Wyniki te znajdują odzwierciedlenie w danych literaturowych, dotyczących spiania stali szybkotnących z dodatkami węglików [1, 2, 8]. Miedź infiltrowa w kapilar w obszarach dodatku węglika wolframu WC, co potwierdzono za pomocą liniowej analizy rentgenowskiej (rys. 9.46) oraz mapy rozkładu pierwiastków w infiltrowanych kompozytach ze spieków M30WC (rys. 9.48).

Przeprowadzone badania faktograficzne umożliwiły ocenę wpływu struktury, parametrów wytwarzania oraz dodatków stopowych na charakter przełomów infiltrowanych kompozytów. W wyniku obserwacji przełomów wykonanych przy powiększeniu 1000x przedstawionych na rys. 9.34÷9.39, stwierdzono znaczące różnice w mechanizmach pękania poszczególnych grup i rodzajów infiltrowanych kompozytów.
Rysunek 9.34 a i b przedstawia mikrofotografię przełomu infiltrowanych kompozytów wyprasek i spieków M. Są to przełomy ciągliwe, dołeczkowe o zróżnicowanym rozwinieniu powierzchni. Charakter dołeczków zależy od tego, czy pękanie przebiega przez ziarna stali szybkotnącej czy przez ziarna miedzi. Wpływ na charakter pękania przez ziarna stali szybkotnącej ma równomierne rozmieszczenie pierwotnych węglków typu MC i M₆C. Mikrofotografie przełomów infiltrowanych kompozytów z wyprasek i spieków M7,5Cu przedstawiono na rys. 9.35. Przełomy te wykazują charakter ciągliwy dołeczkowy, ze zwiększonym udziałem pękania przez ziarna miedzi. Mikrofotografie przełomów infiltrowanych kompozytów z wyprasek i spieków M0,3C przedstawiono na rys. 9.36. Są to przełomy ciągliwe, dołeczkowe o bardzo rozwinionej powierzchni. Przelom infiltrowanego kompozytu ze spieku M0,3C (rys. 9.36b) posiada zbliżony charakter do infiltrowanego kompozytu ze spieku M (rys. 9.34b). Obserwacje przełomów infiltrowanych kompozytów z wyprasek M0,3C potwierdziły przypuszczenia dotyczące obecności cząstek grafitu w mikrostrukturze tych kompozytów. Cząstki grafitu, charakteryzujące się kształtem płatkowym o ostrych krawędziach, działają jak karb podczas pękania, powodując znaczną zmniejszenie wytrzymałości na zginanie tych kompozytów.

Przełomy infiltrowanych kompozytów ze stali szybkotnącej z dodatkiem 20% żelaza (rys. 9.37 a i b) mają charakter mieszany: ciągliwy i kruchy. Przełom ma charakter ciągliwy w obszarze ziarn stali szybkotnącej i miedzi. Pękanie przebiega w sposób kruchy przez pierwotne ziarna żelaza, umocnione w wyniku dyfuzji węgla i pierwiastków stopowych ze stali szybkotnącej. Podobny charakter posiadają przełomy kompozytów z dodatkiem 50% żelaza (rys. 9.38 a i b), przy czym zwiększa się udział przełomu kruchego.

Przełomy infiltrowanych kompozytów ze stali szybkotnącej z dodatkiem 30% węglka wolframu WC przedstawiono na rys. 9.39. Są to przełomy ciągliwe, o bardzo rozwinionej powierzchni. Ciągliwy charakter przełomu występuje w obszarze cząstek stali szybkotnącej i w obszarze dodatku węglka wolframu i strefy reakcji na styku osnowy stali szybkotnącej z dodatkiem węgliku wolframu. Na przełomach infiltrowanych kompozytów ze stali szybkotnącej z dodatkiem 30%WC (rys. 9.34) stwierdzono brak dołeczków charakterystycznych dla pęknięcia przechodzącego przez ziarna miedzi. W infiltrowanych kompozytach ze spieków M30WC (rys. 9.39 b) można natomiast zaobserwować przebieg pęknięcia przez węglrik typu M₆C, które powstały w wyniku rozpuszczania i reakcji dodatku węglka wolframu z osnową stali szybkotnącej.
10.5 Podsumowanie

Tabela 10.1 Zestawienie wybranych własności charakteryzujących poszczególne kompozyty

<table>
<thead>
<tr>
<th>Skład porowatych kształtek</th>
<th>Stan porowatych kształtek</th>
<th>Porowatość kształtek</th>
<th>Właściwości fizyczne i mechaniczne kompozytów</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S<sub>W</sub></td>
<td>ρ<sub>W</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>M</td>
<td>wypraski</td>
<td>23,54</td>
<td>78,13</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>23,03</td>
<td>79,04</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>wypraski</td>
<td>21,79</td>
<td>76,78</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>20,62</td>
<td>77,20</td>
</tr>
<tr>
<td>M0,3C</td>
<td>wypraski</td>
<td>23,49</td>
<td>75,95</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>21,72</td>
<td>77,72</td>
</tr>
<tr>
<td>M20Fe</td>
<td>wypraski</td>
<td>22,46</td>
<td>77,58</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>20,63</td>
<td>77,50</td>
</tr>
<tr>
<td>M50Fe</td>
<td>wypraski</td>
<td>18,43</td>
<td>79,45</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>18,37</td>
<td>78,17</td>
</tr>
<tr>
<td>M10WC</td>
<td>wypraski</td>
<td>23,69</td>
<td>75,63</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>22,73</td>
<td>75,92</td>
</tr>
<tr>
<td>M30WC</td>
<td>wypraski</td>
<td>24,49</td>
<td>79,92</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>18,50</td>
<td>71,39</td>
</tr>
</tbody>
</table>

* - ubytek masy w czasie testu odporności na zużycie cierne

** - współczynnik tarcia
Skład chemiczny infiltrowanych kompozytów przedstawiono w tabeli 10.2.

Tabela 10.2 Skład chemiczny infiltrowanych kompozytów

<table>
<thead>
<tr>
<th>Skład porowatych kształtek</th>
<th>Stan porowatych kształtek</th>
<th>Zawartość składników, % masowe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kompozyty stal szybkotnąca – miedż</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje stal szybkotnąca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje miedź</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>wypraski</td>
<td>79,20</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>81,10</td>
</tr>
<tr>
<td>M7,5Cu</td>
<td>wypraski</td>
<td>74,40</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>74,80</td>
</tr>
<tr>
<td>M0,3C</td>
<td>wypraski</td>
<td>79,90</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>81,10</td>
</tr>
<tr>
<td></td>
<td>Kompozyty stal szybkotnąca – żelazo – miedź</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje stal szybkotnąca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje żelazo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje miedź</td>
<td></td>
</tr>
<tr>
<td>M20Fe</td>
<td>wypraski</td>
<td>65,30</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>65,75</td>
</tr>
<tr>
<td>M50Fe</td>
<td>wypraski</td>
<td>41,85</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>41,90</td>
</tr>
<tr>
<td></td>
<td>Kompozyty stal szybkotnąca – węglik wolframu – miedź</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje stal szybkotnąca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje węglik wolframu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>występuje miedź</td>
<td></td>
</tr>
<tr>
<td>M10WC</td>
<td>wypraski</td>
<td>73,70</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>74,40</td>
</tr>
<tr>
<td>M30WC</td>
<td>wypraski</td>
<td>57,10</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>61,10</td>
</tr>
</tbody>
</table>

10.5.1 Kompozyty stal szybkotnąca – miedź

Kompozyty stal szybkotnąca gatunku M3/2 – miedź wytwarzano metodą infiltracji miedzi do porowatych wyprasek lub porowatych spieków M lub M7,5Cu oraz M0,3C. Kierunek i intensywność wpływu dodatku miedzi i dodatku grafitu na własności infiltrowanych kompozytów przedstawiono w tabeli 10.3.
Tabela 10.3 Kierunek i intensywność wpływu dodatku miedzi i grafitu na własności infiltrowanych kompozytów stal szybkotnąca – miedź

<table>
<thead>
<tr>
<th>Dodatek</th>
<th>Stan porowatych kształtek</th>
<th>Porowatość kształtek</th>
<th>Własności fizyczne i mechaniczne kompozytów</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S_w, ρ_w, $\frac{\Delta V}{V}$, Twardość, R_g, Δm_t, μ</td>
</tr>
<tr>
<td>7,5% Cu</td>
<td>wypraski</td>
<td>↓</td>
<td>↓, ↓, ↓, ↓, ↑, ↑↑, ↑↑</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>↓</td>
<td>↓, ↓, ↓, ↑, ↑↑, ↓, ↓</td>
</tr>
<tr>
<td>0,3% C</td>
<td>wypraski</td>
<td>↓</td>
<td>↓, ↓, ↑, ↑↑, ↓, ↑↑</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>↓</td>
<td>↓, ↓, ↑, ↑, ↓, ↓, ↓</td>
</tr>
</tbody>
</table>

Gdzie:
- ↓↓ - silne zmniejszenie,
- ↓ - słabe zmniejszenie,
- — - brak wpływu,
- ↑↑ - silne zwiększenie,
- ↑ - słabe zwiększenie.

Wprowadzenie metodą mieszania do proszku stali szybkotnącej M3/2 proszków miedzi lub grafitu powoduje zwiększenie zęgęszczalności tych mieszanek względem zęgęszczalności kształtek z proszku stali szybkotnącej. Pod wpływem spiekania w temperaturze 1150°C w czasie 60 minut, gęstość wszystkich rodzajów spieków ulega zwiększeniu. Przyrost gęstości względnej poszczególnych rodzajów spieków M, M7,5Cu i M0,3C wynosi od 1 do 3 %. Wynika z tego, że dodatek miedzi lub grafitu w temperaturze spiekania 1150°C nie powoduje istotnej aktywacji procesów prowadzących do większego zęgęszczenia spieków. Dodatek proszków miedzi i grafitu do proszku stali szybkotnącej powoduje nieznaczne zmniejszenie stopnia wypełnienia kapilar oraz gęstości względnej infiltrowanych kompozytów z wyprasek i spieków M7,5Cu i M0,3C w porównaniu do kompozytów M. Największą twardość mają kompozyty z infiltrowanych wyprasek i spieków M0,3C. Dodatek miedzi powoduje zwiększenie wytrzymałości na zginanie infiltrowanych kompozytów z wyprasek i spieków M7,5Cu. Odporność na zużycie cienkie infiltrowanych kompozytów z wyprasek M7,5Cu i M0,3C, określona przez ubytek masy, jest znacznie mniejsza od infiltrowanych kompozytów z wyprasek M. Dodatek miedzi powoduje zwiększenie stopnia utlenienia infiltrowanych kompozytów w podwyższonych temperaturach. Mikrostruktura infiltrowanych kompozytów z wyprasek i spieków M, M7,5Cu oraz M0,3C składa się z ziarn stali szybkotnącej, z rozmieszczonymi wewnątrz węglikami typu M_6C i MC oraz obszarów miedzi.
10.5.2 Kompozyty stal szybkotnąca – żelazo – miedź

Kompozyty stal szybkotnąca gatunku M3/2 – żelazo – miedź wytwarzano metodą infiltracji miedzi do porowatych wyprasek lub porowatych spieków M20Fe oraz M50Fe. Kierunek i intensywność wpływu dodatku żelaza na własności infiltrowanych kompozytów przedstawiono w tabeli 10.4.

Tabela 10.4 Kierunek i intensywność wpływu dodatku żelaza na własności infiltrowanych kompozytów stal szybkotnąca – żelazo – miedź

<table>
<thead>
<tr>
<th>Dodatek</th>
<th>Stan porowatych kształtek</th>
<th>Porowatość kształtek</th>
<th>Własności fizyczne i mechaniczne kompozytów</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S_w</td>
<td>ρ_w</td>
</tr>
<tr>
<td>20% Fe</td>
<td>wypraski</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>50% Fe</td>
<td>wypraski</td>
<td>↓↓</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>↓↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

Dodatek żelaza stosowano w celu oddziaływania na własności oraz obniżenia kosztów wytwarzania infiltrowanych kompozytów na osnowie stali szybkotnącej ze względu na niższą cenę proszku żelaza od proszku stali szybkotnej.

Dodatek proszku żelaza do proszku stali szybkotnej powoduje zwiększenie zgęszczeniowej mieszanki, tym bardziej im większy jest dodatek żelaza. Gęstość kształtek M20Fe i M50Fe uległa nieznacznom zmianom podczas spiekania. Dodatek 50% Fe powoduje nieznaczne zwiększenie stopnia wypełnienia kapilar infiltrowanych kompozytów z wyprasek M50Fe w porównaniu do infiltrowanych kompozytów ze spieków M. Gęstość względna infiltrowanych kompozytów z wyprasek i spieków M20Fe i M50Fe jest nieznacznie mniejsza od gęstości względnej kompozytów z wyprasek i spieków M. Twardość infiltrowanych kompozytów z wyprasek i spieków M20Fe i M50Fe zmniejsza się ze wzrostem zawartości żelaza. Infiltrowane kompozyty z wyprasek mają mniejszą wytrzymałością na zginanie od kompozytów ze spieków M20Fe i M50Fe, które odznaczają się większą wytrzymałością na zginanie od infiltrowanych kompozytów ze spieków M. Dodatek żelaza korzystnie wpływa na zwiększenie odporności infiltrowanych kompozytów z wyprasek M50Fe na utlenianie w podwyższonych temperaturach. Ubytek masy infiltrowanych kompozytów z wyprasek M20Fe podczas testu odporności na zużycie cierne jest nieznacznie mniejszy od ubytku masy infiltrowanych kompozytów z wyprasek M, natomiast ubytek masy infiltrowanych
Analiza wyników- podsumowanie

kompozytów ze spieków M20Fe i M50Fe jest większy w porównaniu do infiltrowanych kompozytów ze spieków M. Mikrostruktura infiltrowanych miedzi z rozmiarami typu MC oraz M6C składa się z ziarn stali szybkotnącej w nich węglikiem MC oraz M6C. Analizując wyniki mikroanaliz rentgenowskich oraz pomiary mikrotwardości obszarów byłych cząstek żelaza w infiltrowanych kompozytach stwierdzono dyfuzję pierwiastków stopowych oraz węgla ze stali do żelaza.

10.5.3 Kompozyty stal szybkotnaca –węglaki wolframu – miedź

Kompozyty stal szybkotnaca z dodatkiem węglaka wolframu powodują nieznaczną zmniejszenie zawartości, izotropii i twardości infiltrowanych kompozytów ze spieków i wyprask M10WC oraz M30WC. Dodatek węglaka wolframu powoduje aktywację procesu spiekania kompozytów M10WC oraz M30WC. Dodatek węglaka wolframu powoduje nieznaczne zmniejszenie dysproporcji kapilar oraz gęstości względnej infiltrowanych kompozytów z wyprasek i spieków M10WC oraz M30WC w porównaniu do kompozytów M. Największą twardość mają infiltrowane kompozyty M10WC oraz M30WC oraz zwiększenie odporności na zużycie ciernych tych kompozytów w porównaniu do infiltrowanych kompozytów ze spieków M20Fe oraz M50Fe.

Tabela 10.5 Kierunek i intensywność wpływu dodatku węglaka wolframu WC na własności infiltrowanych kompozytów stal szybkotnaca –węglaki wolframu – miedź

<table>
<thead>
<tr>
<th>Dodatek</th>
<th>Stan porowatych kształtek</th>
<th>Porowatość kształtek</th>
<th>Właściwości fizyczne i mechaniczne kompozytów</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_w</td>
<td>(\rho_w)</td>
<td>(\frac{\Delta V}{V})</td>
</tr>
<tr>
<td>10% WC</td>
<td>wypraski</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>30% WC</td>
<td>wypraski</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>spieki</td>
<td>↓↓</td>
<td>↓↓</td>
</tr>
</tbody>
</table>

Wprowadzenie metodą mieszania do proszku stali szybkotnacej M3/2 proszku węglaka wolframu powoduje nieznaczną zmniejszenie zgęszeności mieszanek M10WC oraz M30WC względem zgęszeności kształtek z proszku stali szybkotnacej M. Dodatek węglaka wolframu powoduje aktywację procesu spiekania kształtek M10WC oraz M30WC. Dodatek węglaki wolframu powoduje nieznaczną zmniejszenie stopnie wypełnienia kapilar oraz gęstości względnej infiltrowanych kompozytów z wyprasek i spieków M10WC oraz M30WC w porównaniu do kompozytów M. Największą twardość mają infiltrowane kompozyty M10WC oraz M30WC oraz zwiększenie odporności na zużycie ciernych tych kompozytów
Analiza wyników - podsumowanie

w porównaniu do infiltrowanych kompozytów z wyprasek M. Mikrostruktura infiltrowanych kompozytów z wyprasek i spieków M10WC oraz M30WC składa się z ziarn stali szybkotnącej, z rozmieszczonymi wewnątrz węglikami typu M₆C i MC, węglik wolframu WC, ziarn miedzi oraz węglik typu M₆C o złożonym składzie chemicznym, który powstaje w wyniku rozpuszczania dodatku węglik wolframu i reakcji z osnową ziarn stali szybkotnącej.
11 WNIOSKI

Na podstawie przeprowadzonych badań oraz analizy uzyskanych wyników sformułowano następujące wnioski:

Kompozyty stal szybkotnąca – miedź

1. Na gęstość względną oraz morfologię i wielkość kapilar porowatych wyprasek M wpływa kształt, wielkość cząstek stali szybkotnącej oraz stosowane ciśnienie prasowania.

2. Spiekanie porowatych kształtek M nie wywołuje istotnych zmian gęstości, natomiast powoduje zwiększenie chropowatości powierzchni kapilar.

3. Stopień wypełnienia kapilar w infiltrowanych kompozytach ze spieków M jest nieznacznie większy niż w kompozytach z wyprasek, natomiast lepsze własności mechaniczne i tribologiczne uzyskano w wyniku infiltryacji miedzi do wyprasek z M.

4. Dodatek proszków miedzi i grafitu do proszku stali szybkotnącej powoduje nieznaczne zwiększenie gęstości względnej oraz niewielkie zmiany morfologii i wielkości kapilar porowatych wyprasek przeznaczonych do infiltryacji.

5. Proces spiekania kształtek M7,5Cu i M0,3C nie powoduje istotnych zmian ich gęstości względnej, natomiast wpływa na wyglądqenie powierzchni kapilar, co w konsekwencji prowadzi do zwiększenia ich promienia w porowatych spiekach.

6. Mikrostruktura infiltrowanych kompozytów z wyprasek i spieków M, M7,5Cu i M0,3C składa się z ziarn stali szybkotnącej z rozmieszczonymi wewnętrzn węglilkami typu MC i M6C oraz miedzi. Dodatek 7,5% proszku miedzi do proszku stali szybkotnącej powoduje powstanie w kompozytach charakterystycznych dużych obszarów miedzi, które powstały w wyniku stopienia się proszku miedzi.

7. Dodatek 7,5% proszku miedzi do proszku stali szybkotnącej powoduje nieznaczne zmniejszenie twardości, zwiększenie wytrzymałości na zginanie infiltrowanych kompozytów z wyprasek i spieków M7,5Cu oraz niekorzystnie wpływa na odporność na utlenianie w podwyższonych temperaturach. Współczynnik tarcia infiltrowanych kompozytów M7,5Cu jest większy od współczynnika tarcia infiltrowanych kompozytów z M. Zastosowanie do wytwarzania infiltrowanych kompozytów ze spieków M0,3C powoduje zwiększenie twardości, wytrzymałości na zginanie oraz odporności na ścieranie tych kompozytów, odznaczają się one także mniejszym współczynnikiem tarcia.
Wnioski

Kompozyty stal szybkotnąca – żelazo – miedź

1. Dodatek proszku żelaza do proszku stali szybkotnącej powoduje nieznaczne zwiększenie gęstości względnej oraz nieznacznie wpływa na morfologię i zmniejszenie wielkości kapilar.

2. Spiekanie powoduje nieznaczne zwiększenie gęstości względnej kształtek M20Fe i M50Fe oraz nie wpływa istotnie na zmianę morfologii i wielkości kapilar.

3. Dodatek 20% proszku żelaza do proszku stali szybkotnącej powoduje niewielkie obniżenie stopnia wypełnienia kapilar w kompozytach z M20Fe, natomiast dodatek 50% proszku żelaza powoduje nieznaczne zwiększenie stopnia wypełniania kapilar w kompozytach M50Fe.

4. Mikrostruktura infiltrowanych kompozytów na osnowie stali szybkotnącej z dodatkiem żelaza składa się z ziarn stali szybkotnącej, miedzi oraz byłych cząstek żelaza. Stwierdzono dyfuzję pierwiastków stopowych ze stali oraz węgla do żelaza.

5. Wprowadzenie do proszku stali szybkotnącej dodatku proszku żelaza obniża koszty wytwarzania infiltrowanych kompozytów na osnowie stali szybkotnącej. Dodatek 20% i 50% żelaza nieznacznie wpływa na zmniejszenie twardości, natomiast korzystnie wpływa na odporność na utlenianie w podwyższonych temperaturach. Dodatek żelaza nie powoduje obniżenia odporności na zużycie cierne infiltrowanych kompozytów z wyprasek M20Fe i M50Fe w określonych warunkach tarcia. Zwiększenie zawartości żelaza powoduje zmniejszenie współczynnika tarcia infiltrowanych kompozytów.

Kompozyty stal szybkotnąca – węglik wolframu – miedź

1. Wprowadzenie metodą mieszania proszku węglku wolframu do proszku stali szybkotnącej powoduje zmniejszenie gęstości względnej wyprasek M10WC i M30WC oraz wywołuje istotne zmniejszenie wymiarów i morfologii kapilar.

2. Spiekanie kształtek M10WC, a zwłaszcza M30WC powoduje istotne zwiększenie gęstości względnej oraz zmianę morfologii kapilar w wyniku rozpuszczania i reakcji dodatku węglka wolframu z osnową stali szybkotnącej.

3. Dodatek węglka wolframu nie powoduje zmniejszenia stopnia wypełnienia kapilar oraz gęstości względnej infiltrowanych kompozytów z wyprasek i spieków M10WC i M30WC.
4. Mikrostruktura infiltrowanych kompozytów na osnowie stali szybkotnej z dodatkiem węgliku wolframu składa się z ziarn stali szybkotnej, ziarn miedzi, węgliku wolframu oraz węgliku typu M₆C, który powstaje w wyniku rozpuszczania dodatku węgliku wolframu oraz reakcji z osnową stali szybkotnej.

5. Zwiększenie udziału węgliku wolframu WC powoduje zwiększenie twardości infiltrowanych kompozytów, odporności na zużycie cierne oraz zmniejszenie wytrzymałości na zginanie kompozytów na osnowie stali szybkotnej z wyprasek i spieków M10WC oraz M30WC. Dodatek 30% węgliku wolframu powoduje nieznaczne zwiększenie współczynnika tarcia infiltrowanych kompozytów z wyprasek i spieków M30WC.

W wyniku przeprowadzonych badań otrzymano 3 grupy, a w tym 14 rodzajów infiltrowanych kompozytów o wysokich własnościach mechanicznych i trybologicznych. Otrzymane wyniki badań świadczą o słuszności postawionej tezy pracy oraz o właściwym określeniu celu i programu badań.

W oparciu o badania prowadzone w ramach pracy doktorskiej i inne prace realizowane w Katedrze Metaloznawstwa i Metalurgii Proszków zgłoszono i uzyskano 2 patenty:

1. J. Leżański: Sposób wytwarzania infiltrowanych kompozytów – zarejestrowany w Urzędzie Patentowym Rzeczpospolitej Polskiej pod nr PL 184130 B1

2. J. Leżański, M. Madej: Infiltrowane kompozyty na osnowie stali szybkotnej - zarejestrowany w Urzędzie Patentowym Rzeczpospolitej Polskiej pod nr PL 194003 B1
12. **Literatura**

47. A. Ciaś, J. Konstanty, T. Pieczonka, A. S. Woński, C. S. Wright: *Wpływ obróbki cieplnej na własności stali szybkotnącej Fe2,3C-6,8Mo-6,9W-4,0Cr-6,2V-10,8Co wytworzonej techniką spiekania supersolidus*. Hutnik – Wiadomości Hutnicze, 1999, Nr 5, s. 251-258.

Literatura

75. J. Leżański, J. Konstanty, J. Kazior: *Sintered High Speed Steel-Base Composites for Wear and Sliding Application*. Kompozyty, PTMK, Częstochowa, Rocznik 1, 2001, 1, s. 32-35.

