AKADEMIA GÓRNICZO-HUTNICZA

IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ INŻYNIERII METALI I INFORMATYKI PRZEMYSŁOWEJ

PRACA DOKTORSKA

mgr inż. Małgorzata Wilk

BADANIE WPŁYWU OZONU NA PROCES SPALANIA GAZU

Promotor

dr hab. inż. Andrzej Buczek

Kraków 2007

PROMOTOROM

Panu dr hab. inż. Andrzejowi Buczkowi składam podziękowanie za pomoc w realizacji pracy Świętej pamięci Panu Profesorowi dr hab. inż. Stanisławowi Słupkowi, który był inicjatorem tematu, pracę tę poświęcam

WYKAZ OZNACZEŃ

1.	WSTĘP.		8
2.	PRZEGI	LAD LITERATURY	10
	2.1. M	ECHANIZM SPALANIA W FAZIE GAZOWEJ	
	RE	EAKCJE RODNIKOWE	10
	2.2. M	IECHANIZMY POWSTAWANIA NO _X I CO	14
	2.2.1.	MECHANIZMY TWORZENIA SIĘ TLENKÓW AZOTU NO _x	14
	2.2.2.	MECHANIZM FORMOWANIA TLENKU WĘGLA CO (II) (TLENKU WĘGLA).	21
	2.3. O	ZON – CHARAKTERYSTYKA, WYTWARZANIE I ZASTOSOWANIE	23
	2.3.1.	WŁAŚCIWOŚCI OZONU	23
	2.3.2.	METODY OTRZYMYWANIA OZONU I JEGO ZASTOSOWANIE	27
	2.3.3.	OGRANICZANIE EMISJI ZANIECZYSZCZEŃ PRZY WYKORZYSTANIU	
		OZONU	32
3.	CEL I ZA	AKRES PRACY	36
4.	CZĘŚĆ I	DOŚWIADCZALNA – METODYKA BADAŃ	37
	4.1. GI	ENERATORY OZONU I ICH CHARAKTERYSTYKA	38
	4.1.1.	LAMPA ULTRAFIOLETOWA JAKO ŹRÓDŁO OZONU	38
	4.1.2.	RUROWY GENERATOR OZONU. BUDOWA I CHARAKTERYSTYKA	40
	4.2. CH	HARAKTERYSTYKA ZASTOSOWANYCH REAKTORÓW SPALANIA	45
	4.3. M	ETODYKA BADAŃ	49
	4.4. M	ETODYKA POMIARÓW	50
	4.4.1.	POMIAR STRUMIENIA OBJĘTOŚCI SUBSTRATÓW SPALANIA	50
	4.4.2.	POMIAR TEMPERATURY	51
	4.4.3.	ANALIZA SPALIN	52
	4.4.4.		
		WERYFIKACJA METODĄ CHEMICZNĄ WSKAZAN STĘZENIA NO	
		WERYFIKACJA METODĄ CHEMICZNĄ WSKAZAN STĘŻENIA NO W ANALIZATORACH INFRALYT EL I LAND LANCOM SERIES II	53

	4.5	1. ZAKRES BADAŃ WSTĘPNYCH	59
	4.5.	2. WYNIKI BADAŃ WSTĘPNYCH	61
	4.5	3. ANALIZA WYNIKÓW BADAŃ WSTĘPNYCH	66
	4.5	4. WYTYCZNE DO DALSZYCH BADAŃ	67
5.	BAD	ANIA ZASADNICZE	68
	5.1.	STANOWISKO BADAWCZE	68
	5.2.	METODYKA BADAŃ	72
	5.3.	ZAKRES BADAŃ	73
	5.4.	BŁĘDY I ICH ANALIZA	74
	5.5.	WYNIKI POMIARÓW	84
	5.6.	ANALIZA WYNIKÓW POMIARÓW	95
6.	OPR	ACOWANIE WYNIKÓW POMIARÓW	99
	6.1.	METODA UZGADNIANIA	99
	6.2.	OBLICZENIA NAJBARDZIEJ WIARYGODNYCH WYNIKÓW	
		POMIARÓW I OBLICZEŃ	100
7.	MOI	DEL MATEMATYCZNY TWORZENIA I REDUKCJI NO	103
	7.1.	DOBÓR RÓWNAŃ KINETYKI SPALANIA W OBECNOŚCI OZONU	110
	7.2.	WYNIKI OBLICZEŃ STĘŻENIA NO	111
	7.3.	ANALIZA WYNIKÓW OBLICZEŃ	116
8.	POD	SUMOWANIE	118
	LIT	ERATURA	121
	SPIS	RYSUNKÓW	127
	SPIS	TABLIC	131
	ZAŁ	ĄCZNIKI	132

WYKAZ OZNACZEŃ

- A liczba zderzeń cząsteczki gazu,
- A stała charakterystyczna, $\text{cm}^3/(\text{mol}\cdot\text{s})$,
- a stała doświadczalna, $a = 5 \text{ m} \cdot \text{K/W}$,
- a doświadczalna wielkość,
- b stała charakterystyczna dla danej reakcji,
- *b* wielkość poszukiwana,
- C stężenie, m³/m³, kmol/m³, mg/dm³, %, ppm,
- d średnica, m,
- D współczynnik dyfuzji, cm²/s,
- E energia aktywacji, kJ/mol,
- *E* natężenie pola elektrycznego, V/m,
- F pole przekroju poprzecznego reaktora, m²,
- g udział masowy,
- h stała Plancka,
- \dot{I} strumień entalpii, kW,
- k stała szybkości reakcji,
- *k* liczba stopni swobody,
- k_i stosunek objętości roztworu pochłaniającego do objętości próbki pobranej do oznaczenia,
- kl klasa dokładności przyrządu,
- M empiryczna macierz kowariancji wyników pomiaru,
- *m* masa, kg,
- m zawartość jonów NO₂⁻ odczytana z krzywej wzorcowej, μ g,
- M stabilna cząsteczka będąca nośnikiem energii,
- M masa molowa, kg/kmol,
- M_X macierz kowariancji wielkości mierzonych,
- M_Y macierz kowariancji oszacowanych niewiadomych
- *n* liczebność próby,
- O obwód kanału, m,
- O_t tlen teoretyczny, m³tlenu/m³gazu,
- \dot{Q}_{n} obciążenie cieplne reaktora, W,
- p ciśnienie, Pa,
- P liczba produktów,
- r liczba niezależnych równań nieliniowych, reakcji chemicznych,
- R stała gazowa, R = 8.314 J/(mol·K),

- S liczba substratów,
- S powierzchnia obszaru dyfuzji, m²,
- *sp*² hybrydyzacja cząsteczki O₃,
- S_x estymator odchylenia standardowego,
- S_{-} odchylenie standardowe wartości średniej
- S_x^2 estymator wariancji,
- T temperatura bezwzględna, K,
- *T* macierz transponowana,
- t rozkład Studenta,
- t temperatura, °C,
- T_w temperatura ścian kanału, K,
- *u* liczba wielkości niemierzonych,
- U_j energia jonizacji, eV,
- V objętość odcinka kanału o długości dx, m³,
- \dot{V} strumień objętościowy, dm³/h,
- V_0 teoretyczne zapotrzebowanie powietrza do spalania, m³powietrza/m³gazu,
- V_R objętość sfery wyładowań, m³,
- w prędkość gazu, m/s,
- x długość, m,
- \overline{x} wartość oczekiwana (średnia arytmetyczna),
- \hat{x} wektor estymat wielkości mierzonych spełniających równania warunków,
- x^0 wektor wyników pomiaru,
- \hat{Y} wektor wyników pomiaru,
- y wielkości niemierzone,
- y^0 wektor wyników oszacowania wielkości niewiadomych,
- Z maksymalny zakres pomiarowy,
- Z zawartość składnika w płuczce, μg ,
- α poziom istotności,
- α współczynnik wnikania ciepła od spalin do ścian, kW/(m² K),
- α_j współczynnik jonizacji zderzeniowej,
- δ wiązanie chemiczne,
- δ błąd,
- ε współczynnik emisyjności,
- ε stopień dopalenia, względna zmiana stężenia,
- $\gamma(\Delta x)$ gęstość prawdopodobieństwa,

- λ długość fali, m,
- λ stosunek nadmiaru powietrza,
- μ przedział ufności,
- μ średnica kanału wyładowczego, m,
- v częstotliwość fali świetlnej,
- v liczba cząsteczek występująca w równaniu stechiometrycznym,
- π wiązanie chemiczne,
- ρ gęstość, kg/m³,
- σ stała Stefana Boltzmana, $\sigma = 5.67 \cdot 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$,
- σ odchylenie standardowe rozkładu normalnego,
- σ_x^2 wariancja rozkładu,
- au czas, s,
- $\dot{\omega}$ intensywność tworzenia związku w reakcji chemicznej, kmol/(m³·s),
- Δx błąd względny przyrządu.

Indeksy dotyczą:

- b barometrycznego,
- 0 warunków odniesienia,
- [⊗] warunków, w których cechowano rotametr,
- f reakcji w prawo,
- b reakcji w lewo,
- max- maksymalnego,
- s spoiny,
- w ściany,
- rz rzeczywistych,
- * stanu wzbudzenia cząsteczki.

1. WSTĘP

Proces spalania paliw jest podstawowym źródłem energii pierwotnej oraz niestety, także i zanieczyszczenia powietrza atmosferycznego. Prowadzone badania w tym zakresie zmierzają do zmniejszenia emisji szkodliwych substancji i poprawienia efektywności spalania pod kątem energetycznym. Można to osiągnąć między innymi poprzez stosowanie tzw. metod pierwotnych, które charakteryzują się stosunkowo dużą skutecznością i niskimi kosztami inwestycyjnymi. Stosując gaz ziemny jako najmniej szkodliwe paliwo węglowodorowe poszukuje się promotorów spalania, które przyspieszą samozapłon i wpłyną korzystnie na sam proces spalania paliwa. Jako chemiczne dodatki do gazu ziemnego stosuje się różne związki, między innymi azotany, nadtlenki i łatwo reagujące cząstki. Dlatego zainteresowano się ozonem próbując wykorzystać jego własności utleniające.

Znaczenie ozonu:

- ozon występujący w atmosferze pełni rolę warstwy ochronnej promieniowania UV,
- szeroko stosowany jest do celów komunalnych głównie, do uzdatniania wody,
- utylizuje i dezynfekuje ścieki,
- dezynfekuje pomieszczenia, konserwuje żywność,
- utylizuje gazy przez ich dezodoryzację i eliminację szkodliwych związków w gazach,
- może być stosowany w spalaniu.

Ozon zastosowany w mieszaninie powietrzno-ozonowej działa jako katalizator przyspieszający proces utleniania zachodzący w niższej temperaturze. W czasie działania katalitycznego ozon rozpada się, tworząc rodniki atomowego tlenu, i zapoczątkowuje łańcuchową reakcję utleniania, która może wpływać na produkty spalania, a także na zmniejszenie zużycia paliwa.

Z danych zawartych w dostępnej literaturze wynika, że w badaniach wpływu ozonu na proces spalania skupiono się bardziej nad określeniem mechanizmu przebiegu reakcji spalania niż nad jego wpływem na produkty spalania. Dlatego interesującym wydaje się zagadnienie badania wpływu dodatku ozonu do substratów spalania na emisję szkodliwych zanieczyszczeń takich jak CO i NO.

Badania prowadzone w niniejszej pracy obejmują badania wstępne i zasadnicze. Badania wstępne wpływu ozonu na proces spalania prowadzono w dwóch reaktorach rurowych I, II i w reaktorze z palnikiem Meckera. Proces spalania prowadzono przy spalaniu mieszanki

powietrza z dodatkiem ozonu i gazu palnego: metanu i gazu ziemnego. Wnioski wyciągnięte z przeprowadzonych badań wstępnych pozwoliły zdefiniować zakres i plan badań zasadniczych. Badania zasadnicze przeprowadzono spalając mieszaninę gazu ziemnego z syntetycznym powietrzem z dodatkiem ozonu w reaktorze z palnikiem Meckera. Wykonano analizę porównawczą obliczeń numerycznych procesu i wyników pomiarów eksperymentalnych.

Określenie wpływu ozonu na proces spalania powinno dostarczyć odpowiedzi na pytanie czy obecność ozonu pozwoli na poprawę prowadzenia procesu spalania pod kątem energetycznym i ekologicznym.

2. PRZEGLĄD LITERATURY

2.1. MECHANIZM SPALANIA W FAZIE GAZOWEJ, REAKCJE RODNIKOWE

Reakcja chemiczna pomiędzy poszczególnymi cząsteczkami zależna jest od ich rodzaju, od prawdopodobieństwa zderzenia i od energetycznego przygotowania do utworzenia związku chemicznego. Zachodzi jednak tylko w wyniku takich zderzeń, w których energia kinetyczna ruchu względnego cząsteczek jest większa od pewnej wartości krytycznej zwanej energią aktywacji.

Podstawę procesu spalania stanowią przemiany chemiczne, które zachodzą pomiędzy paliwami i utleniaczami. Reakcje chemiczne występują w momencie kontaktu między cząsteczkami tych związków. Nie są to jedynie pojedyncze połączenia substratów biorących udział w spalaniu, ale z reguły jest to długi szereg przemian tworzący reakcje łańcuchowe, w których biorą udział atomy, cząsteczki i aktywne centra przyspieszające proces przebiegu reakcji zwane wolnymi rodnikami. Są to pojedyncze atomy lub trwałe ze względu na połączenia wewnętrzne cząsteczki złożone z kilku atomów, mające nienasycone wartościowości chemiczne. Wolne rodniki występuja w procesach spalania jako produkty pośrednie, są to H·, O·, OH·, HO₂·, CH·, CH₂·, CH₃·, C₂H·, C₂· i wiele innych. Rodniki są bardzo nietrwałe ze względu na dużą reaktywność chemiczną, która wynika ze struktury elektronowej o niesparowanej liczbie elektronów lub dwu elektronach niesparowanych, i dlatego nie można ich wyizolować. Reakcje połączenia dwu rodników, tzw. reakcje rekombinacji, oraz rodników z cząsteczkami tlenu w wyniku, których powstają rodniki nadtlenkowe, zachodzą z zerowymi energiami aktywacji. Z niskimi energiami aktywacji zachodzą reakcje przeniesienia atomu wodoru z jednego rodnika do drugiego, oddawania lub pochłaniania swobodnych elektronów, przyłączania do podwójnych wiązań wielu trwałych cząsteczek oraz odrywania atomu wodoru od innych cząsteczek, które same się przekształcają w rodniki [6].

Mechanizmy spalania paliw mają charakter hierarchiczny. Przy spalaniu każdego z węglowodorów zachodzą reakcje elementarne wszystkich węglowodorów niższych, tlenku węgla (II) (tlenku węgla) i wodoru. Nawet najprostsza elementarna reakcja spalania wodoru w tlenie 2 H₂ + O₂ \rightarrow 2 H₂O jest reakcją łańcuchową, w której H·, O·, OH· są wolnymi rodnikami:

$$H \cdot + O_2 \to O \cdot + OH \cdot \tag{1}$$

$$O \cdot + H_2 \to H \cdot + O H \cdot \tag{2}$$

$$OH \cdot + H_2 \rightarrow H_2O + H \cdot$$
 (3)

Reakcja (1) kontroluje szybkość wzrostu stężenia rodników w układzie, bo jest reakcją powolną o dużej energii aktywacji. Z kolei reakcja (3) jest przedłużeniem łańcucha, któremu towarzyszy powstawanie produktu. Wolne rodniki O·, H·, OH· mogą zniknąć z układu dyfundując do ścian komory spalania lub rekombinować w płomieniach w fazie gazowej w reakcjach trójcząsteczkowych:

$$H \cdot + H \cdot + M \to H_2 + M \tag{4}$$

$$H \cdot + OH \cdot + M \to H_2O + M \tag{5}$$

$$H \cdot + O_2 + M \to HO_2 \cdot + M \tag{6}$$

Reakcje z udziałem atomowego tlenu pominięto, gdyż stężenie O· jest przynajmniej o dwa rzędy mniejsze od stężeń rodników H· i OH·.

Reakcje (1), (2), (3) przebiegają w bogatej mieszaninie H_2 z powietrzem i mogą wytworzyć dużą ilość wolnych rodników H·, jednak nie dochodzi do tego ze względu na rekombinację rodników. Reakcje rozgałęziania łańcucha są reakcjami dwucząsteczkowymi i trwają ok. 0.01 ms, natomiast reakcje rekombinacji są reakcjami trójcząsteczkowymi o czasie trwania ok. 1 ms, więc rodniki występują również w strefie popłomiennej. Reakcje dwucząsteczkowe zachodzą w obszarze reakcji w stanie pozornej równowagi. Mimo tego, że układ nie jest w równowadze termodynamicznej, to ustalają się pewne zależności pomiędzy stężeniami rodników H·, OH·, O· i składników H₂ lub O₂ (w zależności od stosunku H₂/O₂), a stężeniami składników głównych gazów popłomiennych (bez N₂). Dzięki temu można w przybliżeniu ocenić stężenia gazów popłomiennych na podstawie pomiaru stężenia jednego składnika śladowego np. [H·] czy [OH·].

Cząsteczka M uważana jest w reakcjach rekombinacji za katalizator. Rekombinacja bywa również katalizowana przez tlenek azotu (II) (tlenek azotu) [24]:

$$NO + H + M \leftrightarrow HNO + M$$
 (7)

$$HNO + H \rightarrow H_2 + NO \tag{8}$$

$$HNO + OH \rightarrow H_2O + NO \tag{9}$$

oraz tlenek siarki (IV) (dwutlenek siarki):

$$SO_2 + H \cdot + M \leftrightarrow HSO_2 + M$$
 (10)

$$HSO_2 + H \rightarrow SO_2 + H_2 \tag{11}$$

$$HSO_2 + OH \rightarrow H_2O + SO_2 \tag{12}$$

Wystarczą śladowe ilości NO i SO₂ w bogatym w wodór płomieniu rozprzestrzeniającym się w mieszance wodoru z powietrzem, aby znacznie obniżyć stężenie rodników w gazach popłomiennych. Rekombinacja rodników może być katalizowana również za pomocą niektórych metali: cyny, chromu, wapnia, strontu, baru.

Reakcja utleniania CO jest katalizowana nawet przez ślady wodoru lub jego związków. Mechanizm reakcji opisany przez reakcje (1) ÷ (6) jest klasycznym przykładem cyklu katalitycznego kontrolowanego przez reakcję [78]

$$CO + OH \rightarrow CO_2 + H \rightarrow (13)$$

W obecności CO w płomieniach pojawia się też dodatkowa powolna reakcja rekombinacji

$$CO + O + M \rightarrow CO_2 + M$$
 (14)

Z punktu widzenia reakcji chemicznych zachodzących w płomieniu bardzo trudno jest przedstawić jednoznaczny mechanizm reakcji spalania paliw węglowodorowych. Dlatego w modelowaniu spalania nawet najprostszych węglowodorów bierze się pod uwagę wszystkie możliwe reakcje chemiczne.

Węglowodory utleniane są według mechanizmu nisko- i wysokotemperaturowego, o czym świadczy m.in. to, że szybkość utleniania alkanów istotnie rośnie z długością łańcucha. Efekt ten zanika pod wpływem wysokiej temperatury i szybkości spalania węglowodorów nasyconych są dość podobne do szybkości reakcji globalnej. W niskotemperaturowym spalaniu dużą rolę odgrywają wolne rodniki z wiązaniem nadtlenkowym –O–O–, a także powstawanie produktów pośrednich zawierających tlen, takich jak alkohole czy aldehydy. Zjawiska związane z reakcjami niskotemperaturowymi mogą mieć bardzo złożony charakter [26].

W płomieniach cząsteczki węglowodorów RH praktycznie nie reagują z cząsteczkowym tlenem, a są atakowane przez rodniki H·, OH· i O· zgodnie z reakcjami:

$$\mathbf{R}\mathbf{H} + \mathbf{H} \cdot \to \mathbf{R} \cdot + 2\mathbf{H} \cdot \tag{15}$$

 $\mathbf{R}\mathbf{H} + \mathbf{O}\mathbf{H} \cdot \rightarrow \mathbf{R} \cdot + \mathbf{H}_2 \mathbf{O} \tag{16}$

$$\mathbf{R}\mathbf{H} + \mathbf{O} \to \mathbf{R} \cdot + \mathbf{O}\mathbf{H} \cdot \tag{17}$$

Podczas utleniania cięższych węglowodorów zachodzi przerywanie kolejnych wiązań C–C. Rodniki typu C_nH_{2n+1} · reagują tworząc niższe alkeny albo z wyeliminowaniem rodnika CH_3 ·, albo z wyeliminowaniem rodników zawierających więcej niż jeden atom C:

$$C_{n}H_{2n+1} \rightarrow C_{n-1}H_{2(n-1)} + CH_{3}$$

$$(18)$$

$$C_n H_{2n+1} \rightarrow C_p H_{2p} + C_q H_{2q+1}$$
(19)

gdzie p+q=n

Niższe rodniki mogą nadal ulegać przemianom, a reaktywne alkeny utlenianiu wchodząc w reakcje z tlenem. W płomieniach bogatych w paliwo zachodzą też reakcje pirolizy do H₂, częściowe utlenianie do CO oraz reakcje łańcuchowe, charakteryzujące się ubytkiem H₂ i utlenianiem CO przez rodniki powstające w wyniku rozgałęziania łańcuchów [24, 26].

2.2. MECHANIZM POWSTAWANIA NO_X i CO

2.2.1. MECHANIZMY TWORZENIA SIĘ TLENKÓW AZOTU NO_X

W procesach spalania paliw występują dwa główne rodzaje tlenków azotu: tlenek azotu (II) (tlenek azotu) NO i tlenek azotu (IV) (dwutlenek) NO₂. Pozostałe tlenki, czyli tlenek azotu (I) N₂O, zwany popularnie gazem rozweselającym, tlenek azotu (III) (trójtlenek) N₂O₃ i tlenek azotu (V) (pięciotlenek) N₂O₅, występują w śladowych ilościach. W temperaturowych procesach spalania gazu ziemnego powstaje głównie NO, którego udział w całkowitej emisji NO_x wynosi zazwyczaj co najmniej 95%, a resztę stanowi NO₂. Najbardziej szkodliwy jest tlenek azotu (IV) (dwutlenek azotu) NO₂, gaz o czerwonobrunatnej charakterystycznej barwie, który działa drażniąco na płuca, powoduje obniżenie ciśnienia krwi przez rozszerzenie naczyń krwionośnych oraz działa narkotycznie na układ nerwowy. Jest także gazem cieplarnianym jako gaz trójatomowy. Poza tym w obecności pary wodnej oraz wyładowań atmosferycznych tworzy kwas azotowy (V) (kwas azotowy), który jest składnikiem kwaśnych deszczy. Tlenek azotu (II) (tlenek azotu) NO₂, ale również oddziałuje na ośrodkowy układ nerwowy. Jest głównym źródłem NO₂, gdyż pod wpływem promieniowania ultrafioletowego w atmosferze utlenia się do NO₂.

Wiedza na temat mechanizmu powstawania produktów spalania paliw pozwala na określenie termicznych i chemicznych warunków pracy urządzeń przetwarzających energię. Sterując procesami spalania można zapobiec lub ograniczyć emisję szkodliwych substancji m.in. tlenków azotu.

Źródłem tlenku azotu (II) (tlenku azotu) jest azot zawarty w paliwie i azot cząsteczkowy z powietrza. Dlatego tlenki azotu (II) (tlenki azotu) można podzielić na paliwowe i powietrzne.

Można wyróżnić cztery mechanizmy powstawania NO:

- termiczny,
- natychmiastowy,
- za pośrednictwem N₂O,
- paliwowy.

Mechanizm termiczny

Ilościowa emisja NO zależy między innymi od temperatury w strefie spalania, czasu pobytu w strefie reakcji, zawartości azotu w paliwie i lokalnego stężenia tlenu. Podczas spalania gazu ziemnego, zawierającego głównie metan, a nie zawierającego związanego chemicznie azotu, głównym mechanizmem powstawania NO jest mechanizm termiczny, w którym źródłem reagentów jest powietrze spalania. Reakcje powstawania tlenku azotu (II) (tlenku azotu) NO z tlenu i azotu z powietrza zachodzą w temperaturze powyżej 1400°C.

Mechanizm tych reakcji był opisany przez Zeldowicza w 1946 roku i zakładał zerwanie wiązania w cząsteczce tlenu:

$$O_2 + M \leftrightarrow O + O + M \tag{20}$$

gdzie M jest stabilną cząsteczką będącą nośnikiem energii.

Reakcja ta osiąga równowagę w temperaturze płomienia kinetycznego.

Powstałe rodniki tlenu mogą reagować w silnie endotermicznej reakcji z cząsteczką azotu, która jest dosyć stabilna chemicznie, nie dysocjuje i dlatego wymaga silnej energii aktywacji. Reakcja ta przebiega ze znaczącą szybkością dopiero w temperaturze większej od 1400°C

$$\mathbf{O} \cdot + \mathbf{N}_2 \xrightarrow{\mathbf{k}_1} \mathbf{N} \mathbf{O} + \mathbf{N} \cdot \tag{21}$$

Atomy azotu szybko łączą się z cząsteczką tlenu w egzotermicznej reakcji

$$\mathbf{N} \cdot + \mathbf{O}_2 \xrightarrow{\mathbf{k}_2} \mathbf{NO} + \mathbf{O} \cdot \tag{22}$$

W płomieniu, a szczególnie przy bogatej mieszance, należy uwzględnić również reakcję rodników hydroksylowych OH· z atomami N· podaną w 1970 roku przez Lavoie i in.

$$N \cdot + OH \cdot \xrightarrow{k_3} NO + H \cdot \tag{23}$$

Reakcja ta jest istotna szczególnie wtedy, gdy OH·>H·>O·. Reakcje (21), (22) i (23) nazywane są rozszerzonym mechanizmem Zeldowicza.

Szybkość tworzenia się NO w mechanizmie termicznym jest zdeterminowana przez znacznie wolniejszą reakcję (22). Przy założeniu stanu ustalonego stężenia atomów azotu oraz równowagi chemicznej reakcji dysocjacji cząsteczek tlenu i drugorzędowości reakcji (21) ÷ (23), maksymalna szybkość powstawania NO może być wyznaczona następująco [74, 28]

$$\frac{d[NO]}{d\tau} = k_1 [O \cdot] [N_2] + k_2 [N \cdot] [O_2] + k_3 [N \cdot] [OH \cdot]$$
(24)

Azot atomowy powstaje w wyniku reakcji (21) i jest zużywany w reakcjach (22) i (23), stąd szybkość jego powstawania wynosi:

$$\frac{d[N \cdot]}{d\tau} = k_1 [O \cdot] [N_2] - k_2 [N \cdot] [O_2] - k_3 [N \cdot] [OH \cdot]$$
(25)

Uwzględniając fakt, że szybkie reakcje (22) i (23) osiągają stan równowagi, czyli

$$\frac{\mathrm{d}[N\cdot]}{\mathrm{d}\tau} = 0 \tag{26}$$

otrzymujemy zależność opisującą szybkość formowania NO w następującej postaci

$$\frac{\mathrm{d}[NO]}{\mathrm{d}\tau} = 2 k_1 [O \cdot] [N_2]$$
(27)

Stałą szybkości reakcji opisuje równanie Arrheniusa

$$k_i = A T^b \exp\left[-E/(R T)\right] \tag{28}$$

gdzie: i = 1, 2, 3,

T-temperatura bezwzględna, K.

Wartości współczynników szybkości reakcji tworzące mechanizm Zeldowicza zebrane są w tablicy 2.1.

Tablica 2.1. Współczynniki szybkości reakcji [78, 74]

Decksie	Α,	b	Ε,
кеаксја	cm ³ /(mol·s)		kJ/mol
$O \cdot + N_2 \xrightarrow{k_1} NO + N \cdot$	$1.8 \cdot 10^{11}$	0	319
$N \cdot + O_2 \xrightarrow{k_2} NO + O \cdot$	6.4·10 ⁹	1	26.1
$N \cdot + OH \cdot \xrightarrow{k_3} NO + H \cdot$	$3.8 \cdot 10^{13}$	0	0

Mechanizm Zeldowicza dobrze interpretuje proces formowania się termicznych tlenków azotu (II) (tlenków azotu) NO w przypadku płomieni ubogich lub bliskich stechiometrycznym ($\lambda \ge 1$). Natomiast dla płomieni bogatych ($\lambda < 1$) ilość powstających NO jest o ok. 50% większa niżby to wynikało z teorii Zeldowicza.

W podsumowaniu należy zwrócić uwagę na to, że termiczne tlenki azotu (II) (tlenki azotu) NO formują się tuż za frontem płomienia w strefie wysokiej temperatury w łańcuchowych reakcjach (21), (22) i (23), gdy t > 1400°C. Wartość stężenia NO jest określona maksymalną temperaturą płomienia, lokalnym stężeniem cząsteczek azotu i tlenu, a także czasem pobytu w strefie wysokiej temperatury. Termiczne NO powstają głównie dla

płomieni ubogich $\lambda > 1$. W rzeczywistym procesie spalania stężenie termicznych NO jest dużo mniejsze od równowagowego stężenia NO_x. Należy zwrócić uwagę na to, że przy spalaniu paliw węglowodorowych lub silnie zawilgoconych istotne znaczenie mogą odgrywać reakcje zachodzące z grupą hydroksylową OH· [26, 78, 32].

Mechanizm natychmiastowy

Mechanizm natychmiastowy ("prompt") powstawania tlenku azotu (II) (tlenku azotu), zwany również płomieniowym, zaproponował Fenimore w 1979 roku. Badając spalanie bogatych mieszanek ($\lambda < 1$) powietrza z różnymi węglowodorami zauważył, że istnieje także inny mechanizm powstawania NO niż ten, który zaproponował Zeldowicz. Stosunkowo duże stężenie NO pojawia się w przedpłomiennej strefie spalania, gdzie temperatura nie przekracza 750°C. Występujące rodniki węglowodorowe typu CH_i· przed i we froncie płomienia powstałe w wyniku termicznego rozkładu paliwa węglowodorowego reagują z azotem powietrznym dając produkt pośredni – cyjanowodór - na drodze do formowania natychmiastowych NO:

$$CH \cdot + N_2 \rightarrow HCN \cdot + N \cdot \rightarrow \dots \rightarrow NO$$
 (29)

$$CH_2 + N_2 \rightarrow HCN + NH$$
(30)

Gdy lokalne stężenie tlenu jest na tyle niskie, że występują znaczące ilości HCN·, to zachodzą następujące reakcje:

$$HCN + O \rightarrow NCO + H$$
(31)

$$NCO + O \rightarrow NO + CO$$
 (32)

Rodnik aminowy NH· może wchodzić w reakcje z tlenem lub wodorem atomowym odtwarzając atom azotu i grupę wodorotlenową OH· według reakcji:

$$\mathbf{NH} \cdot + \mathbf{O} \cdot \to \mathbf{N} \cdot + \mathbf{OH} \cdot \tag{33}$$

$$\mathbf{NH} \cdot + \mathbf{H} \cdot \to \mathbf{N} \cdot + \mathbf{H}_2 \tag{34}$$

Atom azotu oraz rodnik OH· biorą udział w następnych reakcjach:

$$HCN + OH \rightarrow CN + H_2O \tag{35}$$

$$CN \cdot + OH \cdot \rightarrow NCO \cdot + H \cdot$$
 (36)

$$NCO + OH \rightarrow NO + CO + H$$
 (37)

$$NO + N \rightarrow N_2 + O$$
 (38)

Istotną rolę odgrywa również rodnik cyjanowy CN·, który może powstać w reakcjach:

$$C_2H + N_2 \rightarrow HCN + CN$$
(39)

$$C_2 + N_2 \to 2CN \cdot \tag{40}$$

Rodnik cyjanowy łącząc się z atomem tlenu tworzy rodnik NCO·

$$CN \cdot + O_2 \rightarrow NCO \cdot + O \cdot$$
 (41)

Formowanie NO z NCO· przebiega dalej według reakcji:

$$NCO + O_2 \rightarrow NO + CO_2$$
 (42)

$$NCO + NO \rightarrow N_2O + C$$
 (43)

 N_2 może być produkowany przez reakcje nie zawierające NO, ale zachodzące pomiędzy rodnikami związków azotowych a cząsteczkami NH_i, gdzie *i* = 0, 1 [15]:

$$NH_{i'} + NH_{i'} \rightarrow N_2 + produkty$$
 (44)

$$CN \cdot + NH_i \rightarrow N_2 + CH_i$$
 (45)

$$\mathrm{HCN} \cdot + \mathrm{NH}_{i} \cdot \to \mathrm{N}_2 + \mathrm{CH}_{i+1} \cdot \tag{46}$$

$$NCO + NH_i \to N_2 + CH_iO$$
(47)

Analizując powstawanie natychmiastowych tlenków azotu (II) (tlenków azotu) można zauważyć, że powstają one bardzo szybko tzn. tuż przed lub we froncie płomienia, podczas spalania bogatych mieszanek paliw węglowodorowych, gdy $\lambda \leq 1$. Szybkość formowania natychmiastowych tlenków azotu (II) (tlenków azotu) jest rzędu szybkości spalania, a ich ilość zależy głównie od stężenia azotu cząsteczkowego N₂ i słabo od temperatury. Ilość natychmiastowych NO w całkowitej emisji NO jest niewielka i maleje ze wzrostem temperatury płomienia.

Mechanizm formowania NO za pośrednictwem N₂O

Podczas niskotemperaturowego spalania ubogiej mieszanki ($\lambda > 1$) metanu lub tlenku węgla (II) (tlenku węgla) z powietrzem zaobserwowano dużo wyższe stężenie NO niż to wynika z mechanizmu Zeldowicza lub Fenimore`a. Wyjaśnieniem tego procesu zajęli się Tomeczek i Gradoń, którzy zaproponowali rozszerzenie mechanizmu termicznego Zeldowicza o proces tworzenia się NO z tlenku azotu (I) N₂O, który wcześniej został zaproponowany przez Maltego i Pratta [28, 73]:

$$N_2 + O \cdot + M \leftrightarrow N_2 O + M \tag{48}$$

$$N_2 O + O \rightarrow NO + NO \tag{49}$$

$$N_2 O + O \rightarrow N_2 + O_2 \tag{50}$$

Badania wykazały, że wpływ reakcji (49) na szybkość tworzenia NO jest wysoki tylko wtedy, gdy $t < 1520^{\circ}$ C. Powyżej tej temperatury tlenki azotu (II) (tlenki azotu) NO generowane są według mechanizmu Zeldowicza. Stężenie N₂O zależy od ilości i rodzaju trzeciego ciała M, a w przypadku N₂O jest to H₂O, która oddziałuje za pośrednictwem rodników O·, H· i OH·:

$$N_2O + H \to NO + NH$$
 (51)

$$N_2 O + H \cdot \rightarrow N_2 + O H \cdot \tag{52}$$

$$N_2O + OH \rightarrow N_2 + HO_2$$
 (53)

Mechanizm formowania NO za pośrednictwem N₂O ma duże znaczenie w niższej temperaturze $t < 1200^{\circ}$ C w płomieniach ubogich, gdy $\lambda > 1$. N₂O, a następnie NO tworzą się w pobliżu frontu płomienia z porównywalną szybkością do szybkości spalania. Istotną rolę odgrywa trzecie ciało M, które bierze udział w reakcji (48). Mechanizm ten nie jest jeszcze dobrze rozpoznany i pozostaje w sferze badań [12, 28].

Mechanizm paliwowy

Paliwa, głównie stałe i ciekłe, zawierają związki azotowe zwane azotem paliwowym, które po uwolnieniu wskutek termicznego rozkładu paliwa przekształcają się do NO i NO₂. Zaobserwowano w badaniach wyraźny wpływ zawartości azotu w paliwie na wzrost emisji NO_x. Mogą one stanowić nawet 80% całkowitej emisji NO_x przy spalaniu pyłu węglowego [12]. W paliwach gazowych praktycznie nie ma azotu związanego chemicznie, tylko niektóre gazy ziemne mają domieszki N₂O - gaz ziemny glebowy oraz NH₃ - gaz ziemny błotny i torfowy [3]. Na powstawanie NO z azotu związanego chemicznie w paliwie duży wpływ mają HCN·, CN·, NH_i·, gdzie i = 1, 2, 3. Schemat formowania się tlenku azotu (II) (tlenku azotu) według mechanizmu paliwowego ilustruje rys. 2.1.

$$Azot z paliwa \longrightarrow \begin{array}{c} OH \\ HCN \rightleftharpoons HNCO \longrightarrow NH_{2} \\ \downarrow \\ CN \rightleftharpoons O_{2} \\ \downarrow \\ O_{2} \\ \downarrow \\ O_{2} \\ \downarrow \\ HCN \\ \downarrow \\ H$$

Rys.2.1. Schemat reakcji formowania się tlenku azotu (II) (tlenku azotu) NO wg mechanizmu paliwowego [35]

Mechanizm tworzenia się tlenku azotu (IV) dwutlenku azotu NO2

Mechanizm powstawania NO₂ podany przez Millera i Bowmanna [28] oparty jest o założenie, że w wyniku dyfuzji rodników H· z obszaru płomienia w obszar niskiej temperatury ($t < 750^{\circ}$ C) oraz wysokiego stężenia O₂ powstaje HO₂· według

$$H \cdot + O_2 + M \to HO_2 \cdot + M \tag{54}$$

który szybko reaguje z NO dyfundującym z obszaru płomienia do obszaru niskiej temperatury tworząc NO₂ [3]

$$NO + HO_2 \rightarrow NO_2 + OH$$
 (55)

Można także założyć mechanizm trójcząsteczkowy

$$NO + O + M \rightarrow NO_2 + M$$
 (56)

Równolegle zachodzą reakcje

$$NO_2 + H \rightarrow NO + OH \rightarrow (57)$$

$$NO_2 + O \rightarrow NO + O_2$$
 (58)

Dla temperatury t > 750°C zachodzi konkurencyjna reakcja

$$H \cdot + O_2 \to OH \cdot + O \cdot \tag{59}$$

zużywająca rodnik H· i dlatego nie wytwarza się HO₂·. Poza tym w wysokiej temperaturze zachodzą reakcje rozkładu NO₂ (57) i (58). Dlatego w normalnych warunkach spalania ($t = 1000 \div 1700^{\circ}$ C i $\lambda \le 1.3$) końcowa emisja NO₂ jest niska i nie przekracza 5% całkowitej

emisji NO_x. Oprócz niskiej temperatury na formowanie NO₂ ma wpływ również obecność węglowodorów oraz podwyższone ciśnienie spalania [18].

2.2.2. MECHANIZM FORMOWANIA TLENKU WĘGLA CO (II) (TLENKU WĘGLA)

Tlenek węgla (II) (tlenek węgla) powstaje przy niezupełnym spalaniu spowodowanym głównie przez niedostateczne wymieszanie paliwa i powietrza lub nadmierne zubożenie mieszanki. Jest także produktem spalania w małych kotłach i piecach opalanych węglem lub innymi paliwami stałymi spowodowanym przez szybkie wychłodzenie paleniska i zbyt krótki czas przebywania paliwa w wysokiej temperaturze. W powietrzu atmosferycznym 60 – 90% CO jest wynikiem naturalnego utleniania metanu tlenem z powietrza. CO jest gazem trującym. Wypiera tlen z oksyhemoglobiny krwi i łączy się z hemoglobiną tworząc karboksyhemoglobinę, która powoduje, że krew staje się niezdolna do przenoszenia dostatecznej ilości tlenu z płuc do tkanek, co grozi uduszeniem.

Wysoka emisja CO występuje przy spalaniu w silnikach z zapłonem iskrowym oraz w kotłach przy stopniowym spalaniu w celu obniżenia emisji NO_x. Obecność tlenku węgla (II) (tlenku węgla) świadczy o pogorszeniu sprawności spalania.

Paliwowe węglowodory w trakcie chemicznego rozkładu mogą częściowo przekształcić się do CO. Szybkość tego procesu zależy od wartości lokalnej temperatury w płomieniu [6]. Dla węglowodorów gazowych i ciekłych oraz części lotnych z odgazowania paliw stałych reakcje spalania można przedstawić wzorami:

$$C_n H_m + \frac{n}{2}O_2 \rightarrow n CO + \frac{m}{2}H_2$$
(60)

lub

$$C_{n}H_{m} + (\frac{n}{2} + \frac{m}{4})O_{2} \to n CO + \frac{m}{2} H_{2}O$$
 (61)

Dla koksiku:

$$C + 0.5 O_2 \rightarrow CO \tag{62}$$

$$C + CO_2 \rightarrow 2 CO \tag{63}$$

W klasycznej teorii spalania mechanizm formowania CO jest dobrze rozpoznany w przypadku najprostszych węglowodorów od C_1 do C_4 i dla metanolu. Wynika z niego, że

CO jest formowany szybko na początku płomienia. Utlenienie CO zachodzi nawet przy bardzo niewielkich ilościach węglowodorów, wodoru lub wilgoci. Utlenianie CO w $t > 1230^{\circ}$ C i przy $p \sim 0.1$ MPa zachodzi w reakcji

$$\rm CO + OH \rightarrow CO_2 + H -$$
 (64)

Jej szybkość silnie zależy od temperatury.

Natomiast dla t < 1230°C szybkość utleniania słabo zależy od temperatury i osiąga niskie wartości. Dochodzi do "zamrażania" CO w spalinach poprzez wyczerpywanie rodników OH·. Gdy $t = 730 \div 1230$ °C oraz p > 0.1 MPa przebiega następująca reakcja

 $CO + HO_2 + M \rightarrow CO_2 + OH + M$ (65)

Bezpośrednie utlenienie CO do CO₂ w reakcjach:

$$CO + O_2 \rightarrow CO_2 + O$$
 (66)

$$CO + O + M \rightarrow CO_2 + M$$
 (67)

jest mało prawdopodobne ze względu na to, że obie te reakcje są mało wydajne [6, 26, 28, 78].

2.3. OZON – CHARAKTERYSTYKA, WYTWARZANIE I ZASTOSOWANIE

2.3.1. WŁAŚCIWOŚCI OZONU

Ozon jest szeroko stosowany w różnych dziedzinach techniki od czasu, gdy został odkryty w 1840 roku przez Schoenbeina. Dzięki swoim bakteriobójczym właściwościom był stosowany przy odkażaniu rzeki Marny w Paryżu już w 1896 roku [59].

Ozon jest naturalnym składnikiem atmosfery powstającym w stratosferze w wyniku działających na tlen promieni ultrafioletowych, a w niższych partiach w wyniku wyładowań elektrycznych.

W warunkach normalnych ozon jest bezbarwnym gazem o ostrym, przenikliwym zapachu, dobrze rozpuszczającym się w wodzie (ok. 50% lepiej niż tlen) i ma tendencję do rozkładania się ze wzrostem temperatury. Po ochłodzeniu do temperatury – 111.85°C pod ciśnieniem 0.101325 MPa skrapla się dociemnoniebieskiej cieczy. Występuje również w postaci stałej, która tak jak ciecz jest wybuchowa wskutek samorzutnej tendencji O_3 do rozpadu na O_2 .

Geometryczną strukturę cząsteczki ozonu ustalił w 1953 r. Trambarulo i można ją przedstawić za pomocą trójkąta równoramiennego, przy czym pomiary kąta i długości wiązań wykonane przez Tanaka i Morino w 1970 wykazują, że wynoszą one odpowiednio 127° i 0.126 nm (rys. 2.2).

Rys. 2.2. Struktura cząsteczki ozonu

Cząsteczka ma dwa wiązania δ i zdelokalizowany orbital π rozciągający się na trzy atomy. Każdy atom ma hybrydyzację sp². Cząsteczka ozonu nie posiada właściwości paramagnetycznych i wszystkie jej elektrony muszą być sparowane. Dlatego cząsteczkę ozonu przedstawia się jako hybrydę rezonansową w postaci czterech wzorów (rys. 2.3) [4, 17, 30, 40].

Rys. 2.3. Geometria i wiązania cząsteczki ozonu [41]

Ozon posiada dwie charakterystyczne cechy: silne działanie utleniające i nietrwałość chemiczną, które powodują szybki rozpad, szczególnie w wysokiej temperaturze, a także pod wpływem zawilgocenia czy zanieczyszczenia powietrza [59]. Ważniejsze własności fizyczne i termodynamiczne ozonu przedstawia tablica 2.2.

Masa cząsteczkowa	47.9982	g/mol
Gęstość gazu ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	2.144	kg/m ³
Gęstość cieczy ($p_0 = 0.101325$ MPa, $T = 85.2$ K)	$1.59 \cdot 10^3$	kg/m ³
Temperatura topnienia ($p = 0.101325$ MPa)	80.6	K
Temperatura wrzenia ($p = 0.101325$ MPa)	161.3	K
Temperatura krytyczna	261.1	K
Ciśnienie krytyczne	5.56	MPa
Rozpuszczalność w wodzie ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	1.09	kg/m ³
Potencjał jonizacji	12.8 – 13.5	eV
Entalpia dewaluacji ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	142.32	kJ/mol
Potencjał termodynamiczny Gibbsa ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	163.5	kJ/mol

Tablica 2.2. Własności fizykochemiczne ozonu [40]

Ozon jest jednym z najsilniejszych utleniaczy, dlatego stosowany jest do utleniania i dezynfekcji większości zanieczyszczeń znajdujących się w roztworach. Związki wysokocząsteczkowe rozpadają się pod wpływem ozonu do form niskocząsteczkowych, które są bardziej biodegradowalne i zazwyczaj nietoksyczne. Dzięki temu możliwy jest rozpad

amin, kwasów karboksylowych, barwników, związków azotu, siarki i innych. Stosowany jest do usuwania związków powodujących barwę, wpływa na przekształcenie ChZT w BZT₅.

Działanie utleniające ozonu można opisać przy pomocy trzech mechanizmów. Pierwszy to utlenianie przez oddanie atomu tlenu. Ta reakcja przebiega szybko i jest podobna do reakcji zachodzących przy stosowaniu innych utleniaczy. Drugi to utlenianie przez dołączanie cząsteczki do substancji utlenianej, tzw. ozonoliza. Jej przykładem jest reakcja tworzenia ozonków w wyniku działania ozonu na nienasycone związki organiczne posiadające podwójne wiązania. Ozonki są to nierozpuszczalne ciecze lub ciała stałe posiadające własności wybuchowe, rozpadające się przy odpowiednio dużym stężeniu ozonu. Natomiast trzeci mechanizm to utlenianie za pomocą tlenu zawartego w mieszaninie powietrzno-ozonowej z wykorzystaniem ozonu jako "katalizatora". Proces utleniania dzięki katalitycznemu działaniu ozonu może przebiegać w niższej temperaturze i z większą szybkością niż pod wpływem samego tlenu lub powietrza. W czasie tej reakcji ozon rozpada się na tlen cząsteczkowy.

W reakcjach chemicznych ozon działa ze znacznie większą szybkością niż tlen cząsteczkowy, co zostało przedstawione w tablicy 2.3.

Cząstka utleniająca	Potencjał utleniający,	Względny potencjał
		utleniający w odniesieniu
	V	do chloru
Chlor (Cl ₂)	1.36	1.00
Ozon (O ₃)	2.08	1.52
Tlen atomowy (O·)	2.42	1.78
Rodnik hydroksylowy (OH·)	2.80	2.05
Fluor (F ₂)	2.87	2.11

Tablica 2.3. Potencjały utleniające wybranych cząstek utleniających [40]

Ozon atmosferyczny

Atmosferyczny ozon jest bardzo ważny jako osłona przeciwko słonecznemu promieniowaniu krótkofalowemu. Występuje w postaci tzw. ozonosfery obejmującej część troposfery i całą stratosferę. W tej powłoce koncentracja ozonu jest znacznie większa niż w pozostałych warstwach. Powstaje w wyniku reakcji fotochemicznych i chemicznych, które zachodzą w atmosferze pod wpływem promieniowania lub wyładowań elektrycznych [17]

$$O_2 + hv \rightarrow O_{\cdot} + O_{\cdot} \tag{68}$$

Następnie tlen atomowy reaguje z cząsteczkowym tlenem

$$O_2 + O \to O_3 \tag{69}$$

a pozostały atom tlenu odtwarza ozon wg reakcji

$$O_2 + O_2 + M \to O_3 + M \tag{70}$$

W wyniku promieniowania ultrafioletowego następuje reakcja fotodysocjacji ozonu wytwarzająca atomy i cząsteczki tlenu wg reakcji

$$O_3 + hv \rightarrow O_2 + O_2 \tag{71}$$

Atomowy tlen reaguje z parą wodną wytwarzając rodnik wodorotlenowy

$$O \cdot + H_2 O \rightarrow 2OH \cdot$$
 (72)

Duża reaktywność rodnika OH· powoduje, że reaguje on m.in. z CO i CH₄ :

$$OH \cdot + CO \to H \cdot + CO_2 \tag{73}$$

$$OH \cdot + CH_4 \to CH_3 \cdot + H_2O \tag{74}$$

a rodniki H· i CH₃· reagują z cząsteczką tlenu wytwarzając nadtlenki HO₂· lub CH₃OO·. W zanieczyszczonej atmosferze zachodzą również reakcje z tlenkami azotu:

$$NO_2 + hv \rightarrow NO + O$$
 (75)

$$O_2 + O \to O_3 \tag{76}$$

$$NO + O_2 \rightarrow NO_3$$
 (77)

$$NO_3 \cdot + O_2 \rightarrow NO_2 + O_3 \tag{78}$$

jak również z tlenkiem siarki (IV) (dwutlenkiem siarki):

$$SO_2 + hv \rightarrow SO_2^*$$
 (79)

$$SO_2^* + O_2 \rightarrow SO_4$$
 (80)

$$SO_4 + O_2 \rightarrow SO_3 + O_3 \tag{81}$$

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (82)

2.3.2. METODY OTRZYMYWANIA OZONU I JEGO ZASTOSOWANIE

Ozon można otrzymywać bezpośrednio z tlenu cząsteczkowego w silnie endotermicznej reakcji

$$3O_2 \leftrightarrow 2O_3$$
 (83)

Reakcja ta wymaga doprowadzenia do układu znacznej ilości energii. Reakcja (83) jest odwracalna, a jej szybkość maleje ze wzrostem temperatury. Potencjał termodynamiczny ozonu jest dodatni, co oznacza, że jest związkiem nietrwałym.

Ozon może być wytwarzany wyłącznie w warunkach nierównowagowych, związanych z występowaniem atomów i cząsteczek tlenu w stanach wzbudzonych, gdy przekazywanie energii na poziomie cząsteczkowym sprzyja jego wytwarzaniu, a niska temperatura i brak katalizatorów rozkładu pozwalają na syntezę ozonu i odprowadzenie go ze strefy reakcyjnej. Energię potrzebną do zapoczątkowania tego procesu dostarcza się w postaci kwantowej, czyli fotonów, elektronów lub przyśpieszonych cząstek.

Uproszczony mechanizm powstawania ozonu jest następujący:

- dysocjacja tlenu, proces endotermiczny:

$$O_2 + e = 2 O + e \operatorname{lub} O_2 + h\nu = 2 O$$
(84)

- synteza ozonu:

$$O \cdot + O_2 + M = O_3 + M$$
 (85)

gdzie M-cząsteczka tlenu lub azotu.

Istnieje kilka metod otrzymywania ozonu: elektryczna, elektrochemiczna, fotochemiczna, radiacyjno-chemiczna i termiczna.

Na skalę przemysłową ozon otrzymuje się:

- metodą elektryczną w polu cichych wyładowań elektrycznych w powietrzu lub tlenie, a także wyładowań koronowych,
- metodą elektrochemiczną poprzez elektrolizę wysoko oczyszczonej wody,
- metodą fotochemiczną (przy długości fali λ < 185 nm) poprzez

napromieniowanie tlenu i powietrza oraz wody pitnej, wysoko oczyszczonej.

Pozostałe dwie metody: radiacyjno-chemiczna, działająca poprzez napromieniowanie wody promieniowaniem *X* i γ , oraz termiczna, wzbudzająca wodę promieniowaniem *UV* i *IR* układów wysokotemperaturowych, są w stosowane rzadko lub są jeszcze w sferze badań. Ozon tworzy się również w dostrzegalnych ilościach podczas wyładowań atmosferycznych, pod wpływem promieni ultrafioletowych oraz w iskrzących silnikach elektrycznych. Najpowszechniejszą metodą otrzymywania ozonu w skali przemysłowej są wyładowania elektryczne [8, 17, 30, 46,].

Synteza ozonu w wyładowaniach cichych

W skali laboratoryjnej i technicznej ozon jest produkowany głównie w generatorach ozonu tzw. ozonatorach, pracujących na zasadzie wyładowań cichych, odkrytych przez Wernera von Siemensa, twórcy pierwszego ozonatora w 1856 roku. Mechanizm wyładowania cichego oraz syntezy ozonu w tym wyładowaniu opracowano dopiero w latach osiemdziesiątych XX wieku [40].

Wyładowanie ciche powstaje pod wpływem przyłożonego wysokiego napięcia w gazie przepływającym pomiędzy dwoma symetrycznymi elektrodami, z których jedna jest pokryta dielektrykiem. Elektrody najczęściej konstruowane są w kształcie walców współosiowych lub rzadziej płaskich, równoległych powierzchni umieszczonych w niewielkiej odległości od siebie ok. 1 - 1.5 mm. Szczelina, wypełniona przepływającym gazem, stanowi obszar niejednorodnych wyładowań złożony z wielkiej liczby kanałów mikrowyładowań, tzw. strimerów. Natężenie, amplituda i częstotliwość mikrowyładowań zależą od wielkości szczeliny wyładowczej, ciśnienia gazu, jego składu, wilgotności i temperatury. Zależą również od rodzaju i grubości dielektryka oraz parametrów zasilania elektrycznego [76]. Syntezę ozonu w mikrowyładowaniach w warunkach nierównowagowych można podzielić na:

- fazę wyładowań w gazie: to liczne mikrowyładowania, w których następuje dysocjacja cząsteczek tlenu na atomy pod wpływem zderzenia z elektronami

o dostatecznie wysokiej energii, przekraczającej energię dysocjacji molekuł tlenu (powyżej 6.0 eV). Energia elektryczna przekształca się w energię chemiczną,

- fazę reakcji: powstają wzbudzone cząstki ozonu w wyniku kolizji atomów tlenu z cząsteczkami tlenu,
- fazę przepływu: wzbudzone cząsteczki ozonu O₃* przechodzą do stanu podstawowego w wyniku zderzenia z niereaktywną cząsteczką odgrywającą rolę ciała trzeciego, któremu przekazywany jest nadmiar energii niezbędny dla osiągnięcia równowagi energetycznej egzotermicznej reakcji

$$O \cdot + O_2 + M \to O_3^* + M \to O_3 + M \tag{86}$$

W celu analizy syntezy ozonu istotne jest zdefiniowanie czasu kolejnych faz powstawania ozonu i tak:

- czas powstawania mikrowyładowania

$$\tau_1 \approx 10 \div 30 \cdot 10^{-9} \text{ s}$$
 (87)

- czas fazy reakcji

$$\tau_2 = \frac{1}{\alpha_i \,\mu^2} \approx 3 \cdot 10^{-6} \,\mathrm{s} \tag{88}$$

- czas fazy dyfuzji ozonu z kanału mikrowyładowania

$$\tau_3 = \frac{S}{D} \approx 1.6 \cdot 10^{-3} \,\mathrm{s}$$
 (89)

- czas przebywania gazu w strefie wyładowań

$$\tau_4 = \frac{V_R}{\dot{V}} \approx 4 \text{ s} \tag{90}$$

gdzie: α_j – współczynnik jonizacji zderzeniowej oparty o mechanizm Townsenda:

$$\alpha_j = A \ p \exp(\frac{-B}{E/p}) \tag{91}$$

$$B = A U_{i} \tag{92}$$

- A liczba zderzeń, jakich doznaje cząsteczka gazu na jednostkowej drodze przy jednostkowym ciśnieniu p,
- U_j energia jonizacji, eV,

E – natężenie pola elektrycznego, V/m,

 μ – średnica kanału wyładowczego, m,

S – powierzchnia obszaru dyfuzji, m²,

D – współczynnik dyfuzji, cm²/s,

 V_R – objętość sfery wyładowań, m³,

 \dot{V} - strumień objętości, m³/s.

Proces dysocjacji tlenu jest znacznie szybszy niż proces syntezy ozonu, a syntezę ozonu w kanale mikrowyładowania można uznać za zakończoną przed rozpoczęciem procesu dyfuzji ozonu z obszaru o podwyższonej koncentracji do całej przestrzeni gazowej. Część wytworzonego ozonu jest rozkładana w wyniku reakcji z atomami, cząsteczkami lub jonami tlenu. Energia nie zużyta na syntezę ozonu wydzielana jest w kanale mikrowyładowania i jej bliskim otoczeniu w postaci ciepła.

Ilość i stężenie otrzymywanego ozonu zależy od szeregu parametrów: ciśnienia, strumienia objętości przepływu, wilgotności, czystości oraz składu gazu zasilającego ozonator. Istotna jest również temperatura gazu w czasie wyładowania [25], ponieważ wpływa na szybkość rozkładu wytworzonego ozonu i dlatego powinna być jak najniższa.

Gazem zasilającym ozonator może być tlen lub powietrze. Stosując powietrze jako gaz substratowy należy wziąć pod uwagę, że azot obecny w strumieniu powietrza wyładowania łączy się z tlenem tworząc tlenki azotu. Analizując jednostkowe zużycie energii przy syntezie ozonu z powietrza zawierającego 21% tlenu wydaje się, że może być ono 5 razy większe niż przy syntezie ozonu z tlenu. Jednak jest tylko ok. dwa razy większe. Wynika z tego, że azot, będąc inertnym składnikiem, również bierze udział w syntezie ozonu zgodnie z mechanizmem, według którego następuje dysocjacja cząsteczek tlenu w wyniku zderzeń ze wzbudzonymi atomami azotu [30, 81].

Największy stopień przereagowania tlenu może być otrzymany podczas syntezy ozonu przy zastosowaniu mieszaniny azotowo – tlenowej zawierającej ok. 60% azotu, a nie czystego tlenu jako gazu zasilającego ozonator. Nawet niewielkie ilości azotu dodawanego do tlenu podwyższają stężenie ozonu. Z kolei w przypadku procesu syntezy ozonu z powietrza, udział atomów azotu i tlenków azotu powoduje pogorszenie wydajności otrzymywanego ozonu i większe zużycie energii, niż w przypadku zastosowania czystego tlenu jako gazu zasilającego ozonator.

Zmiany stężenia tlenków azotu i stosunku NO_x/O₃, które pojawiają się wraz ze wzrostem gęstości energii w szczelinie wyładowczej, wskazują na to, że równolegle do procesu syntezy

i rozkładu ozonu przebiegają procesy syntezy i rozkładu tlenków azotu wg następującego mechanizmu [44]:

$$N_2 + e = 2N \cdot + e \tag{93}$$

$$N \cdot + O_2 \to NO + O \cdot \tag{94}$$

$$NO + O \rightarrow NO_2 \tag{95}$$

$$NO_2 + O_3 \rightarrow NO_3 + O_2 \tag{96}$$

$$NO_2 + NO_3 \rightarrow N_2O_5 \tag{97}$$

$$NO_2 + N \rightarrow N_2O + O$$
 (98)

Część tych reakcji przebiega również, gdy gaz opuści ozonator.

Z technicznego punktu widzenia zastosowanie powietrza jako gazu zasilającego generator ozonu jest nie tylko niekorzystne ze względu na mniejszą wydajność procesu syntezy ozonu, ale również z powodu tworzenia się w ozonatorze tlenków azotu, które w obecności wody przechodzą w azotany, co pociąga za sobą konieczność okresowego oczyszczania powierzchni dielektryka [80].

W przemyśle ozon stosowany jest głównie do celów komunalnych dla uzdatniania wody, ze względu na swoje działanie bakterio- i wirusobójcze, a także utlenianie rozpuszczonego żelaza (II) i manganu (II), odbarwianie, zmianę smaku i zapachu, utlenianie związków organicznych, mikrofluktuacją rozpuszczonych związków organicznych i utlenianie substancji nieorganicznych (cyjanki, siarczki i azotany (III)).Wykorzystuje się go również w przemyśle chemicznym do bielenia oleju i plastyfikatorów oraz do otrzymywania niektórych lekarstw. W medycynie stosowany jest w tzw. terapii ozonowej, przy oparzeniach i w stomatologii. Używany jest do utylizacji i dezynfekcji ścieków oczyszczonych. W przemyśle spożywczym stosowany jest do dezynfekcji pomieszczeń magazynowych, do wyjaławiania i konserwacji żywności, a w przemyśle papierniczym do bielenia celulozy i kaolinu. W procesie utylizacji gazów ozon stosowany jest do ich dezodoryzacji oraz eliminacji szkodliwych związków takich jak H₂S, NO_x, SO₂ [4, 40, 41, 45]. Ozon jest substancją silnie toksyczną. Wywołuje silne podrażnienie błon śluzowych i płuc, a w dużych stężeniach może prowadzić do śmierci [53].

2.4. OGRANICZANIE EMISJI ZANIECZYSZCZEŃ PRZY WYKORZYSTANIU OZONU

W dziedzinie spalania interesowano się ozonem od dawna próbując wykorzystać fakt, że ozon posiada własności utleniające i przyspiesza proces utlenienia paliw. Jednak wpływ ozonu na typowe wysokotemperaturowe spalanie jest niewielki, ponieważ dodanie pewnej ilości rodników do masy, która jest generowana w samym procesie, jest nieistotna. Inaczej sprawa wygląda przy samozapłonie, który jest kontrolowany przez powolny proces tworzenia "pierwszych" rodników inicjujących czy spalaniu niskotemperaturowym, gdzie ilość rodników jest niewielka.

Ozon może inicjować reakcje utleniania najprostszych alkanów w niższych temperaturach niż tlen. Z przeglądu dostępnej literatury wynika, że w badaniach dotyczących wpływu ozonu na proces spalania, skupiono się raczej nad określeniem mechanizmu przebiegu reakcji spalania [5, 11, 41, 56]. Rotzoll prowadził badania nad głębszym poznaniem mechanizmu przebiegu reakcji spalania mieszaniny gazowej CH₄-O₂-O₃ [55], stosując reaktor składający się z podgrzewanej aluminiowej rurki o średnicy 1mm wyposażonej w dyszę o średnicy 0.2 mm. Reaktor był wykorzystywany do weryfikacji wyników modelowania komputerowego. Badania prowadzono przy następujących parametrach procesu: ciśnienie 0.06 MPa, czas przebywania 16 ms, zakres temperatury 200 - 550°C. Ozon był produkowany w generatorze ozonu. Generowana mieszanina gazowa była poddawana promieniowaniu cząsteczkowemu i analizowana przy użyciu spektrometru mas. Wykryto następujące produkty: H₂O, CO, CH₂O, CH₃OH, H₂O₂, CO₂ i CH₃OOH. Wyniki eksperymentalne pokrywały się z modelowaniem matematycznym obejmującym 47 reakcji z 27 związkami. Badania te wykazały, że mechanizm reakcji został zapoczątkowany przez termiczny rozkład i potwierdziły ważność drugorzędowych reakcji ozonu z rodnikami metylu i atomami wodoru.

Seo i Amano prowadzili badania [58] nad inicjowaniem przez ozon utleniania metanu w temperaturze do 750°C. Symulacje komputerowe i badania eksperymentalne dały zbliżone wyniki i wykazały, że dodatek ozonu powoduje wzrost szybkości utleniania metanu. Po dodaniu ozonu temperatura reakcji spadała o ok. 100 K.

Badaniami wpływu ozonu na samozapłon w silnikach spalinowych zajmował się Tachibana [68], który analizował wpływ dodatku ozonu do powietrza wlotowego na spalanie w silnikach wysokoprężnych. Silnik zasilano trzema paliwami o liczbach cetanowych 50, 40 i 26. Ozon generowano z czystego tlenu, mieszano z azotem i dodatkowym powietrzem w celu otrzymania stosunku N_2/O_2 zbliżonego do atmosferycznego. Rys. 2.4 przedstawia zależność między ciśnieniem, a kątem obrotu wału korbowego dla trzech stężeń ozonu 1000, 500 i 0 ppm dodawanych do paliwa o liczbie cetanowej 26. Wyniki badań wykazały, że dodatek ozonu poprawia charakterystykę samozapłonu, np. stężenie ozonu wynoszące 500 ppm skraca opóźnienie zapłonu o ok. 8° kąta obrotu wału korbowego, obniża stopień sprężania o dwie jednostki i zmniejsza liczbę cetanową o 4 jednostki dla paliw o niskiej liczbie cetanowej.

Rys. 2.4. Wpływ dodatku ozonu w ppm pokazujący zależność pomiędzy ciśnieniem, a kątem obrotu wału korbowego w silniku spalinowym

Badania składu chemicznego produktów spalania z dodatkiem ozonu wykazały spadek emisji CO, niespalonych węglowodorów i sadzy oraz wzrost stężenia NO_x (rys. 2.5 do 2.8).

Rys. 2.7. Wpływ dodatku ozonu na stężenie NO_x w silniku spalinowym [68]

Rys. 2.8. Wpływ dodatku ozonu na stężenie sadzy w silniku spalinowym [68]

Badania wpływu ozonu na pracę silników były wykonane również przez Nassera i innych [34]. Badania te oparte były o koronowe wyładowania w strumieniu powietrza w komorze wstępnej silnika. Wyładowania produkowały ozon o stężeniu do 126 ppm wykorzystując tylko 0.5% mocy silnika. Mimo niskiego stężenia ozonu zaobserwowano zmniejszenie zużycia paliwa w silnikach wysokoprężnych i iskrowych, zmniejszenie emisji niespalonych węglowodorów oraz emisji CO.

Wpływ ozonu na zapłon iskrowy mieszanin powietrza z metanem i z metanolem był badany przez Nomaguchi i Kode [36]. Badania prowadzono w zamkniętym naczyniu pod zmniejszonym ciśnieniem, przy użyciu stałego napięcia i stałych impulsów prądu elektrycznego. Wyznaczono minimalny czas trwania impulsów dla różnych wartości stosunków równoważnych i różnej zawartości ozonu. Czas trwania impulsów był znacznie skrócony przez dodanie małej ilości ozonu do obu paliw, a w szczególności do metanu. Zaobserwowano, że dodatek ozonu ma niewielki wpływ na szybkość spalania mieszaniny metanu z powietrzem pod ciśnieniem atmosferycznym. Podano także wyniki obliczeń przy użyciu zaproponowanego modelu kinetycznego dla samozapłonu mieszanin metanu i metanolu z ozonowanym powietrzem przy skoku temperatury do 730°C. Ocena przeprowadzonych obliczeń wykazała, że efekt przyspieszenia reakcji jest spowodowany szybkim rozkładem ozonu do atomowego tlenu, który atakując składniki palne paliwa rozpoczyna łańcuch reakcji rodnikowych. Również Golovitchev i Chomiak potwierdzili te wnioski. Przeprowadzili analizę porównawczą obliczeń numerycznych wpływu dodatku ozonu i nadtlenku wodoru pod wysokim ciśnieniem i w wysokich temperaturach na samozapłon niskokalorycznej mieszaniny CH₄/O₂/Ar [11]. Mechanizm przyspieszania samozapłonu przypisano głównie dominującej roli rodników O· i OH· tworzonych przez szybki rozkład ozonu i nadtlenku wodoru. W cylindrach silników oddziaływanie pomiędzy ozonem i węglowodorami jest możliwe przy temperaturze powyżej 430°C. Jak wykazano, dominującą rolę pełnią reakcje rodnikowe dla rodników nadtlenkowych oraz częściowy rozkład tych rodników [5, 56].

Podsumowując można stwierdzić, że ozon promuje utlenianie węglowodorów przy temperaturach dużo niższych niż utlenianie tlenem dwucząsteczkowym.

Zasadniczym problemem procesu spalania jest formowanie się w płomieniu składników toksycznych, szczególnie tlenków azotu, tlenku węgla (II) (tlenku węgla), tlenku siarki (IV) (dwutlenku siarki) i sadzy. Jednym ze sposobów zmierzających do zmniejszenia emitowanych ilości tlenków azotu w gazach spalinowych jest opracowana w Katedrze Chemii Politechniki Lubelskiej [41] metoda polegająca na utlenieniu NO do NO₂ w sposób stopniowy i w obecności fazy ciekłej przy pomocy ozonu. Powstający w procesie spalania monotlenek azotu reaguje z tlenem bardzo powoli, natomiast jego reakcja z ozonem daje prawie natychmiastowe powstawanie NO₂. NO₂ ulega znacznie łatwiej absorpcji w roztworach wodnych w przeciwieństwie do trudno rozpuszczalnego w wodzie NO.

3. CEL I ZAKRES PRACY

Celem pracy jest ocena wpływu ozonu, dodawanego do substratów spalania, na stężenie i emisję szkodliwych substancji tworzących się podczas spalania gazu ziemnego.

Wpływ dodawania ozonu analizowano dla następujących produktów spalania: CO, C_nH_m , NO i NO₂.

Zakres pracy obejmował:

- projekt i budowę stanowiska do badań wstępnych (rozpoznawczych),
- opracowanie metodyki badań,
- opracowanie metodyki pomiarów: strumienia objętości substratów spalania, temperatury, analizy spalin, weryfikowania metodą chemiczną wskazań NO w analizatorach Infralyt EL i Land Serie II, stężenia NO₂ i stężenia ozonu,
- wykonanie badań wstępnych, które pozwoliły na sprecyzowanie zakresu badań zasadniczych i wprowadzenie koniecznych zmian w stanowisku badawczym,
- projekt i budowę stanowiska do badań zasadniczych,
- wykonanie badań zasadniczych dla oceny wpływu zawartości ozonu w powietrzu dodawanym do spalania gazu ziemnego na stężenie i emisję CO, C_nH_m, NO i NO₂,
- uwiarygodnienie wyników badań eksperymentalnych metodą uzgadniania bilansów,
- zmodyfikowanie modelu matematycznego procesu spalania metanu o kinetykę reakcji występujących w obecności ozonu,
- porównanie obliczeń numerycznych i wyników badań eksperymentalnych.
4. CZEŚĆ DOŚWIADCZALNA - METODYKA BADAŃ

Badania obejmowały proces spalania gazu ziemnego z utleniaczem bez ozonu i porównawczo z ozonem, przy zmiennym stosunku nadmiaru powietrza, dla kilku obciążeń cieplnych reaktorów spalania. Urządzenia i układy pomiarowe oraz regulacyjne, potrzebne do sprawnego przeprowadzenia badań, obejmują reaktor spalania, ozonator, układ pomiaru temperatury, układ regulacyjny strumienia objętości substratów spalania oraz układ analizy spalin. Schemat ideowy stanowiska przedstawiono na rys. 4.1.

Rys. 4.1. Schemat ideowy stanowiska badawczego

Możliwości metrologiczne, a w szczególności wydajność ozonatora, decydowały o konstrukcji i mocy reaktorów spalania. Produkty spalania analizowano przy użyciu analizatorów spalin. Właściwe przygotowanie produktów spalania zapewniano układem przygotowania spalin.

W celu kontrolowania procesu spalania mierzono skład chemiczny spalin i temperaturę w komorze. W celu zapewnienia stabilizacji strumieni substratów spalania zainstalowano układ regulacji przepływu paliwa i utleniacza.

Zaprojektowane warianty reaktorów wymagały przeprowadzenia testów kontrolnych badań wstępnych. Ich celem było określenie zakresu możliwych zmian parametrów takich jak obciążenie cieplne reaktorów, stosunek nadmiaru powietrza i stężenie ozonu.

Badania wstępne stanowiły podstawę do przeprowadzenia badań zasadniczych.

4.1. GENERATORY OZONU I ICH CHARAKTERYSTYKA

W badaniach nad wpływem ozonu na proces spalania istotna jest wydajność ozonatora. Ilość produkowanego ozonu wiąże się bezpośrednio z mocą reaktora, a tę narzucają możliwości metrologiczne pomiarów ilości i jakości substratów oraz produktów procesu spalania (strumień objętości, stężenie), a więc także skutków działania ozonu na proces spalania.

Do ilościowego oznaczania ozonu zastosowano metodę jodometryczną opartą na reakcji ozonu z jodkiem potasu [63]

$$2 \text{ KJ} + \text{O}_3 + \text{H}_2\text{O} = 2 \text{ KOH} + \text{J}_2 + \text{O}_2 \tag{99}$$

Analizę przeprowadza się przepuszczając znaną objętość gazu zawierającego ozon przez roztwór jodku potasu, który uwalnia wówczas jod. Wydzielony jod odmiareczkowuje się za pomocą tiosiarczanu sodu (Na₂S₂O₃) używając skrobi jako wskaźnika.

Metoda ta nadaje się do oznaczania małych ilości ozonu. Stosowanie tej metody do oznaczania wysokich stężeń ozonu nie jest wskazane, gdyż mogą występować błędy, dochodzące nawet do kilku procent, związane z powstawaniem lokalnych wzrostów zasadowości w miejscach zetknięcia się przepływającego gazu z roztworem jodku potasu. W zasadowym środowisku zachodzi reakcja

$$KJ + 3 O_3 = KJO_3 + 3O_2$$
(100)

W miejsce wydzielenia swobodnego jodu zachodzi dalsze jego utlenianie z utworzeniem jodanu (V) potasu, co pociąga za sobą zaniżenie wyników. W celu otrzymania dokładnych wyników należy przeprowadzać utlenianie jodku potasu w środowisku ściśle neutralnym, co uzyskuje się przez dodanie mieszaniny buforowej [31, 63, 64, 76].

4.1.1. LAMPA ULTRAFIOLETOWA JAKO ŹRÓDŁO OZONU

Podjęto próbę wykorzystania lampy promieniowania ultrafioletowego jako generatora ozonu. Lampą naświetlano strumień powietrza lub tlenu. Przy braku chłodzenia lampę można było zasilać jedynie napięciem 12 V. Uzyskane wówczas stężenia ozonu, zarówno w powietrzu jak i w tlenie, były małe i wynosiły ok. $2 \div 4 \text{ mg O}_3/\text{dm}^3$ (rys. 4.2).

Rys. 4.2. Zależność stężenia ozonu od rodzaju gazu zasilającego lampę ultrafioletową pracującą przy napięciu zasilania 12 V [autor]

W celu zwiększenia wydajności zwiększano objętość komory jonizującej i napięcie zasilania lampy ultrafioletowej. Zwiększenie napięcia wiązało się z koniecznością chłodzenia komory jonizującej. Do chłodzenia stosowano wodę lub powietrze. Wyniki badań zamieszczono w tablicy 4.1.

Objętość	Strumień	Temperatura	Napięcie	Medium	Stężenie	Wydajność
reaktora,	objętości	w reaktorze,	zasilania	chłodzące	ozonu	ozonatora,
	ozonowanego		generatora,	reaktor	w gazie,	
	gazu,				mg O ₃ /	
dm ³	dm³/h	°C	V		dm ³ powietrza	mg O ₃ /h
0.3	100	500	220	woda	0	0
1	20	95	130	powietrze	0.0114	0.228
1	20	116	150	powietrze	0.0102	0.204
1	100	92	130	powietrze	0.0095	0.95
1	100	107	150	powietrze	0.0110	1.10
1	100	60	200	woda	0.0233	2.33
1	100	78	220	woda	0.0264	2.64
12	100	34	200	woda	0.0349	3.49
12	100	39	220	woda	0.0314	3.14
25	100	24	200	woda	0.0256	2.56

Tablica 4.1. Warunki pracy reaktora z lampą ultrafioletową

4.1.2. RUROWY GENERATOR OZONU. BUDOWA I CHARAKTERYSTYKA

W związku z bardzo niskimi stężeniami ozonu otrzymanymi w reaktorze z lampą promieniowania ultrafioletowego zaprojektowano rurowy generator ozonu, który został wykonany przez spółkę UST S.A. we współpracy z Politechniką Lubelską.

Umożliwia on uzyskanie strumienia masy ozonu do ok. 1.5 g/h przy użyciu czystego tlenu oraz do ok. 0.5 g/h przy zastosowaniu powietrza. Urządzenie może pracować przy ograniczonym strumieniu objętości gazu 40 do 60 dm³/h oraz 180 do 200 dm³/h. Szczegółowe testy kontrolne wykazały, że ozonator ten spełnił podstawowe wymagania stawiane przez planowany eksperyment.

Instalacja do syntezy ozonu (rys. 4.3) składa się z rurowego generatora ozonu, układu zasilania elektrycznego, układu przygotowania gazu zasilającego ozonator (powietrze lub tlen) oraz układu chłodzenia.

Przygotowanie gazu polegało na jego osuszeniu do zawartości od kilku do kilkunastu ppm pary wodnej (punkt rosy ok. – 60°C [41]), co jest niezbędne do osiągnięcia wysokich stężeń ozonu i odpowiedniej sprawności energetycznej procesu. W skład układu przygotowania gazu wchodzi manostat (7), zawór (3), rotametr (2), kolumna (4) z filtrem, kolumny (5) z wapnem sodowanym do absorpcji CO_2 i kolumna (6) wypełniona silikażelem do absorpcji H_2O .

Elektroda wewnętrzna (uziemiona) chłodzona była wodą bieżącą w obiegu otwartym.

Układ zasilania elektrycznego obejmuje obwód zasilania ozonatora prądem przemiennym 50 Hz z autotransformatora (9) poprzez transformator wysokiego napięcia (8), amperomierz (11) i woltomierz (10). Maksymalne napięcie zasilające wynosiło 15 kV.

Rys. 4.3. Instalacja do syntezy ozonu

1 - generator ozonu, 2 - rotametr, 3 - zawór, 4 - absorber pyłów, 5 - absorber CO_2 , 6 - absorber H_2O , 7 - manometr, 8 - transformator wysokiego napięcia, 9 - autotransformator, 10 - kilowoltomierz, 11 - amperomierz

Zastosowany generator ozonu pracował w zakresie cichych wyładowań elektrycznych, w atmosferze powietrza lub tlenu przy maksymalnym napięciu 15 kV. Moc wyładowań wynosiła 45 W. Wyładowania przebiegały pomiędzy elektroda zewnętrzną (wysokonapięciową) – dielektrykiem – szczeliną wyładowczą – a elektrodą wewnętrzną (uziemiona). Schemat generatora ozonu przedstawiono na rys. 4.4. Obudowę elektrody zewnętrznej stanowił płaszcz stalowy, przez który przepływała woda chłodząca (doprowadzana z wodociągu). Elektroda zewnętrzna o średnicy d = 34/31 mm, do której doprowadzone było wysokie napięcie, wykonana była ze szkła. Istotnym elementem generatora ozonu była warstwa dielektryka ze szkła o grubości 1.5 mm. Długość szczeliny wyładowczej wynosiła 260 mm. Elektroda wewnętrzna o średnicy d = 28 mm wykonana była ze stali kwasoodpornej.

Rys. 4.4. Generator ozonu

1 – elektroda uziemiona, 2 – elektroda wysokonapięciowa, 3 – pokrywy centrujące, 4 – szczelina wyładowcza, 5 – warstwa dielektryka, 6 – płaszcz chłodzący [40]

Konstrukcja ozonatora została tak zaprojektowana, aby najważniejsze parametry wpływające na wydajność ozonatora były optymalne [40, 44]. Jednak na wydajność ozonatora mają wpływ również inne czynniki (p. 2.3.2) m.in. strumień objętości gazu oraz napięcie zasilania. Istotny wpływ ma również zawilgocenie i zapylenie gazu zasilającego ozonator. Bardzo ważne jest chłodzenie elektrod, które ma odprowadzić ciepło wytworzone podczas wyładowania.

Wykonano pełną charakterystykę generatora ozonu. W tym celu wyznaczono zależność stężenia ozonu od strumienia objętości ozonowanego powietrza przy napięciu zasilającym ozonator 12 i 15 kV. Strumień objętości powietrza zmieniano w zakresie 46 ÷ 500 dm³/h. Zależność tę przedstawiono na rys. 4.5. Określono także zależność stężenia ozonu od napięcia zasilającego ozonator i strumienia objętości powietrza. Przykładową zależność dla strumienia objętości 92 dm³/h przedstawiono na rys. 4.6.

Strumień objętości powietrza, dn/h

Rys. 4.5. Zależność stężenia ozonu od strumienia objętości powietrza i napięcia zasilającego ozonator

Rys. 4.6. Zależność stężenia ozonu od napięcia zasilającego ozonator przy strumieniu objętości powietrza 92 dm³/h

Wyznaczono również zależności stężenia ozonu od strumienia objętości tlenu jako gazu zasilającego ozonator w zakresie od $35 \div 105 \text{ dm}^3/\text{h}$ dla napięcia zasilającego ozonator odpowiednio 6, 8, 10, 12 i 15 kV (rys. 4.7). Określono także wpływ napięcia zasilania ozonatora na stężenie generowanego ozonu. Dla przykładowego strumienia objętości tlenu wynoszącego 175 dm³/h wpływ ten przestawia zależność na rys. 4.8.

Stężenie ozonu wytworzonego w ozonatorze zasilanym powietrzem zwiększa się, gdy strumień objętości przepływu powietrza podawanego do generatora maleje, a napięcie zasilające wzrasta. Zależność pomiędzy napięciem zasilającym ozonator a stężeniem ozonu wyznaczona przy stałym strumieniu objętości powietrza, jest funkcją liniową. Zwiększenie napięcia powoduje zwiększenie stężenia ozonu. Analogiczne wnioski wysunięto w przypadku zasilania ozonatora tlenem. Wzrost strumienia objętości tlenu powoduje spadek stężenia ozonu, a zwiększenie napięcia zasilającego ozonator podwyższa stężenie ozonu. Im wyższe zastosowano napięcie tym wyższa jest wydajność ozonu. Stężenie ozonu przy zastosowaniu tlenu jako gazu zasilającego ozonator (dla stałego strumienia objętości) rośnie liniowo ze wzrostem stosowanego napięcia elektrycznego(rys. 4.8). Zastosowanie tlenu jako gazu zasilającego ozonator 3.5 do 4.5 razy większego stężenia ozonu niż przy zastosowaniu powietrza.

Wyznaczono ponadto charakterystykę opisanego wyżej generatora współpracującego z reaktorem rurowym I. W tym przypadku odmienne było (w stosunku do opisanych wyżej pomiarów) zarówno osuszanie gazu zasilającego, jak i chłodzenie reaktora wodą. W tych warunkach uzyskano nieco niższe stężenie ozonu w powietrzu (rys. 4.9) (przy napięciu 15 kV). Wykonano również pomiary stężenia ozonu w mieszaninie powietrza z tlenem (rys. 4.10). Dodawano od 2.3 do 9.26 dm³/h tlenu do strumienia objętości powietrza wynoszącego 83 dm³/h. Uzyskano mieszaniny, w których zawartość tlenu wynosiła odpowiednio 23.14 do 28.93% tlenu w mieszaninie. Wraz ze wzrastającą ilością tlenu w mieszaninie stężenie ozonu wzrasta.

Strumień objętościowy powietrza, dm³/h

Rys. 4.9. Zależność stężenia ozonu od strumienia objętości powietrza przy napięciu zasilającym ozonator wynoszącym 15 kV

Rys. 4.10. Zależność stężenia ozonu od stężenia tlenu w mieszaninie powietrza z tlenem przy strumieniu objętości powietrza 83 dm³/h i napięciu zasilania ozonatora 15 kV

4.2. CHARAKTERYSTYKA ZASTOSOWANYCH REAKTORÓW SPALANIA

Poszukując rozwiązania odpowiedniej konstrukcji reaktora, początkowo zdecydowano się na reaktor rurowy wykonany ze szkła kwarcowego. Konstrukcja rurowa spełniała warunek uzyskania reaktora o stosunkowo niedużym obciążeniu cieplnym. Wykonano dwa reaktory rurowe różniące się nieznacznie konstrukcją. W obu prowadzono proces spalania na złożu z waty kwarcowej. Okazało się jednak, że to zbyt duża miniaturyzacja reaktora. Podjęto, więc próbę pracy reaktora rurowego przy wyższych obciążeniach. Proces spalania na złożu nie oddaje charakteru procesu spalania prowadzonego w palniku kinetycznym, dlatego zdecydowano się na poszukiwanie innego rozwiązania. W tym celu wykorzystano laboratoryjny palnik Meckera przebudowany tak, aby można było kontrolować dopływ utleniacza. Początkowo komorę spalania wykonano z rury kwarcowej o średnicy równej średnicy dyszy palnika Meckera, a reaktor usytuowano horyzontalnie. Jednak taka konstrukcja nie pozwalała uzyskać pełnego mieszania substratów spalania, mimo zamontowania zawirowywaczy płomienia. Wymiary komory spalania określono metodą prób i błędów. Zmieniano średnicę i długość komory wykonanej z rury kwarcowej tak, aby uzyskać stabilny płomień. Warunek ten najlepiej spełniała komora o średnicy 80 mm i długości 150 mm [61].

Szczegóły konstrukcyjne poszczególnych wariantów reaktorów spalania podano poniżej.

Reaktor rurowy I

Rys. 4.11. Reaktor rurowy I

Reaktor I (rys. 4.11) wykonano z rury kwarcowej o długości 700 mm i średnicy 13 mm. Złoże w postaci waty kwarcowej umieszczono w 2/3 wysokości rury formując je tak, aby płomień został zatrzymany na koronie złoża. Zainstalowano przesuwną izolację w celu prowadzenia wizualnej kontroli procesu spalania zachodzącego na złożu.

Reaktor rurowy II

Rys. 4.12. Reaktor rurowy II

Reaktor II (rys. 4.12) różnił się od reaktora I tym, że wewnątrz rury kwarcowej zamontowano drugą rurę kwarcową podtrzymującą grubościenny pierścień kaolinowy o wysokości 10 mm, na którym osadzono specjalnie uformowane złoże z waty kwarcowej o wysokości 30 mm. Substraty spalania doprowadzano współprądowo od dołu rury, w której następowało mieszanie mieszanki palnej.

Reaktor z palnikiem Meckera

Do spalania mieszaniny gazu ziemnego i powietrza oraz powietrza wzbogaconego w ozon wykorzystano zrekonstruowany laboratoryjny palnik Meckera dalej zwany palnikiem Meckera (rys. 4.13). Oryginalny palnik Meckera posiada regulację dopływu powietrza atmosferycznego za pomocą regulowanej przesłony (tarczy) bez możliwości pomiaru ilości powietrza spalania. Wykonane zmiany konstrukcyjne palnika Meckera pozwoliły na kontrolowanie strumienia objętości powietrza spalania. Wlot powietrza przed komorą

mieszania zabudowano pierścieniem wykonanym z teflonu. Pierścień szczelnie przylegał do krawędzi komory mieszania i regulowanej przesłony. Posiadał dwa otwory o średnicy 8 mm, którymi doprowadzano powietrze do komory mieszania palnika. Komorę spalania o długości 150 mm i średnicy 80 mm wykonano z żaroodpornego szkła Termisil. Zabudowano ją nad palnikiem i uszczelniono od dołu i od góry pierścieniami wykonanymi z włókna mineralnego. Pierścień uszczelniający komorę od góry posiadał dwa otwory o średnicy 10 mm, jeden na umieszczenie odciągowej sondy spalin, a drugi do wprowadzenia czujnika termoelektrycznego do pomiaru temperatury wzdłuż osi płomienia. Komorę spalania ustawiono centrycznie do osi palnika. Powyższe rozwiązanie pozwoliło na wizualną obserwację zaburzeń procesu spalania.

Rys. 4.13. Reaktor z przekonstruowanym palnikiem Meckera

1 - komora mieszania, 2 – zawór włotowy gazu ziemnego, 3 – dysza, 4 – nakrętka kontrująca, 5 – tarcza, 6 – łącznik, 7 – podstawa, 8 – pierścień teflonowy z otworami na włot utleniacza, A, B – otwory dla powietrza spalania (utleniacza)

Powietrze spalania dostarczano do reaktorów z instalacji sprężonego powietrza lub przez pompę perystaltyczną. Komorę spalania zasilano gazem ziemnym wysokometanowym GZ - 50 z instalacji miejskiej lub metanem z butli ciśnieniowej. W tablicy 4.2 podano średni skład gazu ziemnego podany przez Spółkę Gazownictwa S.A., który był spalany w trakcie badań.

Wielkość	Jednostka	Wartości średnie
Metan	%	95.844
Etan	%	1.177
Propan	%	0.271
N – butan	%	0.045
I – butan	%	0.004
N – pentan	%	0.041
I – pentan	%	0.011
Suma C ₆	%	0.014
Tlenek węgla (IV) (dwutlenek węgla)	%	0.208
Azot	%	2.314
Tlen	%	0.068
Ciepło spalania ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	kJ/m ³	39 472
Wartość opałowa ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	kJ/m ³	35 556
Gęstość ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	kg/m ³	0.746
Wilgotność ($p_0 = 0.101325$ MPa, $T_0 = 273.15$ K)	g H ₂ O/m ³ gazu	0.35

Tablica 4.2. Parametry gazu ziemnego wysokometanowego GZ - 50

4.3. METODYKA BADAŃ

W celu uzyskania powtarzalności pomiarów oraz zapewnienia bezpieczeństwa pracy przyjęto jednolitą procedurę przygotowania układu pomiarowego do badań:

- włączenie wymrażarki spalin okres oczekiwania na stabilną pracę urządzenia 1 h (dot. pomiarów wykonywanych na układzie badawczym z analizatorem typu Infralyt EL),
- ustalenie strumienia objętości substratów odpowiadającego warunkom zapłonu λ > 1, obciążenie cieplne reaktorów I i II ok. 100 W, dla reaktora z palnikiem Meckera ok. 260 W,
- 3. zapłon mieszanki za pomocą zapalarki gazowej,
- 4. ustalenie strumienia gazu i strumienia powietrza odpowiadającego zadanym zakresom dla danej serii pomiarowej,
- 5. ustabilizowanie parametrów termicznych od zapłonu przez ok. 1.5 h,
- 6. uruchomienie układu pomiaru temperatur w komorze spalania reaktora,
- 7. włączenie przepływu wody chłodzącej ozonator w obiegu ciągłym,
- 8. włączenie zasilania elektrycznego ozonatora; w przypadku prowadzenia procesu spalania z dodatkiem ozonu należy ustalić napięcia zasilające generator ozonu za pomocą autotransformatora na poziomie nie większym niż 15 kV; czas oczekiwania na ustabilizowanie się warunków w komorze spalania powinien wynosić ok. 10 min,
- 9. podłączenie analizatora spalin (podłączenie drogi przygotowania gazu w przypadku stosowania analizatora spalin typu Infralyt EL),
- 10. przystąpienie do właściwych pomiarów.

Czas oczekiwania po każdej celowej zmianie parametrów procesu spalania (np. strumienia powietrza, gazu lub dodawanego ozonu) wynosił 10 min. Czas trwania jednej serii pomiarowej, w zależności od rodzaju zmienianych wielkości, wynosił ok. 6 - 8 h.

Dla danego obciążenia cieplnego komory spalania pomiary prowadzono podczas spalania mieszanki bez i z dodatkiem ozonu ze stosunkiem nadmiaru powietrza zmieniającym się w zakresie $0.8 \div 1.4$.

4.4. METODYKA POMIARÓW

4.4.1. POMIAR STRUMIENIA OBJĘTOŚCI SUBSTRATÓW SPALANIA

Do pomiaru strumienia objętości utleniacza oraz gazu palnego zastosowano rotametry typu ROL [48, 54] cechowane fabrycznie dla powietrza w warunkach p = 0.101325 MPa i T = 293 K. Przy pomiarze strumienia objętości gazu innego niż powietrze, wskazania rotametrów przeliczono zgodnie z zależnością [19]:

$$\dot{V}_{0i} = \dot{V}_i \frac{T_0}{p_0} \sqrt{\frac{\rho_{0pow}}{\rho_{0i}} \frac{p^{\otimes} p}{T^{\otimes} T}}$$
(101)

gdzie:

 \dot{V}_i – aktualny strumień objętości gazu *i* odczytywany na skali rotametru, dm³/h,

 ρ_{0i} – gęstość gazu *i* w warunkach odniesienia, kg/m³,

 ρ_{0pow} – gęstość powietrza w warunkach odniesienia, kg/m³,

 $p = (p_b + \Delta p)$ - ciśnienie gazu przed rotametrem, MPa,

 p_b – ciśnienie barometryczne, MPa,

 Δp – nadciśnienie (opór instalacji), MPa,

 p^{\otimes} , T^{\otimes} - ciśnienie i temperatura, w których cechowano rotametr

$$(p^{\otimes} = 0.101325 \text{ MPa i} T^{\otimes} = 293 \text{ K}),$$

T = (273 + t) – temperatura gazu przed rotametrem, K,

 p_0 , T_0 – warunki odniesienia $p_0 = 0.101325$ MPa i $T_0 = 273$ K,

 \dot{V}_{oi} – strumień objętości gazu *i* w warunkach odniesienia, dm³/h.

Gaz	Gęstość gazu [55]	Przeliczanie wskazań rotametru,			
	$p_0 = 0.101325$ MPa, $T_0 = 273.15$ K				
	kg/m ³	dm³/h			
powietrze	1.293	$V_{0pow} = 50.1 V_{pow} \sqrt{\frac{p}{T}}$			
tlen	1.428	$V_{002} = 45.36 V_{02} \sqrt{\frac{p}{T}}$			
azot	1.2505	$V_{0N2} = 50.94 V_{N2} \sqrt{\frac{p}{T}}$			
metan	0.716	$V_{0CH4} = 67.32 V_{CH4} \sqrt{\frac{p}{T}}$			
gaz ziemny	0.745	$V_{0gz} = 66 V_{gz} \sqrt{\frac{p}{T}}$			

Tablica 4.3. Wzory do przeliczania wskazań rotametrów dla różnych gazów

Prawidłowość wskazań rotametrów sprawdzono metodą porównawczą stosując gazomierz bębnowy [29].

4.4.2. POMIAR TEMPERATURY

Do pomiaru temperatury zastosowano układ pomiarowy składający się z termoelementu płaszczowego PtRh10-Pt (typu S) o średnicy płaszcza 1 mm i multimetru cyfrowego MY-68 do pomiaru napięcia stałego z automatyczną zmianą zakresu pomiarowego [7, 62]. Temperaturę odczytywano z charakterystyki termoelementu [71, 82].

W układzie badawczym z reaktorem rurowym I termoelement zainstalowano na obwodzie zewnętrznej ściany rury kwarcowej między izolacją tak, aby kontrolować temperaturę ściany rury kwarcowej. Temperaturę w reaktorze II mierzono w osi rury kwarcowej na powierzchni złoża oraz 15, 30 i 45 mm nad złożem. W reaktorze z palnikiem Meckera pomiar temperatury wykonano w osi komory spalania od wylotu mieszanki co 10 mm na długości 150 mm.

4.3.3. ANALIZA SPALIN

Pomiary składu chemicznego spalin prowadzono za pomocą analizatorów spalin LANCOM Series II Land Combustion i Infralyt EL.

Analizator typu LANCOM Series II Land Combustion wykonuje pomiar stężenia [O₂], [CO], [NO], [NO₂], [SO₂], [H₂S] w oparciu o ogniwa elektrochemiczne, natomiast węglowodorów o czujniki Pellister`a, a [CO₂] o metodę optyczną w podczerwieni [22].

W badaniach wykorzystywano także wieloskładnikowy analizator spalin Infralyt EL, który jest urządzeniem specjalnie zaprojektowanym do pomiaru udziałów molowych (objętościowych) [CO], [CO₂], [C_nH_m], [O₂] i [NO]. Zasada pomiaru [CO], [CO₂] i [C_nH_m] oparta jest na metodzie porównawczej filtrów interferencyjnych. Promienie wyemitowane przez promiennik podczerwieni *IR* trafiają przez kuwety z przepływającym gazem pomiarowym do detektora z selekcyjnymi filtrami interferencyjnymi. Mikroprocesor ocenia automatycznie ciąg sygnałów wywoływanych przez wirującą przesłonę przerywającą cyklicznie bieg promieni. Pomiar udziału molowego [O₂] i [NO] jest realizowany przez ogniwo elektrochemiczne [20]. Stosunek nadmiaru powietrza liczony jest według wcześniej zaprogramowanego algorytmu. Analizator został wyposażony w układ przygotowania spalin, tzw. "drogę gazową", która zapewnia ciągłą pracę urządzenia. Podstawowym zadaniem "drogi gazowej" jest transport spalin z reaktora do analizatora, schłodzenie i utrzymanie stałej temperatury spalin, osuszenie i utrzymanie stałej, niskiej wilgotności spalin doprowadzanych do analizatora, a także dokładne ich oczyszczenie.

Spaliny z reaktora I badano bezpośrednio analizatorem spalin typu LAND LANCOM Series II. Spaliny ze spalania gazu ziemnego w reaktorze II i w reaktorze z palnikiem Meckera badano analizatorem Infralyt EL.

Spaliny poza obszar reaktorów rurowych I i II odprowadzano kwarcową U – rurką tak, aby sonda kwarcowa do poboru spalin nie znajdowała się w świetle kwarcowej rury - palnika. Zapobiegano w ten sposób zaburzeniom procesu spalania i przepływu spalin przez opadający z sondy kondensat.

Do poboru spalin w układzie badawczym z palnikiem Meckera zastosowano stalową sondę o średnicy 3 mm umieszczaną w 2/3 wysokości szklanej komory spalania w osi palnika. Zbadano wcześniej wpływ położenia i rodzaju materiału sondy (kwarc i kwasoodporną stal) na wskazania analizatora i nie zauważono znaczących zmian. Brak wpływu rodzaju materiału sondy na wyniki badań analizowanych spalin potwierdza [37]. Spaliny zassane przez pompę do układu przygotowania gazu kierowano przez wymrażarkę do analizatora spalin typu Infralyt EL.

4.4.4. WERYFIKACJA METODĄ CHEMICZNĄ WSKAZAŃ STĘŻENIA NO W ANALIZATORACH INFRALYT EL I LAND LANCOM SERIES II

Pomiary stężenia NO₂ i NO metodą chemiczną mokrą miały na celu zweryfikowanie wskazań analizatorów Infralyt EL oraz LAND LANCOM Series II stosowanych w badaniach procesu spalania.

Oznaczanie stężenia tlenków azotu wykonano zgodnie z normą PN-90-Z-04092/05 [48] dla wskazań analizatora Infralyt EL wynoszących 20, 30, 40, 50 i 60 ppm NO i porównano je ze wskazaniami analizatora LAND LANCOM Series II.

Metodę tę stosuje się do oznaczania stężenia tlenku azotu (II) (tlenku azotu), tlenku azotu (IV) (dwutlenku) oraz sumy tlenków azotu w spalinach z instalacji przemysłowych.

Aparatura i przyrządy

- zestaw do aspiracyjnego pobierania próbek gazu: płuczki ze spiekiem szklanym o pojemności 100 cm³ i 200 cm³, pompa ssąca umożliwiająca pobieranie spalin ze strumieniem objętości 10 ÷ 30 l/h,
- spektrofotometr UNICAM 5625 UV/VIS wyposażony w kuwety o grubości warstwy absorpcyjnej 10 mm wykonujący pomiar absorbancji przy długości fali 550 nm,
- probówki kolorymetryczne z doszlifowanymi korkami o pojemności 10 cm³,
- stoper.

Odczynniki i roztwory

- roztwór pochłaniający wodny roztwór zawierający w 1 dm³10 g wodorotlenku sodu (NaOH) cz.d.a., 1 g arsenianu (III) sodu (NaAsO₂) cz.d.a. i 7.5 g kwasu sulfanilowego (NH₂C₆H₄SO₃H) cz.d.a.,
- roztwór utleniający wodny roztwór 30 g manganianu potasu (VII) (nadmanganianu potasowego) (KMnO₄) cz.d.a. i 14 cm³ kwasu siarkowego (VI) (kwasu siarkowego) (H₂SO₄) cz.d.a. w 1 dm³,
- roztwór chlorowodorku N-(1-naftylo)-etyleno-dwuaminy 0.2 g chlorowodorku N-(1-naftylo)-etyleno-dwuaminy (C₁₂H₁₄N₂ 2 HCl) cz.d.a. i 60 g kwasu szczawiowego (H₂C₂O₄·2 H₂O) cz.d.a. rozpuszczone w 1 dm³ wody destylowanej,
- roztwór wzorcowy podstawowy azotanu (III) sodu 0.15 g azotanu (III) sodu (NaNO₂) cz.d.a. w 1 dm³ roztworu, 1 cm³ tego roztworu zawiera 0.1 mg jonów azotanowych (III),
- roztwór wzorcowy roboczy azotanu (III) sodu 1 cm³ tego roztworu zawiera 0.01 mg jonów azotanowych (III).

Zasada metody

Metoda oznaczania tlenku azotu (II) (tlenku azotu), tlenku azotu (IV) (dwutlenku azotu) oraz sumy tlenków azotu w spalinach polega na aspiracyjnym pochłanianiu tlenków azotu w odpowiednio przygotowanym roztworze pochłaniającym [13]. Pierwszy etap metody polega na pochłonięciu tlenku azotu (IV) (dwutlenku azotu) zawartego w spalinach bezpośrednio w roztworze pochłaniającym, następny na utlenieniu NO do NO₂ w zakwaszonym roztworze KMnO₄ i zaabsorbowaniu gazowego dwutlenku azotu w kolejnych płuczkach zawierających roztwór pochłaniający. Utworzone w reakcji z wodorotlenkiem sodu azotany (V) redukowane są do azotanów (III) za pomocą arsenianu (III) sodu a następnie zachodzi reakcja dwuazowania kwasu sulfanilowego obecnego w roztworze pochłaniającym. Po dodaniu roztworu chlorowodorku ma miejsce reakcja sprzęgania związku dwuazowego z chlorowodorkiem N-(1-naftylo)-etyleno-dwuaminy dająca barwnik dwuazowy. Natężenie barwnika dwuazowego jest funkcją stężenia jonów azotanowych (III), a tym samym i ilości pochłoniętego tlenku azotu (IV) (dwutlenku azotu). Zawartość azotanów (III) określa się spektrofotometrycznie.

Wykonanie skali wzorców i krzywej wzorcowej

Do 7 probówek kolorymetrycznych odmierzono po 0, 0.2, 0.4, 0.6, 0.8, 1, 2 cm³ roztworu roboczego, który uzupełniono do 5 cm³ roztworem pochłaniającym oraz dodano po 3 cm³ chlorowodorku N-(1-naftylo)-etyleno-dwuaminy. Wymieszano zawartość probówek i po 5 minutach wykonano trzykrotnie pomiar absorbancji wobec próbki kontrolnej (pierwszy wzorzec) przy długości fali $\lambda = 550$ nm za pomocą spektrofotometru UNICAM 5625 UV/VIS. Na podstawie uśrednionych wyników wykreślono krzywą wzorcową przedstawiającą zależność absorbancji od zawartości NO₂⁻ we wzorcu w µg (rys. 4.14).

Rys. 4.14. Krzywa wzorcowa przedstawiająca zależność absorbancji od zawartości jonów azotanowych (III) we wzorcach

Pobieranie próbki i wykonanie oznaczenia zawartości NO i NO₂ w spalinach

Przygotowano zestaw aparaturowy przedstawiony na rysunku 4.15, przez który przepuszczano 5 dm³ spalin ze strumieniem objętościowym równym 30 dm³/h.

Rys. 4.15. Zestaw aparaturowy do aspiracyjnego pobierania spalin

S – sonda; F₁ – filtr z waty szklanej; F₂ – płuczka wypełniona octanem ołowiawym; p, p₁, p₂ – płuczki ze spiekiem szklanym o pojemności 100 cm³ zawierające 50 cm³ roztworu pochłaniającego; Ox₁, Ox₂ – płuczki ze spiekiem szklanym o pojemności 200 cm³ zawierające po 100 cm³ roztworu utleniającego; O – płuczka osuszająca wypełniona żelem krzemionkowym; V – rotametr; h – U–rurka wypełniona rtęcią; t_o – termometr; P – pompa ssąca

W zestawie do aspiracyjnego pobierania spalin zastosowano jedną płuczkę zawierającą 50 cm^3 roztworu pochłaniającego do absorbcji NO₂. Tlenek azotu (II) (tlenek azotu), utleniony w dwóch płuczkach zawierających roztwór KMnO₄ (po 100 cm³) do NO₂, absorbowano w trzech płuczkach zawierających po 50 cm³ roztworu pochłaniającego. Po zakończeniu pobierania gazu z kolejnych płuczek, do probówek kolorymetrycznych pobierano po 5 cm³ lub 2 cm³ roztworu w zależności od przewidywanej w nich zawartości NO₂⁻. Próbki 2 cm³ uzupełniano do 5 cm³ roztworem pochłaniającym. Do wszystkich probówek dodawano po 3 cm³ chlorowodorku N-(1-naftylo)-etyleno-dwuaminy i mieszano. Pomiar absorbancji wykonywano w sposób analogiczny jak przy wykonywaniu skali wzorcowej. Każde oznaczenie wykonywano trzykrotnie, za każdym razem pobierając nową porcję roztworów. W obliczeniach uwzględniano średnią wartość odczytanej absorbancji. Zawartość NO₂⁻, równoważną ilości pochłoniętego NO₂, odczytywano z krzywej wzorcowej.

Metodyka obliczeń stężenia NO i NO2

Zawartość NO2 w płuczce przed utleniaczem podaje zależność

$$Z_1 = k_1 m, \mu g \tag{102}$$

gdzie:

- *k*₁ stosunek objętości roztworu pochłaniającego w płuczce do objętości próbki pobranej do oznaczenia,
- m zawartość NO₂⁻ równa ilości zaabsorbowanego NO₂ w próbce odczytana z krzywej wzorcowej, µg.

Zawartość NO2 w płuczkach pochłaniających po utlenieniu podaje zależność

$$Z_2 = \Sigma k_i m_i, \mu g \tag{103}$$

gdzie:

- *k_i* stosunek objętości roztworu pochłaniającego w i-tej płuczce do objętości próbki
 pobranej do oznaczenia,
- m_i zawartość jonów NO₂⁻ równa ilości NO utlenionego do NO₂ w *i* tej próbce odczytana z krzywej wzorcowej, µg.

Stężenie NO₂ w spalinach w obliczano ze wzoru

$$C_{NO2} = \frac{22.42 Z_1}{V_o 46} 10^{-9}, \text{ m}^3 \text{NO}_2/\text{m}^3 \text{spalin}$$
 (104)

gdzie:

- V_0 objętość pobranej próbki spalin w warunkach $p_0 = 0.101325$ MPa i $T_0=273$ K, m³, 22.42 – objętość jaką zajmuje 1 kmol gazu w warunkach $p_0 = 0.101325$ MPa i $T_0 = 273$ K, m³/kmol,
- 46 masa molowa NO₂, kg/kmol.

Stężenie NO w spalinach w obliczano ze wzoru:

$$C_{NO} = \frac{22.42 Z_2}{V_o 46} 10^{-9}, \text{m}^3 \text{NO/m}^3 \text{spalin}$$
 (105)

Suma stężenia NO i NO₂ w spalinach obliczano jako sumę wartości uzyskanych zgodnie ze wzorami (104) i (105) lub według wzoru

$$C_{NO_2+NO} = \frac{22.42 Z}{V_o 46} 10^{-9}, \text{ m}^3(\text{NO}_2+\text{NO})/\text{m}^3\text{spalin}$$
 (106)

gdzie:

 $Z = Z_1 + Z_2 -$ łączna zawartość jonów azotanowych III w płuczkach pochłaniających.

Wyniki przykładowych pomiarów i obliczeń stężenia NO i NO_2 w spalinach podano w tablicy 4.4.

			Stężenie		Stężenie		Stężenie	
Płuczka	Absorbancja	Zawartość	NO ₂ w spa	alinach,	NO w spalinach,		NO _x w spalinach,	
	próbek	NO ₂	$m^3 NO_2$		m ³ NO		m ³ NO _x	
		w płuczce,	m ³ spalin	ppm	m ³ spalin	ppm	m ³ spalin	ppm
		μg						
1	0.060	4.55						
2	0.547	132.4	0.48.10 ⁻⁶	0.48	18 10 ⁻⁶	10	18 5 10 ⁻⁶	18.5
3	0.380	34	0.46.10	0.40	18.10	18	18.3.10	16.5
4	0.06	4.55						
1	0.07	5.13						
2	0.735	190	0.55.10 ⁻⁶	0.55	25.8·10 ⁻⁶	25.8	26.3·10 ⁻⁶	26.35
3	0.475	43.6	0.55.10					
4	0.083	6.17						
1	0.072	5.28						
2	0.88	241.8	0.62 10 ⁻⁶	0.63	33.4·10 ⁻⁶	33.4	34·10 ⁻⁶	34
3	0.565	53.45	0.03.10					
4	0.163	12.63						
1	0.083	6.38						
2	0.989	286.17	0.67.10 ⁻⁶	0.67	40.5·10 ⁻⁶	40.5	41.2·10 ⁻⁶	41.2
3	0.746	78.58	0.07.10	0.07				
4	0.238	19.89						
1	0.09	6.95						
2	1.08	323	0.72 10-6	0.73	46.2·10 ⁻⁶	46.2	46.9·10 ⁻⁶	46.9
3	0.816	88.26	0.73.10					
4	0.314	27.26						

Tablica 4.4. Stężenie NO i NO2 w spalinach oznaczone metodą chemiczną [autor]

Oznaczone ilości NO w spalinach metodą chemiczną porównano z wynikami otrzymanymi przy użyciu analizatorów spalin typu Infalyt EL oraz typu Land LANCOM Series II (tablica 4.5). W badanym zakresie stężeń oznaczone metodą chemiczną stężenia NO są niższe niż wskazania analizatora Infralyt EL od 10% do 23%, średnio o 15.8%. Z kolei wskazania

analizatora typu Land LANCOM Series II są niższe od 125% przy 20 ppm do ok. 16% przy 50 i 60 ppm NO w spalinach.

Stężenie NO	Stężenie	Odchylenie metody	Stężenie NO	Odchylenie metody
wg metody	NO wg	chemicznej	wg wskazań	chemicznej
zgodnej z normą	wskazań	w stosunku	Land LANCO	w stosunku
PN-90-Z-04092/05,	Infralyt EL,	do wskazań	M Series II,	do wskazań
		Infralyt EL,		Land LANCOM
				Series II,
ppm	ррт	%	ppm	%
18.0	20	-10	8	+125
25.8	30	-14	18	+43
33.4	40	-16.5	27	+23.7
40.5	50	-17.2	35	+15.7
46.2	60	-23	55	+16

Tablica 4.5. Wyniki pomiarów stężenia NO w spalinach przeprowadzonych metodą chemiczną i pomiarów wykonanych przy pomocy analizatorów spalin Infralyt EL i Land LANCOM Series II

Przy opracowywaniu wyników badania procesu spalania bez i z dodatkiem ozonu wartości uzyskanych stężeń NO w gazach mierzone analizatorem Infralyt EL oraz Land LANCOM Series II korygowano uwzględniając poprawki uzyskane w przedstawionych wyżej badaniach.

Wyniki analizy składu chemicznego gazu metodą chemiczną potwierdziły niewielką zawartość NO₂ w spalinach uzyskiwanych w badaniach, wynoszącą poniżej 1 ppm.

4.5. BADANIA WSTĘPNE

Celem badań wstępnych było określenie zakresu możliwych zmian parametrów charakteryzujących pracę reaktorów w procesie spalania z dodatkiem ozonu tak, aby można było przeprowadzić badania zasadnicze. Parametry te, to obciążenie cieplne reaktorów, stosunek nadmiaru powietrza i stężenie ozonu.

4.5.1. ZAKRES BADAŃ WSTĘPNYCH

Badania wstępne dotyczyły procesu spalania realizowanego w reaktorze I, reaktorze II oraz reaktorze z palnikiem Meckera.

Badania prowadzono przy różnym stosunku nadmiaru powietrza wahającym się od 0.8 do 1.4 w zależności od reaktora. Stężenie ozonu wynosiło od 3 do 8.84 mg O₃/dm³powietrza i od 9.1 do 13.74 mg O₃/dm³powietrza wzbogaconego w tlen. Stężenie ozonu zależało od strumienia objętości ozonowanego gazu oraz napięcia elektrycznego zasilającego ozonator.

W reaktorze I, przy obciążeniu cieplnym 100 W, prowadzono badania nad procesem spalania gazu z powietrzem wzbogacanym w tlen i - dla porównania - powietrzem wzbogaconym w mieszaninę tlenu z ozonem. Ozon generowano z mieszaniny powietrza i tlenu. Proces spalania w reaktorze I prowadzono ze stosunkiem nadmiaru powietrza $\lambda > 1$. Przy spalaniu z niedomiarem powietrza istniała możliwość przeskoku płomienia i wybuchu mieszanki.

Konstrukcja reaktora II pozwalała na zwiększenie obciążenia cieplnego reaktora. Badania prowadzono dla obciążenia cieplnego wynoszącego 200, 260 i 330 W. Proces spalania gazu ziemnego prowadzono w zaozonowanym powietrzu i - dla porównania – w powietrzu bez dodatku ozonu. Stosunek nadmiaru powietrza zmieniano w szerokim zakresie $0.9 \div 1.4$.

W reaktorze z palnikiem Meckera do procesu spalania dostarczano takie same substraty spalania jak w reaktorze II. Badania prowadzono dla obciążenia cieplnego 200, 260, 330 i 390 W. Zakres przeprowadzonych badań wstępnych zestawiono w tablicy 4.6.

Tablicy 4.6. Zakres badań wstępnych

Reaktor I									
Paliwo Cieplne palnika, W		Utleniacz		Stężenie ozonu w utleniaczu, mgO ₃ /dm ³		Strumień objętości tlenu, dm ³ /h	Stosunek nadmiaru powietrza λ		
Gaz ziemny GZ - 50	iny) 100		Powi Powietrz Powietrz Powietrze +	etrze ze + ozon ze + tlen tlen + ozon*	- 7.2 ÷ 8 - 9.1 ÷ 13	.84 3.74	2.6 ÷ 7.9	1.1 ÷ 1.4	
Reaktor II									
Paliwo		O ciep	bciążenie lne palnika, W	Utleni	Utleniacz		enie ozonu tleniaczu, gO ₃ /dm ³	Stosunek nadmiaru powietrza λ	
Gaz ziemny GZ - 50		20	0, 260, 330	Powietrze Powietrze + ozon		3	- .6÷7.4	0.9 ÷ 1.4	
Reaktor z palnikiem Meckera									
Paliwo		O ciep	bciążenie lne palnika, W	Utlen	Utleniacz		ężenie ozonu [–] utleniaczu, mgO ₃ /dm ³	i Stosunek nadmiaru powietrza λ	
Gaz ziemny GZ - 50		200,	260, 330, 390 Powietrze		etrze e + ozon	ze - ozon 3÷7.4		0.9÷1.4	
Metan		200, 2	260, 330, 390	Powietrze Powietrze + ozon			- 3 ÷ 7.4	0.9 ÷ 1.4	

*ozon produkowany z czystego tlenu

4.5.2. WYNIKI BADAŃ WSTĘPNYCH

Wyniki pomiarów uzyskane w procesie spalania badanych gazów z dodatkiem i bez dodatku ozonu w reaktorach I, II i w reaktorze z palnikiem Meckera podano w formie graficznej na rys. 4.16 do 4.23.

Wyniki przedstawiają wpływ stężenia ozonu i stosunku nadmiaru powietrza w utleniaczu na zmiany stężenia CO i NO w spalinach podczas spalania gazu ziemnego i metanu w zależności od:

- stosunku nadmiaru powietrza,
- obciążenia cieplnego reaktora \hat{Q}_p ,
- rodzaju utleniacza powietrze lub powietrze wzbogacone w tlen,
- rodzaju gazu gaz ziemny lub metan z butli ciśnieniowej,
- _ temperatury (dotyczy reaktora z palnikiem Meckera).

Wyniki pomiarów uzyskane w procesie spalania w reaktorze I, prowadzonym przy obciążeniu cieplnym 100 W, podano w formie graficznej ujmującej wpływ stężenia ozonu na zmianę stężenia CO i NO w spalinach w zależności od stosunku nadmiaru powietrza.

Na rys. 4.16 przedstawiono wyniki uzyskane dla przypadku, gdy utleniaczem było zaozonowane powietrze oraz, dla porównania, wyniki uzyskane podczas spalania z powietrzem bez dodatku ozonu. W analogicznej formie przedstawiono wyniki uzyskane podczas spalania mieszaniny gazu ziemnego z zaozonowanym powietrzem dodatkowo wzbogaconym w tlen (rys. 4.17).

Dla reaktora II podano wpływ stężenia ozonu i stosunku nadmiaru powietrza na zmianę stężenia CO i NO w spalinach dla dwóch obciążeń cieplnych reaktora 200 i 330 W badanego procesu spalania gazu ziemnego (rys. 4.18 i 4.19). Zamieszczono również wpływ stosunku nadmiaru powietrza na maksymalną temperaturę dla reaktora pracującego bez ozonu.

W przypadku reaktora z palnikiem Meckera na rys. 4.20 i 4.21 podano wpływ stężenia ozonu i stosunku nadmiaru powietrza w zakresie 0.9 do 1.4 na zmianę stężenia CO i NO oraz temperaturę dla spalania gazu ziemnego z obciążeniem cieplnym 260 i 390 W.

Wyniki badań przy tych samych warunkach dla reaktora z palnikiem Meckera zasilanego metanem z butli ciśnieniowych ukazano na rys. 4.22 i 4.23.

63

spalania gazu ziemnego

w reaktorze z palnikiem Meckera

64

4.5.3. ANALIZA WYNIKÓW BADAŃ WSTĘPNYCH

Wyniki uzyskane podczas spalania gazu ziemnego w reaktorze I (rys. 4.16 i 4.17) wskazują, że obecność ozonu w substratach spalania nieznacznie zwiększa stężenie tlenku azotu (II) (tlenku azotu) i obniża stężenie tlenku węgla (II) (tlenku węgla) w spalinach. Wpływ ozonu jest wyraźnie mniejszy w przypadku zastosowania utleniacza wzbogaconego w tlen. Dla stosunku nadmiaru powietrza większego od 1.1 (rys. 4.16), ze wzrostem stosunku nadmiaru powietrza stężenie tlenku azotu (II) (tlenku azotu) maleje, natomiast dla stosunku nadmiaru powietrza mniejszego od 1.1 (rys. 4.17), ze wzrostem stosunku nadmiaru powietrza rośnie.

W przypadku reaktora II, dla obciążenia cieplnego wynoszącego 200 i 330 W, charakter krzywych opisujących stężenie NO w zależności od stosunku nadmiaru powietrza jest podobny (rys. 4.18 i 4.19). Stężenie NO rośnie ze wzrostem stężenia ozonu w mieszaninie powietrzno - paliwowej. Charakter i szybkość zmian stężenia tlenku węgla (II) (tlenku węgla) w tych testach są w zasadzie związane prawie wyłącznie ze zmianą stosunku nadmiaru powietrza. Wpływ ozonu jest praktycznie niewidoczny, a minimalne zmiany mieszczą się w granicach błędu pomiarowego.

Analogiczne wnioski można wyciągnąć w oparciu o wyniki badań spalania w reaktorze z palnikiem Meckera. Dla obciążeń reaktora 260 i 390 W zasilanego gazem ziemnym (rys. 4.20 i 4.21) oraz metanem (rys. 4.22 i 4.23) charakter krzywych jest zbliżony, natomiast występują różnice ilościowe. W przypadku spalania gazu ziemnego zmierzono prawie dwukrotnie większe stężenie NO. Różny charakter zmian stężenia tlenku azotu (II) (tlenku azotu) przy spalaniu gazu ziemnego i metanu może wynikać z różnej liczby pomiarów, co ma wpływ na interpretację wyników.

Temperatura spalin podczas spalania gazu ziemnego oraz metanu z dodatkiem ozonu do powietrza spalania jest wyższa średnio o ok. 10 K od temperatury spalin przy spalaniu gazu ziemnego i metanu bez dodatku ozonu. W reaktorze I średnia wartość maksymalnej średnią temperatury wynosiła ok. 1110°C przy prowadzeniu procesu spalania gazu ze wzbogacaniem mieszaniny powietrzno - paliwowej w tlen, w reaktorze II osiągano ok. 1300°C, a w reaktorze z palnikiem Meckera ok. 1100°C. Zaobserwowano spadek temperatury ściany reaktora rurowego I przy zaozonowaniu mieszaniny powietrzno tlenowej przy spalaniu gazu ziemnego wzbogaconego w tlen (rys. 4.17). Spadek temperatury o kilka stopni wskazuje na przyśpieszenie reakcji spalania gazu ziemnego w reaktorze, a tym samym "przesunięcie"

procesu bliżej złoża. Wstępne badania spalania gazu ziemnego wyłącznie z powietrzem oraz powietrzem wzbogaconym w ozon nie wykazały widocznych zmian w kształcie płomienia.

4.5.4. WYTYCZNE DO DALSZYCH BADAŃ

Wyniki wpływu ozonu produkowanego z powietrza na zmiany stężenia CO i NO nie są jednoznaczne.

Powstające tlenki azotu podczas wyładowania elektrycznego w generatorze ozonu zasilanego powietrzem stanowią tło, które nie pozwala na jasną interpretację wyników pod kątem oceny wpływu ozonu na zmiany stężenia CO i NO powstających w procesie spalania. Wyeliminowanie tlenków azotu powstających w generatorze ozonu można uzyskać jedynie poprzez zastosowanie tlenu jako gazu zasilającego generator ozonu. Należy jednak wytworzyć syntetyczne powietrze dodając azot i tlen w stosunku takim jak w powietrzu atmosferycznym. Zastosowanie czystego tlenu jako gazu zasilającego generator ozonu pozwoli ponadto na otrzymanie większego stężenia ozonu w powietrzu spalania. Generator ozonu produkuje ok. 3 razy większą ilość ozonu z tlenu niż z powietrza. Zastosowanie syntetycznego powietrza pozwoli na niezależne zmiany stężenia ozonu i stosunku nadmiaru powietrza.

Ponadto należy dążyć do osiągnięcia takiego obciążenia cieplnego reaktora, przy którym osiąga jak najwyższą temperaturę i jednocześnie jak najlepiej przybliża proces spalania do warunków rzeczywistych. Reaktor z palnikiem Meckera spełnia to założenie. Z przeprowadzonych badań wstępnych wynika, że proces spalania gazu ziemnego (z ok. 96 % zawartością metanu) wystarczająco przybliża spalanie czystego metanu. W celu osiągnięcia jak najwyższej temperatury w danym układzie należy zaizolować komorę spalania.

Do weryfikacji modelu matematycznego procesu spalania gazu z dodatkiem ozonu potrzebna jest precyzyjna znajomość rozkładu rzeczywistej temperatury w osi płomienia. Do jej obliczenia wykorzystano temperaturę powierzchni ścian komory spalania i poprawkę na promieniowanie. Ze względu na trudności związane z właściwym wykonaniem i interpretacją pomiaru temperatury szklanej ściany należało zmienić materiał komory spalania na blachę żaroodporną.

5. BADANIA ZASADNICZE

5.1. STANOWISKO BADAWCZE

Wykorzystując doświadczenia uzyskane w badaniach wstępnych zaprojektowano stanowisko badawcze do badań nad wpływem ozonu na proces spalania gazu ziemnego w syntetycznym powietrzu, które pozwoliło na wykonanie doświadczeń przy zróżnicowanym stężeniu ozonu.

Stanowisko badawcze do wykonania badań zasadniczych składało się z instalacji do syntezy ozonu, reaktora spalania, układu przygotowania utleniacza, układu regulacji strumienia objętości substratów spalania, układu pomiaru temperatury oraz układu analizy spalin. Schemat stanowiska badawczego przedstawiono na rys. 5.1.

1 – butla z azotem, 2 – butla z tlenem, 3 – manostat, 4 - układ oczyszczania tlenu, 5 – rotametr do pomiaru strumienia objętości tlenu, 6 – generator ozonu, 7– rotametr do pomiaru strumienia objętości azotu, 8 – mieszalnik azotu z tlenem 9 – rotametr do pomiaru strumienia objętości gazu ziemnego, 10 – palnik Meckera, 11 – komora spalania, 12 - obudowa z izolacją komory, 13 czujnik pomiaru temperatury ściany komory, 14 – czujnik pomiaru temperatury w osi komory spalania, 15 – miliwoltomierz, 16 - odciągowa sonda spalin, 17 – wymrażarka pary wodnej, 18 – naczynie zbierające kondensat, 19 – analizator, 20 – kontrola składu chemicznego syntetycznego powietrza w analizatorze

Instalacja do syntezy ozonu

W badaniach zasadniczych ozon generowano w instalacji do syntezy ozonu z rurowym generatorem ozonu opisanym w punkcie 4.1.2. W tym przypadku rurowy generator ozonu zasilano tlenem. Pełna charakterystyka syntezy ozonu z tlenu została zamieszczona w punkcie 4.1.2.

Reaktor spalania

Reaktor spalania składał się z palnika Meckera i komory spalania. Palnik Meckera był identyczny jak opisano w badaniach wstępnych.

W celu ułatwienia pomiaru temperatury ściany komory spalania, zastąpiono rurę kwarcową rurą wykonaną ze stali żaroodpornej. Długość komory spalania wynosiła 180 mm a średnica wewnętrzna 65 mm. Do ścianki komory spalania, w pięciu punktach rozmieszczonych wzdłuż wysokości komory spalania, umocowano spoiny termoelementów (rys. 5.2). Komorę spalania zaizolowano włóknem ceramicznym MT-2 o grubości 45 mm. Całość zabezpieczała metalowa obudowa 6. Komora spalania osadzona była na metalowym pierścieniu 2 o grubości 10 mm przymocowanym do obudowy palnika wraz z płytką 4 o grubości 5 mm stanowiącą podstawę pieca. Dolna 3 oraz górna 7 część komory zaizolowana była płytką o grubości 10 mm. W górnej części znajdowały się trzy otwory: jeden do umieszczenia odciągowej sondy spalin 8, drugi do wprowadzenia czujnika termoelektrycznego do pomiaru temperatury wzdłuż osi płomienia oraz trzeci na wylot spalin 9.

1 - palnik Meckera, 2 - metalowy pierścień, 3 - termoizolacja dolnej części komory, 4 - płyta izolacyjna, 5 - termoizolacja z włókna ceramicznego, 6 - metalowa obudowa, 7 - termoizolacja górnej części komory, 8 - sonda do poboru spalin, 9 - wylot spalin, 10 - blacha żaroodporna, T_1 , T_2 , T_3 , T_4 , T_5 - czujniki termoelektryczne do pomiaru temperatury powierzchni ściany, T_6 - czujnik termoelektryczny do pomiaru temperatury w osi płomienia

Układ przygotowania utleniacza

Układ do wytworzenia syntetycznego utleniacza składał się z butli ciśnieniowych zawierających tlen i azot, układu oczyszczenia powietrza (element instalacji do syntezy ozonu) oraz szklanego mieszalnika gazów wypełnionego pierścieniami Raschiga.

Syntetyczny utleniacz zawierał azot i tlen w takim stosunku jak w powietrzu atmosferycznym, czyli 79% azotu i 21% tlenu. Tlen o czystości 99.5% pobierany z butli ciśnieniowej oczyszczano w układzie oczyszczania gazu zasilającego generator ozonu. Skład chemiczny powietrza syntetycznego kontrolowano w analizatorze spalin Infralyt EL.

Układ do pomiaru i stabilizacji strumienia objętości substratów spalania

Układ ten składał się z rotametrów do pomiaru strumienia objętości gazu ziemnego oraz azotu i tlenu pobieranych z butli ciśnieniowych. W celu wyrównania ciśnienia za butlami zamontowano monostaty.

Układ pomiaru temperatury

Pomiar temperatury w osi płomienia przeprowadzono identycznie jak w badaniach wstępnych. Do pomiaru temperatury powierzchni ściany komory dodatkowo zainstalowano w ścianie komory czujniki termoelektryczne połączone z multimetrem cyfrowym MY – 68.

Układ pomiaru składu chemicznego spalin

Układ ten składał się z odciągowej sondy spalin o średnicy wewnętrznej 3 mm wykonanej ze stali żaroodpornej, wymrażarki pary wodnej, naczynia zbierającego kondensat, układu przygotowania spalin, tzw. "drogę gazową" zapewniającą ciągłą pracę urządzenia oraz analizatora Infralyt EL.

5.2. METODYKA BADAŃ

W związku z wprowadzeniem modyfikacji w stosunku do badań wstępnych w procesie spalania gazu ziemnego w reaktorze z palnikiem Meckera związanych z przygotowaniem utleniacza i konstrukcją komory nastąpiły zmiany w przedstawionej w punkcie 4.3 procedurze poprzedzającej pomiary właściwe.

Procedura ta zawierała następujące elementy:

- 1. włączenie wymrażarki spalin okres oczekiwania na stabilną pracę urządzenia 1 h,
- 2. ustalenie strumieni objętości substratów zapewniających zapłon mieszanki,
- 3. zapłon mieszanki za pomocą zapalarki gazowej,
- ustalenie strumienia objętości gazu oraz strumienia syntetycznego powietrza (mieszanina 79% azotu i 21% tlenu pobieranych z butli ciśnieniowych) odpowiadających zadanym zakresom dla danej serii pomiarowej,
- weryfikacja wymaganego stężenia tlenu (21%) w mieszaninie za pomocą analizatora Infralyt EL,
- ustabilizowanie parametrów termicznych od momentu zapłonu mieszanki paliwowo powietrznej przez ok. 2 h,
- 7. uruchomienie układu pomiaru temperatury w komorze spalania reaktora,
- 8. włączenie przepływu wody chłodzącej ozonator w obiegu ciągłym,
- 9. włączenie zasilania elektrycznego ozonatora; w przypadku prowadzenia procesu spalania z dodatkiem ozonu należy ustalić napięcie zasilające generator ozonu za pomocą autotransformatora na poziomie nie większym niż 15 kV; czas oczekiwania na ustabilizowanie się warunków w komorze spalania powinien wynosić ok. 15 min,
- 10. podłączenie "drogi gazowej" i analizatora Infralyt EL,
- 11. przystąpienie do właściwych pomiarów.

Czas oczekiwania po każdej celowej zmianie parametrów procesu spalania (np. strumienia objętości powietrza syntetycznego, gazu ziemnego lub dodawanego ozonu) wynosił 20 min. Czas trwania jednej serii pomiarowej w zależności od zmienianych wielkości wynosił 8 - 10 h. Dla danego obciążenia cieplnego komory spalania pomiary prowadzono podczas spalania mieszanki bez i z dodatkiem ozonu ze stosunkiem nadmiaru powietrza zmieniającym się w zakresie $0.8 \div 1.4$.
Pomiar temperatury ściany komory spalania

Obliczenia numeryczne z zastosowaniem modelu matematycznego procesu spalania gazu z dodatkiem ozonu wykonuje się w oparciu o precyzyjną znajomość rozkładu rzeczywistej temperatury w osi płomienia. W celu jej wyznaczenia wykonano pomiary temperatury w osi płomienia nieosłoniętym termoelementem oraz temperatury powierzchni wewnętrznej ściany komory spalania.

Metodykę pomiaru temperatury w osi płomienia opisano w punkcie 4.4.2.

Do pomiaru temperatury powierzchni wewnętrznej ściany komory spalania zastosowano termoelementy płaszczowe NiCr – NiAl (typ K) o średnicy 0.5 mm i multimetr cyfrowy MY – 68.

5.3. ZAKRES BADAŃ ZASADNICZYCH

Badania zasadnicze dotyczyły procesu spalania mieszaniny gazu ziemnego i syntetycznego powietrza bez i z obecnością ozonu.

Badania prowadzono w reaktorze spalania dla szerokiego zakresu zmian stosunku nadmiaru powietrza od 0.8 do1.4. Stężenie ozonu produkowanego z tlenu było ok. trzykrotnie wyższe niż w przypadku stosowania powietrza, co umożliwiło dla niektórych przypadków wykonanie pomiarów przy pięciu różnych wartościach stężenia ozonu. Stężenie ozonu wynosiło od ok. 8 do 14 mg $O_3/dm^3(N_2+O_2)$. Stosowano trzy obciążenia cieplne reaktora 260, 300 i 390 W.

Zakres przeprowadzonych badań zasadniczych przedstawiono w tablicy 5.1.

Paliwo	Obciążenie cieplne palnika, W	Utleniacz	Stężenie ozonu w utleniaczu, mgO ₃ /dm ³	Stosunek nadmiaru powietrza λ
Gaz ziemny GZ – 50	260	Powietrze syntetyczne Powietrze syntetyczne + ozon	- 9.97 ÷ 14.02	0.8 ÷ 1.4
Gaz ziemny GZ – 50	330	Powietrze syntetyczne Powietrze syntetyczne + ozon	- 9.34 ÷ 13.22	0.8 ÷ 1.4
Gaz ziemny GZ – 50	390	Powietrze syntetyczne Powietrze syntetyczne + ozon	- 7.92 ÷ 12.01	0.8 ÷ 1.4

Tablicy 5.1. Zakres badań zasadniczych

5.4. BŁĘDY POMIARÓW I ICH ANALIZA

Wyniki eksperymentalne obarczone są błędami powstającymi na każdym etapie procesu badawczego. Błąd popełniany przy pomiarach może być spowodowany błędem metody pomiarowej, dokładnością przyrządu lub błędem odczytu. Oszacowanie końcowej wielkości błędu ma bardzo duże znaczenie. W praktyce znaczenie mają jedynie błędy systematyczne i pomiarowe Błąd przypadkowy wyniku pomiaru może być zmniejszony przez zwiększenie liczby obserwacji, wtedy wartość oczekiwana błędu przypadkowego wynosi zero. Błędy systematyczne spowodowane są przez stałą przyczynę, np. wadę przyrządu lub zły sposób posługiwania się nim. Błąd systematyczny może być wyeliminowany wskutek rozpoznania wielkości wpływającej na ten błąd i wprowadzenia poprawek kompensujących. Zakłada się, że po wprowadzeniu poprawek kompensujących wartość oczekiwana błędu wynikającego z oddziaływania systematycznego wynosi zero.

Błąd pomiaru jest różnicą między wynikiem pomiaru a wartością prawdziwą. Istnieje wiele źródeł błędów pomiaru, wśród których najważniejszymi są:

- niereprezentatywne próbkowanie, gdy pobierana próbka może nie reprezentować populacji danej wielkości mierzonej,
- niepełna znajomość oddziaływań otoczenia na pomiar albo niedoskonały pomiar warunków otoczenia,
- subiektywne błędy w odczytywaniu wskazań przyrządów analogowych,
- skończona rozdzielczość albo próg pobudliwości przyrządu,
- niedokładne wartości przypisane wzorcom i materiałom odniesienia,
- niedokładne wartości stałych używanych w procedurach przetwarzania danych pomiarowych,
- przybliżenia i założenia upraszczające tkwiące w metodzie i procedurze pomiarowej,
- zmiany w powtarzalnych obserwacjach wielkości mierzonej w pozornie identycznych warunkach.

Dokładność przyrządu podaje klasa dokładności charakteryzująca dany przyrząd, która jest wyrażona następująco:

$$kl = \frac{\Delta x_{\text{max}}}{Z} 100 \%$$
(107)

gdzie:

 Δx_{max} – maksymalny błąd bezwzględny przyrządu,

Z – maksymalny zakres pomiarowy.

Maksymalny błąd przyrządu wynikający z jego dokładności oraz błędu odczytu określić można z zależności:

$$\delta_{\max} = \sqrt{\Delta x_{\max}^2 + \delta_o^2} \tag{108}$$

gdzie δ_o – błąd odczytu.

W przypadku badań eksperymentalnych procesów fizykochemicznych rzadko wykonuje się pomiar bezpośredni badanych wielkości. Zwykle określa się je za pomocą innych łatwiej mierzalnych wielkości (np. temperatura, ciśnienie, strumienie objętości itd.). Oszacowanie błędu wielkości poszukiwanej na podstawie innych znalezionych doświadczalnie wielkości a_i umożliwia prawo przenoszenia błędów [9]. Jeżeli wielkość poszukiwana b jest funkcją niezależną mierzonych wielkości

$$b = f(a_1, a_2, a_3, \dots a_n) \tag{109}$$

to błąd wielkości poszukiwanej δb można wyznaczyć z zależności

$$\delta b = \sqrt{\sum_{i=1}^{n} \left(\left| \frac{\partial b}{\partial a_i} \right| \delta_i \right)^2} \tag{110}$$

gdzie δ_i – błąd popełniany przy pomiarze *i* – tej wielkości.

Błędy ustalenia strumienia objętości substratów spalania

Błędy związane z ustaleniem strumienia objętości substratów spalania w rotametrach określono jako błąd odczytu związany z położeniem pływaka rotametru na ustalonej wysokości. W urządzeniu analogowym do wskazań strumienia objętości błąd określono jako połowę odległości pomiędzy podziałkami rotametru. Różnicę gęstości pomiędzy powietrzem (na które są fabrycznie wycechowane rotametry), a danym gazem przeliczano zgodnie ze wzorami zawartymi w tablicy 4.3. Prawidłowość wskazań rotametrów dla tlenu i azotu sprawdzono metodą porównawczą stosując gazomierz bębnowy [29].

Obliczenia błędów dla przykładowego strumienia objętości gazów przedstawiono w tablicy 5.2.

Gaz	Strumień objętości, dm ³ /h	Klasa dokładności przyrządu <i>kl</i>	Zakres przyrządu Z, dm ³ /h	Maksymalny błąd przyrządu Δ x _{max} dm ³ /h	Błąd odczytu <i>&</i> dm ³ /h	Błąd maksymalny đ _{max} dm ³ /h
Gaz ziemny	39.35	2.5	30	0.75	0.25	± 0.8
Tlen	90	2.5	280	7	0.5	± 7.0
Azot	320	2.5	800	20	5	± 20.6

Tablicy 5.2. Obliczenia błędu pomiaru strumienia objętości gazów

Błędy ustalenia stosunku nadmiaru powietrza

Stosunek nadmiaru powietrza obliczono zgodnie z zależnością

$$\lambda = \frac{\dot{V}_{02} + \dot{V}_{N2}}{\dot{V}_g V_0} \tag{111}$$

gdzie:

 \dot{V}_{O2} - strumień objętości tlenu, dm³/h,

 \dot{V}_{N2} - strumień objętości azotu, dm³/h,

 \dot{V}_{g} - strumień objętości gazu, dm³/h,

 V_0 - powietrze teoretyczne spalania, m³powietrza/m³gazu.

Minimalną ilość powietrza do spalenia 1 m³ gazu przy założeniu, że spalanie jest całkowite i zupełne (powietrze teoretyczne) i przy założeniu objętościowego składu suchego powietrza (21% tlenu i 79% azotu) wyznacza się z zależności:

$$V_0 = \frac{100}{21}O_t, \frac{\text{m}^3\text{powietrza}}{\text{m}^3\text{gazu}}$$
(112)

gdzie:

$$O_{t} = \frac{1}{2}CO + \frac{1}{2}H_{2} + \frac{3}{2}H_{2}S + (n + \frac{m}{4})C_{n}H_{m} - O_{2}, \frac{m^{3}\text{tlenu}}{m^{3}\text{gazu}}$$
(113)

CO, H₂, H₂S, C_nH_m, O₂ – udziały objętościowe składników w gazie, m^3 składnika/m³gazu.

Dla gazu ziemnego o składzie gazu podanym w tablicy 4.2 powietrze teoretyczne wynosi $V_0 = 9.42 \text{ m}^3$ powietrza/m³gazu.

Maksymalny błąd wyznaczania stosunku nadmiaru powietrza λ obliczono zgodnie ze wzorem:

$$\delta\lambda = \sqrt{\left(\frac{\delta\dot{V}_{O2}}{\dot{V}_{g}V_{0}}\right)^{2} + \left(\frac{\delta\dot{V}_{N2}}{\dot{V}_{g}V_{0}}\right)^{2} + \left(\frac{\dot{V}_{O2} + \dot{V}_{N2}}{\dot{V}_{g}^{2}V_{0}}\right)^{2}}$$
(114)

gdzie: $\delta \dot{V}_{o2}$ - błąd pomiaru strumienia tlenu,

 $\delta \dot{V}_{\scriptscriptstyle N2}$ - błąd pomiaru strumienia azotu,

 $\delta \dot{V}_{g}$ - błąd pomiaru strumienia gazu ziemnego.

Przykład obliczenia maksymalnego błędu dla stosunku nadmiaru powietrza przedstawiono w tablicy 5.3.

Tablicy 5.3. Wyniki obliczeń błędu stosunku nadmiaru powietrza

Stosunek nadmiaru powietrza λ	Wartość i błąd pomiaru strumienia objętości gazu, dm ³ /h	Wartość i błąd pomiaru strumienia objętości tlenu, dm ³ /h	Wartość i błąd pomiaru strumienia objętości azotu, dm ³ /h	Maksymalny błąd stosunku nadmiaru powietrza δλ _{max}
1.1	39.35 ± 0.8	90 ± 7	320 ± 20.6	± 0.002

Błędy pomiaru stężenia składników spalin

Wykonując pomiar stężenia składników spalin należało uwzględnić błąd przyrządu jak również błąd odczytu mierzonych wartości.

Przy dużej ilości pomiarów bezpośrednich popełnia się błędy systematyczne i przypadkowe [69]. Jako wartość oczekiwaną przyjmuje się najczęściej średnią arytmetyczną wyników wszystkich pomiarów x_i :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{115}$$

Określono niepewność, czyli granicę przedziału, w którym występuje błąd systematyczny przez wyznaczenie rozkładu normalnego. Prawdopodobieństwo wystąpienia błędu określono przez gęstość prawdopodobieństwa opisaną równaniem:

$$y(\Delta x) = \frac{1}{\sigma\sqrt{2\pi}} \exp[-\frac{(\Delta x)^2}{2\sigma^2}]$$
(116)

gdzie: σ - odchylenie standardowe rozkładu normalnego,

 Δx – możliwość wystąpienia błędu.

Pełny opis rozkładu normalnego wymaga wyznaczenia wariancji rozkładu σ_x^2 i odchylenia standardowego σ dla całej populacji, czyli zbioru wszystkich wielkości. W danym przypadku jednak zajmowano się próbą z populacji, którą określano za pomocą estymatorów S_x^2 i S_x stanowiących oszacowanie wielkości σ_x^2 i odchylenia standardowego σ związanych z liczebnością próby *n*. Estymatory te, dla $n \leq 30$, opisano następującymi wzorami:

$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
(117)

$$S_{x} = \sqrt{S_{x}^{2}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
(118)

Ponieważ przyjęto wartość średnią jako przybliżenie wartości rzeczywistej, dlatego obliczano odchylenie standardowe wartości średniej S_{-} według

$$S_{\bar{x}} = \frac{S_x}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (x_i - \bar{x})^2}$$
(119)

Odchylenie standardowe wartości średniej pozwoliło na wyznaczenie przedziału

$$(\bar{x} - 3S_{\bar{x}}, \bar{x} + 3S_{\bar{x}})$$
 (120)

w którym ze znanym prawdopodobieństwem 99.73% znajduje się wartość rzeczywista wielkości mierzonej \overline{x} .

W tablicy 5.4 przedstawiono przykładowe obliczenia błędu stężenia składników spalin wykonanych za pomocą analizatora Infralyt EL.

Składnik	Jedno-	Wartość	Błąd	Klasa	Zakres	Maksymalny	Maksymalny
spalin	stka	średnia	odczytu	dokładności	przyrządu	błąd	błąd
suchych		odczytu	25	przyrządu		przyrządu	
i		\overline{x}	33_ x	kl	Ζ	$\Delta x_{\rm max}$	$\delta_{ m max}$
СО	%	5.004	0.029	1	0.1	0.1	± 0.104
CO ₂	%	11.192	0.031	1	0.2	0.2	± 0.202
C _n H _m	ppm	165.2	6.719	1	23	23	± 23.96
O ₂	%	5.218	0.079	1	0.22	0.22	± 0.234

Tablicy 5.4. Przykładowe obliczenia błędu dla zmierzonych maksymalnych stężeń składników spalin analizatorem Infralyt EL

Błędy pomiaru metody analitycznej

Wykonując pomiary metodą analityczną rozkład zmiennej ze względu na mniejszą ilość prób może być różny od normalnego. W takim przypadku przedział ufności, przy założonym prawdopodobieństwie, wyznaczono rozkładem *t* Studenta. Zmienną *t* określa się następująco:

$$t = \frac{\left|\overline{x} - \mu\right|}{S_{-x}} \tag{121}$$

gdzie μ – przedział ufności.

Funkcja opisująca rozkład zależy od liczby prób *n* wziętych do obliczenia S_{x} . W rozkładzie *t* Studenta liczba stopni swobody *k* wpływa na liczbę prób *n*. Estymacja przedziałowa wartości oczekiwanej przy zadanym prawdopodobieństwie jest przedziałem ufności małej próby wyznaczonej następująco:

$$p(\overline{x} - t S_{\underline{x}} \le \mu \le \overline{x} + t S_{\underline{x}}) = 1 - \alpha$$
(122)

gdzie α - poziom istotności.

Przy założonym poziomie istotności $\alpha = 0.05$ i stopniu swobody k = n - 1 rozkład *t* odczytano z tablic [70].

Przykładowe wyniki wyznaczania przedziału ufności dla stężenia ozonu, tlenku azotu i dwutlenku azotu określanych metodami analitycznymi z prawdopodobieństwem 95% zamieszczono w tablica 5.5.

Składnik mierzony metodą analityczną	Jednostka stężenia	Wartość średnia wielkości zmierzonej	Odchylenie standardowe wartości średniej	Liczba stopni swobody	Rozkład <i>t</i> dla	Przedział ufności
i		\overline{x}	S_{-x}	k	$\alpha = 0.05$	μ
O ₃	mg/dm ³ O ₂	40.23	0.57	5	2.57	± 1.46
NO	ppm	38.42	0.343	7	2.36	± 0.8
NO ₂	ppm	0.65	0.087	7	2.26	± 0.2

Tablica 5.5. Przedziały ufności wyznaczone dla metody analitycznej

Uzyskane wyniki stężeń wybranych składników spalin porównywano odnosząc odczyty stężeń gazów spalinowych do znormalizowanego udziału tlenu dla procesów spalania paliw gazowych, które zgodnie z [57] wynosi $[O_2] = 3\%$.

Przeliczenia wykonano według następującej zależności:

$$[i]_{3\%} = \frac{21 - [O_2]_{zn}}{21 - [O_2]} [i] = \frac{18}{21 - [O_2]} [i]$$
(123)

gdzie:

 $[i]_{3\%}$ - stężenie składnika w spalinach suchych przy udziale tlenu $[O_2] = 3\%$,

% lub ppm,

[*i*] - stężenie składnika w spalinach suchych, % lub ppm,

 $[O_2]_{zn}$ - znormalizowane stężenie tlenu $[O_2] = 3\%$,

 $[O_2]$ - aktualne stężenie tlenu w spalinach suchych, %.

Zgodnie z prawem przenoszenia błędów całkowity błąd wyznaczenia składnika w spalinach suchych przy 3% udziale tlenu obliczany był z zależności:

$$\delta[i]_{3\%} = \sqrt{\left(\frac{18}{21 - [O_2]}\delta[i]\right)^2 + \left(\frac{18[i]}{(21 - [O_2])^2}\delta[O_2]\right)^2}$$
(124)

gdzie:

 $\delta[i]$ - błąd stężenia składnika w spalinach suchych, % lub ppm,

 $\delta[O_2]$ - błąd aktualnego stężenie tlenu w spalinach suchych, %.

Przykładowe obliczenia błędu dla stężeń składników spalin odniesionych do 3% O₂ zamieszczono w tablicy 5.6.

Składnik spalin	Jednostka	Wartość średnia	Wartość odczytu	Błąd składnika	Błąd maksymalny
suchych		odczytu	odniesiona	spalin	
į		$\overline{\mathbf{r}}$	ao 3% O ₂	និទោ	(8 [1])
Ľ		л	[1]3%	0[1]	(0 [<i>l</i>]3%)max
СО	%	5.004	5.708	± 0.104	± 0.145
CO ₂	%	11.192	12.76	± 0.202	± 0.298
C_nH_m	ppm	165.2	188	± 23.96	± 27.47
NO	ppm	38.42	43.82	± 0.8	± 1.12
NO ₂	ppm	0.65	0.74	± 0.2	± 0.2
O ₂	%	5.218	-	± 0.234	± 0.234

Tablica 5.6. Przykładowe obliczenia błędu dla stężeń składników spalin odniesionych do 3% O2

Błędy pomiaru temperatury

Do wyznaczenia rzeczywistej temperatury płomienia określono odchyłkę pomiarową, tzw. poprawkę temperatury, dla zmierzonych wartości temperatury w osi płomienia wykonanych nieosłoniętą spoiną pomiarową termoelementu płaszczowego PtRh10-Pt (typ S) o średnicy 1 mm [43]. W rzeczywistości zmierzona wartość temperatury była temperaturą spoiny umieszczonej w płomieniu.

Odchyłka pomiarowa była rezultatem radiacyjnej i konwekcyjnej wymiany ciepła pomiędzy gazami płomieniowymi, spoiną oraz otaczającymi płomień ścianami komory spalania. Ocenę poprawki można z dużą dokładnością wyznaczyć za pomocą następującego wzoru:

$$\Delta T = a \varepsilon_s \sigma d_s \left(T_s^4 - T_w^4 \right) \tag{125}$$

gdzie:

a – stała doświadczalna, dla płomieni gazowych a = 5 m·K/W [42, 79],

 \mathcal{E}_s – emisyjność spoiny termoelementu dla PtRh10-Pt według [77]:

$$\varepsilon_s = 0.000106 \, t_s + 0.0383 \tag{126}$$

 d_s - średnica spoiny, m,

 σ - stała Stefana - Boltzmana, σ = 5.67·10⁻⁸ W/(m²·K⁴),

 t_s - temperatura spoiny, C,

 T_s , T_w – temperatura spoiny i otaczających ścian, K.

Temperaturę rzeczywistą t_{rz} wyznaczono z zależności

$$t_{rz} = t_s + \Delta T \tag{127}$$

Przykładowe wyniki obliczonej poprawki temperatury zamieszczono w tablicy 5.7.

Tablica 5.7. Obliczona poprawka temperatury dla procesu spalania gazu ziemnego w syntetycznym powietrzu w warunkach $\dot{V}_g = 39.35 \,\mathrm{dm}^3/\mathrm{h}$, $\lambda = 1.1$ i $d_s = 0.0001$ m

Odległość od	Temperatura	Temperatura	Współczynnik	Poprawka	Temperatura
czoła palnika	spoiny	ściany komory	promieniowania	temperatury	rzeczywista
x, m	$t_s, {}^{\mathrm{o}}\mathrm{C}$	$t_w, {}^{\mathrm{o}}\mathrm{C}$	Es	$\Delta T, K$	t_{rz} , °C
0.010	1340	770	0.180	286	1622
0.040	1275	782	0.173	256	1527
0.070	1185	795	0.163	175	1355
0.100	1100	787	0.154	122	1217
0.130	1055	754	0.150	105	1158

Pomiary temperatury w osi płomienia t_s i temperatury ściany komory spalania t_w są obarczone błędami związanymi z błędem przyrządu pomiarowego, tj. multimetru

cyfrowego MY - 68 i termoelementu. Multimetr cyfrowy typu MY - 68 wykonywał pomiar napięcia stałego z automatyczną zmianą zakresu pomiarowego. Pracował w zakresie 1 ÷ 40.0 mV z dokładnością 0.3% wartości wskazanej plus dwie cyfry znaczące [74]. Błąd odczytu temperatury z charakterystyki termoelementu określano zgodnie z normą PN-EN 60584-2 [49]. Przykład obliczenia błędu dla temperatury wskazanej przez układ pomiarowy zamieszczono w tablicy 5.8.

Tempe	eratura	Błąd	Błąd	Błąd maksymalny
		termoelementu	multimetru	$\delta_{ m max}$
0	C	°C	°C	°C
spoiny t _s	1340	1.72	4.22	± 4.55
ściany t _w	770	5.77	2.51	± 6.3

Tablica 5.8. Wyznaczenie błędu temperatury wskazanej przez układ pomiarowy temperatury

W celu wyznaczenia błędu temperatury rzeczywistej należało wziąć pod uwagę błędy związane z pomiarem temperatury spoiny, temperatury ściany, średnicy spoiny, a także obliczonym współczynnikiem emisyjności. Przyjęto również, że stała doświadczalna *a* została wyznaczona z dokładnością 15% [79]. Do wyznaczenia błędu całkowitego skorzystano z prawa przenoszenia błędów [9]

$$\delta t_{rz} = \sqrt{\left(\frac{\partial t}{\partial t_s}\delta t_s\right)^2 + \left(\frac{\partial t}{\partial t_w}\delta t_s\right)^2 + \left(\frac{\partial t}{\partial d_s}\delta d_s\right)^2 + \left(\frac{\partial t}{\partial \varepsilon_s}\delta \varepsilon_s\right)^2 + \left(\frac{\partial t}{\partial a}\delta a\right)^2}$$
(128)

gdzie:

- δt_s błąd pomiaru temperatury spoiny, °C,
- δt_w błąd pomiaru temperatury ściany komory, °C,
- δds . błąd pomiaru średnicy spoiny, m,
- $\delta \epsilon_s$ błąd wyznaczania współczynnika emisyjności,
- δa błąd wyznaczania stałej doświadczalnej a, m K/W.

Przykład obliczeń całkowitego błędu związanego z wyznaczeniem temperatury rzeczywistej według wzoru (123) zamieszczono w tablicy 5.9.

			Błąd			
Temperatura rzeczywista	temperatury spoiny	temperatury ściany	średnicy spoiny	współczynnika emisyjności	stałej doświa-	Maksymalny błąd
t _{rz} , °C	δt _s , °C	komory ${oldsymbol{\delta} t_w},$ °C	<i>δds</i> , m	δε,	dczalnej <i>δa</i> , mK/W	$(\delta t_{rz})_{\max},$ °C
1622	4.55	6.3	0.00005	0.000482	0.75	7.8

Tablicy 5.9. Przykładowe wyniki obliczeń błędu wyznaczania temperatury rzeczywistej

5.6. WYNIKI POMIARÓW

Wyniki pomiarów wykonanych w tej części pracy przedstawiono w formie graficznej oraz w formie tablic zamieszczonych w załączniku.

Zmierzono strumień objętości gazu: 26.6, 33.76 i 39.35 dm³/h i wyznaczono obciążenia cieplne reaktora, które wynosiły odpowiednio 260, 330 i 390 W.

Na rys. 5.3, 5.4, 5.5 pokazano wpływ stężenia ozonu i stosunku nadmiaru powietrza na zmianę stężenia CO i NO powstałego ze spalania gazu ziemnego w syntetycznym powietrzu. Rysunki przedstawiają zależności kolejno dla trzech obciążeń cieplnych reaktora spalania. Ujmują one również wpływ ozonu i stosunku nadmiaru powietrza na maksymalną temperaturę w płomieniu.

Do określenia względnej zmiany stężenia składnika spalin przy spalaniu gazu ziemnego bez i z obecnością ozonu w substratach spalania, wyznaczono stopień dopalenia. Został zdefiniowany jako:

$$\varepsilon = \frac{[C_i] - [C_i]}{[C_i]} \cdot 100, \% \qquad \lambda = \text{const}$$
(129)

gdzie:

- [C_i] stężenie składnika spalin *i* przy spalaniu gazu ziemnego w syntetycznym powietrzu, %,
- [C_i]` stężenie składnika spalin *i* po dodaniu ozonu do mieszanki powietrzno paliwowej, %.

W celu porównania wyników pomiarów przedstawiano je kolejno dla trzech obciążeń cieplnych reaktora spalania 260, 330 i 390 W. I tak:

- wpływ stężenia ozonu na stężenie i emisję tlenku węgla (II) (tlenku węgla) E_{CO} dla różnych wartości stosunku nadmiaru powietrza przedstawiono na rys. 5.6, 5.7 i 5.8,
- wpływ stężenia ozonu na stopień dopalenia CO dla różnych wartości stosunku nadmiaru powietrza przedstawiono na rys. 5.9, 5.10 i 5.11,
- wpływ stężenia ozonu na stężenie i emisję tlenku azotu (II) (tlenku azotu) $E_{\rm NO}$ dla różnych wartości stosunku nadmiaru powietrza przedstawiono na rys. 5.12, 5.13 i 5.14.

Natomiast dla obciążenia 330 i 390 W przedstawiono:

- wpływ stężenia ozonu na stężenie i emisję weglowodorów E_{CnHm} na rys. 5.15,
- wpływ stężenia ozonu na stopień dopalenia C_nH_m na rys. 5.16.

SPALANIE GAZU ZIEMNEGO UTLENIACZ-SYNTETYCZNE POWIETRZE

Qp=390 W

utleniacz- mieszanina ozonowanego tlenu z azotem

Rys. 5.5. Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz temperaturę w procesie spalania gazu ziemnego w reaktorze spalania

Rys. 5.8. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję CO

dopalenia CO

Rys. 5.11. Wpływ ozonu i stosunku nadmiaru powietrza na stopień dopalenia CO

. Qp=390 W

Rys. 5.14. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję NO

Rys. 5.16. Wpływ ozonu i obciążenia cieplnego reaktora na stopień dopalenia $C_n H_{\rm m}$

5.7. ANALIZA WYNIKÓW POMIARÓW

Badania wpływu stężenia ozonu i stosunku nadmiaru powietrza na zmianę stężenia tlenku węgla (II) (tlenku węgla), tlenku azotu (II) (tlenku azotu) i temperaturę zostały wykonane przy stężeniu ozonu od 1.25 do 14.02 mgO₃/dm³(N₂+O₂) dla kolejnych serii pomiarowych odpowiadających zakresowi stosunku nadmiaru powietrza od 0.8 do 1.4.

W celu uzyskania odpowiedzi na pytanie jak obecność ozonu wpływa na stężenie tlenku węgla (II) (tlenku węgla) prowadzono proces spalania gazu ziemnego w syntetycznym powietrzu również z niedomiarem powietrza spalania. Stwierdzono, że charakter i szybkość zmian stężenia tlenku węgla (II) (tlenku węgla) dla wszystkich obciążeń cieplnych reaktora jest podobny (rys. 5.3, 5.4 i 5.5.). Wartość stężenia tlenku węgla (II) (tlenku węgla) jest zależna od obciążenia cieplnego reaktora i stosunku nadmiaru powietrza. Ze wzrostem obciążenia cieplnego palnika zwiększało się stężenie CO. Stwierdzono również, że stężenie tlenku węgla (II) (tlenku węgla) wyraźnie malało wraz ze wzrostem stężenia ozonu oraz wzrostem stosunku nadmiaru powietrza. Dla stosunku nadmiaru powietrza wynoszącym ok. 1.06 dla wszystkich trzech obciążeń cieplnych komory spalania nie obserwowano obecności CO w spalinach.

Maksymalne ok. 4.5% stężenie tlenku węgla (II) (tlenku węgla) (odniesione do 3% O_2) uzyskano przy stosunku nadmiaru powietrza równym 0.8 przy najwyższym obciążeniu cieplnym komory wynoszącym 390 W (rys. 5.8). Stwierdzono, że wraz ze wzrostem stężenia ozonu, dla pięciu wartości od 1.25 do 14.02 mgO₃/dm³(N₂+O₂), oraz wzrostem stosunku nadmiaru powietrza stężenie CO malało. Tendencja ta dotyczyła wyników pomiarów prowadzonych przy stosunku nadmiaru powietrza od 0.8 do 1.07 dla wszystkich obciążeń komory spalania (rys. 5.6, 5.7 i 5.8).

Maksymalna emisja tlenku węgla (II) (tlenku węgla) wynosząca ok. 20 gCO/h (odniesiona do 3% O₂) wystąpiła dla stosunku nadmiaru powietrza 0.8 i obciążenia cieplnego komory wynoszącego 390 W (rys. 5.8). Emisja tlenku węglu (II) (tlenku węgla) rosła wraz ze wzrostem obciążenia cieplnego komory spalania. Natomiast malała wraz ze wzrostem stosunku nadmiaru powietrza oraz ze wzrostem stężenia ozonu (dla pięciu wartości od 1.25 do 14.02 mgO₃/dm³(N₂+O₂)). Charakter i szybkość zmian emisji odpowiadał charakterowi zmian stężenia tlenku węgla (II) (tlenku węgla) przy tych samych stosunkach nadmiaru powietrza i obciążeniu cieplnym komory spalania (rys. 5.6, 5.7 i 5.8).

Dla trzech badanych obciążeń cieplnych reaktora zwiększenie stężenia ozonu w mieszaninie tlenu i azotu wpływało na zwiększenie stopnia dopalenia CO, a prędkości zmian wzrastają ze wzrostem stosunku nadmiaru powietrza (rys. 5.9, 5.10, 5.11).

Maksymalny stopień dopalenia tlenku węgla (II) (tlenku węgla) wynoszący 70% uzyskano przy dodatku ozonu do utleniacza ok. 11 mgO₃/dm³(N₂+O₂) podczas spalania z obciążeniem 260 W i $\lambda = 1.04$ oraz obciążeniu 330 W i $\lambda = 1.07$ (rys. 5.9 i 5.10).

Całkowite dopalenie tlenku węgla (II) (tlenku węgla) ($\varepsilon_{CO} = 100\%$) uzyskano podczas spalania z obciążeniem 390 W przy dodatku ok. 8 mg O₃/dm³(N₂+O₂) i stosunku nadmiaru powietrza $\lambda = 1.06$ (rys. 5.11). Uzyskane wyniki wykazały, że w zakresie stosowanego obciążenia cieplnego, ilościowy i jakościowy wpływ dodatku ozonu na stopień dopalenia CO jest podobny. Dotyczy to w szczególności procesu spalania prowadzonego w niedomiarem utleniacza (rys. 5.9 do 5.11). Ilościowe zmiany stopnia dopalenia CO nie korelują z powstałymi podczas spalania z nieznacznym nadmiarem powietrza, szczególnie dla $\lambda = 1.06$ i obciążenia reaktora 390 W (rys. 5.11). Prawdopodobnie jest to wpływ błędów pomiarowych, ponieważ wyniki uzyskiwane w tym zakresie badań wchodziły w zakres błędu analizatora.

Jakościowe i ilościowe zmiany stężenia tlenku azotu (II) (tlenku azotu) przedstawione na rys. 5.3, 5.4 i 5.5, związane są głównie ze zmianą stosunku nadmiaru powietrza i zmianą temperatury procesu. Przy spalaniu mieszanki bez ozonu i z dodatkiem ozonu w zakresie stosunku nadmiaru powietrza od 0.8 do ok. 1.1 stężenie tlenku azotu (II) (tlenku azotu) rosło. Osiągało maksimum przy λ ok. 1.1, przy którym uzyskano najwyższą temperaturę w badanym układzie. W zakresie stosunku nadmiaru powietrza od ok. 1.15 do 1.4 stężenie NO malało. Wartość stężenia tlenku azotu (II) (tlenku azotu) związana była z obciążeniem cieplnym reaktora spalania: im wyższe obciążenie tym wyższa temperatura i wyższe stężenia tlenku azotu (II) (tlenku azotu).

Zaobserwowano nieznaczny wzrost stężenia i emisji tlenku azotu (II) (tlenku azotu) związany z obecnością ozonu powtarzalny dla wszystkich serii pomiarowych wykonanych w zakresie λ od 0.81 do 1.4 dla trzech obciążeń cieplnych reaktora (dla 260 W od $\lambda = 0.9$) (rys. 5.12, 5.13 i 5.14). Proces spalania prowadzono przy stężeniu ozonu od 1.25 do 14.02 mgO₃/dm³(N₂+O₂). Stężenie i emisja tlenku azotu (II) (tlenku azotu) rosła wraz ze wzrastającym stężeniem ozonu. Np. ich wartości wynoszące 27 ppm NO i 1.4 mgNO/h (odniesione do 3% O₂) zmierzone dla reaktora przy obciążeniu cieplnym 390 W i stosunku nadmiaru powietrza 1.06, wzrosły do wartości 33.7 ppm NO i 1.8 mgNO/h po dodaniu 9.83 mgO₃/dm³(N₂+O₂).

Wzrost stężenia tlenku azotu (II) (tlenku azotu) związany jest niewątpliwie z podwyższoną temperaturą, którą zaobserwowano przy prowadzeniu procesu z ozonem (rys. 5.3, 5.4 i 5.5). W zakresie stosunku nadmiaru powietrza od 0.8 do 1.06 maksymalna temperatura płomienia (zmierzona 5 mm nad czołem palnika) w przypadku obecności ozonu była większa o ok. 35 K. Różnica ta malała do ok. 16 K w zakresie stosunku nadmiaru powietrza od 1.1 do 1.4. Dodanie ozonu od 7.92 do 14.02 mgO₃/dm³(N₂+O₂) zwiększało temperaturę procesu średnio o ok. 25 K.

Ze względu na bardzo niskie stężenie tlenku azotu (IV) (dwutlenku azotu) NO₂ (zmierzone poniżej 1 ppm) w produktach spalania nie stwierdzono wpływu ozonu na stężenie NO₂. Nie stwierdzono również zwiększenia ilości NO₂ w stosunku do NO.

Badania procesu spalania z niedomiarem powietrza pozwoliły również na ocenę wpływu stężenia ozonu na stężenie i emisję węglowodorów C_nH_m . Stężenie węglowodorów zmierzono przy stosunku nadmiaru powietrza wynoszącym ok. 0.8. Przy wyższych wartościach stosunku nadmiaru powietrza węglowodory nie występowały, bądź ich ilość mieściła się w zakresie błędu pomiarowego przyrządu. Zdecydowany wpływ redukowania stężenia i emisji węglowodorów przedstawiono na rys. 5.15. Maksymalne stężenie i emisję węglowodorów wynoszące ok. 190 ppm i 10 mg C_nH_m /h (odniesione do 3% O₂) wystąpiło przy spalaniu z obciążeniem 330 W.

Zależność emisji węglowodorów i ich stężenia w spalinach od ilości ozonu dodawanego do utleniacza można aproksymować wielomianami drugiego stopnia. Wpływ wzbogacania utleniacza w ozon na stopień dopalania węglowodorów podano na rys. 5.16. Przykładowo dodatek ok. 13 mgO₃/dm³(N₂+O₂) redukował 80% węglowodorów przy obciążeniu cieplnym 330W i całkowicie eliminował węglowodory w spalinach przy obciążeniu 390 W.

Reasumując, w badanych procesach spalania gazu ziemnego:

- stężenie i emisja tlenku węgla (II) (tlenku węgla) CO maleją wraz ze wzrostem stosunku nadmiaru powietrza oraz ze wzrostem stężenia ozonu w powietrzu, a rosną wraz ze wzrostem obciążenia cieplnego komory spalania,
- stężenia i emisja tlenku azotu (II) (tlenku azotu) NO wykazują maksimum dla stosunku nadmiaru powietrza wynoszącego ok. 1.1, w niewielkim stopniu zależą od stężenia ozonu w powietrzu, a rosną wraz ze wzrostem obciążenia cieplnego komory spalania,
- nie obserwowano wpływu ozonu na tlenek azotu (IV) (dwutlenek azotu) NO₂ ze względu na niskie stężenie (poniżej 1 ppm) w produktach spalania będące w granicach błędu pomiarowego,

 stężenie i emisja węglowodorów C_nH_m, obserwowano tylko dla najniższego badanego stosunku nadmiaru powietrza wynoszącego ok. 0.8 i maleją nieliniowo wraz ze wzrostem stężenia ozonu w powietrzu oraz wykazują maksimum przy obciążeniu cieplnym komory spalania wynoszącym 330 W. Zależności te można aproksymować wielomianem drugiego stopnia.

6. OPRACOWANIE WYNIKÓW POMIARÓW

6.1. METODA UZGADNIANIA

Korygowanie wyników pomiarowych występujących w bilansach substancji i energii nazywa się uzgadnianiem bilansów [65]. Uzgadnianie wyników pomiarowych:

- zapewnia jednoznaczne obliczenie najbardziej prawdopodobnych wartości niewiadomych oraz wyznaczenie wiarygodnych wartości wielkości mierzonych,
- zapewnia zmniejszenie niedokładności wyników pomiarowych i umożliwia obliczenie przedziału niedokładności wyników uzgodnionych oraz obliczonych wartości niewiadomych,
- umożliwia skontrolowanie założonej dokładności pomiarów: niedotrzymanie tej dokładności może świadczyć o występowaniu systematycznych błędów pomiarowych lub o błędności założeń równań bilansowych.

Opis matematyczny procesu w postaci ogólnej można zapisać jako układ r niezależnych równań nieliniowych modelu, zwanych równaniami warunków, zawierający n wielkości mierzonych x_i , oraz u wielkości niezmierzonych (poszukiwanych) y_i :

$$F_k(x_1, x_2, ..., x_n, y_1, y_2, ..., y_u) = 0; \quad k = 1, 2, ..., r$$
(130)

Dokładne wartości wielkości niewiadomych i wielkości mierzonych są nieznane. Znane są natomiast wyniki pomiarów x_i^0 , które są zawsze obarczone błędami wynikającymi z niedoskonałości eksperymentu pomiarowego. Uzgadnianie wymaga wstępnego oszacowania wielkości niewiadomych w równaniach warunków.

Wykorzystując zasadę estymacji średniokwadratowej można zapisać ważoną funkcję ryzyka w postaci [86]:

$$(\hat{x} - x^0)^T M^{-1} (\hat{x} - x^0) \to \min$$
 (131)

gdzie:

 \hat{x} - wektor estymat wielkości mierzonych spełniających równania warunków,

 x^0 – wektor wyników pomiaru,

M – empiryczna macierz kowariancji wyników pomiaru,

T – macierz transponowana.

Metoda uogólniona uzgadniania nie nakłada żadnych ograniczeń na liczbę równań bilansowych, podczas gdy metoda klasyczna wymaga by liczba równań była większa od liczby wielkości niewiadomych. Warunek minimum ważonej sumy kwadratów poprawek w metodzie klasycznej obejmuje tylko poprawki wielkości mierzonych. Metoda uogólniona natomiast obejmuje również poprawki wstępnie oszacowanych niewiadomych, które zwiększają dokładność uzgadniania. Uogólnioną funkcję celu w postaci macierzowej można zapisać następująco:

$$(\hat{x} - x^{0})^{T} M_{X}^{-1}(\hat{x} - x^{0}) + (\hat{y} - y^{0})^{T} M_{Y}^{-1}(\hat{y} - y^{0}) \to \min$$
(132)

gdzie:

 M_X - macierz kowariancji wielkości mierzonych,

 M_Y - macierz kowariancji oszacowanych niewiadomych

 \hat{Y} - wektor wyników pomiaru,

 y^0 - wektor wyników oszacowania wielkości niewiadomych.

6.2. OBLICZENIA NAJBARDZIEJ WIARYGODNYCH WYNIKÓW POMIARÓW I OBLICZEŃ

Wykonano obliczenia korygujące wyniki pomiarów i obliczeń metodą uzgadniania bilansów. Korygowano następujące wielkości: strumień objętości gazu ziemnego, tlenu i azotu, udziały składników w gazie ziemnym, udziały składników w spalinach, strumień spalin suchych, strumień ozonu oraz stosunek nadmiaru powietrza.

Obliczenia uwiarygodnienia (walidacji) eksperymentalnych danych pomiarowych przeprowadzono z wykorzystaniem udostępnionego programu komputerowego [**P**1]. Równaniami warunków – ograniczeniami ekstremum warunkowego w rozwiązywanym zadaniu wyrównawczym są równania bilansów pierwiastków węgla, azotu oraz połączonego bilansu tlenu i wodoru w procesie spalania.

Przykładowe wyniki uwiarygodnienia wyników pomiarów i obliczeń procesu spalania gazu ziemnego w syntetycznym powietrzu z dodatkiem ozonu zamieszczono w tablicy 6.1. Strumień objętości spalanego gazu wynosił 39.35 dm³/h, co odpowiadało obciążeniu cieplnemu komory spalania 390 W. Spalanie prowadzono ze stosunkiem nadmiaru powietrza $\lambda = 1.06$, natomiast dodatek ozonu do utleniacza wynosił 9.83 mgO₃/dm³(N₂+O₂), co

odpowiadało stężeniu ozonu w utleniaczu 4591 ppm. Obliczenia wykazały, że uwiarygodnione wyniki pomiarów mieszczą się w granicach testu statystycznego [94, 95].

Procedurą uzgadniania objęto wszystkie wyniki pomiarów i obliczeń wykorzystane w obliczeniach przeprowadzonych na podstawie modelu matematycznego tworzenia i redukcji NO. Tablica 6.1. Przykładowe wyniki uzgadniania wyników pomiarów i obliczeń procesu wykonane dla spalania gazu ziemnego ze stosunkiem nadmiaru powietrza 1.1357 z dodatkiem 9.43 mgO₃/dm³(N₂+O₂) (21 ppm) w reaktorze pracującym z obciążeniem cieplnym 390 W

Wielkości pomiaru lub obliczeń	Jednostka	Wynik pomiaru lub obliczeń	Założona niepewność pomiaru	Wynik uwiarygodniony	Poprawka pomiaru lub niewiadomej	Niepewność po uwiarygodnieniu	Test statystyczny poprawek (<1.96)
strumień gazu	dm^3/h	39.35	0.8	39.5008691	0.1508691	0.75070735	0.54568789
strumień tlenu	dm^3/h	85.769	7	78.42546678	-7.34353322	1.85636008	1.08803321
strumień azotu	dm^3/h	305.35	20.6	308.9252074	3.5752074	8.43147555	0.1902163
udział CH4 w gazie	$\mathrm{m}^{3}/\mathrm{m}^{3}$	0.95844	0.00951137	0.95928879	0.00084879	0.00938361	0.28220144
udział C ₂ H ₆ w gazie	m^3/m^3	0.01177	0.00122708	0.01179391	0.00002391	0.00122608	0.06162964
udział C ₃ H ₈ w gazie	m^3/m^3	0.00271	0.0006283	0.00271884	0.00000884	0.00062801	0.04447095
udział CO ₂ w gazie	m^3/m^3	0.00208	0.00095817	0.00207803	-0.00000197	0.00095809	0.0065061
udział N ₂ w gazie	$\mathrm{m}^{3}/\mathrm{m}^{3}$	0.02314	0.00904744	0.02316714	0.00002714	0.00904631	0.00948499
udział O ₂ w gazie	$\mathrm{m}^{3}/\mathrm{m}^{3}$	0.00068	0.00022678	0.0006797	-0.000003	0.00022678	0.00413418
udział CO w spalinach	$\mathrm{m}^{3}/\mathrm{m}^{3}$	0	0.001	0	0	0.001	0
udział CO ₂ w spalinach	m^3/m^3	0.1119	0.002	0.11198837	0.00008837	0.00192155	0.13972197
udział O ₂ w spalinach	m^3/m^3	0.00775	0.00221	0.00806349	0.00031349	0.00219325	0.44856439
udział NO w spalinach	m^3/m^3	0.00003786	0.00000022	0.00003786	0	0.00000022	0.00002036
udział N0 ₂ w spalinach	m^{3}/m^{3}	0	0	0	0	0	0
strumień spalin suchych	dm^3/h	350.70977614	25.35488807	352.10445623	1.39468009	9.07028282	0.00796413
strumień ozonu	dm^3/h	1.788009	0.15428135	1.7826581	-0.0053509	0.15420294	0.10967652
Stosunek nadmiaru powietrza λ		1.13570042	0.22714008	1.03636708	-0.0993334	0.00989547	0.43773754
udział C4H ₁₀ w gazie	m^3/m^3	0.000871	0.00022147	0.00087242	0.00000142	0.00022144	0.0202276
udział C ₅ H ₁₂ w gazie	m^3/m^3	0.000157	0.00007868	0.00015722	0.00000022	0.00007868	0.00880342
udział C ₆ H ₁₄ w gazie	m^3/m^3	0.000143	0.00007868	0.00014326	0.00000026	0.00007868	0.01042067

7. MODEL MATEMATYCZNY TWORZENIA I REDUKCJI NO

Spalanie jest bardzo istotnym zjawiskiem pozyskiwania energii. Jednocześnie jest to niezwykle złożony proces pod względem reakcji chemicznych, przepływu ciepła, przepływu masy, turbulencji i wielu innych czynników. Matematyczny opis kinetyki reakcji chemicznych procesu spalania gazów pozwala na przeprowadzenie obliczeń numerycznych, które dają odpowiedź na pytania związane z zagadnieniami procesu.

Reakcje chemiczne w fazie gazowej zachodzą zawsze w mieszaninach kilku składników. W zależności od liczby substratów rozróżnia się reakcje jedno-, dwu- i trójcząsteczkowe. Każda reakcja może zachodzić w dwu kierunkach. Reakcją odwrotną nazywamy reakcję przebiegającą w kierunku przeciwnym. Im większe jest stężenie każdego z substratów tym większe występuje prawdopodobieństwo zaistnienia zderzenia pomiędzy cząstkami. Szybkość reakcji chemicznej jest zmianą stężenia molowego substratów w czasie proporcjonalną do iloczynu stężenia molowego wszystkich substratów. Jeżeli reakcja prosta opisana jest równaniem

$$v_{S1} S_1 + v_{S2} S_2 + v_{S3} S_3 + \dots \rightarrow v_{P1} P_1 + v_{P2} P_2 + v_{P3} P_3 + \dots$$
(133)

gdzie v - liczba cząsteczek występująca w równaniu stechiometrycznym,

- S liczba substratów,
- P liczba produktów,

to szybkość zmian stężenia molowego składnika j - tego substratu opisuje wzór

$$\frac{dC_{sj}}{d\tau} = -v_{sj} k_f \prod_{i=1}^{n_s} C_{si}^{v_{si}}$$
(134)

gdzie:

ns - liczba substratów,

 k_f - stała szybkości reakcji odwracalnej w prawo,

 C_{Si} – stężenie substratów reakcji.

Równocześnie zachodzi reakcja odwrotna, która przeciwdziała spadkowi stężenia substratów, Różnica szybkości reakcji prostej i odwrotnej to wypadkowa szybkość zmian stężenia substratów

$$\frac{\mathrm{d}C_{Sj}}{\mathrm{d}\tau} = v_{Sj} (k_b \prod_{i=1}^{n_p} C_{Pi}^{v_{Pi}} - k_f \prod_{i=1}^{n_s} C_{Si}^{v_{Si}})$$
(135)

gdzie:

 k_b - stała szybkości reakcji odwracalnej w lewo,

 C_{Pi} – stężenie produktów reakcji.

Jeżeli w układzie zachodzi więcej reakcji, w której bierze udział dany związek. to sumaryczna szybkość zmian jest sumą szybkości wszystkich reakcji według wzoru (135). Jest to intensywność tworzenia związku chemicznego w *i* - tej reakcji zwana źródłem substancji $\dot{\omega}_i$ w kmol/(m³·s) według wzoru

$$\dot{\omega}_{i} = \frac{\mathrm{d}C_{i}}{\mathrm{d}\tau} = \sum_{k=1}^{r} \left[(\Delta \nu_{k} (k_{b} \prod_{i=1}^{n_{p}} C_{Pi}^{\nu Pi} - k_{f} \prod_{i=1}^{n_{s}} C_{Si}^{\nu Si}) \right]$$
(136)

gdzie r – liczba reakcji chemicznych.

Zależność na stałą szybkości reakcji chemicznej wyraża zmodyfikowane równanie Arrheniusa w następującej postaci:

$$k = A T^{b} \exp(\frac{-E}{RT})$$
(137)

gdzie:

A, b – stałe dla danej reakcji,

T – temperatura, K,

E – energia aktywacji, kJ/kmol,

R - uniwersalna stała gazowa, R = 8.314 kJ/(kmol K).

Propagacja frontu spalania opiera się na dyfuzji ciepła i masy - bez tych procesów płomień nie może propagować i w efekcie uzyskuje się rozwiązanie zimne, czyli bez reakcji.

Do obliczeń badanego układu przyjęto model reaktora tłokowego, czyli takiego, w którym przepływ reagentów zachodzi bez procesu mieszania. Założono, że proces jest prowadzony w sposób izobaryczny, a wnikanie ciepła pomiędzy spalinami a ścianami kanału opisane jest prawem Newtona. Przy takim założeniu współczynnik wnikania ciepła ma stałą i znaną wartość, a strumień dyfuzji masy i ciepła jest pomijalnie mały w porównaniu do strumienia

konwekcyjnego. Pozwala to na sformułowanie równań różniczkowych opisujących kinetykę reakcji chemicznych procesu spalania, co umożliwia zamodelowanie stężenia produktów reakcji spalania.

Schemat modelu tłokowego przedstawiono na rys. 7.1.

Rys. 7.1. Schemat modelu tłokowego [66]

Równanie bilansu masy i – tej cząsteczki uczestniczącej w procesie chemicznym dla elementarnie małej długości kanału dx jest następujące:

$$\dot{m}_{i,x} + \dot{m}_{i,dx} = \dot{m}_{i,x+dx}$$
(138)

$$(F w \rho g_i)_x + \frac{\mathrm{d}(F w \rho g_i)}{\mathrm{d}x} = (F w \rho g_i)_{x+\mathrm{d}x}$$
(139)

gdzie:

F - pole przekroju poprzecznego reaktora, m²,

w - prędkość gazu, m/s,

 ρ - gęstość gazu, kg/m³,

 g_i – udział masowy i - tego składnika.

Równanie bilansu masy dla *i*-tej substancji z częścią określającą produkcję tej substancji w reakcjach chemicznych jest następujące:

$$(F w \rho g_i)_x + \frac{\mathrm{d}(F w \rho g_i)}{\mathrm{d}x} dx = (F w \rho g_i)_x + V \dot{\omega}_i M_i$$
(140)

gdzie:

V - objętość odcinka kanału o długości dx, m³,

 $\dot{\omega}_i$ - intensywność tworzenia *i* – tego związku w reakcji chemicznej, kmol/(m³s),

 M_i - masa molowa *i* – tego składnika, kg/kmol.

Wprowadzając V = F dx do równania (140) jako objętość wycinka kanału o długości dx, w którym F to pole powierzchni przekroju kanału, dokonując uproszczeń i różniczkując otrzymuje się

$$F \dot{\omega}_i M_i = F w \rho \frac{\mathrm{d}g_i}{\mathrm{d}x}$$
(141)

Ostatecznie równanie różniczkowe opisujące zmianę udziału masowego i – tego związku wzdłuż kanału jest następujące:

$$\frac{\mathrm{d}g_i}{\mathrm{d}x} = \frac{\dot{\omega}_i M_i}{w\,\rho} \tag{142}$$

Bilans energii wycinka kanału opisuje równanie:

$$\dot{I}_{x+dx} = \dot{I}_x + \frac{\mathrm{d}\dot{I}}{\mathrm{d}x}dx \tag{143}$$

$$\frac{\mathrm{d}\dot{I}}{\mathrm{d}x}\mathrm{d}x = \alpha \left(T - T_{w}\right)O \,dx\tag{144}$$

gdzie:

 \dot{I} - strumień entalpii, kW,

- α współczynnik wnikania ciepła od spalin do ścian, kW/(m² K),
- T_w temperatura ścian kanału, K,
- *T* temperatura spalin, K,
- O- obwód kanału, m.

Powierzchnie wymiany ciepła kanału na odcinku dx wyraża iloczyn $O \cdot dx$. Równanie po przekształceniach jest następujące:

$$\frac{\mathrm{d}\dot{I}}{\mathrm{d}x} = O \alpha \left(T_w - T\right) \tag{145}$$

Uwzględniając strumień entalpii płynącej strugi, który jest równy iloczynowi strumienia masy i entalpii właściwej

$$\dot{I} = \dot{m}\,i = F\,w\,\rho\,i = F\,w\,\rho\sum(g_i\,i_i) \tag{146}$$

Wprowadzając równanie (146) do (145) otrzymuje się:

$$\frac{\mathrm{d}(F \ w \ \rho \sum (g_i \ i_i))}{\mathrm{d}x} = O \ \alpha \ (T_w - T)$$
(147)

Różniczkując lewą stronę równania (147) otrzymuje się

$$F w \rho \frac{\mathrm{d}(\sum(g_i i_i))}{\mathrm{d}x} + \sum g_i i_i \frac{\mathrm{d}(F w \rho)}{\mathrm{d}x} = O \alpha (T_w - T)$$
(148)

Wykonując różniczkowanie (148) i uwzględniając, że strumień masy wzdłuż kanału jest jednakowy, co oznacza, że

$$\frac{\mathrm{d}(F w \,\rho)}{\mathrm{d}x} = 0 \tag{149}$$

otrzymuje się równanie

$$F w \rho \sum g_i \frac{\mathrm{d}i_i}{\mathrm{d}x} + F w \rho \sum i_i \frac{\mathrm{d}g_i}{\mathrm{d}x} = O \alpha (T_w - T)$$
(150)

Pochodna entalpii związku i – tego po długości kanału wynosi:

$$\frac{\mathrm{d}i_i}{\mathrm{d}x} = \frac{\mathrm{d}i_i}{\mathrm{d}T}\frac{\mathrm{d}T}{\mathrm{d}x} = c_{pi}\frac{\mathrm{d}T}{\mathrm{d}x}$$
(151)

Wprowadzając (151) do (150) otrzymujemy:

$$F w \rho \frac{\mathrm{d}T}{\mathrm{d}x} \sum (g_i c_{pi}) + F w \rho \sum i_i \frac{\mathrm{d}g_i}{\mathrm{d}x} = O \alpha (T_w - T)$$
(152)

Po przekształceniach ostatecznie otrzymujemy równanie określające pochodną temperatury wzdłuż kanału w postaci

$$\frac{\mathrm{d}T}{\mathrm{d}x} = \frac{O \ \alpha \left(T_w - T\right)}{F \ w \ \rho \sum \left(g_i \ c_{pi}\right)} - \frac{\sum i_i \frac{\mathrm{d}g_i}{\mathrm{d}x}}{\sum \left(g_i \ c_{pi}\right)}$$
(153)

Prędkość przepływu gazu wzdłuż kanału zmienia się wraz ze zmieniającą się gęstością. Przy założeniu, że przekrój kanału jest stały, różniczkując równanie (149) i przekształcając je otrzymujemy pochodną prędkości względem długości kanału:

$$\frac{\mathrm{d}w}{\mathrm{d}x} = -\frac{w}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}x} \tag{154}$$

Pochodną gęstości otrzymuje się przez zróżniczkowanie gęstości wyznaczonej z równania Clapeyrona zapisanego w postaci następującej zależności:

$$\rho = \frac{p M}{R T} = \frac{p \sum (z_i M_i)}{R T}$$
(155)

gdzie:

p – ciśnienie, Pa,

M – masa molowa gazu, kg/kmol.

Pochodna gęstości wynosi:

$$\frac{\mathrm{d}\rho}{\mathrm{d}x} = -\frac{p}{R} \left(\frac{\sum (z_i M_i)}{T^2} \frac{\mathrm{d}T}{\mathrm{d}x} - \frac{1}{T} \sum M_i \frac{\mathrm{d}z_i}{\mathrm{d}x} \right)$$
(156)

Układ równań różniczkowych opisujący model reaktora tłokowego wykorzystany w obliczeniach numerycznych jest następujący:

$$\frac{\mathrm{d}g_{\mathrm{i}}}{\mathrm{d}x} = \frac{\dot{\omega}_{i}M_{i}}{w\rho}$$

$$\frac{\mathrm{d}T}{\mathrm{d}x} = \frac{O\alpha\left(T_{w}-T\right)}{Fw\rho\sum\left(g_{i}c_{pi}\right)} - \frac{\sum_{i}i_{i}\frac{\mathrm{d}g_{\mathrm{i}}}{\mathrm{d}x}}{\sum\left(g_{i}c_{pi}\right)}$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}x} = -\frac{p}{R}\left(\frac{\sum\left(z_{i}M_{i}\right)}{T^{2}}\frac{\mathrm{d}T}{\mathrm{d}x} - \frac{1}{T}\sum_{i}M_{i}\frac{\mathrm{d}z_{\mathrm{i}}}{\mathrm{d}x}\right)$$

$$\frac{\mathrm{d}w}{\mathrm{d}x} = -\frac{w}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}x}$$
(157)

Jeżeli narzuci się temperaturę, to propagacja i stabilizacja układu jest ustalona. W takim przypadku brak dyfuzji jest uproszczeniem przy założeniu o jednowymiarowości układu. Przyjęcie znanej temperatury oznacza, że nie rozwiązywano równania różniczkowego określającego zmiany temperatury według równania (153).

Do obliczeń przyjęto, że reaktor jest zasilany mieszanką powietrza z ozonem i metanem. Pełny schemat kinetyki spalania metanu został zaczerpnięty z dostępnej w sieci wersji 1.5 z 31.03.2001 prezentowanej na stronie internetowej Uniwersytetu w Leeds [83, 85]. Schemat
kinetyki spalania metanu został zmodyfikowany o równania kinetyki chemicznej występujących reakcji z ozonem.

Mechanizm obejmuje 6 pierwiastków (wodór, węgiel, tlen, azot, argon i hel) i 58 związków chemicznych oraz 352 reakcje chemiczne. W załączniku zamieszczono szczegółowy schemat reakcji chemicznych ze stałymi kinetycznymi. Rekcje kinetyki spalania metanu w powietrzu z ozonem zostały zapisane w postaci równań dla wszystkich analizowanych związków chemicznych tworząc układ równań. W celu rozwiązania układu równań należy zastosować obliczenia numeryczne. W pracy zastosowano pakiet programów CHEMKIN II napisany w języku programowania FORTRAN 77 [66, 84].

Program do przeprowadzenia procedur numerycznych składa się z:

- programu właściwego r.exe,
- programu akceptującego zmiany wprowadzane do reakcji mechanizmu kinetyki reakcji chemicznych uczestniczących w procesie do zbioru chem.bin I.exe,
- zbioru zawierającego zakodowany mechanizm spalania metanu z ozonem chem.bin,
- zbioru zawierającego dane termochemiczne związków therm.dat,
- zbioru interpretującego zakodowany mechanizm spalania metanu z ozonem w postaci tekstowej - chem.inp,
- zbioru wyjściowego chem.out,
- zbioru definiującego dane dane.dat,
- zbioru informującego o błędach występujących w trakcie obliczeń error.dat,
- zbioru zapisującego wyniki procedur obliczeniowych wynik.dat.

Danymi wejściowymi do programu są:

- rodzaj i stężenie substratów,
- prędkość początkowa substratów,
- ciśnienie substratów,
- rozkład temperatury rzeczywistej od palnika,
- parametry geometryczne,
- koniec całkowania i krok obliczeń.

Ostatecznie otrzymuje się przebiegi stężeń i prędkości wybranych składników w funkcji odległości od palnika.

7.1. DOBÓR RÓWNAŃ KINETYKI SPALANIA METANU W OBECNOŚCI OZONU

Schemat kinetyki spalania metanu został zmodyfikowany o równania kinetyki chemicznej występujących reakcji z ozonem w procesie spalania gazu ziemnego. Reakcje, które zostały zastosowane w modelu matematycznym przedstawiono w tablicy 7.1.

Deskois	А,	b	Е,
кеаксја	cm ³ /(mol·s)		kJ/mol
$O_3 + H \cdot \xrightarrow{k_1} O_2 + OH \cdot$	8.43·10 ¹³	0	3.9
$O_3 + OH \cdot \xrightarrow{k_2} O_2 + HO_2 \cdot$	$1.15 \cdot 10^{12}$	0	8.31
$O_3 + H_2 O \xrightarrow{k_3} O_2 + H_2 O_2 \cdot$	6.2.10	0	0
$O_3 + HO_2 \xrightarrow{k_4} O_2 + O_2 + OH \cdot$	9.43·10 ⁹	0	4.99
$O_3 + CO \xrightarrow{k_3} O_2 + CO_2$	$6.02 \cdot 10^2$	0	0
$O_3 + N \cdot \xrightarrow{k_6} O_2 + NO$	6·10 ⁷	0	0
$O_3 + NO \xrightarrow{k_7} NO_2 + O_2$	$1.08 \cdot 10^{12}$	0	11.39
$O_3 + NO_2 \xrightarrow{k_8} O_2 + NO_3$	$7.22 \cdot 10^{10}$	0	20.38
$O_3 \xrightarrow{k_9} O_2 + O \cdot$	7.6·10 ¹²	0	102.655
$O_3 + M \xrightarrow{k_{10}} O_2 + O \cdot + M$	5.8·10 ¹⁴	0	96.99
$O_3 + O \cdot \xrightarrow{k_{11}} O_2 + O_2$	$2.4 \cdot 10^{13}$	0	23.46
$CH_3 + O_3 \xrightarrow{k_{12}} CH_3O \cdot + O_2$	$2.9 \cdot 10^{12}$	0	1.6
$HCO \cdot + O_3 \xrightarrow{k_{13}} H \cdot + CO_2 + O_2$	5.1011	0	0

Tablica 7.1. Współczynniki szybkości reakcji z ozonem [1, 2, 16, 50, 58, 60, 72, 75]

Pełny mechanizm kinetyki procesu spalania metanu uzupełniony o reakcje z ozonem zamieszczony został w załączniku 1.

7.2. WYNIKI OBLICZEŃ STĘŻENIA NO

Obliczenia numeryczne modelu spalania metanu z utleniaczem wzbogaconym w ozon przeprowadzono dla uwiarygodnionych przez uzgadnianie danych z własnych badań eksperymentalnych.

Przyjęto następujące dane do obliczeń:

- strumień objętości gazu ziemnego 39.5 dm³/h, co odpowiadało cieplnemu obciążeniu komory spalania 390 W,
- stosunek nadmiaru powietrza λ =1.06,
- ilość ozonu w stosunku do powietrza od 0 do 9.83 mgO₃/dm³ powietrza, co odpowiadało stężeniu O₃ w granicach 0 ÷ 4591 ppm,

Jako zmienną niezależną w obliczeniach przyjęto czas przebiegu reakcji (lub odległość od wylotu z palnika).

Przykładowe wyniki przedstawiono na rys. 7.2 do 7.4.

Rys. 7.2 przedstawia czasową zależność wytwarzania NO w funkcji ilości ozonu w utleniaczu.

Rys. 7.3 przedstawia zmierzoną temperaturę wzdłuż osi komory spalania oraz obliczoną prędkość przepływu reagentów wzdłuż osi komory spalania.

Rys. 7.4 przedstawia stężenie rodnika tlenu wzdłuż osi komory spalania.

Na rys. 7.5 porównano wyniki obliczeń modelowych z wynikami pomiarów ujęte w formie zależności stężenia NO i maksymalnej temperatury w komorze spalania od stosunku nadmiaru powietrza. Wyniki dotyczą procesu spalania gazu ziemnego z utleniaczem bez dodatku ozonu i utleniaczem wzbogaconym w ozon. Moc cieplna komory spalania wynosiła 390 W.

Rys. 7.6 i 7.7 umożliwiają porównanie wyników obliczeń modelowych i pomiarów ujętych w formie zależności stężenia tlenku azotu (II) (tlenku azotu) w spalinach od ilości dodawanego ozonu do utleniacza i stosunku nadmiaru powietrza.

SPALANIE GAZU ZIEMNEGO UTLENIACZ-SYNTETYCZNE POWIETRZE Z OZONEM

. Qp=390 W

utleniacz-mieszanina ozonowanego tlenu z azotem utleniacz-mieszanina tlenu z azotem

~

SPALANIE GAZU ZIEMNEGO UTLENIACZ-SYNTETYCZNE POWIETRZE Z OZONEM

Rys. 7.7. Wyniki obliczeń wpływu ozonu i stosunku nadmiaru powietrza na stężenie NO

7.3. ANALIZA WYNIKÓW OBLICZEŃ

Obliczenia modelowe wykazały, że dodatek ozonu do substratów powoduje wzrost stężenia NO w produktach spalania. Przykładowo wzrost stężenia O₃ od 0 do 9.83 mgO₃/dm³ powietrza powoduje około 2 - krotny wzrost zawartości NO w spalinach (rys. 7.2). Ponadto wraz ze wzrostem odległości od wylotu z palnika (czyli czasu reakcji) rośnie do pewnego stałego poziomu stężenie NO. Jest to oczywiste w konfrontacji ze zmianą rodnika tlenu w funkcji odległości od palnika (rys. 7.4). Rodnik tlenowy powstający z rozkładu O₃ na początku reakcji zużywa się następnie na utlenianie azotu i "produkcję" NO. Przyrost stężenia NO na początku płomienia tj. dla $x = 10 \div 40$ mm jest bardzo duży (rys. 7.2) i wynika z faktu wcześniejszego (x < 10 mm) "wyprodukowania" dużej ilości rodników tlenowych (rys. 7.4).

Przebiegi zmian prędkości oraz temperatury wzdłuż osi od wylotu z palnika są podobne, a wynika to z prawa zachowania ilości pędu oraz ilości energii [66]. Prędkość osiąga maksymalną wartość 0.0075 m/s w odległości ok. 10 mm od wylotu z palnika. Następnie prędkość maleje i od x = 90 mm, podobnie jak temperatura, stabilizuje się na stałym poziomie (rys. 7.3).

Prawo zachowania pędu ma przybliżony charakter. Mimo to można stwierdzić, że ze zmianą objętości właściwej gazów wynikającą z przebiegu reakcji chemicznej, tarcia hamującego strugę oraz zmniejszania się temperatury, równocześnie zachodzi spadek osiowej prędkości gazów.

Porównując wyniki obliczeń i pomiarów można stwierdzić, że:

- charakter zmian stężenia NO w spalinach występujący podczas badań i obliczeń modelowych jest podobny (rys. 7.5).
- pod względem ilościowym stężenie NO obliczone z modelu jest średnio ok. 2 krotnie niższe od wartości wynikających z eksperymentu (rys. 7.5 oraz 7.6 i 7.7). Uzasadnienie ilościowych rozbieżności jest następujące: w modelowaniu numerycznym procesu spalania przyjęto, że przepływ gazów przez przestrzeń reakcyjną ma charakter tłokowy. Założenie to wynikało z analizy rzeczywistego charakteru przebiegu eksperymentu polegającego na rozdzielnym, równoległym doprowadzaniu substratów spalania i małych prędkościach gazów. Wówczas można nie uwzględnić turbulentnej dyfuzji, co jest podstawą założenia tłokowego modelu przepływu. Inne modele znane z literatury np.: reaktor o stałej objętości lub reaktor idealnego wymieszania są bardziej odległe od warunków, w których przeprowadzono

niniejszy eksperyment. Dwukrotna różnica wyników pomiarów i obliczeń wynika z faktu, że w warunkach rzeczywistych podczas przepływu reagentów zawsze występują turbulencje, a występujące wówczas wiry zaburzają tłokowy model przepływu.

- wyniki obliczeń modelowych maksymalnej temperatury w komorze spalania są zbieżne z wynikami pomiarów szczególnie w opisie jakościowym (rys. 7.5).
 Maksimum temperatury bardziej koreluje z maksimum stężenia tlenku azotu (II) (tlenku azotu) i stosunkiem nadmiaru powietrza w obliczeniach numerycznych.
- wyniki obliczeń modelowych, podobnie jak wyniki pomiarów, jednoznacznie wykazały, że zwiększenie stężenia ozonu w utleniaczu powoduje wzrost stężenia tlenku azotu (II) (tlenku azotu) w spalinach (rys. 7.6 i 7.7).

8. PODSUMOWANIE I WNIOSKI

Przeprowadzono badania wpływu ozonu w substratach spalania na stężenie i emisję następujących produktów spalania gazu ziemnego: CO, C_nH_m , NO i NO₂.

Zaprojektowano i zbudowano stanowisko do badań wstępnych, które składało się z generatora ozonu, trzech reaktorów spalania (dwa rurowe i jeden z palnikiem Meckera) oraz układów pomiarowych temperatury w osi płomienia, strumienia objętości substratów spalania i składu chemicznego spalin. Dobór generatora determinował skalę i organizację prowadzenia procesu. Zaproponowano trzy warianty reaktora spalania. Opracowano metodykę badań oraz metodykę pomiarów: strumienia objętości substratów spalania, temperatury, składu chemicznego spalin, weryfikowania metodą chemiczną wskazań NO w analizatorach Infralyt EL i Land LANCOM Series II, stężenia NO₂ i stężenia ozonu.

Wykonano badania wstępne procesu spalania gazu ziemnego w trzech reaktorach spalania. Proces prowadzono w zaozonowanym powietrzu i - dla porównania - w powietrzu bez dodatku ozonu. Stosunek nadmiaru powietrza zmieniano w szerokim zakresie od 0.9 do 1.4. Ilość ozonu zmieniano od 3 do 8.84 mgO₃/dm³powietrza i od 9.1 do 13.74 mg O₃/dm³powietrza wzbogaconego w tlen. Badania prowadzono dla obciążeń cieplnych reaktorów o wynoszących 200, 260, 330 i 390 W.

Analiza wyników badań wstępnych pozwoliła na sprecyzowanie zakresu badań zasadniczych i wprowadzenie koniecznych zmian w stanowisku badawczym.

Do dalszych badań wybrano reaktor spalania z palnikiem Meckera, ze zmienionym materiałem komory spalania, oraz zmodyfikowano układ doprowadzenia powietrza spalania. Dla wyeliminowania powstających tlenków azotu podczas ozonowania powietrza do dalszych badań zastosowano powietrze syntetyczne, tj. mieszaninę azotu i tlenu z wygenerowanym ozonem.

W ramach badań zasadniczych uzupełniono metodykę pomiarów o pomiar strumienia azotu dla powietrza syntetycznego i temperatury ściany komory spalania. Przeanalizowano również wpływ zawartości ozonu w powietrzu dodawanym do spalania gazu ziemnego na stężenie i emisję CO, C_nH_m , NO i NO₂.

Badania prowadzono z dodatkiem ozonu od 1.25 do 14.02 $mgO_3/dm^3(N_2+O_2)$ przy obciążeniu cieplnym reaktora 260, 330 i 390 W spalając gaz ziemny w syntetycznym powietrzu ze stosunkiem nadmiaru powietrza od 0.8 do 1.4.

Uwiarygodniono wyniki badań eksperymentalnych metodą uzgadniania bilansów, które znajdowały się z 95% prawdopodobieństwem w granicach testu statystycznego przy założonym współczynniku ufności 1.96.

Uzupełniono model matematyczny procesu spalania metanu o kinetykę reakcji występujących w obecności ozonu i przeprowadzono obliczenia numeryczne. Porównano obliczenia z wynikami badań eksperymentalnych.

Analiza wykonanych badań i obliczeń pozwoliła na sformułowanie następujących podstawowych wniosków:

- Obecność ozonu w ilości od ok. 8 do ok. 14 mgO₃/dm³(N₂+O₂) w substratach spalania gazu ziemnego wpływa na:
 - stężenie i emisję tlenku węgla (II) (tlenku węgla) CO, które maleją wraz ze wzrostem stosunku nadmiaru powietrza oraz ze wzrostem stężenia ozonu w powietrzu, a rosną o 20% do 100% wraz ze wzrostem obciążenia cieplnego komory spalania.
 - stężenie i emisję tlenku azotu (II) (tlenku azotu) NO, które wykazują maksimum dla stosunku nadmiaru powietrza wynoszącego ok. 1.1, w niewielkim stopniu zależą od stężenia ozonu w powietrzu, natomiast rosną wraz ze wzrostem obciążenia cieplnego komory spalania o:
 - o 0.5% do 20% dla obciążenia komory spalania 260 W,
 - o 0.5% do 70% dla obciążenia komory spalania 330 W,
 - o 2% do 125% dla najwyższego obciążenia cieplnego komory spalania 390 W.
 - stężenie i emisję węglowodorów C_nH_m, które obserwowano tylko dla najniższego badanego stosunku nadmiaru powietrza wynoszącego ok. 0.8, maleją nieliniowo wraz ze wzrostem stężenia ozonu w powietrzu oraz wykazują maksimum przy obciążeniu cieplnym komory spalania wynoszącym 330 W. Zależności te można aproksymować wielomianem drugiego stopnia.
- Niewielkie stężenie tlenku azotu (IV) (dwutlenku azotu) powstającego podczas spalania gazu ziemnego (poniżej 1 ppm) nie pozwoliło na stwierdzenie zwiększenia ilości NO₂ w stosunku do NO w produktach spalania.
- 3. Obliczenia numeryczne, uzupełnione o model kinetyki chemicznej spalania metanu z zaozonowanym utleniaczem, z zastosowaniem uwiarygodnionych wyników pomiarów wykazały zbieżność z wynikami pomiarów jedynie w opisie jakościowym. Wyniki obliczeń modelowych, podobnie jak wyniki pomiarów, jednoznacznie wykazały, że zwiększenie stężenia ozonu w utleniaczu powoduje wzrost stężenia

tlenku azotu (II) (tlenku azotu) w spalinach. Pod względem ilościowym stężenie NO obliczone z modelu jest średnio ok. dwukrotnie niższe od wartości wynikających z eksperymentu. Ilościowe rozbieżności można tłumaczyć tym, że w modelu numerycznym procesu spalania przyjęto, iż przepływ gazów przez przestrzeń reakcyjną ma charakter tłokowy. W warunkach rzeczywistych podczas przepływu reagentów zawsze występują turbulencje, a tworzące się wówczas wiry zaburzają tłokowy model przepływu.

Dla pełnej oceny wpływu ozonu na proces spalania, wyniki uzyskane w pracy powinny być zweryfikowane w rzeczywistych warunkach spalania paliw w kotłach i piecach przemysłowych. Będzie to celem dalszych badań autora pracy.

Badania przedstawione w pracy sponsorowane były przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach projektu: 3 T10B 043 26.

LITERATURA

- 1. Atkinson R. et. Al.: Evaluated kinetic and photochemical data for atmosferic Chemistry: Supplement VI. J. Phys. Ref. Data., vol. 26, 6, 1997,
- Baulch Dl., Drysdale D.: Evaluated kinetics data for High Temperature Reaction. Butterworths, Londyn 1976,
- Bulewicz E. M.: Tlenki azotu powstające podczas spalania. W: Niskoemisyjne techniki spalania w energetyce. Red. Kordylewski, Oficyna Wyd. Pol. Wrocławskiej, Wrocław 2000,
- Bursa S., Stanisz-Lewicka M., Kicińska M., Kośmider J.: Dezodorydacja gazów i ścieków. Cześć I. Dezodoryzacja na drodze ozonowania. Politechnika Szczecińska, IInżChiChF, Szczecin1985,
- 5. Caprio V., Insola A., Lignola P.G.: Ozone Activated Low Temperature Combustion of Propane in CSTR. Combust. Sci. Technology, 35, 1984, pp.215-224,
- 6. Chomiak J.: Podstawowe problemy Spalania. PWN, Warszawa, 1981,
- Czujniki termometrów termoelektrycznych. Dokumentacja techniczno ruchowa. Krakowska Fabryka Aparatów Pomiarowych,
- 8. **deSilva L.M., Santana M., Boots J.**: Electrochemistry and green chemical processes: electrochemical ozone production. Quim.Nova, vol. 26, No 6, 2003, pp.880-883,
- 9. Ekckshlager K.: Błędy w analizie chemicznej. PWN, Warszaw 1974,
- 10. Glassman I.: Combustion. Second Edition, Academic Press. Inc. 1987,
- 11. **Golovitchev V.I. and Chomiak J.**: Evaluation of Ignition Improvers for Methane Autoignition. Proceeding of the 16-th International Colloquium on the Dynamics of Explosions and reactive Systems, Cracow, 1997, pp.565-568,
- Góral J.: Wpływ konstrukcji palnika i parametrów substratów na emisją tlenków azotu z wysokotemperaturowych pieców grzewczych opalanych gazem ziemnym. Praca doktorska. Pol.Śl., WIMiM, KEP, Katowice 2005,
- Górka P., Kowalski S., Kozielska B., Melaniuk-Wolny E., Oparczyk G., Zajusz-Zubek
 E., Żak M.: Badania zanieczyszczeń powietrza. Wyd. Pol. Śl., Gliwice 2000,
- 14. Greń J.: Statystyka matematyczna. Modele i zadania. Wyd. VII. PWN Warszawa. 1984,
- Hayhurst N., Vince I. M.: The Origin and Nature of "Promt" Nitric Oxide in Flames. Combustion and Flame, 50, 1983, pp. 41-57,
- Heimerl J.M., Coffee T.P.: The detailed modeling of premixed, laminar steady flames.
 I. Ozon. Combustion and Flame, 39, 1980, pp.301-315,

- Horváth M., Bilitzky L., and Hüttner J.: Ozone. Oxygen and Dissousgas Company, Akadémiai Kiadó, Budapest 1985,
- Hunderup J. W., Roby R. J.:An Experimental investigation of the conversion NO to NO₂ at High Pressure Transaction of ASME, 118/96,
- 19. Instrukcja do ćwiczeń z chemii nieorganicznej. Politechnika Śląska, Gliwice,
- 20. Instrukcja obsługi Infralyt El. Saxon
- 21. Instrukcja obsługi laboratoryjnego generatora ozonu. Lublin 2004,
- 22. Instrukcja obsługi LANCOM Series II Land Combustion.Nr 770.030. Sheffield, UK,
- 23. Instrukcja obsługi. Multimetr cyfrowy MY 68.,
- 24. Jarosiński J.: Techniki Czystego Spalania. WNT, Warszawa 1996,
- Kitayama J., Kuzumoto M.: Theoretical and experimental study on ozone generation characteristics of an oxygen-fed ozone generator in silent discharge. J. Phys. D: Appl. Phys. 30, 1997, pp. 2453-2461,
- 26. Kordylewski W. i in.: Spalanie i paliwa. Oficyna Wyd. Pol. Wrocławskiej, Wrocław 2001,
- Kostowski E. praca zbiorowa: Zbiór zadań z przepływu ciepła. Wyd. Pol. Śl., Gliwice 2003, 200-201
- 28. Kowalewicz A.: Podstawy procesów spalani. WNT, Warszawa 2000,
- 29. **Machocki A.**: Technologia chemiczna. Ćwiczenia laboratoryjne. Wyd. U. Marii Curie-Skłodowskiej, Lublin 2002,
- 30. Masschelein W.J.: Ozone generation: in use of air, oxygen or air symphonized with oxygen. Ozone Sci. Eng., 20, 1998, pp.191-203,
- 31. Michałowski S., Wańkowicz K.: Termodynamika procesowa, WNT, Warszawa 1999,
- Miller J.A., Bowman C.T.: Mechanism and modelling of nitrogen chemistry in combustion. Pog. Energy Combust. Sci. Vol. 15, 1989, pp. 287 – 338,
- Minczewski J., Marczenko Z.: Chemia analityczna.2. Chemiczne metody analizy ilościowej. Wydaw. Naukowe PWN, Warszawa 1997,
- 34. Nasser S.H., Morris S., and James S.: A Novel Fuel Efficient and Emission Abatement Technique for Internal Combustion engines. SAE Paper 982561, 1998,
- Nebel C.: Ozone. In: Kir-Othemr, Encyclopaedia of Chemical Technology. 3rd Ed. Vol. 16, John Willey and Sons, New Jersey, 1981, pp. 683-713,
- Nomaguchi T. and Koda S.: Spark Ignition of Methane and Methanol in Ozonized Air. Twenty Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh PA, 1988, pp.1677-1682,

- Odlanicki-Poczobut T.: Badania nad powstawaniem dwutlenku azotu podczas spalania gazu. Praca doktorska. ITC, Pol. Śl., Gliwice 2004,
- Ozonek J., Pollo I. Sposoby obniżenia jednostkowego zużycia energii podczas syntezy ozonu dla technologii w ochronie środowiska, w: Technologia chemiczna na przełomie wieków, Gliwice 2000, pp. 291-294,
- Ozonek J., Wroński M., Pollo I.: Ozone synthesis mechanism and technology. Polish Journal of Chemical Technology, 2, 2000, pp.19-24,
- Ozonek J.: Analiza procesów wytwarzania ozonu dla potrzeb ochrony środowiska. Komitet Inżynierii Środowiska PAN, Lublin 2003,
- 41. Ozonek J.: Laboratorium Syntezy Ozonu. Wydaw. Uczelniane Pol. Lubelskiej 1993,
- Petela R., Wilk K., Strzeszewski R.: Badanie palnika wirowego 20/40z typu Biprohut. Gospodarka Paliwami i Energią. 2, 1975, 5-8,
- Petela R.: Paliwa i ich spalanie. Część trzecia: płomień. Skrypt uczelniany nr 1044 Pol.
 Śl., Gliwice 1982, 64-74,
- 44. **Pollo I., Ozonek J., Wroński M.**: Ozone synthesis in ozonizers with thin dielectric layers, Proceedings of Technical Meeting IEE of Japan, Saga 1997, pp. 81-86,
- 45. **Pollo I., Rea M., Wroński M**.: Usuwanie zanieczyszczeń gazowych z gazów odlotowych przy wykorzystaniu impulsowych wyładowań koronowych. Chemia i Inżynieria Ekologiczna, vol. 3, nr 3, 1996, pp. 431-439,
- 46. **Pollo I.:** Ozon. Własności, produkcja, zastosowanie. Skrypt Uczelniany Politechniki Lubelskiej, Lublin 1983,
- 47. Polski Komitet Normalizacji, Miar i Jakości. Norma PN-89 Z-04092/08: Ochrona czystości powietrza. Badanie zawartości kwasu azotowego i tlenków azotu. Oznaczanie dwutlenku azotu w powietrzu atmosferycznym (imisja) metodą spektrofotometryczną z pasywnym pobieraniem próbek,
- Polski Komitet Normalizacji, Miar i Jakości. Norma PN-90 Z-04092/05: Ochrona czystości powietrza. Badanie zawartości kwasu azotowego i tlenków azotu. Oznaczanie tlenku, dwutlenku i sumy tlenków azotu w gazach odlotowych (emisja),
- Polski Komitet Normalizacji, Miar i Jakości. Norma PN-EN 60584-2; PN-IEC 584-2: Termoelementy. Tolerancje,
- Puri. I.: The removal of NO by low-temperature O₃ oxidation. Combustion and flame.
 102, 1995, pp. 512-518,
- 51. **Ražnjević K.**: Tablice cieplne z wykresami. Dane liczbowe w układzie technicznym i międzynarodowym. WNT, Warszawa1966,

- 52. **Riedl W., Młodziński B., Bober M.**: Aparatura i przyrządy kontrolno-pomiarowe w przemyśle chemicznym". Cz I. PWSZ, Warszawa 1973, pp. 248-253,
- 53. **Rietjens I.**: Ozone and nitrogen dioxide. A study on mechanisms of toxic action and cellular defense. Praca doktorska. Uniwersytet Wageningen 1986,
- 54. Rotametry szklane laboratoryjne ROL. Instrukcja Obsługi. Zakłady automatyki chemicznej METALCHEM, nr 781, Gliwice 1979,
- Rotzoll G.: Mass Spectrometric Investigation and Computer Modelling of the CH₄-O₂-O₃ Reaction from 480 to 830 K. J. Phys. Chem., 90, 1986, pp.677-683,
- 56. **Rotzoll G.**: MassSpecroscopic Investigation of the $i-C_4H_{10}-O_2-O_3$ Reaction and Implications for the reaction Mechanism. Combustion and Flame, 69, 1987, pp.229-233,
- 57. Rozporządzenie Ministra Środowiska z dnia 30 lipca 2001 r. w sprawie wprowadzenia do powietrza substancji zanieczyszczających z procesów technologicznych i operacji technicznych. Dz. U. 2001.87.957 z dnia 24 sierpnia 2001 r.,
- 58. **Seo A.**: Study on the removal of unburned hydrocarbon by ozone, Annual Technical Report Digest, Vol. 9, 1999,
- 59. Sienko M. J., Plane R.A.: Chemia. Podstawy i zastosowania. WNT, Warszawa 1992,
- 60. **Simonalis R., Heicklen J.**:Reaction of CH₃, CH₃O and CH₃O₂ radicals with O₃. J. Phys. Chem., vol. 79, 4, 1975, pp. 298-302,
- Słupek S., Wilk M.: Wpływ dodatku ozonu do substratów spalania na proces formowania NO_x i CO w płomieniu gazu ziemnego. Gospodarka cieplna i eksploatacja pieców przemysłowych, XII Ogólnopolska Konferencja Naukowo-Techniczna, Poraj 29-30 wrzesień 2005.
- 62. Sochor B., Luciński J., Michalski L.: Regulacja i regulatory temperatury w elektrycznych urządzeniach grzejnych. PWT, Warszawa
- 63. **Stawicka J.**: Kontrola analityczna syntezy ozonu metodą interferometryczną. Praca dyplomowa. Politechnika Śląska, Gliwice 1968,
- 64. Supniewki J. : Preparatyka nieorganiczna. PWN, Warszawa 1958,
- 65. **Szargut J.**: Analiza techniczna i ekonomiczna w energetyce przemysłowej. WNT, Warszawa 1983,
- Szlęk A.: Modelowanie matematyczne kinetyki chemicznej spalania gazów. Monografia. Wyd. Pol. Śl., Gliwice 2004,
- 67. **Tabata N., Tanaka M.**: Ozone generation in the future. Proc. Of 13th Ozone World Congress, vol. 2, Kyoto 1997, pp.883-840,

- 68. **Tacibana T., Hirata K., Nishida H. and Osada H.**: Effect of Ozone on Combustion in Compression Ignition engines. Combustion and flame, 85, 1991, pp.515-519,
- 69. Taylor J.: Wstęp do analizy błędu pomiarowego. PWN. Warszawa 1995,
- Telejko T.: Wstęp do metod opracowania wyników pomiarowych z przykładami. Uczelniane Wyd. Nauk.-Dydakt. AGH, Kraków 1999,
- Termoelementy Arkusz 1: Charakterystyki (IEC 584-1:1995). Norma europejska. CENELEC, nr ref. EN 60584-1:1995E,
- 72. **Toby S., Toby F.**: Kinetics and chemiluminescence in reaction of methane with heated ozone. J. Phys. Chem. 93, 1989, pp. 2453-2456,
- Tomeczek J., Gradoń B.: The role of Nitrous Oxide in the mechanism of thermal Nitric oxide formation within flame temperature range. Combust. Sci. Technology. Vol. 25, 1997, pp. 159-180,
- Warnatz J., Maas U., Dibble R. W.: Combustion. Physical and Chemical Fundaments, Pollutant Formation. Springer, Berlin, Heidelberg, New York 1996,
- 75. Warnatz J.: Calculation of the structure of laminar flat falmes I: Flame velocity of freely propagating ozone decomposition flames. Ber. Bunsenges. Phys. Chem., 82, 1978, pp. 193-200, Waszak S., Wacławik J.: Kontrola analityczna w przemyśle chemicznym. Analiza gazów. Tom II. PWT, Warszawa 1956,
- 77. Wilk K.: Badania dyfuzyjnych palników gazowych. Zeszyty Naukowe Pol. Śl. Z 85, Gliwice 1984,
- 78. Wilk R. K.: Low-emission combustion. Wyd. Pol. Śl., Gliwice 2002,
- 79. Wilk R. praca zbiorowa: Laboratorium techniki spalania. Wyd. Pol. Śl., Gliwice 2001, 120-121,
- Wroński M., Samiolovitch V.G., Pollo I.: Synthesis of NOx during ozone production from the air. Proc.of the Int. Ozone Symp."Application of ozone in water and waste water treatment", 263-272, Warszawa 1994,
- Yagi S. Tanaka M.: Mechanism of ozone generation in air fed ozonizers. J. Phys. D: Appl. Phys. 12, 1979, 1509-1520,
- 82. http://www.czaki.pl/czaki/pliki/m009/155_ch_ki_termopar.pdf,
- 83. http://garfield.chem.elte.hu/Combustion/Combustion.html
- 84. http://www.ca.sandia.gov/chemkin/
- 85. http://www.chem.leeds.ac.uk/Combustion/Combustion.html

Programy komputerowe:

- [P 1] M. Szega: Program w języku Fortran 95 uwiarygodniania danych pomiarowych z zastosowaniem wielogrupowej uogólnionej metody rachunku wyrównawczego z analizą statystyczną poprawek wyników pomiarów opracowany w oparciu o następującą literaturę:
- [P1]. 1. Pai, C. C. D., & Fisher, G. D.: Application of the Broyden's method to reconciliation of non-linearly constrained data. AICHE Journal, 34(5), 1988, 873,
- [P1]. 2. Szargut J. (red.): Rachunek wyrównawczy w technice cieplnej. Ossolineum, Wrocław 1985,
- [P 1]. 3. Szargut J., Kolenda Z., Styrylska T.: Justification of Measurement Results in Thermal Technology. Proceedings of the International Conference ECOS'96 Stockholm 1996, s.413-418,
- [P 1]. 4. Szega M.: Comparison of Methods of Analysis of the Quality of Measured Data in the Data Validation Algorithm. Proceedings of the 6-th International Carpathian Control Conference. Miskolc-Lillafüred, Hungary, 24-27 May, 2005. Vol. II, pp. 167-172,
- [P1]. 5. Szega M.: Wybrane zagadnienia rozwiązywania zadań wyrównawczych w technice cieplnej. Systems – Journal of Transdisciplinary Systems Science. (special issue) Vol.11. Tom 2, 2006. pp. 587-594,
- [P 1]. 6. Tamhane A.C., Mah R.S.H.: Data Reconciliation and Gross Error Detection in Chemical Process Networks. Technometrics, Nov. 1985, Vol. 27 No.4. 409-422,
- [P 1]. 7. Guide to the Expression of Uncertainty in Measurement. International Organization for Standardization, 1993,
- [P 1]. 8. IMSL Fortran 90 MP Library version 4.01 for Microsoft Windows NT(R) and Microsoft Windows95(R). Copyright (c) 1999, an unpublished work by Visual Numerics, Inc.,
- [P 1]. 9. VDI-Richtlinien. Verein Deutscher Ingenieure. Messunsicherheiten bei ungen an energie- und kraftwerkstechnischen Anlagen, Grundlagen, VDI 2048, Blatt 1. Oktober 2000,
- [P 1]. 10. VDI-Richtlinien. Verein Deutscher Ingenieure. Messunsicherheiten bei Abnahmemessungen an energie- und kraftwerkstechnischen Anlagen, Beispiele, VDI 2048, Blatt 2. Dezember 2001.

SPIS RYSUNKÓW

- **Rys.2.1.** Schemat reakcji formowania się tlenku azotu (II) (tlenku azotu) NO wg mechanizmu paliwowego [35]
- Rys. 2.2. Struktura cząsteczki ozonu
- Rys. 2.3. Geometria i wiązania cząsteczki ozonu [41]
- **Rys. 2.4.** Wpływ dodatku ozonu w ppm pokazujący zależność pomiędzy ciśnieniem, a kątem obrotu wału korbowego w silniku spalinowym
- **Rys. 2.5.** Wpływ dodatku ozonu na stężenie tlenku węgla (II) tlenku węgla CO w silniku spalinowym [68]
- **Rys. 2.6.** Wpływ dodatku ozonu na stężenie węglowodorów C_nH_m w silniku spalinowym [68]
- **Rys. 2.7.** Wpływ dodatku ozonu na stężenie tlenków azotu NO_x w silniku spalinowym [68]
- Rys. 2.8. Wpływ dodatku ozonu na stężenie sadzy w silniku spalinowym [68]
- Rys. 4.1. Schemat ideowy stanowiska badawczego
- **Rys. 4.2.** Zależność stężenia ozonu od rodzaju gazu zasilającego lampę ultrafioletową pracującą przy napięciu zasilania 12 V [autor]
- **Rys. 4.3.** Instalacja do syntezy ozonu.
 - 1 generator ozonu, 2 rotametr, 3 zawór, 4 absorber pyłów, 5 absorber CO₂,
 6 absorber H₂O, 7 manometr, 8 transformator wysokiego napięcia, 9 autotransformator, 10 kilowoltomierz, 11 amperomierz

Rys. 4.4. Generator ozonu.

1 – elektroda uziemiona, 2 – elektroda wysokonapięciowa, 3 – pokrywy centrujące, 4 – szczelina wyładowcza, 5 – warstwa dielektryka, 6 – płaszcz chłodzący [40]

- **Rys. 4.5.** Zależność stężenia ozonu od strumienia objętości powietrza i napięcia zasilającego ozonator
- **Rys. 4.6.** Zależność stężenia ozonu od napięcia zasilającego ozonator przy strumieniu objętości powietrza 92 dm³/h
- **Rys. 4.7.** Zależność stężenia ozonu od strumienia objętości tlenu przy napięciu zasilającym ozonator 6, 8, 10, 12 i 15 kV
- **Rys. 4.8.** Zależność stężenia ozonu od napięcia zasilającego ozonator przy strumieniu objętości tlenu 175 dm³/h
- Rys. 4.9. Zależność stężenia ozonu od strumienia objętości powietrza przy napięciu

zasilającym ozonator wynoszącym 15 kV

- **Rys. 4.10.** Zależność stężenia ozonu od stężenia tlenu w mieszaninie powietrza z tlenem przy strumieniu objętości powietrza 83 dm³/h i napięciu zasilania ozonatora 15 kV
- Rys. 4.11. Reaktor rurowy I
- Rys. 4.12. Reaktor rurowy II
- Rys. 4.13. Reaktor z przekonstruowanym palnikiem Meckera,

gdzie: 1 - komora mieszania, 2 – zawór wlotowy gazu ziemnego, 3 – dysza, 4 – nakrętka kontrująca, 5 – tarcza (1), 6 – łącznik, 7 – podstawa, 8 – pierścień teflonowy z otworami na wlot utleniacza, A, B – otwory dla powietrza spalania (utleniacza)

- **Rys. 4.14.** Krzywa wzorcowa przedstawiająca zależność absorbancji od zawartości jonów azotanowych (III) we wzorcach
- Rys. 4.15. Zestaw aparaturowy do aspiracyjnego pobierania spalin

S – sonda; F₁ – filtr z waty szklanej; F₂ – płuczka wypełniona octanem ołowiawym; p, p₁, p₂ – płuczki ze spiekiem szklanym o pojemności 100 cm³ zawierające 50 cm³ roztworu pochłaniającego; Ox₁, Ox₂ – płuczki ze spiekiem szklanym o pojemności 200 cm³ zawierające po 100 cm³ roztworu utleniającego; O – płuczka osuszająca wypełniona żelem krzemionkowym; V – rotametr; h – U – rurka wypełniona rtęcią; t_o – termometr; P – pompa

- **Rys. 4.16.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO w procesie spalania gazu ziemnego w reaktorze I
- **Rys. 4.17.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO w procesie spalania gazu ziemnego wzbogaconego w tlen w reaktorze I
- Rys. 4.18. Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO w procesie spalania gazu ziemnego w reaktorze II
- **Rys. 4.19.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO w procesie spalania gazu ziemnego wzbogaconego w tlen w reaktorze II
- **Rys. 4.20.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz temperaturę w procesie spalania gazu ziemnego w reaktorze z palnikiem Meckera
- **Rys. 4.21.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz temperaturę w procesie spalania gazu ziemnego w reaktorze z palnikiem Meckera
- **Rys. 4.22.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz temperaturę w procesie spalania gazu ziemnego w reaktorze z palnikiem Meckera
- Rys. 4.23. Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz

temperaturę w procesie spalania gazu ziemnego w reaktorze z palnikiem Meckera

Rys. 5.1. Schemat stanowiska badawczego.

1 – butla z azotem, 2 – butla z tlenem, 3 – manostat, 4 - układ oczyszczania tlenu, 5 – rotametr do pomiaru strumienia objętości tlenu, 6 – generator ozonu, 7– rotametr do pomiaru strumienia objętości azotu, 8 – mieszalnik azotu z tlenem 9 – rotametr do pomiaru strumienia objętości gazu ziemnego, 10 – palnik Meckera, 11 – komora spalania, 12 - obudowa z izolacją komory, 13 - czujnik pomiaru temperatury ściany komory, 14 – czujnik pomiaru temperatury w osi komory spalania, 15 – miliwoltomierz, 16 - odciągowa sonda spalin, 17 – wymrażarka pary wodnej, 18 – naczynie zbierające kondensat, 19 – analizator, 20 – kontrola składu chemicznego syntetycznego powietrza w analizatorze

Rys. 5.2. Schemat reaktora spalania.

1 - palnik Meckera, 2 - metalowy pierścień, 3 - termoizolacja dolnej części komory, 4 - płyta izolacyjna, 5 - termoizolacja z włókna ceramicznego, 6 metalowa obudowa, 7 - termoizolacja górnej części komory, 8 - sonda do poboru spalin, 9 - wylot spalin, 10 - blacha żaroodporna, T_1 , T_2 , T_3 , T_4 , T_5 - czujniki termoelektryczne do pomiaru temperatury powierzchni ściany, T_6 - czujnik termoelektryczny do pomiaru temperatury w osi płomienia

- **Rys. 5.3.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz temperaturę procesie spalania gazu ziemnego w reaktorze spalania
- **Rys. 5.4.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz temperaturę w procesie spalania gazu ziemnego w reaktorze spalania
- **Rys. 5.5.** Wpływ stężenia ozonu i stosunku nadmiaru powietrza na stężenie CO i NO oraz temperaturę w procesie spalania gazu ziemnego w reaktorze spalania
- Rys. 5.6. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję CO
- Rys. 5.7. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję CO
- Rys. 5.8. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję CO
- Rys. 5.9. Wpływ ozonu i stosunku nadmiaru powietrza na stopień dopalenia CO
- Rys. 5.10. Wpływ ozonu i stosunku nadmiaru powietrza na stopień dopalenia CO
- Rys. 5.11. Wpływ ozonu i stosunku nadmiaru powietrza na stopień dopalenia CO
- Rys. 5.12. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję NO
- Rys. 5.13. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję NO
- Rys. 5.14. Wpływ ozonu i stosunku nadmiaru powietrza na stężenie i emisję NO
- Rys. 5.15. Wpływ ozonu i obciążenia cieplnego reaktora na stężenie i emisję C_nH_m

- Rys. 5.16. Wpływ ozonu i obciążenia cieplnego reaktora na stopień dopalenia C_nH_m
- Rys. 7.1. Schemat modelu tłokowego [66]
- Rys. 7.2. Wpływ ozonu na stężenie NO w zależności od czasu i długości komory spalania
- Rys. 7.3. Wpływ ozonu na rozkład prędkości i temperatury wzdłuż komory spalania
- Rys. 7.4. Wpływ ozonu na generowanie się rodników tlenu
- Rys. 7.5. Wpływ ozonu na stężenie NO w zależności od czasu i długości komory spalania
- **Rys. 7.6.** Wyniki badań eksperymentalnych wpływu ozonu i stosunku nadmiaru powietrza na stężenie NO
- Rys. 7.7. Wyniki obliczeń wpływu ozonu i stosunku nadmiaru powietrza na stężenie NO

SPIS TABLIC

- **Tablica 2.1.**Współczynniki szybkości reakcji [78, 74]
- **Tablica 2.2.**Własności fizykochemiczne ozonu [40]
- **Tablica 2.3.**Potencjały utleniające wybranych cząstek utleniających [40]
- **Tablica 4.1.**Warunki pracy lampy ultrafioletowej
- **Tablica 4.2.**Parametry gazu ziemnego wysokometanowego GZ 50
- **Tablica 4.3.**Wzory do przeliczania wskazań rotametrów dla różnych gazów
- **Tablica 4.4.**Stężenie NO i NO2 w spalinach oznaczone metodą chemiczną [autor]
- Tablica 4.5.Wyniki pomiarów stężenia NO w spalinach przeprowadzonych metodą
chemiczną i pomiarów wykonanych przy pomocy analizatorów spalin
Infralyt EL i Land LANCOM Series II
- **Tablica 4.6.**Zakres badań wstępnych
- **Tablica 5.1.**Zakres badań zasadniczych
- **Tablica 5.2.**Obliczenia błędu pomiaru strumienia objętości gazów
- **Tablica 5.3.**Wyniki obliczeń błędu stosunku nadmiaru powietrza
- Tablica 5.4.Przykładowe obliczenia błędu dla zmierzonych maksymalnych stężeń
składników spalin analizatorem Infralyt EL
- **Tablica 5.5.**Przedziały ufności wyznaczone dla metody analitycznej
- Tablica 5.6.Przykładowe obliczenia błędu dla stężeń składników spalin odniesionych
do 3% O2
- **Tablica 5.7.** Obliczona poprawka temperatury dla procesu spalania gazu ziemnego w syntetycznym powietrzu w warunkach $\dot{V}_g = 39.35 \,\mathrm{dm^3/h}, \ \lambda = 1.1$ i $d_s = 0.0001 \,\mathrm{m}$
- Tablica 5.8.Wyznaczenie błędu temperatury wskazanej przez układ pomiarowy
temperatury
- **Tablica 5.9.**Przykładowe wyniki obliczeń błędu wyznaczania temperatury rzeczywistej
- Tablica 6.1. Przykładowe wyniki uzgadniania wyników pomiarów i obliczeń procesu wykonane dla spalania gazu ziemnego ze stosunkiem nadmiaru powietrza 1.1357 z dodatkiem 9.43 mgO₃/dm³(N₂+O₂) (21 ppm) w reaktorze pracującym z obciążeniem cieplnym 390 W
- **Tablica 7.1.** Współczynniki szybkości reakcji z ozonem [1, 2, 16, 50, 58, 60, 72, 75]

AKADEMIA GÓRNICZO-HUTNICZA

IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ INŻYNIERII METALI I INFORMATYKI PRZEMYSŁOWEJ

PRACA DOKTORSKA

mgr inż. Małgorzata Wilk

BADANIE WPŁYWU OZONU NA PROCES SPALANIA GAZU

Promotor

dr hab. inż. Andrzej Buczek

Kraków 2007

ZAŁĄCZNIKI

ZAŁĄCZNIK 1

Kinetyka procesu spalania metanu uzupełniona o reakcje z ozonem

			 EL	EMENTS	ATOMIC	-						
			CC	NSIDERED	WEIGHT							
			1	. н	1.00797	-						
			2	. 0	15.9994							
			3	. C	12.0112							
			4	. N	14.0067							
			5	. AR	39.9480	-						
		P	С									
		Р U	H A									
		A	R									
SPEC	IES	S	G	MOLECULA	R TEMPER	RATURE	ELE	MEN	тс	COUN	1L	
CONS	IDERED	Е	Е	WEIGHT	LOW	HIGH	Η	0	С	Ν	AR	
1.	 н2	 G		2.0159	 4 300	5000		0				
2.	CH4	G	0	16.0430	3 300	5000	4	0	1	0	0	
3.	C2H2	G	0	26.0382	4 300	5000	2	0	2	0	0	
4.	C2H4	G	0	28.0541	8 300	5000	4	0	2	0	0	
5.	С2Н6	G	0	30.0701	2 300	4000	6	0	2	0	0	
б.	С3Н4	G	0	40.0653	3 300	4000	4	0	3	0	0	
7.	С3Н6	G	0	42.0812	7 300	5000	6	0	3	0	0	
8.	C4H2	G	0	50.0605	4 300	5000	2	0	4	0	0	
9.	02	G	0	31.9988	0 300	5000	0	∠ 1	0	0	0	
11	H2O H2O2	G	0	18.0153	4 300	5000	2	⊥ 2	0	0	0	
12^{11}	C0	G	0	28 0105	5 300	5000	0	1	1	0	0	
13.	C02	G	0	44.0099	5 300	5000	0	2	1	0	0	
14.	CH2O	G	0	30.0264	9 300	5000	2	1	1	0	0	
15.	CH2CO	G	0	42.0376	4 300	5000	2	1	2	0	0	
16.	C	G	0	12.0111	5 300	5000	0	0	1	0	0	
17.	H	G	0	1.0079	7 300	5000	1	0	0	0	0	
18.	СН	G	0	13.0191	2 300	5000	1	0	1	0	0	
19.	CH2	G	0	14.0270	9 250	4000	2	0	1	0	0	
20.	CH2(S)	G	0	14.0270	9 300	4000	2	0	1	0	0	
∠⊥. 22	CH3 C2U	G	0	15.0350	6 300 7 300	4000	3 1	0	⊥ 2	0	0	
22.	C2H3	G	0	27.0462	1 300	5000	3	0	2	0	0	
24.	С2Н5	G	0	29.0621	5 300	5000	5	0	2	0	0	
25.	С3Н2	G	0	38.0493	9 150	4000	2	0	3	0	0	
26.	Н2СССН	G	0	39.0573	6 300	4000	3	0	3	0	0	
27.	H2CCCCH	G	0	51.0685	1 300	4000	3	0	4	0	0	
28.	0	G	0	15.9994	0 300	5000	0	1	0	0	0	
29.	03	G	0	47.9982	0 300	5000	0	3	0	0	0	
30.	UH UO2	G	0	17.0073	7 300	5000	1	1	0	0	0	
3⊥. 20	HUZ HCO	G	0	33.0067	2 200	5000	1	∠ 1	1	0	0	
১⊿. বব	CH30	G	0	31 0344	⊿ <u>300</u> 6 300	3000	⊥ २	⊥ 1	⊥ 1	0	0	
34.	СН2ОН	G	0	31.0344	6 250	4000	3	1	1	0	0	
35.	нссо	G	0	41.0296	7 300	4000	1	1	2	0	0	
36.	СН2НСО	G	0	43.0456	1 300	5000	3	1	2	0	0	
37.	CN	G	0	26.0178	5 300	5000	0	0	1	1	0	
38.	HCN	G	0	27.0258	2 300	4000	1	0	1	1	0	
39.	N	G	0	14.0067	0 300	5000	0	0	0	1	0	
40.	NH	G	U	15.0146	1 300	5000		0 1	0	1	0	
4⊥. 40	HNO NO	G	0	30.0061 31 0140	0 300 7 200	5000	1	⊥ 1	0	⊥ 1	0	
±⊿. 4२	NH2	G	0	16 0226	, 300 4 300	5000	エ つ		0	1	0	
44.	H2NO	G	0	32,0220	4 300	4000	∠ 2	1	0	1	0	
45.	NCO	G	0	42.0172	5 300	4000	0	1	1	1	0	
46.	N20	G	0	44.0128	0 300	5000	0	1	0	2	0	
47.	NO2	G	0	46.0055	0 300	5000	0	2	0	1	0	
48.	N2H2	G	0	30.0293	4 300	5000	2	0	0	2	0	
49.	HOCN	G	0	43.0252	2 300	4000	1	1	1	1	0	
50.	H2CN	G	0	28.0337	9 300	4000	2	0	1	1	0	
5⊥.	NNH	G	U	29.0213	/ 250	4000	1	U	υ	-2	0	

CHEMKIN INTERPRETER OUTPUT: CHEMKIN-II Version 3.9 Aug. 1994 DOUBLE PRECISION

52.	NH3	G	0	17.03061	300	5000	3	0	0	1	0
53.	N2H3	G	0	31.03731	300	5000	3	0	0	2	0
54.	C2N2	G	0	52.03570	300	5000	0	0	2	2	0
55.	HNCO	G	0	43.02522	300	4000	1	1	1	1	0
56.	NO3	G	0	62.00490	300	5000	0	3	0	1	0
57.	N2	G	0	28.01340	300	5000	0	0	0	2	0
58.	AR	G	0	39.94800	300	5000	0	0	0	0	1

				(k = A	T**b ex	p(-E/RT))
	REACTIONS CONSIDERED	D		A	b	Ε
1.	H2+CH2(S)=CH3+H			7.23E+13	.0	.0
2.	H2+O=OH+H			5.12E+04	2.7	26.3
3.	H2O+H=H2+OH			4.52E+08	1.6	77.1
4.	CH4+O2=CH3+HO2			3.97E+13	.0	238.0
5.	CH4+C=CH+CH3			5.00E+13	.0	100.5
б.	CH4+H=CH3+H2			1.32E+04	3.0	33.6
7.	CH4+CH=C2H4+H			3.01E+13	.0	-1.7
8.	CH4+CH2=CH3+CH3			4.30E+12	.0	42.0
9.	CH4+CH2(S)=CH3+CH3			7.00E+13	. 0	.0
10.	CH4+C2H=CH3+C2H2			1.81E+12	. 0	.0
11.	CH4+O=CH3+OH			7.23E+08	1.6	35.5
12.	CH4+OH=CH3+H2O			1.57E+07	1.8	11.6
13.	CH4+HO2=CH3+H2O2			9.03E+12	.0	103.4
14.	C2H2+C2H2=H2CCCCH+H			2.00E+09	.0	242.0
15.	C2H2+O2=C2H+HO2			1.20E+13	.0	312.0
10.	HZ+CZH=CZHZ+H			1.08E+13	.0	9.1
1/.	$C_{2H_2+H(+M)} = C_{2H_3}(+M)$	Enhanced by	4 000 - 01	8.438+12	.0	10.8
	N 2	Enhanced by	4.000E-01			
	02 CO	Enhanced by	4.000E-01 7 500E-01			
	CO2	Enhanced by	1 500E-01			
	H2O	Enhanced by	1.500E+00 6 500E+00			
	CH4	Enhanced by	3 000E+00			
	C2H6	Enhanced by	3.000E+00			
	AR	Enhanced by	3.500E-01			
	Low pressure limit:	.34300E+19	.00000E+00	.615001	E+01	
	TROE centering:	.10000E+01	.10000E+01	.10000	E+01 .	12310E+04
18.	C2H2+CH=C2H+CH2			2.11E+14	.0	5
19.	C2H2+CH2=C3H4			1.20E+13	.0	27.7
20.	C2H2+CH2(S)=H2CCCH+H	H		1.75E+14	.0	.0
21.	C2H2+C2H=C4H2+H			9.03E+13	.0	.0
22.	C2H2+O=CH2+CO			2.17E+06	2.1	6.6
23.	C2H2+O=HCCO+H			5.06E+06	2.1	6.6
24.	C2H2+OH=C2H+H2O			6.00E+13	.0	54.0
25.	C2H2+M=C2H+H+M	- 1 1 1	4 0007 01	1.14E+17	.0	447.0
	N 2	Enhanced by	4.000E-01			
	02	Enhanced by	4.000E-01 7 500E 01			
	CO2	Enhanced by	7.500E-01 1 500E+00			
	H2O	Enhanced by	1.500E+00 6 500E+00			
	CH4	Enhanced by	3.000E+00			
	C2H6	Enhanced by	3.000E+00			
	AR	Enhanced by	3.500E-01			
26.	C2H4+H=C2H3+H2	_		5.42E+14	. 0	62.4
27.	C2H4+H(+M)=C2H5(+M)			3.97E+09	1.3	5.4
	N2	Enhanced by	4.000E-01			
	02	Enhanced by	4.000E-01			
	CO	Enhanced by	7.500E-01			
	C02	Enhanced by	1.500E+00			
	H2O	Enhanced by	6.500E+00			
	CH4	Enhanced by	3.000E+00			
		Ennanced by	3.000E+00			
	AK Low pressure limit.	Linanced by	3.5UUE-UL	216001	r + ∩ 1	
	TROE centering:	760000+20	400005+00	102501	2+04	
28	С2H4+CH=С3H4+Н	.,	. 1000000102	1.32E+14	. 0	-1.4
29.	C2H4+CH2(S)=C3H6			9.64E+13	.0	.0
30.	C2H4+CH3=CH4+C2H3			4.16E+12	. 0	46.6
31.	C2H4+O=H+CH2HCO			4.74E+06	1.9	.8

32.	C2H4+O=CH3+HCO				8.13E+06	1.9	.8
33.	C2H4+O=CH2CO+H2				6.80E+05	1.9	. 8
34.	C2H4+OH=C2H3+H2O				2.05E+13	.0	24.9
35.	C2H4+M=C2H2+H2+M				9.97E+16	.0	299.3
	N2	Enhanced	by	4.000E-01			
	02	Enhanced	by	4.000E-01			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	1.500E+00			
	H2O CUA	Enhanced	by	6.500E+00			
	CH4 COUE	Enhanced	by	3.000E+00			
	C2H6	Enhanced	by by	3.000E+00 3.500E+00			
36	АК С2Н4+М-С2Н3+Н+М	Emanceu	Dу	2.300E-01	7 408+17	0	404 1
50.	N2	Enhanced	hv	4 000E-01	/.40811/	.0	101.1
	02	Enhanced	by	4.000E - 01			
	CO	Enhanced	by	7.500E-01			
	CO2	Enhanced	by	1.500E+00			
	Н2О	Enhanced	by	6.500E+00			
	CH4	Enhanced	by	3.000E+00			
	С2Н6	Enhanced	by	3.000E+00			
	AR	Enhanced	by	3.500E-01			
37.	C2H6+H=C2H5+H2				1.45E+09	1.5	31.0
38.	C2H6+CH=C2H4+CH3				1.08E+14	.0	-1.1
39.	C2H6+CH2(S)=CH3+C2H	:5			2.40E+14	.0	.0
40.	C2H6+CH3=C2H5+CH4				1.51E-07	6.0	25.3
41.	C2H6+O=C2H5+OH				1.00E+09	1.5	24.3
42.	C2H6+OH=C2H5+H2O				7.23E+06	2.0	3.6
43.	C2H6+HO2=H2O2+C2H5				1.32E+13	. 0	85.6
44.	C4H2+O=C3H2+CO				7.89E+12	. 0	5.6
45.	C4H2+OH=C3H2+HCO				6.68E+12	.0	-1.7
46.	02+00=002+0				1.26E+13	.0	196.9
47.	02+CH20=HC0+H02				6.02E+13	.0	170.1
48.	02+C=C0+0				1.20E+14	.0	16.7
49.	N2	Enhanced	hu	6 700E 01	2.106+10	0	.0
	02	Enhanced	by by	4 000E = 01			
	CO	Enhanced	by by	7 500E-01			
	CO2	Enhanced	by	1.500E+00			
	H2O	Enhanced	by	0.000E+00			
	CH4	Enhanced	bv	3.000E+00			
	С2Н6	Enhanced	by	3.000E+00			
	AR	Enhanced	by	2.900E-01			
50.	O2+H+H2O=HO2+H2O				6.89E+15	.0	-8.7
51.	O2+H=OH+O				9.76E+13	.0	62.1
52.	O2+CH=CO+OH				1.66E+13	.0	.0
53.	O2+CH=CO2+H				1.66E+13	.0	.0
54.	O2+CH2=CO2+H2				5.43E+12	.0	6.2
55.	O2+CH2=CO2+H+H				5.43E+12	. 0	6.2
56.	O2+CH2=CO+OH+H				8.15E+12	. 0	6.2
57.	02+CH2=C0+H20				1.48E+12	.0	6.2
58.	02+CH2=CH20+0				4.20E+12	.0	6.2
59. 60	$O_2 + CH_2 (S) = CO + OH + H$				3.⊥3≝+⊥3 2.21⊡,11	.0	.0
60.	02+CH3=CH20+OH				3.31E+11 0.05E+12	.0	37.4
62 62	02+C2H=CCO+O				9.05E+12 9.05E+12	.0	.0
63	$02+C2H^{2}=C^{2}H^{2}+H^{2}$				5 42F+12	.0	.0
64	02+C2H5=C2H2+H02				1 02E+10	.0	-9.2
65.	O2+C3H2=HCO+HCCO				1.00E+13	.0	.0
66.	O2+H2CCCH=CH2CO+HCO				3.01E+10	.0	12.0
67.	O2+HCO=HO2+CO				3.01E+12	.0	.0
68.	02+CH30=CH20+H02				2.17E+10	.0	7.3
69.	O2+CH2OH=CH2O+HO2				1.57E+15	-1.0	.0
	Declared duplicate	reaction.					
70.	O2+CH2OH=CH2O+HO2				7.23E+13	.0	15.0
	Declared duplicate	reaction.	••				
71.	O2+HCCO=CO+CO+OH				1.63E+12	.0	3.6
72.	H2O2+H=HO2+H2				1.69E+12	. 0	15.7
73.	H2O2+H=OH+H2O				1.02E+13	. 0	15.0
74.	$H \ge 0 \ge +0 = 0 H + H = 0 \ge 0 \ge 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$				0.62E+11	. U	16.6
15. 76	$ \Box \angle \cup \angle + \cup H = H \angle \cup + H \cup \angle $				/・03世+⊥⊿ 7 00元,10	. U	5.6
/0.	N2	Enhanced	hv	4 0008-01	1.235+13	4	.0
	02	Enhanced	by	4.000E-01			

	CO	Enhanced	by	7.500E-01			
	C02	Enhanced	by	1.500E+00			
	Н2О	Enhanced	by	6.500E+00			
	CH4	Enhanced	by	3.000E+00			
	C2H6	Enhanced	by	3.000E+00			
	AR	Enhanced	by	3.500E-01			
	Low pressure limit:	.553001	E+20	76000E+00	.00001	2+00	
	TROE centering:	.10000	E+01	.10000E+01	.10000	2+01 .	10400E+04
77.	CO+O+M=CO2+M				1.54E+15	.0	12.6
	N2	Enhanced	by	4.000E-01			
	02	Enhanced	by	4.000E-01			
	CO	Enhanced	by	7.500E-01			
	CO2	Enhanced	by	1.500E+00			
	Н2О	Enhanced	by	6.500E+00			
	CH4	Enhanced	by	3.000E+00			
	C2H6	Enhanced	by	3.000E+00			
	AR	Enhanced	by	3.500E-01			
78.	CO+OH=CO2+H				1.66E+07	1.3	-3.2
79.	CO+HO2=CO2+OH				1.51E+14	.0	99.0
80.	CO+CH=HCCO				2.77E+11	.0	-7.2
81.	CO2+CH=HCO+CO				3.43E+12	.0	2.9
82.	CO2+CH2=CH2O+CO				2.35E+10	.0	.0
83.	CH2O+H=HCO+H2				1.26E+08	1.6	9.1
84.	CH2O+CH=CH2+HCO				9.64E+13	.0	-2.2
85.	CH2O+CH3=CH4+HCO				7.83E-08	6.1	8.2
86.	CH2O+O=HCO+OH				4.16E+11	.6	11.6
87.	CH2O+OH=HCO+H2O				3.43E+09	1.2	-1.9
88.	CH2O+HO2=H2O2+HCO				3.01E+12	.0	54.7
89.	CH2O+M=HCO+H+M				1.40E+36	-5.5	404.6
	N2	Enhanced	by	4.000E-01			
	02	Enhanced	by	4.000E-01			
	CO	Enhanced	by	7.500E - 01			
	C02	Enhanced	by	1.500E+00			
	H2O	Enhanced	by	6.500E+00			
	СН4	Enhanced	by	3 000E+00			
	C2H6	Enhanced	by	3.000E+00			
	AR	Enhanced	by	3 500E-01			
90.	CH2O+M=H2+CO+M	Limanoca	21	5.5001 01	3.26E+36	-5.5	404.6
50.	N2	Enhanced	by	4 000E-01	5.202.50	0.0	10110
	02	Enhanced	by	4 000E - 01			
	CO	Enhanced	by	7500E-01			
	CO2	Enhanced	by by	1 500E+00			
	H2O	Enhanced	by	6 500E+00			
	CH4	Enhanced	by by	3 000E+00			
	C2H6	Enhanced	by	3 00000+00			
	75	Enhanced	by	3 500E-01			
91	Ch3COTh=Ch3+CO	Emanceu	Dy	5.500E 0I	1 815+13	0	1/1 1
91. 92	$CH_{2}CO_{+}O_{-}CH_{2}+CO_{2}$				1 220+12	.0	17.1 5 7
92.	$CH_{2}CO_{+}O_{-}CH_{2}O_{+}CO_{-}CH_{2}O_$				1.55E+12 1.58E+11	.0	5.7
93.					1.JOE+11	.0	5.7
94.					2.526711	.0	5.7
95.					2.525+11	.0	5.7
90.					2.52ETI2 4 60E+12	.0	.0
97.	$CH_2CO+OH=CH_2OH+CO$				4.00E+12	.0	.0
90.	N2	Enhanged	hv	4 000 - 01	0.3/6+13	.0	241.0
	02	Enhanced	by	4.000E-01			
	02	Enhanced	by	4.000E-01			
	C0 202	Emianced	by	7.500E-01			
	02	Ennanced	by	1.500E+00			
	H2O	Enhanced	by	6.500E+00			
	CH4	Enhanced	by	3.000E+00			
	C2H6	Enhanced	by	3.000E+00			
~ ~	AR	Enhanced	by	3.500E-01			
99.	CH2CO+M=HCCO+H+M	Dul I	1-	4 000- 01	⊥.⊥4E+09	.0	.0
	N2	Ennanced	yd	4.000E-01			
	02	Ennanced	ya	4.000E-01			
	CO	Ennanced	yd	7.500E-01			
	CO2	Ennanced	ya	1.500E+00			
	H2O	Enhanced	by	6.500E+00			
	CH4	Enhanced	by	3.000E+00			
	C2H6	Enhanced	by	3.000E+00			
	AR	Enhanced	by	3.500E-01			
100.	C+CH2=C2H+H				5.00E+13	.0	.0
101.	C+CH3=C2H2+H				5.00E+13	.0	.0

102.	C+OH=CO+H			5.00E+13	.0	.0
103.	H+H+M=HZ+M	Enhanced by	4 000 - 01	1.87E+18	-1.0	.0
	02	Enhanced by	4.000E-01			
	CO	Enhanced by	7.500E-01			
	C02	Enhanced by	1.500E+00			
	Н2О	Enhanced by	6.500E+00			
	CH4	Enhanced by	3.000E+00			
	Н2	Enhanced by	0.000E+00			
	С2Н6	Enhanced by	3.000E+00			
	AR	Enhanced by	3.500E-01		_	
104.	H+H+H2=H2+H2			9.79E+16	6	.0
105.	H+CH=C+H2			8.43E+12	.0	.0
107	H+CHZ=CH+HZ			0.02E+12 2 00E+14	.0	-7.5
107.	$H+CH_2(5) = CH_2 + H$ $H+CH_3(+M) = CH_4(+M)$			1.69E+14	.0	.0
100.	N2	Enhanced by	4.000E-01	1.001.11	. 0	
	02	Enhanced by	4.000E-01			
	CO	Enhanced by	7.500E-01			
	C02	Enhanced by	1.500E+00			
	H2O	Enhanced by	6.500E+00			
	CH4	Enhanced by	3.000E+00			
	C2H6	Enhanced by	3.000E+00			
	AR	Enhanced by	3.500E-01			
	Low pressure limit:	.14080E+25	18000E+01	.00000E	+00	
100	TRUE centering:	.3/000E+00	.331508+04	.61000E	+02	0
110	H + C 2 H 3 = C 2 H 2 + H 2			1.20E+13 3 01E+13	.0	.0
111	H + O + M = OH + M			1 18E+19	-1 0	0.5
±±±•	N2	Enhanced by	4.000E - 01	1.101.19	1.0	
	02	Enhanced by	4.000E-01			
	CO	Enhanced by	7.500E-01			
	C02	Enhanced by	1.500E+00			
	H2O	Enhanced by	6.500E+00			
	CH4	Enhanced by	3.000E+00			
	C2H6	Enhanced by	3.000E+00			
110		Enhanced by	3.500E-01		2 0	0
112.	H+OH+M=H2O+M	Enhanged by	4 0000-01	5.53E+22	-2.0	.0
	02	Enhanced by	4.000E-01			
	CO	Enhanced by	7.500E-01			
	C02	Enhanced by	1.500E+00			
	Н2О	Enhanced by	2.550E+00			
	CH4	Enhanced by	3.000E+00			
	C2H6	Enhanced by	3.000E+00			
	AR	Enhanced by	1.500E-01			
113.	H+HO2=H2+O2			4.28E+13	.0	5.9
114.	H+HO2=OH+OH			1.69E+14	.0	3.7
116	H + HO2 = H2O + O			3.01E+13	.0	7.2
117	H+CH3O=CH2O+H2			9.03E+13 1 81E+13	.0	.0
118.	H+CH2OH=CH3+OH			1.02E+13	.0	.0
119.	H+CH2OH=CH2O+H2			3.08E+13	.0	.0
120.	H+HCCO=CH2+CO			1.51E+14	.0	.0
121.	CH+CH2=C2H2+H			4.00E+13	.0	.0
122.	CH+CH3=C2H3+H			3.00E+13	.0	.0
123.	CH+C2H3=CH2+C2H2			5.00E+13	.0	.0
124.	CH+O=CO+H			3.97E+13	. 0	.0
125.	CH+OH=HCO+H			3.00E+13	.0	.0
126.	CH+HCCO=C2H2+CO			5.00E+13	.0	.0
127.	CH2+CH2=C2H2+H2 CH2+CH2=C2H2+H+H			1.20E+13 1.08F+14	.0	3.3
120.	CH2+CH3=C2H4+H			4 22E+13	.0	0
130.	CH2+C2H3=C2H2+CH3			1.81E+13	.0	.0
131.	СН2+О=СО+Н+Н			7.20E+13	. 0	. 0
132.	CH2+O=CO+H2			4.80E+13	.0	.0
133.	CH2+OH=CH2O+H			1.81E+13	. 0	.0
134.	CH2+HCO=CH3+CO			1.81E+13	.0	.0
135.	CH2+HCCO=C2H3+CO			3.00E+13	.0	.0
136. 127	CH2+HCCO=C2H+CH2O			1 E1E:12	. U	8.4
±3/.	CnZ(S)+M=CHZ+M N2	Enhanced by	4 00001	т.этк+т3	. 0	.0
	02	Enhanced by	4.000E-01			

	CO	Enhanced by	7.500E-01			
	C02	Enhanced by	1.500E+00			
	Н20	Enhanced by	6.500E+00			
	CH4	Enhanced by	4.800E-01			
		Enhanced by	7 3.200E+00 7 1.600E+00			
	C2H4 C2H6	Enhanced by	1.000E+00			
	AR	Enhanced by	2.400E-01			
138.	CH3+CH3(+M)=C2H6(+M)		3.61E+13	.0	.0
	N2	Enhanced by	4.000E-01			
	02	Enhanced by	4.000E-01			
	CO	Enhanced by	7.500E-01			
	C02	Enhanced by	1.500E+00			
	H2O GUA	Enhanced by	6.500E+00			
	CH4 C2H6	Enhanced by	7 3.000E+00			
	AR	Enhanced by	3.000 ± 00			
	Low pressure limit:	.36300E+4	270000E+01	.11560E+02		
	TROE centering:	.62000E+0	.73000E+02	.11800E+04		
139.	СН3+0=СН2О+Н			8.43E+13	.0	.0
140.	CH3+OH=CH2(S)+H2O			7.23E+13	.0	11.6
141.	CH3+HO2=CH3O+OH			1.80E+13	.0	.0
142.	CH3+HCO=CH4+CO			1.20E+14	.0	.0
143.	CH3+M=CH2+H+M	Dubau and ba	4 0000 01	2.91E+16	.0	379.1
	N2 02	Enhanced by	4.000E-01			
	CO	Enhanced by	7 - 4.000E - 01			
	CO2	Enhanced by	1.500E+00			
	H2O	Enhanced by	6.500E+00			
	CH4	Enhanced by	3.000E+00			
	C2H6	Enhanced by	3.000E+00			
	AR	Enhanced by	3.500E-01			
144.	C2H+C2H3=C2H2+C2H2			1.90E+13	.0	.0
145. 146				1.00E+13	.0	.0
140.	$C_{2H+OH=C}C_{2H+OH=$			2.00E+13 1 81E+13	.0	.0
148.	C2H3+O=CO+CH3			3.00E+13	.0	.0
149.	C2H3+OH=C2H2+H2O			5.00E+12	.0	.0
150.	C2H5+O=CH2O+CH3			6.62E+13	.0	.0
151.	H2CCCH+O=C2H2+CO+H			1.39E+14	.0	.0
152.	H2CCCH+OH=C3H2+H2O			2.00E+13	.0	.0
153.	H2CCCCH+M=C4H2+H+M	- 1 - 1 1	4 0007 01	1.12E+16	.0	194.6
	N2 02	Enhanced by	4.000E-01			
	02	Enhanced by	7 - 4.000E - 01			
	CO2	Enhanced by	7.500E 01			
	H2O	Enhanced by	6.500E+00			
	CH4	Enhanced by	3.000E+00			
	C2H6	Enhanced by	3.000E+00			
	AR	Enhanced by	3.500E-01			
154.	O+O+M=O2+M		4 000- 01	5.40E+13	.0	-7.5
	N 2	Enhanced by	4.000E-01			
	02	Enhanced by	7 4.000E-01			
	CO2	Enhanced by	7.500E-01			
	H2O	Enhanced by	6.500E+00			
	CH4	Enhanced by	3.000E+00			
	С2Н6	Enhanced by	3.000E+00			
	AR	Enhanced by	3.500E-01			
155.	0+H02=02+0H			3.19E+13	.0	.0
156. 157	O + HCO = CO + OH			3.UIE+13 2.012+13	.0	.0
⊥၁/. 158	O + C H 3 = C H 3 O + O			3.015+13 4 40E+13	.0	.U 131 /
159.	0+CH30=CH20+OH			1.81E+12	.0	÷÷÷÷
160.	O+CH2OH=CH2O+OH			9.03E+13	. 0	.0
161.	O+HCCO=H+CO+CO			9.64E+13	.0	.0
162.	OH+OH=O+H2O			1.51E+09 1	1.1	.4
163.	OH+HO2=H2O+O2			2.89E+13	.0	-2.1
164. 165	OH+HCO=H2O+CO			1.02E+14	.0	.0
166 166	0H+CH30=CH20+H20 0H+CH20H-CH20+H20			⊥.0⊥≝+⊥3 2 41₽±12	.0	.0
167	OH+HCCO=HCO+HCO			1.00E+13	.0	. 0
168.	OH+HCCO=CH2O+CO			1.00E+13	. 0	.0

169.	HO2+HO2=H2O2+O2				4.22E+14	.0	50.1
	Declared duplicate	reaction.	••				
170.	HO2+HO2=H2O2+O2				1.32E+11	. 0	-6.8
	Declared duplicate	reaction.	••				
171.	HCO+HCO=CH2O+CO				3.01E+13	. 0	.0
172.	HCO+M=H+CO+M				4.49E+14	.0	65.9
	N2	Enhanced	by	4.000E-01			
	02	Enhanced	by	4.000E-01			
	CO	Enhanced	by	7.500E-01			
	002	Enhanced	by	1.500E+00			
	H2O CH4	Enhanced	by	6.500E+00			
	CH4	Enhanced	by	3.000E+00			
		Enhanced	by	3.000E+00 2 E00E 01			
172		Ennanced	by	3.500E-01	1 555,14	0	
1/3.	N2	Enhanded	hu	4 000 - 01	1.356+14	.0	50.5
	02	Enhanced	by by	4.000E-01			
	C0	Enhanced	by by	7.500E-01			
	CO2	Enhanced	by	1 500E-01			
	H2O	Enhanced	by by	6 500E+00			
	CH4	Enhanced	by	3 000E+00			
	C2H6	Enhanced	by	3 000E+00			
	AR	Enhanced	by	3.500E-01			
174.	CH2OH+M=CH2O+H+M	Lindifood	~1	5.5552 01	1.26E+16	. 0	125.6
	N2	Enhanced	bv	4.000E-01	1.1001.10	• •	120.0
	02	Enhanced	by	4.000E-01			
	CO	Enhanced	by	7.500E-01			
	CO2	Enhanced	by	1.500E+00			
	H2O	Enhanced	by	6.500E+00			
	CH4	Enhanced	by	3.000E+00			
	C2H6	Enhanced	by	3.000E+00			
	AR	Enhanced	by	3.500E-01			
175.	HCCO+HCCO=C2H2+CO+C	20			1.00E+13	.0	.0
176.	H2+CN=HCN+H				1.93E+04	2.9	6.8
177.	CH4+N=NH+CH3				1.00E+13	.0	100.4
178.	CH4+CN=HCN+CH3				9.03E+04	2.6	-1.2
179.	O2+N=NO+O				9.03E+09	1.0	27.2
180.	O2+NH=HNO+O				3.91E+13	. 0	74.8
181.	O2+NH=NO+OH				7.59E+10	.0	6.4
182.	O2+NH2=HNO+OH				1.51E+12	4	151.0
183.	O2+NH2=H2NO+O				1.10E+18	-1.3	140.6
184.	02+CN=NCO+O				7.23E+12	.0	-1.7
185.	O2+NCO=NO+CO2				1.72E+07	. 0	-3.1
186.	CO+N2O=CO2+N2				9.77E+10	. 0	73.0
187.	CO2+N=NO+CO				1.90E+11	. 0	14.2
188.	N2+CH=HCN+N				1.57E+12	.0	75.1
189.	N2+CH2=HCN+NH				1.00E+13	.0	309.6
190.	NO+N2O=N2+NO2				1.00E+14	.0	207.8
191.	NO+N2H2=N2O+NH2				3.00E+1Z	.0	.0
192.	NO+C=CN+O				1.93E+13	.0	.0
101	NO+C=CO+N				2.09E+13 2.17E+14	.0	207 1
194.	NOTH->N+OH				2.1/E+14 2 82F+12	.0	207.1
195.	NO+CH-CO+NH				2.05E+13 1 20F+13	.0	.0
197	NO+CH=CO+NH NO+CH=CN+OH				1 20E+13	.0	.0
198	NO+CH=HCN+O				9 60E+13	.0	.0
199	NO+CH2=HOCN+H				1 39E+12	.0	-4 6
200.	NO+CH2(S)=HCN+OH				9.64E+13	. 0	.0
201.	NO+CH3=HCN+H2O				9.28E+11	.0	69.9
202.	NO+CH3=H2CN+OH				9.28E+11	. 0	69.9
203.	NO+HO2=NO2+OH				2.09E+12	. 0	-2.0
204.	NO+HO2=HNO+O2				2.00E+11	.0	8.3
205.	NO+HCCO=HOCN+CO				2.00E+13	.0	.0
206.	NO+N=>N2+O				4.28E+13	.0	6.6
207.	N2+O=>NO+N				1.81E+14	.0	318.4
208.	NO+NH=N2+OH				3.20E+13	.0	53.2
209.	NO+NH=N2O+H				4.16E+14	5	.0
210.	NO+NH2=NNH+OH				2.41E+15	-1.2	. 0
211.	NO+NH2=N2+H2O				5.48E+15	-1.2	.0
212.	NO+NNH=N2+HNO				5.00E+13	.0	. 0
213.	NO+HNO=N2O+OH				2.95E+05	. 0	.0
214.	NO+NCO=N2O+CO				1.39E+18	-1.7	3.2
215.	NO+M=N+O+M				3.63E+15	.0	620.6

	CH4 H2O CO2 CO O2 N2	Enhanced Enhanced Enhanced Enhanced Enhanced	by by by by by by	3.000E+006.500E+001.500E+007.500E-014.000E-014.000E-01			
216. 217. 218. 219. 220. 221. 222. 223.	AR NO2+NO2=NO+NO+O2 NO2+H=NO+OH NO2+O=NO+O2 NO2+N=NO+NO NO2+N=N2O+O NO2+NH=HNO+NO NO2+NH=N2O+OH NO2+NH=N2O+H2O	Enhanced	by	3.500E-01	2.00E+12 3.47E+14 1.00E+13 8.07E+11 1.00E+12 1.00E+11 9.71E+12 2.03E+17 -	.0 .0 .0 .0 .5 .0 1.7	112.2 6.2 2.5 .0 .0 16.6 .0 .0
224. 225.	NO2+CN=NCO+NO NO2+M=NO+O+M CH4 H2O	Enhanced Enhanced	by by	3.000E+00 6.500E+00	3.00E+13 3.13E+16	.0 .0	.0 274.4
	CO O2 N2 AR	Enhanced Enhanced Enhanced Enhanced	by by by by by	1.500E+00 7.500E-01 4.000E-01 4.000E-01 3.500E-01			
226. 227. 228. 229. 230. 231. 232. 233.	N2O+C=CN+NO N2O+H=N2+OH N2O+O=N2+O2 N2O+O=NO+NO N2O+OH=N2+HO2 N2O+N=N2+NO N2O+NH=HNO+N2 N2O+CN=NCO+N2		-		5.12E+12 4.37E+14 1.00E+14 6.92E+13 6.31E+11 1.00E+13 2.00E+12 1.00E+13	.0 .0 .0 .0 .0 .0 .0 .0	.0 79.0 117.2 111.4 41.6 83.1 24.9 .0
234.	N2O+M=N2+O+M CH4 H2O CO2 CO O2 N2 AR	Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced	by by by by by by by	3.000E+00 6.500E+00 1.500E+00 7.500E-01 4.000E-01 4.000E-01 3.500E-01	2.86E+15	.0	251.0
235. 236. 237. 238. 239. 240.	NH3+H=NH2+H2 NH3+O=>NH2+OH NH3+OH=NH2+H2O NH3+HO2=NH2+H2O2 NH3+NH2=N2H3+H2 NH3(+M)=NH2+H(+M)				5.42E+05 9.64E+12 3.16E+12 2.51E+12 7.94E+11 8.30E+15	2.4 .0 .0 .0 .5 .0	41.5 30.5 8.4 99.8 90.2 458.7
	CH4 H2O CO2 CO O2 N2 AR Low pressure limit: TROE centering:	Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced .127401 .420001	by by by by by by by E+17 E+00	$\begin{array}{c} 3.000 \pm +00\\ 6.500 \pm +00\\ 1.500 \pm +00\\ 7.500 \pm -01\\ 4.000 \pm -01\\ 4.000 \pm -01\\ 3.500 \pm -01\\ .00000 \pm +00\\ .45810 \pm +04 \end{array}$.34555E+03 .10200E+03		
241.	NH3+M=NH+H2+M CH4 H2O CO2 CO O2 N2 AR	Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced	by by by by by by by	3.000E+00 6.500E+00 1.500E+00 7.500E-01 4.000E-01 4.000E-01 3.500E-01	1.80E+15	.0	390.8
242. 243. 244. 245. 246. 247.	N2H2+H=NNH+H2 N2H2+O=NH2+NO N2H2+O=NNH+OH N2H2+OH=NNH+H2O N2H2+NH=NNH+NH2 N2H2+NH2=NH+N2H3 N2H2+NH2=NH2=NH2		2	ý-	1.00E+13 1.00E+13 1.00E+11 1.00E+13 1.00E+13 1.00E+11	.0 .0 .5 .0 .0 .5	4.2 .0 .0 8.3 4.2 141.3
240. 249.	N2H2+MHZ=NH3+NNH N2H2+M=NNH+H+M CH4 H2O	Enhanced Enhanced	by by	3.000E+00 6.500E+00	2.50E+16	.0	207.8

	C02	Enhanced	by	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	4.000E-01			
	N2	Enhanced	by	4.000E-01			
	AR	Enhanced	by	3.500E-01			
250.	N2H2+M=NH+NH+M				7.91E+16	.0	415.7
	CH4	Enhanced	by	3.000E+00			
	Н2О	Enhanced	bv	6.500E+00			
	CO2	Enhanced	by	1 500E+00			
	CO	Enhanced	by	7500E-01			
	03	Enhanced	by	1.000E 01			
	02 N2	Enhanced	by	4.000E-01			
	N Z	Ennanced	yd	4.000E-01			
0 - 1	AR	Enhanced	by	3.500E-01	1 00- 14		
251.	C2N2+O=NCO+CN				1.29E+14	.0	59.3
252.	C2N2+OH=HOCN+CN				1.87E+11	.0	12.0
253.	HCN+O=NCO+H				8.45E+05	2.1	25.6
254.	HCN+O=NH+CO				3.19E+05	2.1	25.6
255.	HCN+O=CN+OH				2.22E+05	2.1	25.6
256.	HCN+OH=CN+H2O				9.03E+12	.0	44.9
257.	HCN+OH=HOCN+H				5.85E+04	2.4	52.3
258.	HCN+OH=HNCO+H				1.98E-03	4.0	4.2
259	HCN+CN-C2N2+H				3 80F+07	1 6	2
255.	HOCN+U=U2O+CN				1 00E+12	1.0	. 1
200.					1.005+12	.0	.0
201.	HOCN+H=HZ+NCO				1.00E+12	.0	.0
262.	HOCN+H=HNCO+H				1.00E+13	.0	.0
263.	HNCO+H=NCO+H2				2.05E+14	3	84.7
264.	HNCO+H=NH2+CO				1.10E+14	.0	53.2
265.	HNCO+O=NH+CO2				2.00E+13	.0	54.5
266.	HNCO+O=HNO+CO				1.90E+12	.0	43.1
267.	HNCO+O=OH+NCO				2.00E+14	.0	96.4
268.	HNCO+OH=NCO+H2O				1.99E+12	.0	23.2
269.	HNCO+OH=NH2+CO2				6.62E+11	. 0	23.2
270	HNCO+HO2=NCO+H2O2				3.00E+13	. 0	121.3
271	HNCO+N=NH+NCO				3 98E+13	0	149 7
272	HNCO+NH-NH2+NCO				3 00F+13	. 0	99.7
272.					1 00E+12	.0	20 1
273.					1.00E+12 2.40E+12	.0	29.1
2/4.	HNCO+M=NH+CO+M	T l	1-	2 000	2.406+10	.0	354.5
	CH4	Ennanced	ya	3.000E+00			
	H2O	Enhanced	by	6.500E+00			
	CO2	Enhanced	by	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	4.000E-01			
	N2	Enhanced	by	4.000E-01			
	AR	Enhanced	by	3.500E-01			
275.	HNCO+M=H+NCO+M				2.86E+17	.0	468.9
	CH4	Enhanced	bv	3.000E+00			
	H20	Enhanced	by	6 500E+00			
	CO2	Enhanced	by	1 500E+00			
	C0	Enhanced	by	7 500E - 01			
	00	Ennanceu	by	7.500E-01			
	02	Ennanced	Уd	4.000E-01			
	N Z	Ennanced	ya	4.0008-01			
	AR	Enhanced	by	3.500E-01			
276.	H+NH=N+H2				1.02E+13	.0	.0
277.	H+NH2=NH+H2				6.02E+12	.0	.0
278.	H+NNH=N2+H2				3.98E+13	.0	12.5
279.	H+N2H3=NH2+NH2				1.58E+12	.0	.0
280.	H+N2H3=NH+NH3				1.00E+11	.0	.0
281.	H+N2H3=N2H2+H2				1.00E+12	. 0	8.3
282.	H + HNO = H2 + NO				1.26E+13	. 0	16.6
283	H + NCO - NH + CO				5 24F+13	0	0.01
202.	CH+N=CN+H				1 26F+12	. 0	.0
201. 205	CH+NH-UCN+U				5 000-10	. 0	.0
200. 206						.0	.0
∠86 .	CH+NHZ=HCN+H+H				3.UUE+13	.0	.0
287.	CH2+N=HCN+H				5.00E+13	. 0	.0
288.	CH2+NH=HCN+H+H				3.00E+13	.0	.0
289.	CH3+N=H2CN+H				2.59E+14	.0	3.5
290.	C2H3+N=HCN+CH2				2.00E+13	.0	.0
291.	H2CCCH+N=HCN+C2H2				1.00E+13	.0	.0
292.	O+NH=N+OH				3.72E+13	.0	.0
293.	O+NH=NO+H				5.50E+13	.0	. 0
294	O+NH2=NH+OH				6.90E+11	. 3	8
295	O+NH2=HNO+H				8.93E+14	5	1 4
206	$O + NNH = N^2 + OH$				1.00E+13	0	20 8
<u> </u>							e 11 - 13

297.	O+NNH=N2O+H				1.00E+13	.0	12.5
298.	O+NNH=NH+NO				1.65E+14	2	-4.2
299.	O+HNO=OH+NO				5.01E+11	. 5	8.3
300.	O+CN=CO+N				1.02E+13	.0	.0
301. 302	O+NCO=NO+CO				3.10E+13 1 00F+12	.0	.0
302.	OH+NH=N+H2O				5.01E+11	.5	83
304	OH+NH2 = > O+NH3				1.99E+10	. 4	2.1
305.	OH+NH2=NH+H2O				5.01E+11	.5	8.3
306.	OH+NNH=N2+H2O				3.16E+13	. 0	. 0
307.	OH+HNO=NO+H2O				1.08E+13	.0	.0
308.	OH+CN=NCO+H				6.02E+13	.0	.0
309.	OH+NCO=NO+HCO				5.00E+12	.0	62.8
310.	OH+NCO=NO+CO+H				1.00E+13	.0	.0
311.	HO2+NH2=HNO+H2O				1.57E+13	.0	.0
312.	HCCO+N=HCN+CO				5.00E+13	.0	.0
313.	N+N+M=N2+M		1-	2 0005.00	6.53E+15	.0	.0
	CH4 1120	Enhanced	by	3.000E+00			
	H20 CO2	Enhanced	by	6.500E+00 1 E00E+00			
	CO2	Enhanced	by by	1.500E+00 7 500E-01			
	02	Enhanced	by	7.500E-01			
	N2	Enhanced	by by	4.000E 01 4.000E - 01			
	AR	Enhanced	bv	3.500E-01			
314.	N+NH=N2+H				6.31E+11	.5	.0
315.	N+NH2=N2+H+H				6.93E+13	.0	.0
316.	N+NNH=NH+N2				3.16E+13	.0	8.3
317.	N+CN=>C+N2				1.81E+14	.0	.0
318.	C+N2=>N+CN				5.24E+13	.0	187.9
319.	N+H2CN=N2+CH2				2.00E+13	.0	.0
320.	N+NCO=NO+CN				2.77E+18	-1.0	72.3
321.	N+NCO=N2+CO				1.99E+13	. 0	. 0
322.	NH+NH=N2+H+H				5.13E+13	.0	.0
3∠3. 204	NH+NH2=N2H2+H				1.518+15	5	.0
324.	NH+NNH=NZ+NHZ NU+M-N+U+M				2.00E+11 7 57F+14	.5	0.3 315 Q
525.	CH4	Enhanced	hv	3 000E+00	1.5/6114	.0	515.5
	H2O	Enhanced	by	6.500E+00			
	CO2	Enhanced	bv	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	4.000E-01			
	N2	Enhanced	by	4.000E-01			
	AR	Enhanced	by	3.500E-01			
326.	NH2+NH2=N2H2+H2				3.98E+13	. 0	49.9
327.	NH2+NH2=NH3+NH				5.00E+13	.0	41.8
328.	NH2+M=NH+H+M				7.91E+23	-2.0	382.4
	CH4	Enhanced	by	3.000E+00			
	H20 CO2	Enhanced	by	6.500E+00 1 E00E+00			
	C02	Enhanced	by	1.500E+00 7 500E 01			
	02	Enhanced	by by	4 000E = 01			
	N2	Enhanced	by	4.000E - 01			
	AR	Enhanced	bv	3.500E-01			
329.	NH2+NNH=N2+NH3		- 1		1.00E+13	.0	.0
330.	NH2+HNO=NH3+NO				5.01E+11	.5	4.2
331.	NNH=N2+H				3.00E+08	.0	.0
	Declared duplicate	reaction.	• •				
332.	NNH+M=N2+H+M				2.50E+13	.5	12.8
	CH4	Enhanced	by	3.000E+00			
	H2O	Enhanced	by	6.500E+00			
	602	Enhanced	by	1.500E+00			
	00	Enhanced	by	7.500E-01			
	N2	Enhanced	by by	4.000E-01			
	AR	Enhanced	by by	3.500E-01			
	Declared duplicate	reaction.	Dy	5.5001 01			
333.	NNH+O2=N2+HO2		-		5.00E+12	.0	.0
334.	N2H3+M=N2H2+H+M				2.50E+16	. 0	207.8
	CH4	Enhanced	by	3.000E+00			
	H2O	Enhanced	by	6.500E+00			
	CO2	Enhanced	by	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	4.000E-01			
	N2	Enhanced	by	4.000E-01			
------	-----------------	----------	----	-----------	----------	-----	-------
	AR	Enhanced	by	3.500E-01			
335.	N2H3+M=NH2+NH+M				2.50E+16	.0	174.6
	CH4	Enhanced	by	3.000E+00			
	H2O	Enhanced	by	6.500E+00			
	CO2	Enhanced	by	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	4.000E-01			
	N2	Enhanced	by	4.000E-01			
	AR	Enhanced	by	3.500E-01			
336.	HNO+M=H+NO+M				5.09E+16	.0	203.7
	CH4	Enhanced	by	3.000E+00			
	H2O	Enhanced	by	6.500E+00			
	C02	Enhanced	by	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	4.000E-01			
	N2	Enhanced	by	4.000E-01			
	AR	Enhanced	by	3.500E-01			
337.	H2CN+M=HCN+H+M		-		7.50E+14	.0	92.0
	CH4	Enhanced	by	3.000E+00			
	H2O	Enhanced	by	6.500E+00			
	CO2	Enhanced	by	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	by	4.000E-01			
	N2	Enhanced	by	4.000E-01			
	AR	Enhanced	by	3.500E-01			
338.	NCO+M=N+CO+M		-		2.91E+15	.0	195.4
	CH4	Enhanced	by	3.000E+00			
	H2O	Enhanced	by	6.500E+00			
	CO2	Enhanced	by	1.500E+00			
	CO	Enhanced	by	7.500E-01			
	02	Enhanced	bv	4.000E-01			
	N2	Enhanced	by	4.000E-01			
	AR	Enhanced	by	3.500E-01			
339.	H2O+CH=CH2O+H		-		5.72E+12	.0	-3.2
340.	O3+H=O2+OH				8.43E+13	.0	3.9
341.	O3+OH=O2+HO2				1.15E+12	. 0	8.3
342.	O3+H2O=O2+H2O2				6.20E+01	. 0	.0
343.	O3+HO2=O2+O2+OH				9.43E+09	. 0	5.0
344.	O3+CO=O2+CO2				6.02E+02	.0	.0
345.	03+N=02+N0				6.00E+07	. 0	.0
346.	O3+NO=NO2+O2				1.08E+12	. 0	11.4
347.	03+N02=02+N03				7.22E+10	. 0	20.4
348.	03=02+0				7.60E+12	. 0	102.7
349.	O3+M=O2+O+M				5.80E+14	. 0	97.0
350.	03+0=02+02				2.40E+13	.0	23.5
351.	CH3+O3=CH3O+O2				2.90E+12	. 0	1.6
352.	HCO+O3=H+CO2+O2				5.00E+11	. 0	. 0

NOTE: A units mole-cm-sec-, E units Kjoule/mole

NO ERRORS FOUND ON INPUT...CHEMKIN LINKING FILE WRITTEN.

WORKING SPACE REQUIREMENTS ARE INTEGER: 5927 REAL: 5282 CHARACTER: 63

ZAŁĄCZNIK 2

Wyniki pomiarów badań wstępnych

		[O ₂]	%	0.06	0.09	0.43	0.57	1.42	1.46	2.16	2.33	2.85	2.9
	palin	[ON]	ppm	122	132	42	52	32	36	54	32	24	32
)	l chemiczny s	$[C_nH_m]$	ppm	0	0	0	0	0	0	0	0	0	0
	Skład	[CO ₂]	%	9.04	9.03	9.84	9.78	9.42	9.4	9.6	9.48	9.15	9.1
•		[CO]	0%	4368	2606	72	38	32	10	48	14	32	9
	Stężenie ozonu	O_3	$mgO_3/dm3(N_2+O_2)$	0	8.84	0	8.00	0	7.74	0	7.49	0	7.20
W	Strumień objętości powietrza	\dot{V}_p	dm²/h	101		112		116		120		125	
cieplnym 100	Założone	۲		1.11		1.22		1.27		1.31		1.37	
z obciążeniem (Strumień objętości gazu	$\cdot V_{s}$	dh ^c mb	9.7									

Tablica 1. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze I

Tablica 2. Wyniki przeliczenia składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze I z obciażeniem cieplnym 100 W na 3% O₂

0_2	[O ₂]	%	0.060	0.090	0.430	0.570	1.420	1.460	2.160	2.330	2.850	2.900
siony do 3%	[NO]	mqq	104.87	113.63	36.75	45.81	29.42	33.16	22.93	30.85	23.80	31.82
spalin odnie	$[C_nH_m]$	mqq	0	0	0	0	0	0	0	0	0	0
ad chemiczny	[CO ₂]	%	$LL^{-}L$	7.77	8.61	8.62	8.66	8.66	9.17	9.14	<i>L</i> 0.6	9.05
Skł	[CO]	%	3755	2243	63	33	29	9	46	13	32	6
Stężenie ozonu	0_3	$mgO_{3}/dm3(N_{2}+O_{2})$	0	8.84	0	8.00	0	7.74	0	7.49	0	7.20
Strumień objętości powietrza	\dot{V}_p	dm³/h	101		112		116		120		125	
Założone	~		1.11		1.22		1.27		1.31		1.37	
Strumień objętości gazu	$\dot{\gamma}_{s}$	dm³/h	<i>T.</i> 9									

	Temperatura ściany	L _{ść}		D'C	1108	1094	1086	1083	1073	1070	1065	1059	1056	1052
			$[0_2]$	%	0.4	0.21	1.44	1.28	2.74	2.52	3.71	3.45	4.68	4.47
	palin		[NO]	ppm	155	185	179	187	185	200	192	206	200	214
)	chemiczny s		$[C_nH_m]$	ppm	0	0	0	0	0	0	0	0	0	0
)	Skład	•	$[CO_2]$	%	10.87	10.72	10.52	10.4	10.1	10.2	96.6	9.94	9.88	9.81
2			[CO]	%	406	258	75	64	81	60	50	47	48	41
•	Stężenie ozonu	Ċ	Ő	$mgO_3/dm3(N_2+O_2)$	0	9.10	0	9.78	0	10.49	0	11.24	0	12.04
W Č	Strumień objętości	ulenu	V_{o_2}	dm ³ /h	2.63		3.51		4.38		5.26		6.14	
cieplnym 100	Strumień objętości	powieurza	V_p	dm³/h	83									
z obciążeniem	Założone		۲		0.93		0.94		0.95		0.96		0.97	
w reaktorze I	Strumień objętości	gazu	$V_{_g}$	dm³/h	9.7									

Tablica 3. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania gazu ziemnego wzbogacanego w tlen

Tablica 4. Wyniki przeliczenia składu chemicznego spalin powstałych ze spalania gazu ziemnego wzbogacanego w tlen w reaktorze I z obciażeniem cieplnym 100 W na 3% O³

Temperatura ściany t _{ść}	°C	1108 1094	1086 1083	1073 1070	1065 1059	1056 1052
0_2	[O ₂] %	0.400 0.210	1.440 1.280	2.740 2.520	3.710 3.450	4.680 4.470
siony do 3%	[ON]	135 160	165 171	182 195	200 211	221 233
spalin odnie	[C _n H _m] ppm	0	0	0	0	0
ad chemiczny	[CO ₂] %	9.50 9.28	9.68 9.49	9.96 9.94	10.37 10.19	10.90 10.68
Skt	[CO] %	355 22 3	69 58	80 58	52 48	53 45
Stężenie ozonu	O_3 mgO_3/dm3(N_2+O_2)	0 9.10	0 9.78	0 10.49	0 11.24	0 12.04
Strumień objętości tlenu	$\dot{V}_{O2}^{}$ d \mathbf{m}^{3} /h	2.63	3.51	4.38	5.26	6.14
Strumień objętości powietrza	$\dot{V}_p^{}$ dm ³ /h	83				
Założone	R	0.93	0.94	0.95	0.96	0.97
Strumień objętości gazu	$\dot{V}_{_g}^{}$ d $\mathbf{m^{3}}$ h	9.7				

Temperatura maksymalna t _{max}	°C	-	1180 -	1200 -	1240 -	1240 -
	۲	0.986 0.986	1.01 1.02	1.025 1.04	1.051 1.06	1.145 1.138
	[O ₂] %	0.12 0.2	0.45 0.54	0.58 0.72	0.99 0.94	2.1 2.01
czny spalin	[ON]	51 58	43 48	41 44	42 48	33 37
Skład chemic	[C _n H _m] ppm	0 0	0 0	0 0	0	0 0
	[CO ₂] %	10.5 10.52	10.49 10.55	10.76 10.73	10.87 10.95	10.25 10.34
	[CO] %	0.662 0.516	0.5 0.388	0.302 0.218	0.02 0.018	0
Stężenie ozonu	\mathbf{O}_{3} mgO ₃ /dm $3(N_{2}+O_{2})$	0 7.4	0 7.1	0 6.80	0 6.55	0 6.2
Strumień objętości powietrza	V_p dm ³ /h	190	200	208	220	240
Założone	۲	0.95	1	1.05	1.1	1.20
Strumień objętości gazu	V_g dm ³ /h	20.29	-	<u>.</u>		

	/II	
	eplny	•
•	n	
•	uner	
•	ciąże	
	go	
	ΞI	
	orze	
	eakt	
	W re	
	ego)
	Smn	
•	u Zié	
	gazi)
•	unia	
	pal	
	zes	
•	ych	
	/staf	
	Mod	(
•	alın	
	o sp	1
	nego)
•	nicz	
	chen	
	idu (
-	SKta	
•	ema	
	llCZ	
	Orze	
•	liki	Ś
•	۲×	0%
, ,	6	1a 3 [.]
	lica	W L
r F	ab	8
f		\sim

	Temperatura maksymalna t _{max}		\mathbf{D}^{0}	1020	•	1180		1200		1240	•	1240	•
		۲		770.0	0.986	1.01	1.02	1.025	1.04	1.051	1.06	1.145	1.138
	lo 3% O ₂	$[0_2]$	%	0.12	0.2	0.45	0.54	0.58	0.72	0.99	0.94	2.1	2.01
	odniesiony d	[0N]	ppm	43.97	50.19	37.66	42.23	36.14	39.05	37.78	43.07	31.43	35.07
	niczny spalin	[C _n H _m]	ppm	0	0	0	0	0	0	0	0	0	0
	Skład cher	[CO ₂]	%	9.05	9.10	9.19	9.28	9.48	9.52	9.78	9.83	9.76	9.80
		[CO]	%	0.571	0.447	0.438	0.341	0.266	0.193	0	0	0	0
	Stężenie ozonu	03	$mgO_3/dm3(N_2+O_2)$	0	7.4	0	7.1	0	6.80	0	6.55	0	6.2
	Strumień objętości powietrza	$\dot{V_p}$	dm³/h	190		200		208		220		240	
\mathbf{O}_2	Założone	~		0.95		1		1.05		1.1		1.20	
200 W na 3%	Strumień objętości gazu	\dot{V}_{s}	dm³/h	20.29									

a /. W	yniki pomiarów	/ skfadu chemic	znego spann pows	starych ze sp	alallia gazu z	ILTINGO W I		nnaidzeinain	יש ווו עוווקטוט	÷ E
	Załozone	Strumien objętości	Stężenie ozonu			Skład chemi	iczny spalin			l emperatura maksymalna
		powietrza	Ċ							tmax
	ſ	V_p	03	[CO]	[CO ₂]	$[C_nH_m]$	[ON]	$[0_2]$	~	
	~	dm ³ /h	mgO ₃ /dm3(N,+O,)	%	%	ppm	ppm	%		^{0}C
	6.0	233	0	6.48	7.19	0 0	26 26	0.52	0.8	I
			cc.0	0000	1.2	0	00	8c.U	0.804	•
	1	258	0 5.75	3.535 3.257	9.12 9.31	c o	53 53	0.1 0.12	0.876 0.889	1180
	1.05	269	:	2.575	9.74	0	51	0.13	0.913	1300
	,		cc.c	2.430	9.8	0	cc	01.0	816.0	•
	1.1	284	0 5.35	1.266 1.12	10.54 10.63	c e	48 54	0.09 0.09	0.955 0.962	1300
	1.20	310	01	0.002	11.03	0	39	1.06	1.068	1300
			n «	0	\$0.11	•	47	c6.0	1.00	•
	1.3	336	0 7.4	•	10.6 10.13	- -	34	2.4 2.64	1.166 1.185	1300 -
	1.4	362	0	0	9.23	0	22	4.28	1.327	1305
			4.45	0	8.88	0	26	4.91	1.38	
Ŵ	yniki przeliczer	nia składu chem	iicznego spalin pov	wstałych ze :	spalania gazı	ı ziemnego w	reaktorze II	z obciążenie	n cieplnym 2	260 W na 3% O
	Założone	Strumień	Stężenie ozonu			;	•			Temperatura
		objętości			Skład che	miczny spaliı	ı odniesiony (do 3% O ₂		maksymalna
		powietrza	¢							\mathbf{t}_{\max}
	đ	V_p	O3	[CO]	$[CO_2]$	$[C_nH_m]$	[N 0]	$[0_2]$	~	
	~	dm ³ /h	mgO ₃ /dm3(N,+O,)	%	%	ppm	ppm	%		\mathbf{D}^{0}
	0.0	233	0 0	5.695 5.603	6.32 6.35	U ()	49.22 57 80	0.520	0.800	
	1	258	0	3.044	7.85	00	45.65	0.100	0.876	1180
			5.75	2.808	8.03	0	45.69	0.120	0.889	•
	1.05	269	ն	2.221	8.40	0	43.99	0.130	0.913	1300
	-	100	cc.c	2.104	0.40	0	41.20	0000	816.0	- 1000
	1.1	4 0 7	5.35	0.964	9.15	•	46.48	060.0	0.962	
	1.20	310	0	0	96.6	0	35.21	1.060	1.068	1300
			S	0	9.95	0	37.71	0.950	1.060	
	1.3	336	0		10.26	c c	35.81 22 22	2.400	1.166	1300
	1.4	362	0	0	9.94	0	23.68	4.280	1.327	1305
			4.45	Ő	9.93	0 0	29.09	4.910	1.380	

Temperatura maksymalna		lo 3% O ₂	odniesiony d	miczny spalin	Skład che		Stężenie ozonu	Strumień objętości	Założone	Strumień objętości
330 W na 3% O	em cieplnym	z obciążenie	v reaktorze II	zu ziemnego v	e spalania gaz	owstałych ze	micznego spalin p	enia składu che	Vyniki przeliczo	Tablica 10. V
	1.339	4.4	37	0	9.15	0	3.6			
1420	1.348	4.51	29	0	9.06	0	0	467	1.4	
•	1.214	3	38	0	10.14	0	3.8			
1450	1.222	3.07	33	0	6.9	0	0	433	1.3	
	1.105	1.58	41	0	10.88	0	4.1			
1420	1.095	1.45	39	0	10.83	0	0	400	1.20	
	0.996	0.14	53	0	11.18	0.354	4.45			
1470	66.0	0.12	46	0	11.08	0.442	0	367	1.1	
•	0.944	0.2	37	0	11.54	1.71	4.65			
1470	0.938	0.12	53	0	10.26	1.841	0	342	1.05	
•	0.906	0.16	58	0	9.72	2.755	4.85			
1380	6.0	0.16	55	0	9.61	3.022	0	329	1	
•	0.814	0.08	66	0	8.28	5.577	5.25			
1310	0.806	0.08	60	0	8.15	5.814	0	296	0.9	33.32
\mathbf{D}^{0}		%	ppm	ppm	%	%	mgO ₃ /dm3(N,+O,)	dm³/h	2	dm ³ /h
	۲	$[0_2]$	[NO]	$[C_nH_m]$	$[CO_2]$	[CO]	03	$\dot{V_p}$		$\dot{V}_{_{g}}$
t_{max}								powietrza		gazu
maksymalna			czny spalin	Skład chemi				objętości		objętości
Temperatura	,	J		2	2	•	Stężenie ozonu	Strumień	Założone	Strumień
0 W	cieplnym 33	bciążeniem (aktorze II z c	riemnego w re	alania gazu z	stałych ze sp	cznego spalin pow	v składu chemic	yniki pomiaróv	Tablica 9. W
0 M	cienlnvm 33	bciażeniem (saktorze II z c	ijemnego w re	alania sazu z	statvch ze sn	sznego snalin now	v składu chemic	vniki nomiaróv	Tablica 9. W

́с'і	
) %	r.a
130	atu
na	ers
≥	au
30	Lei
ŝ	Ľ
УШ	
Ľ.	
ep	
<u></u>	
en	
Sni	
ąż	
<u>SCI</u>	
0	
ΓZ	
e	
DIZ	
kt	
ea	
N I	
õ	
Jeg	
Ш	
zie	
n	
gaz	
ia g	
an	
bal	
SI	
Z	
/ch	
aty	
vst	
00	
l u	n
ali	10U
sp	0
80	nie
ne	Że]
lCZ	Ste
em	
сþ	,
ŋ	iei
taα	mn
sk	Str
nia	
zei	
lic	е
rze	UO.
ā	łoż
uk	Za
yn/	
≥	
10	'n
a	nie
) IC	In.
ab	Sti
-	

Temperatura maksymalna	t_{max}		U ₀	1310		1380		1470		1470		1420		1450	•	1420	
		~		0.806	0.814	006'0	0.906	0.938	0.944	066.0	0.996	1.095	1.105	1.222	1.214	1.348	1.339
lo 3% O ₂		$[0_2]$	%	0.080	0.080	0.160	0.160	0.120	0.200	0.120	0.140	1.450	1.580	3.070	3.000	4.510	4.400
odniesiony d		[ON]	mqq	51.63	56.79	47.50	50.10	45.69	32.02	39.66	45.73	35.91	38.00	33.13	38.00	31.66	40.12
niczny spalin		[C _n H _m]	mdd	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Skład cher		[C0 ₂]	%	7.01	7.12	8.30	8.40	8.84	9.99	9.55	9.65	26.6	10.08	9.94	10.14	68.6	9.92
		[C0]	%	5.002	4.799	2.610	2.380	1.587	1.480	0	0	0	0	0	0	0	0
Stężenie ozonu		\mathbf{O}_3	mgO ₃ /dm3(N ₃ +O ₃)	0	5.25	0	4.85	0	4.65	0	4.45	0	4.1	0	3.8	0	3.6
Strumień objętości	powietrza	$\dot{V_p}$	dm ³ /h	296		329		342		367		400		433		467	
Założone		c	<	0.9		1		1.05		1.1		1.20		1.3		1.4	
Strumień objętości	gazu	$\dot{V}_{_g}$	dm ³ /h	33.32													

T Т

eratura malna	ບ	*0 *0	75 33			/7** 4**		96	04 21	12 96	96	
Tempe maksy t _u		94 0	(6 6			102 104		10 10	= 1	1 0	10 10	*\=0.95
	~	1.011	1.025 1.023	1.03 1.018	1.027 1.015	1.012 1.04	1.025 1.045	1.034 1.054	1.071 1.064	1.205 1.18	1.302 1.299	
	[0 ₂] %	1.37 1 37	1.21 1.16	1.09 1.06	1.06 1.02	0.84 0.89	0.87 0.95	0.74 0.85	1.09 1.17	2.9 2.59	4.01 3.94	
zny spalin	[ON]	5 7	, e 5	9 10	10 12	12 17	19 16	20 25	32 34	27 32	23 26	
Skład chemic	[C _n H _m] ppm	0	• • •	00	• •	• •	• •	• •	• •	• •	0 0	
	[CO ₂] %	9.7 9.671	10.12 10.12	10.2 10.05	10.36 10.17	10.42 10.77	10.65 10.78	10.87 10.95	11.12 11.03	10.13 10.27	9.52 9.53	
	[C0]	1.879	1.28	1.195 1.063	1.321 0.952	0.886 0.575	0.557 0.35	0.295 0.171	0.008 0.006	00	0 •	
Stężenie ozonu O,	mgO ₃ /dm3(N ₂ +O ₂)	0 0	0	0 0.9	0 6.80	0 6.75	0 6.65	0 6.55	0 6.2	0 5.75	0 5.45	
Strumień objętości powietrza	V_p dm ³ /h	190	200	204	208	212	216	220	240	260	281	
Założone	۲	6.0	1	1.02	1.04	1.06	1.08	1.1	1.20	1.3	1.4	
Strumień objętości gazu	$V_{_{g}}$ dm ³ /h	20.29										

Tablica 11. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciażeniem

cieplnym 200	\mathbf{W} na 3% \mathbf{O}_2		JJ			0				
Strumień	Założone	Strumień	Stężenie ozonu					(Temperatura
objętości		objętości			Skła	d chemiczny	spalin do 3%	02		maksymalna
gazu		powietrza	¢							t_{max}
ý		ý	03	((1	- ((
00 (۲	d ,			$[CO_2]$	$[C_nH_m]$	[ON]	$[0_2]$	~	Ū
dm³/h		dm³/h	$mgO_{3}/dm3(N_{2}+O_{2})$	%	%	ppm	ppm	%		$^{\circ}\mathrm{C}$
20.29	0.9	190	0	1.723	8.89	0	4.58	1.37	1.011	*076
			7.4	1.501	8.87	0	6.42	1.37	1.015	967*
	1	200	0	1.164	9.20	0	8.19	1.21	1.025	575
			7.1	1.116	9.18	0	9.07	1.16	1.023	993
	1.02	204	0	1.080	9.22	0	8.14	1.09	1.03	-
			6.9	096.0	9.07	0	9.03	1.06	1.018	
	1.04	208	0	1.192	9.35	0	9.03	1.06	1.027	-
			6.80	0.858	9.16	0	10.81	1.02	1.015	•
	1.06	212	0	0.791	9.30	0	10.71	0.84	1.012	1027^{**}
			6.75	0.515	9.64	0	15.22	0.89	1.04	1044^{**}
	1.08	216	0	0.498	9.52	0	16.99	0.87	1.025	-
			6.65	0.314	9.68	0	14.36	0.95	1.045	
	1.1	220	0	0.262	9.66	0	17.77	0.74	1.034	1079
			6.55	0.153	9.78	0	22.33	0.85	1.054	1096
	1.20	240	0	0.007	10.05	0	28.93	1.09	1.071	1104
			6.2	0.005	10.01	0	30.86	1.17	1.064	1121
	1.3	260	0	0	10.07	0	26.85	2.9	1.205	1112
			5.75	0	10.04	0	31.29	2.59	1.18	1096
	1.4	281	0	0	10.09	0	24.37	4.01	1.302	1079
			5.45	0	10.06	0	27.43	3.94	1.299	1096

Tablica 12. Wyniki przeliczenia składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciążeniem

1096 1079 * λ =0.95 ** λ =1.05

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ałożone Strumie objętośc nowietrz	rumie jętośc vietrz	ù i is	Stężenie ozonu			Skład chemie	zny spalin			Temperatura maksymalna t
I $[C0_2]$ $[C_{11}H_{m1}]$ $[NO]$ $[0_2]$ λ 0C 6 9.64 0 22 0.33 0.894 1070 6 10.13 0 25 0.31 0.893 1079 6 10.13 0 25 0.29 0.921 - 7 10.79 0 26 0.26 0.928 - 7 10.79 0 26 0.26 0.984 - 7 11.04 0 26 0.26 0.984 - 1 11.04 0 26 0.26 0.984 - 6 11.128 0 26 0.29 1171* 6 111.26 0 26 0.29 1179* 6 11.44 0 26 0.29 1179* 7 11.61 0 26 0.29 10.65 - 7 11.61 0 27	\dot{V} O_3	V 03	03	0	-						'max
7 <td>λ λ λ λ λ λ λ λ λ λ</td> <td>$\sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j$</td> <td>$\mathbb{C}^{(C)}$</td> <td>సై</td> <td>5./</td> <td>[C02] %</td> <td>[C_nH_m]</td> <td>[NU]</td> <td>[0₂]</td> <td>Z</td> <td>D₀</td>	λ	$\sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j$	$\mathbb{C}^{(C)}$	సై	5./	[C02] %	[C _n H _m]	[NU]	[0 ₂]	Z	D ₀
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.0000000000000 $0.00000000000000000000000000000000000$				0	56	0 6/	und d	, cc	0.33	0.80/	1070
26 10.13 0 23 0.29 0.921 $ 56$ 10.16 0 26 0.29 0.928 $ 71$ 10.79 0 26 0.26 0.966 1154 12 10.83 0 26 0.26 0.966 1163 11 11 0 26 0.26 0.984 $ 51$ 11.04 0 26 0.26 0.984 $ 11$ 11.28 0 26 0.26 0.998 $1171*$ 56 11.44 0 26 0.27 0.998 $1177*$ 56 11.44 0 30 0.27 1.005 $ 56$ 11.44 0 30 0.27 1.005 $ 47$ 11.61 0 30 0.29 1.024 $ 11.44$ 0	6.35 3.	6.35 3.	6.35 3.	; m	8	9.63	•••	25	0.31	0.893	1079
56 10.16 0 26 0.29 0.928 $ 77$ 10.79 0 2 0.27 0.964 1154 12 10.83 0 26 0.26 0.966 1163 84 11 0 24 0.26 0.983 $ 84$ 11 0 24 0.26 0.984 1154 11 11.28 0 26 0.26 0.984 $ 51$ 11.04 0 25 0.26 0.984 $ 76$ 11.26 0 26 0.27 0.998 $1171*$ 86 11.44 0 28 0.27 0.998 $1171*$ 86 11.44 0 30 0.27 1.005 $ 47$ 11.61 0 26 0.29 1.005 $ 47$ 11.61 0 30 0.27 1.005 $ 47$ 11.61 0 30 0.27 1.005 $ 11.44$ 0 30 0.27 1.005 $ 47$ 11.61 0 30 0.27 1.005 $ 11.42$ 0 30 0.27 1.005 $ 11.44$ 0 33 0.27 1.024 $ 47$ 11.61 0 30 0.29 1.042 1.06 11.44 0 34 0.81 1.022 1.042 1.06 10.44 0 30 <td>0.95 245 0 2.</td> <td>245 0 2.</td> <td>0 2.</td> <td>7</td> <td>626</td> <td>10.13</td> <td>0</td> <td>23</td> <td>0.29</td> <td>0.921</td> <td>ı</td>	0.95 245 0 2.	245 0 2.	0 2.	7	626	10.13	0	23	0.29	0.921	ı
07 10.79 0 23 0.27 0.964 1154 12 10.83 0 26 0.26 0.966 1163 84 11 0 24 0.26 0.983 $ 51$ 11.04 0 26 0.26 0.984 $ 11$ 11.28 0 25 0.26 0.984 $ 11$ 11.28 0 25 0.26 0.984 $ 86$ 11.44 0 28 0.27 0.998 $1171*$ 86 11.44 0 28 0.27 1.005 $ 55$ 11.44 0 30 0.27 1.005 $ 47$ 11.61 0 30 0.27 1.005 $ 47$ 11.61 0 30 0.27 1.005 $ 11.42$ 0 30 0.29 0.44 1.024 $ 47$ 11.61 0 33 0.33 1.042 1188 11.42 0 33 0.27 1.024 $ 11.42$ 0 33 0.59 1.042 1188 10.44 0 33 0.59 1.042 1.066 10.44 0 33 2.27 1.042 1196 10.44 0 30 3.33 1.244 1163 9.9 9.9 0 34 3.12 1.128 1171	6 2.	6 2.	6	પં	456	10.16	0	26	0.29	0.928	•
12 10.83 0 26 0.26 0.966 1163 84 11 0 24 0.26 0.983 - 51 11.04 0 26 0.26 0.984 - 61 11.28 0 26 0.26 0.984 - 76 11.26 0 28 0.27 0.998 1171* 86 11.43 0 26 0.29 1.005 - 86 11.44 0 30 0.27 1.005 - - 47 11.61 0 26 0.29 1.005 - - 47 11.61 0 30 0.27 1.006 - - 47 11.61 0 30 0.29 1.006 - - 47 11.61 0 33 0.37 1.025 - - 47 11.61 0 33 0.31 1.06	1 258 0 1.	258 0 1.4	0 1.	$1.^{\prime}$	407	10.79	0	23	0.27	0.964	1154
84110240.260.983- 51 11.040260.260.984- 11 11.280250.260.9981171* 76 11.260280.270.9981179* 76 11.260280.270.9981179* 86 11.430260.291.005- 86 11.44020300.271.005- 47 11.61020300.271.005- 47 11.610300.290.441.024- 11.59 0300.591.0421188 12 11.420300.591.0421188 11.42 030330.271.024- 11.42 0330.591.0421188 10.44 0330.591.0421196 10.44 0332.271.1581196 9.9 0343.121.1281163	5.75 1.	5.75 1.	5.75 1.	1.	312	10.83	0	26	0.26	0.966	1163
5111.040260.260.984-1111.280250.260.9981171*7611.260280.270.9981171*8611.430260.291.005-5511.440300.271.005-4711.610290.441.024-4711.590320.371.024-1211.580320.591.04211881211.420340.811.02-10.420392.271.15811969.90303.331.24411669.90332.271.15712049.90343.121.1581163	1.02 262 0 0.8	262 0 0.8	0 0.8	0.8	84	11	0	24	0.26	0.983	I
1111.280250.260.998 1171^* 7611.260280.270.998 1179^* 8611.430260.291.005-5511.440300.271.006-4711.610290.441.024-4711.590320.371.006-4711.610320.371.006-4711.590320.371.024-1211.580330.591.04211881211.580330.591.04211881211.420330.591.04211961310.440332.271.15811969.9030333.331.244116310.420343.121.1281163	5.65 0.5	5.65 0.8	5.65 0.3	0.3	851	11.04	0	26	0.26	0.984	•
76 11.26 0 28 0.27 0.998 $1179*$ 86 11.43 0 26 0.29 1.005 $ 55$ 11.44 0 30 0.27 1.006 $ 47$ 11.61 0 30 0.27 1.006 $ 44$ 11.59 0 32 0.37 1.024 $ 12$ 11.58 0 32 0.37 1.024 $ 12$ 11.58 0 33 0.37 1.024 $ 12$ 11.58 0 33 0.59 1.042 1188 10.44 0 33 0.229 1.042 1196 10.44 0 33 2.27 1.158 1196 9.9 0 30 3.33 1.244 1163 9.9 0 3.4 3.12 1.128	1.04 269 0 0.5	269 0.5	0.5	0.5	511	11.28	0	25	0.26	0.998	1171^{*}
86 11.43 0 26 0.29 1.005 - 55 11.44 0 30 0.27 1.006 - 47 11.61 0 29 0.44 1.024 - 47 11.61 0 32 0.37 1.006 - 47 11.61 0 32 0.44 1.024 - 40 11.59 0 32 0.37 1.024 - 12 11.58 0 34 0.81 1.022 - 10.42 0 34 0.81 1.02 1.188 10.44 0 330 0.229 1.042 1196 10.44 0 330 2.27 1.158 1196 9.9 0 30 3.33 1.244 1163	5.55 0.4	5.55 0.4	5.55 0.4	0.4	176	11.26	0	28	0.27	0.998	1179^{*}
55 11.44 0 30 0.27 1.006 \cdot 47 11.61 0 29 0.44 1.024 \cdot 4 11.59 0 32 0.37 1.024 \cdot 12 11.58 0 32 0.37 1.024 $-$ 12 11.42 0 34 0.81 1.042 1188 12 11.42 0 34 0.81 1.065 1196 10.44 0 35 2.29 1.158 1196 9.8 0 39 2.27 1.157 1204 9.9 0 34 3.12 1.128 1163	1.06 274 0 0.2	274 0 0.2	0 0.0	0.0	286	11.43	0	26	0.29	1.005	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.45 0.2	5.45 0.2	5.45 0.2	0.2	:55	11.44	0	30	0.27	1.006	•
$\begin{array}{r cccccccccccccccccccccccccccccccccccc$	1.08 279 0 0.0	279 0 0.0	0.0	0.0)47	11.61	0	29	0.44	1.024	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.4 0.	5.4 0.	5.4 0.	0.	04	11.59	0	32	0.37	1.02	ı
06 11.42 0 34 0.81 1.05 1196 10.42 0 35 2.29 1.158 1196 10.44 0 39 2.27 1.157 1204 9.8 0 30 3.33 1.244 1163 9.9 0 34 3.12 1.128 1163	1.1 284 0 0.0	284 0.0	0 0.0	0.(012	11.58	0	30	0.59	1.042	1188
10.42 0 35 2.29 1.158 1196 10.44 0 39 2.27 1.157 1204 9.8 0 30 3.33 1.244 1163 9.9 0 34 3.12 1.128 1163	5.35 0.0	5.35 0.0	5.35 0.0	0.0	006	11.42	0	34	0.81	1.05	1196
10.44 0 39 2.27 1.157 1204 9.8 0 30 3.33 1.244 1163 9.9 0 34 3.12 1.128 1171	1.20 310 0 0	310 0 0	0 0)	_	10.42	0	35	2.29	1.158	1196
9.8 0 30 3.33 1.244 1163 9.9 0 34 3.12 1.128 1171	5	5	5		0	10.44	0	39	2.27	1.157	1204
9.9 0 34 3.12 1.128 1171	1.3 336 0	336 0	0		0	8.6	0	30	3.33	1.244	1163
	4.7	4.7	4.7		0	9.9	0	34	3.12	1.128	1171

Tablica 13. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciażeniem

	Temperatura maksvmalna	tmax	č	\mathbf{C}	940*	967*	975	993	ı	•		•	1027^{**}	1044^{**}	ı		1079	1096	1104	1121	1112	1096	1079	1096	**À=1.05
			۲		0.894	0.893	0.921	0.928	0.964	0.966	0.983	0.984	9998	0.998	1.005	1.006	1.024	1.020	1.042	1.050	1.158	1.157	1.244	1.128	
	0,	I	$[0_2]$	%	0.330	0.310	0.290	0.290	0.270	0.260	0.260	0.260	0.260	0.270	0.290	0.270	0.440	0.370	0.590	0.810	2.290	2.270	3.330	3.120	
	palin do 3%		[ON]	ppm	19.16	21.75	19.99	22.60	19.97	22.57	20.83	22.57	21.70	24.31	22.60	26.05	25.39	27.92	26.46	30.31	33.67	37.48	30.56	34.23	
	l chemiczny s	•	$[C_nH_m]$	ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Skład		[CO ₂]	%	8.39	8.38	8.80	8.83	9.37	9.40	9.55	9.58	9.79	9.78	9.93	9.93	10.16	10.11	10.21	10.18	10.02	10.03	9.98	9.97	
			[CO]	%	3.097	3.028	2.282	2.135	1.222	1.139	0.767	0.739	0.443	0.413	0.249	0.221	0.041	0.035	0.011	0.005	0	0	0	0	
	Stężenie ozonu	ć	c)	$mgO_{3}/dm3(N_{2}+O_{2})$	0	6.35	0	6	0	5.75	0	5.65	0	5.55	0	5.45	0	5.4	0	5.35	0	5	0	4.7	
	Strumień obietości	powietrza	V_p	dm^{3}/h	233		245		258		262		269		274		279		284		310		336		
W na 3% O ₂	Założone		ہہ		0.9		0.95		1		1.02		1.04		1.06		1.08		1.1		1.20		1.3		
cieplnym 260	Strumień obietości	gazu	>~~~	dm ³ /h	26.16																				

Tablica 14. Wyniki przeliczenia składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciążeniem

	Temperatura maksymalna t _{max}	D ⁰	1010 1044		1229 1154			1179* 1196*		1204 1221	1204 1213	1163 1171	$*\lambda = 1.05$
		r	0.884 0.885	0.93 0.931	0.977 0.978	0.984 0.987	1.006 1.005	1.02 1.026	1.024 1.024	1.047 1.053	1.179 1.183	1.281 1.281	
1		$[0_2]$ %	0.25 0.25	0.22 0.22	0.21 0.21	0.21 0.21	0.21 0.2	0.3 0.3	0.36 0.36	0.73 0.79	2.52 2.59	3.73 3.77	
	zny spalin	[ON]	27 31	28 31	30 32	31 33	35 37	37 41	43 47	46 48	36 39	26 27	
0	Skład chemic	[C _n H _m] ppm	0 0	• •	0 0	0 0	0	0 0	0 0	0 0	0 0	00	
		[CO ₂] %	9.4 9.5	10.3 10.32	11.05 11.07	11.15 11.21	11.54 11.54	11.73 11.72	11.34 11.35	11.24 11.17	10.23 10.28	9.54 9.52	
		[CO] %	3.733 3.642	2.354 2.275	0.964 0.9	0.872 0.756	0.252 0.2	0.037 0.015	0.02 0.016	0	0 0	0	
1 I D	Stężenie ozonu O.	03 mgO ₃ /dm3(N ₂ +O ₂)	0 5.25	0 5.05	0 4.85	0 4 .0	0 4.65	0 4.6	0 4.50	0 4.45	0 4.1	0 3.8	
	Strumień objętości powietrza	V_p dm ³ /h	296	313	329	336	342	349	360	367	400	433	
Ŵ .	Założone	х	0.9	0.95	1	1.02	1.04	1.06	1.08	1.1	1.20	1.3	
cieplnym 330	Strumień objętości gazu	$V_{_{g}}$ dm ³ /h	33.32	<u> </u>	I								

Tablica 15. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciążeniem

N na 3% O2 Zstożone – Strumień – Steżenie ozonu –	Strumień Steżenie ozonu	Steženje ozonu								Temneratura
objętości ortzene ozu	objętości	השט שווויזאים			Skła	d chemiczny s	spalin do 3%	0_2		maksymalna
powietrza O ₃	powietrza	0 [,]								t _{max}
	V_p	,		[CO]	[CO ₂]	$[C_nH_m]$	[ON]	$[\mathbf{O}_2]$	~	c
\sim dm ³ /h mgO ₃ /dm3(N ₂ +(dm^3/h mgO ₃ /dm3(N ₂ +($mgO_3/dm3(N_2+0)$	$O_2)$	%	%	ppm	ppm	%		^v C
0.9 296 0	296 0	0		3.238	8.15	0	23.42	0.250	0.884	1010
5.25	5.25	5.25		3.159	8.24	0	26.89	0.250	0.885	1044
0.95 313 0	313 0	0		2.039	8.92	0	24.25	0.220	0.930	ı
5.05	5.05	5.05		1.971	8.94	0	26.85	0.220	0.931	
1 329 0	329 0	0		0.835	9.57	0	25.97	0.210	776.0	1229
4.85	4.85	4.85		0.779	9.58	0	27.71	0.210	0.978	1154
1.02 336 0	336 0	0		0.755	9.65	0	26.84	0.210	0.984	I
4.8	4.8	4.8		0.655	9.71	0	28.57	0.210	0.987	
1.04 342 0	342 0	0		0.218	66.6	0	30.30	0.210	1.006	T
4.65	4.65	4.65		0.173	9.99	0	32.02	0.200	1.005	
1.06 349 0	349 0	0		0.032	10.20	0	32.17	0.300	1.020	1179*
4.6	4.6	4.6		0.013	10.19	0	35.65	0.300	1.026	1196*
1.08 360 0	360 0	0		0.017	9.89	0	37.50	0.360	1.024	I
4.50	4.50	4.50		0.014	9.90	0	40.99	0.360	1.024	•
1.1 367 0	367 0	0		0	9.98	0	40.85	0.730	1.047	1204
4.45	4.45	4.45		0	9.95	0	42.75	0.790	1.053	1221
1.20 400 0	400 0	0		0	96.6	0	35.06	2.520	1.179	1204
4.1	4.1	4.1		0	10.05	0	38.13	2.590	1.183	1213
1.3 433 0	433 0	0		0	9.94	0	27.10	3.730	1.281	1163
3.8	3.8	3.8		0	9.95	0	28.21	3.770	1.281	1171

**?=1.05

Tablica 16. Wyniki przeliczenia składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciążeniem

	nperatura ksymalna	t _{max}	,	"C	1010	1044	I		1229	1154	ı	•	1		1179*	1196^{*}	I		1204	1221	1204	1213	1163	1171	.05
	Ter		۲		0.88	0.88	0.885	0.888	0.943	0.95	0.965	0.975	0.981	0.985	7.077	1.003	1.011	1.022	1.066	1.044	1.126	1.108	1.19	1.181	$*\lambda=1$
л			$[\mathbf{O}_2]$	%	0.11	0.11	0.11 0	0.11	0.08	0.08	0.07 (0.07	0.07 (0.07	0.08 (0.1	0.28	0.32	1.11	0.68	1.84	1.59	2.69	2.55	
	ıy spalin		[NO]	ppm	33	35	33	35	34	36	35	38	36	40	40	44	46	48	50	54	44	47	36	40	
0	kład chemiczn		[C _n H _m]	ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
J-	S		[CO ₂]	%	9.66	9.66	9.73	9.78	10.35	10.58	10.85	11.03	11.13	11.23	11.43	11.58	11.66	11.64	10.73	10.94	10.4	10.54	96.6	10.04	
			[C0]	%	3.617	3.584	3.486	3.373	1.675	1.514	1.066	0.876	0.681	0.546	0.208	0.15	0.01	0.005	0	0	0	0	0	0	
JJ Ø	Stężenie ozonu	03	0)	$ngO_3/dm3(N_2+O_2)$	0	4.6	0	4.4	0	4.2	0	4.15	0	4.10	0	4	0	3.95	0	3.85	0	3.7	0	3.55	
	Strumień objętości	powietrza	\sim	dm ³ /h n	348		367		386		394		402		409		417		430		449		469		
Ŵ	Założone		đ	~	0.9		0.95		1		1.02		1.04		1.06		1.08		1.1		1.15		1.20		
cieplnym 390	Strumień objętości	gazu	2 %	dm^{3}/h	39.1		<u> </u>				L		<u> </u>		L				L						

Tablica 17. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciążeniem

	Temperatura	maksymalna +	umax	,	$^{\rm o}$	1171	1179	1		1229	1246	I		I		1254^{*}	1271^{*}	I	•	1254	1262	I	•	1204	1221
				۲		0.880	0.880	0.885	0.888	0.943	0.950	0.965	0.975	0.981	0.985	770.0	1.003	1.011	1.022	1.066	1.044	1.126	1.108	1.190	1.181
		02		$[0_2]$	%	0.110	0.110	0.110	0.110	0.080	0.080	0.070	0.070	0.070	0.070	0.080	0.100	0.280	0.320	1.110	0.680	1.840	1.590	2.690	2.550
		spann do 3%		[0N]	ppm	28.43	30.16	28.43	30.16	29.25	30.98	30.10	32.68	30.96	34.40	34.42	37.89	39.96	41.78	45.25	47.83	41.34	43.59	35.39	39.02
	a series of the	ı cnemiczny s		$[C_nH_m]$	ppm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		DKIAO		[CO ₂]	%	8.32	8.32	8.38	8.43	8.91	9.10	9.33	9.49	9.57	9.66	9.83	9.97	10.13	10.13	9.71	9.69	9.77	9.77	9.79	9.80
				[C0]	%	3.117	3.088	3.004	2.906	1.441	1.303	0.917	0.753	0.586	0.470	0.179	0.129	0.009	0.004	0	0	0	0	0	0
	Stężenie ozonu		ő	0	$mgO_3/dm3(N_2+O_2)$	0	4.6	0	4.4	0	4.2	0	4.15	0	4.10	0	4	0	3.95	0	3.85	0	3.7	0	3.55
	Strumień	objętości nowiotrzo	puwicu za	V_p	dm^{3}/h	348		367		386		394		402		409		417		430		449		469	
W na 3% O ₂	Założone			~	~	6.0		0.95		1		1.02		1.04		1.06		1.08		1.1		1.15		1.20	
cieplnym 390	Strumień	objętości	gazu	2 88	dm^{3}/h	39.1																			

**?=1.05

Tablica 18. Wyniki przeliczenia składu chemicznego spalin powstałych ze spalania gazu ziemnego w reaktorze z palnikiem Meckera z obciążeniem

F	
0 W	
<u>m</u> 26	
lnyr	anna
ciep	erat
niem	Temr
ążer	L
obci	
ra z	
cke	
n Me	
sien	
alnil	
εzp	
torze	
reak	
u w 1	
etanı	
a me	
lani	
e spa	
ch z(
tały	
OWS	
lin p	III
spa	0Z0
negc	enie
niczı	Steż
chen	
adu	mień
skł	Stru
N	

żeniemcieplnym	Temperatura maksymalna	t_{max}	D ₀	1000	1010	1040	1050	1050	1060	1160	1170	ı		•		ı	•
tera z obcią			~	0.939	0.94	1.003	1.004	1.038	1.046	1.095	1.098	1.2	1.216	1.34	1.342	1.45	1.47
ikiem Meck			[O ₂] %	0.87	0.8	0.71	0.62	0.73	0.8	1.45	1.54	3	3.12	4.4	4.51	5.5	5.7
ktorze z paln	czny spalin		[ON]	2	n n	7	11	11	13	14	16	15	18	10	10	9	S
netanu w real	Skład chemic		$[C_nH_m]$		0	0	0	0	0	0	0	0	0	0	0	0	0
ce spalania n			[CO ₂] %	9 66	9.77	10.79	10.85	11.27	11.31	11.17	11.13	10.31	10.37	9.45	9.48	5.6	5.71
powstałych z			[C0]	3.042	2.911	1.085	0.929	0.221	0.0133	0.002	0	0	0	0	0	0	0
micznego spalin J	Stężenie ozonu	Ő		0	5.79	0	5.32	0	5.14	0	4.92	0	4.6	0	4.4	0	4.1
ów składu che	Strumień objętości	powietrza	V_p	230		256		267		282		307		323		358	
Wyniki pomiar	Założone		х	6.0		1		1.05		1.1		1.2		1.3		1.4	
Tablica 19. V	Strumień objętości	gazu	ر مار ₈	2.6.89		•											

Tablica 20. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania metanu w reaktorze z palnikiem Meckera z obciążeniem cieplnym

Temperatura maksymalna t _{max}	D ⁰	1000 1010	1040 1050	1050 1060	1160 1170			
	~	0.939 0.940	1.003 1.004	1.038 1.046	1.095 1.098	1.200 1.216	1.340 1.342	1.450 1.470
02	[O ₂] %	0.870 0.800	0.710 0.620	0 08:0 0:230	1.450 1.540	3.000 3.120	4.400 4.510	5.500 5.700
spalin do 3%	[ON]	1.79 4.46	6.21 9.72	9.77 11.58	12.89 14.80	15.00 18.12	10.84 10.92	6.97 5.88
d chemiczny	$[C_nH_m]$	00	0 O	0	0	0	0	0
Skła	[CO ₂] %	8.64 8.71	9.57 9 .58	10.01 10.08	10.28 10.29	10.31 10.44	10.25 10.35	6.50 6.72
	[CO] %	2.720 2.594	0.963 0.821	0.196 0.012	0.002 0.000	0 0	00	0
Stężenie ozonu O,	$mgO_3/dm3(N_2+O_2)$	0 5.79	0 5.32	0 5.14	0 4.92	0 4.6	0 4.4	0 4.1
Strumień objętości powietrza	V_p dm ³ /h	230	256	267	282	307	323	358
Założone	۲	0.9	-	1.05	1.1	1.2	1.3	1.4
Strumień objętości gazu	V_g dm ³ /h	26.89						

C	
en	
3ni	
ąż	
<u>č</u> i	
qo	
Ν	
эrа	
šk	
le	
Ž	
ш	
kić	
ni	
bal	
ΪZ	
Ze	
ori	
kt	
ea.	
V I	
'n	
an	
let	
В	
uia	
lar	
pa	
S	
Z	
ch	
ały	
st	
MC	
ď	
lin	
pa	
SI	
- Š	
ne	
CZ	
Ē	
he	
1 C	
1	
Ľ	
kłac	
∕ skłac	
ów skłac	
iarów skłac	
miarów skłac	
pomiarów skłac	
ki pomiarów skłac	
niki pomiarów skłac	r
Vyniki pomiarów skłac	117
. Wyniki pomiarów skłac	
21. Wyniki pomiarów skłac	
a 21. Wyniki pomiarów skłac	111 JOO
lica 21. Wyniki pomiarów skłac	
ablica 21. Wyniki pomiarów skłac	11 JOO 11

	Temperatura maksymalna t _{max}	20		1080 1090	1110	1120	1140	1150	1150	1160	-	•	-	•
		۲		0.866 0.87	0.973	0.979	1.01	1.016	1.033	1.035	1.15	1.145	1.267	1.266
		[0 ₂]	~0 202	0.21 0.18	0.16	0.21	0.26	0.34	0.51	0.56	2.25	2.17	3.68	3.68
	czny spalin	[0N]	ppm	14 18	22	22	24	23	24	30	20	22	14	13
	Skład chemi	[C _n H _m]	ppIII	•	0	0	0	0	0	0	0	0	0	0
		[CO ₂]	0 /0	9.16 9.38	10.94	10.96	11.39	11.46	11.52	11.53	10.66	10.7	9.81	9.83
		[C0]	<u>/0</u>	4.17 4.036	0.97	0.924	0.203	0.161	0.019	0.009	0	0	0	0
	Stężenie ozonu	03		0 <mark>4</mark> 0 2	0	3.87	0	3.72	0	3.59	0	3.35	0	3.14
	Strumień objętości powietrza	\dot{V}_p	am /n	344	382		401		420		458		496	
N (Założone	۲		0.0	1		1.05		1.1		1.20		1.3	
ciepinym 590	Strumień objętości gazu	\dot{V}_{g}	am /n	40.09										

Tablica 22. Wyniki pomiarów składu chemicznego spalin powstałych ze spalania metanu w reaktorze z palnikiem Meckera z obciążeniem cieplnym 390 W na 3% O.

	Temperatura	tinarsymania t _{max}			ç	1080	1090	1110	1120	1140	1150	1150	1160	I		I	
				~		0.866	0.870	0.973	0.979	1.010	1.016	1.033	1.035	1.150	1.145	1.267	1.266
	Ő			$[\mathbf{O}_2]$	%	0.210	0.180	0.160	0.210	0.260	0.340	0.510	0.560	2.250	2.170	3.680	3.680
	snalin do 3%			[0N]	bpm	12.12	15.56	19.00	19.05	20.83	20.04	21.08	26.42	19.20	21.03	14.55	13.51
	d chemiczny			$[C_nH_m]$	bpm	0	0	0	0	0	0	0	0	0	0	0	0
	Skła			$[CO_2]$	%	7.93	8.11	9.45	9.49	9.89	9.98	10.12	10.15	10.23	10.23	10.20	10.22
				[CO]	%	3.610	3.489	0.838	0.800	0.176	0.140	0	0	0	0	0	0
	Stężenie ozonu		0°		$mgO_3/dm3(N_2+O_2)$	0	4.2	0	3.87	0	3.72	0	3.59	0	3.35	0	3.14
	Strumień obiotości	powietrza		V_p	dm ³ /h	344		382		401		420		458		496	
O 2	Założone			•	2	6.0		1		1.05		1.1		1.20		1.3	
	Strumień obiotości	gazu		V 80	dm ³ /h	40.09											

ZAŁĄCZNIK 3

Wyniki pomiarów badań zasadniczych

	Temperatura maksymalna t _{mov}	VBIII-		D_0	1154	1163	1163	1163	1163	1171
			7		0.900	0.906	0.920	0.928	0.939	0.950
Λ		_	$[0_2]$	%	0.380	0.379	0.370	0.373	0.377	0.370
ıym 260 V	ny spalin	-	[NO]	ppm	0	0	0	0	6.4	6.4
żeniem cieplr	skład chemicz	_	$[C_nH_m]$	ppm	30	16	S	1	0	0
rze z obciąz	•1	-	$[CO_2]$	%	7.841	7.929	8.317	8.424	8.832	9.060
w reaktor		-	[CO]	%	2.824	2.736	2.455	2.280	2.069	1.841
oalin powstałych	Stężenie ozonu	Ċ	63	$mgO_3/dm3(N_2+O_2)$	0	1.88	6.82	8.84	11.39	14.02
ucznego st	Strumień objętości	azotu	V_{N2}	dm ³ /h	178					
kładu chen	Strumień objętości	nuan	V_{o2}	dm ⁵ /h	48					
omiarów sl	Strumień objętości	powieti za	\sum_{p}	dm³/h	225					
Wyniki po	Założone		~		0.9					
<u>Fablica 1.</u>	Strumień objętości	gazu	> ~	dm³/h	26.65		_			

	Temperatura maksymalna	t_{max}		\mathbf{D}^{0}	1154	1163	1163	1163	1163	1171
O_2	г		<i>ہ</i>		0.900	906.0	0.920	0.928	0.939	0.950
W na 3%	o 3% tlen		$[O_2]$	%	0.380	0.379	0.370	0.373	0.377	0.370
olnym 260	lniesiony d		[ON]	ppm	0	0	0	0	5.57	5.57
iążeniem ciep	czny spalin od		[C _n H _m]	ppm	26	14	4	1	0	0
torze z obc	kład chemi		[CO ₂]	%	6.84	6.92	7.26	7.35	7.71	7.90
chemicznego spalin powstałych w reaktorz	S		[CO]	%	2.465	2.389	2.142	1.990	1.806	1.607
	Stężenie ozonu	(03	$mgO_3/dm3(N_2+O_2)$	0	1.88	6.82	8.84	11.39	14.02
	Strumień objętości	azotu	$V_{_{N2}}$	dm³/h	178					
ı składu ch	Strumień objętości	tlenu	\dot{V}_{o2}	dm³/h	48					
rzeliczenia	Strumień objętości	powietrza	$\dot{V_p}$	dm³/h	225					
Wyniki pi	Założone		۲		0.90					
Tablica 2.	Strumień objętości	gazu	V_s	dm³/h	26.65					

	Temperatura maksymalna	Lmax		\mathbf{D}^{0}	1163	1163	1171	1171	1171	1179
			ہ		0:630	0.936	0.945	0.953	0.963	0.970
V			$[0_2]$	%	0.380	0.380	0.370	0.379	0.393	0.380
ıym 260 V	ny spalin		[0N]	ppm	3.5	3.5	3.5	4.5	8.3	5.4
żeniem cieplr	Skład chemicz		$[C_nH_m]$	ppm	0	0	0	0	0	0
ze z obciąż	61		$[CO_2]$	%	8.475	8.498	8.881	8.978	9.092	9.331
n w reaktor			[CO]	%	2.268	2.134	1.917	1.724	1.548	1.347
palin powstałych	Stężenie ozonu	¢	0°	$mgO_3/dm3(N_2+O_2)$	0	1.84	6.48	8.65	11.10	13.97
nicznego st	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm ³ /h	184					
kładu chen	Strumień objętości	tlenu	V_{o_2}	dm³/h	53					
omiarów sl	Strumień objętości	powietrza	V_p	dm³/h	237					
Wyniki po	Założone		۲		0.94					
Tablica 3.	Strumień objętości	gazu	V_s	dm³/h	26.65					

	Temperatura maksymalna	t_{max}		\mathbf{D}^{0}	1163	1163	1171	1171	1171	1179
0_2	-		~		0.930	0.936	0.945	0.953	0.963	0.970
W na 3%	o 3% tlenu	-	$[0_2]$	%	0.380	0.380	0.370	0.379	0.393	0.380
olnym 260	niesiony d	-	[NO]	ppm	3.05	3.05	3.05	3.92	7.23	4.76
iążeniem ciep	czny spalin od		$[C_nH_m]$	ppm	0	0	0	0	0	0
torze z obci	kład chemie	-	$[CO_2]$	%	7.40	7.42	7.75	7.84	7.94	8.15
ch w reak	S		[CO]	%	1.980	1.863	1.672	1.505	1.352	1.175
spalin powstały	Stężenie ozonu	03		mgO ₃ /dm3(N ₂ +O ₂)	0	1.84	6.48	8.65	11.10	13.97
emicznego	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm³/h	184					
składu ch	Strumień objętości	tlenu	V_{o2}	dm³/h	53					
rzeliczenia	Strumień objętości	powietrza	V_p	dm ³ /h	237					
Wyniki p	Założone		۲		0.94					
Tablica 4.	Strumień objętości	gazu	>%	dm³/h	26.65					

	Temperatura maksymalna	\mathbf{t}_{\max}		\mathbf{D}^{0}	1163	1173	1173	1173	1173	1179
			አ		0.958	096.0	0.973	0.980	0.989	0.998
V			$[0_2]$	%	0.378	0.382	0.409	0.419	0.450	0.480
ıym 260 V	ny spalin		[ON]	ppm	9.230	9.1	9.4	7.9	10.8	10.8
żeniem ciepln	škład chemicz		[C _n H _m]	ppm	0	0	0	0	0	0
ze z obciąż	61		[CO ₂]	%	8.97	8.991	9.047	9.091	9.314	9.373
n w reaktor			[CO]	%	1.524	1.404	1.251	1.116	0.959	0.806
palin powstałych	Stężenie ozonu	(0³	$mgO_3/dm3(N_2+O_2)$	0	1.78	6.32	8.39	10.78	13.51
nicznego st	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm ³ /h	191					
kładu chen	Strumień objętości	tlenu	\dot{V}_{02}	dm³/h	52					
omiarów sł	Strumień objętości	powietrza	V_p	dm³/h	243					
Wyniki po	Założone		۲		0.97					
Tablica 5.	Strumień objętości	gazu	V_s	dm³/h	26.65					

1179		Temperatura maksymalna	t_{max}		\mathbf{D}^{0}	1163	1173	1173	1173	1173	1179
0.998	02	п		۲		0.958	096.0	0.973	086.0	0.989	0.998
0.480	W na 3%	lo 3% tlen		$[0_2]$	‰	0.378	0.382	0.409	0.419	0.450	0.480
10.8	olnym 260	lniesiony d		[NO]	ppm	8.06	7.92	8.24	6.93	9.46	9.47
0	ażeniem ciej	czny spalin od		[C _n H _m]	ppm	0	0	0	0	0	0
9.373	torze z obci	kład chemic		[CO ₂]	%	7.83	7.85	7.91	7.95	8.16	8.22
0.806	ch w reakt	S		[CO]	%	1.331	1.226	1.093	0.976	0.840	0.707
13.51	spalin powstały	Stężenie ozonu		03	$mgO_3/dm3(N_2+O_2)$	0	1.78	6.32	8.39	10.78	13.51
	emicznego	Strumień objętości	azotu	$\dot{V_{N2}}$	dm³/h	191					
	ı składu ch	Strumień objętości	tlenu	\dot{V}_{o2}	dm ³ /h	52					
	rzeliczenia	Strumień objętości	powietrza	$\dot{V_p}$	dm ³ /h	243					
	. Wyniki pi	Założone		۲		76.0					
	Tablica 6.	Strumień objętości	gazu	\dot{V}_{s}	dm³/h	26.65					

	Temperatura maksymalna	Lmax		\mathbf{D}^{0}	1163	1163	1171	1179	1179	1196
			۲		1.000	1.004	1.012	1.014	1.025	1.027
r			$[0_2]$	%	0.435	0.454	0.497	0.522	0.546	0.620
Inym 260 W	zny spalin		[NO]	ppm	11.642	12.3	11.8	12.5	12.1	12.9
żeniem ciep	Skład chemic		$[C_nH_m]$	ppm	0	0	0	0	0	0
rze z obcią			[CO ₂]	%	9.31	9.422	9.498	9.583	9.651	9.870
ı w reakto			[CO]	%	0.707	0.642	0.568	0.493	0.414	0.313
palin powstałych	Stężenie ozonu	¢	0°	$mgO_3/dm3(N_2+O_2)$	0	1.74	6.14	8.19	10.51	13.22
nicznego sł	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm ³ /h	197					
kładu chen	Strumień Stru objętości obj tlenu az		V_{o2}	dm³∕h	52					
omiarów s	Strumień objętości	powietrza	V_p	dm³/h	250					
. Wyniki p	Założone		х		1					
Tablica 7.	Strumień objętości	gazu	V_{s}	dm ³ /h	26.59					

	Temperatura maksymalna t _{max}		\mathbf{D}^{0}	1163	1163	1171	1179	1179	1196
O_2	n	۲		1.000	1.004	1.012	1.014	1.025	1.027
W na 3%	lo 3% tlen	$[\mathbf{O}_2]$	%	0.435	0.454	0.497	0.522	0.546	0.620
olnym 260	lniesiony d	[ON]	ppm	10.19	10.79	10.37	10.97	10.62	11.39
iążeniem ciep	iczny spalin oc	$[C_nH_m]$	bpm	0	0	0	0	0	0
torze z obc	Skład chem	[CO ₂]	%	8.15	8.25	8.34	8.42	8.49	8.72
ch w reak	•1	[CO]	%	0.619	0.563	0.498	0.433	0.365	0.276
spalin powstały	Stężenie ozonu	03	$mgO_3/dm3(N_2+O_2)$	0	1.74	6.14	8.19	10.51	13.22
emicznego	Strumień objętości azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h	197					
ı składu ch	Strumień objętości tlenu	\dot{V}_{o2}	dm ³ /h	52					
rzeliczenia	Strumień objętości powietrza	\dot{V}_p	dm ³ /h	250					
Wyniki pi	Założone	~		1					
Tablica 8.	Strumień objętości gazu	$\cdot V_{s}$	dm^3/h	26.59					

	Temperatura maksymalna ↓	Lmax		D_0	1188	1196	1196	1204	1204	1221
			ب		1.050	1.052	1.055	1.061	1.065	1.069
			$[\mathbf{O}_2]$	%	0.798	0.809	0.850	0.909	0.947	1.011
nym 260 W	zny spalin		[NO]	ppm	15.745	15.7	16.5	17.2	17.8	17.8
żeniem ciepli	Skład chemicz		$[C_nH_m]$	ppm	0	0	0	0	0	0
rze z obciąż	U_		[CO ₂]	%	9.95	9.995	10.027	10.048	10.065	10.081
n w reakto			[CO]	%	0.130	0.114	0.095	0.078	0.060	0.042
oalin powstałych	Stężenie ozonu	¢	°,	$mgO_3/dm3(N_2+O_2)$	0	1.45	5.08	6.85	8.78	11.13
nicznego st	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm³/h	206					
kładu chen	Strumień objętości	tlenu	V_{o2}	dm³/h	46					
omiarów sl	Strumień objętości	powietrza	V_p	dm³/h	252					
. Wyniki p	Założone		х		1.04					
<u>Fablica 9.</u>	Strumień objętości	gazu	V_{ss}	dm³/h	26.65					

	Temperatura maksymalna	t_{max}		\mathbf{D}^{0}	1188	1196	1196	1204	1204	1221
$% O_2$	5		۲		1.050	1.052	1.055	1.061	1.065	1.069
0 W na 39	o 3% tlen		$[0_2]$	%	0.798	0.809	0.850	0.909	0.947	1.011
plnym 26	niesiony d		[ON]	ppm	14.03	14.04	14.78	15.39	15.99	16.04
ociążeniem cie	ad chemiczny spalin oc		$[C_nH_m]$	ppm	0	0	0	0	0	0
ktorze z oł	kład chemi		$[CO_2]$	%	8.86	8.91	8.96	9.00	9.03	9.08
tych w rea	u Skła		[CO]	%	0.116	0.101	0.085	0.070	0.054	0.037
o spalin powstal	Stężenie ozonu		0³	$mgO_3/dm3(N_2+O_2)$	0	1.45	5.08	6.85	8.78	11.13
hemiczneg	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm³/h	206					
ia składu c	Strumień objętości	tlenu	\dot{V}_{o2}	dm ³ /h	46					
i przeliczenia s	Strumień objętości	powietrza	V_p	dm³∕h	252					
0. Wyniki j	Założone		۲		1.04					
Tablica 1(Strumień objętości	gazu	V_{s}	dm³∕h	26.59					

	Temperatura maksymalna t _{max}	Ç	1,120	1229	1240		Temperatura	t _{max}		$^{\circ}\mathrm{C}$	1229	1246		Temperatura	t _{max}		\mathbf{D}^{0}	1246	1262		Temperatura	maksymaina	Lmax		0C	1246	1262
		۲	1 100	1.100	1.104	% O ₂	ľ		~		1.100	1.104				~		1.200	1.206	% O ₂	_	1		~		1.200	1.206
M		[O ₂]	1 400	1.409	1.400	0 W na 39	o 3% tlen		$[0_2]$	%	1.409	1.468	W			$[0_2]$	%	2.671	2.711	0 W na 39	o 3% tleni			$[\mathbf{O}_2]$	%	2.671	2.711
lnym 260	any spalin	[ON]	nuld	9C/.CZ	C: C7	eplnym 26	lniesionv d	•	[ON]	bpm	23.66	23.53	lnym 260	any spalin	•	[ON]	ppm	24.710	23.3	eplnym 26	lniesionv d			[NO]	ppm	24.27	22.91
iążeniem ciep	Skład chemicz	[C _n H _m]		0.000	•	bciążeniem ci	iczny spalin oc	4	[C _n H _m]	udd	0	0	iążeniem ciep	Skład chemicz		$[C_nH_m]$	ppm	0	0	bciążeniem ci	iczny snalin od			$[C_nH_m]$	bpm	0	0
orze z obc		[CO ₂]	0 2 0	90.6	CCK.K	ktorze z ol	skład chem		[CO ₂]	%	8.81	9.17	orze z obc			$[CO_2]$	%	9.39	9.286	ktorze z ol	kład chem			[CO ₂]	%	9.23	9.14
ch w reakt		[CO]	0/045	0.045	0	łych w rea			[CO]	%	0.042	0	ch w reakt			[CO]	%	0	0	łych w rea				[CO]	%	0	0
spalin powstały	Stężenie ozonu	O ₃ mgO√dm3(N ₂ +O ₂)		0 13 ED	60.21	o spalin powsta	Stężenie ozonu		03	$mgO_3/dm3(N_2+O_2)$	0	12.59	spalin powstały	Stężenie ozonu	,	03	$mgO_3/dm3(N_2+O_2)$	0	11.85	o spalin powsta	Stężenie ozonu		¢	G,	$mgO_3/dm3(N_2+O_2)$	0	11.85
micznego :	Strumień objętości azotu	$\dot{V}_{N2}^{}$ dm ³ /h	1	717		nemicznego	Strumień	oojetosci azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h	217		micznego	Strumień	objętosci azotu	\vec{V}_{N2}	dh ^c mb	236		nemiczneg	Strumień	objętości	azotu	$V_{\scriptscriptstyle N2}$	dm³/h	236	
składu che	Strumień objętości tlenu	$\dot{V}_{O2}^{}$ d \mathbf{m}^{3} /h	07	00		a składu cl	Strumień	objętosci tlenu	$\dot{V_{o2}}$	dm³/h	60		składu che	Strumień	objętości tlenu	$\dot{V}_{02}^{}$	dm'/h	64		a składu cl	Strumień	objętości	tlenu	V_{o2}	dm ⁵ /h	64	
pomiarów	Strumień objętości powietrza	\dot{V}_p^p dm ³ /h	700	0/7		orzeliczeni	Strumień	objętosci powietrza	$\dot{V_p}$	dm³/h	276		omiarów	Strumień	objętosci powietrza	\dot{V}_p	dm²/h	300		orzeliczeni	Strumień	objętości	powietrza	V_p	dm³/h	300	
. Wyniki I	Założone	۲	-	1.1		. Wyniki I	Założone	`	ب		1.1		. Wyniki _I	Założone		۲		1.2		l. Wyniki _I	Założone			7		1.2	
Tablica 11	Strumień objętości gazu	$\dot{V_{_{g}}}$ dm ³ /h		70.01		Tablica 12	Strumień	objętosci gazu	$\dot{V}_{_{g}}$	dm^{3}/h	26.61		Tablica 13	Strumień	objętosci gazu	$\cdot Y_{ss}$	dh ^c mb	26.61		Tablica 14	Strumień	objętości	gazu	V_{s}	dm ³ /h	26.61	

	Temperatura maksymalna t _{max}	ိုင	1213	1229	Temperatura maksymalna	Lmax	°C	1213	1229		Temperatura	maksymalna t _{max}		^{0}C	1188	1204		Temperatura	maksymalna t _{max}		$^{0}\mathrm{C}$	1188	1204
		ィ	1.303	۲ المار	'n		~	1.303	1.309				۲		1.403	1.412	% O ₂		n	۲		1.403	1.412
W		[O ₂] %	3.748	0 W na 39	lo 3% tlen	_	[O ₂] %	3.748	3.828	W			$[0_2]$	%	4.872	4.906	0 W na 3%		lo 3% tlen	$[O_2]$	%	4.872	4.906
lnym 260	my spalin	[ON]	17.733	eplavm 26	dniesiony c	_	[ON]	18.50	18.17	lnym 260		any spalin	[0N]	ppm	13.306	13.3	eplnym 26		dniesiony o	[0N]	ppm	14.85	14.88
iążeniem ciep	Skład chemicz	[C _n H _m] ppm	0 4	o bciaženiem ci	iczny spalin o	_	[C _n H _m] ppm	0	0	iążeniem ciep		Skład chemicz	$[C_nH_m]$	ppm	0	0	bciążeniem ci		niczny spalin o	$[C_nH_m]$	ppm	0	0
orze z obc		[CO ₂] %	8.79	8.120 ktorze z ol	Skład chen		[CO ₂] %	9.17	9.15	orze z obc			[C0 ₂]	%	8.52	8.430	ktorze z ol		Skład chen	[CO ₂]	%	9.51	9.43
ch w reakt		[CO]	0	tych w rea			[CO] %	0	0	ch w reakt			[CO]	%	0	0	tych w rea			[CO]	%	0	0
spalin powstały	Stężenie ozonu	O ₃ mgO ₃ /dm3(N ₂ +O ₂)	0	0 spalin powsta	Stężenie ozonu	ć	U 3 mgO ₃ /dm3(N ₂ +O ₂)	0	11.20	spalin powstałyc	Steżenie ozonu	J	03	$mgO_3/dm3(N_{2}+O_2)$	0	10.92	o spalin powsta	Stężenie ozonu		03	$mgO_3/dm3(N_{2}\!\!+\!O_2)$	0	10.92
micznego	Strumień objętości azotu	$\dot{V}_{\scriptscriptstyle N2}^{}$ d ${f m^{3}}$ /h	256	hemiczneg	Strumień objętości	azotu	$V_{N2} dm^{3/h}$	256		micznego	Strumień	objętości azotu	$\dot{V_{_{N2}}}$	$dm^{3/h}$	266		hemiczneg	Strumień	objętości azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm^{3}/h	266	
składu che	Strumień objętości tlenu	$\dot{V}_{O2}^{}$ dm ³ /h	68	a składu c	Strumień objętości	tlenu	$V_{O2}^{}$ dm ³ /h	68		składu che	Strumień	objętości tlenu	\dot{V}_{o2}	dm³/h	89		ia składu c	Strumień	objętości tlenu	\dot{V}_{o2}	dm ³ /h	89	
pomiarów	Strumień objętości powietrza	\dot{V}_p^p dm ³ /h	325	orzeliczeni	Strumień objętości	powietrza	V_p dm ³ /h	325		oomiarów	Strumień	objętości powietrza	\dot{V}_p	dm ³ /h	354		orzeliczeni	Strumień	objętości powietrza	$\dot{V_p}$	dm ³ /h	354	
. Wyniki I	Założone	۲	1.3	. Wvniki t	Założone		~	1.3		'. Wyniki I	Założone		۲		1.4		. Wyniki _I	Założone		ہ		1.4	
Tablica 15	Strumień objętości gazu	$\dot{V_{_g}}$ dm ³ /h	26.61	Tablica 16	Strumień objętości	gazu	$V_{_{g}}$ dm ³ /h	26.61		Tablica 17	Strumień	objętości gazu	\dot{V}_{s}	dm ³ /h	26.61		Tablica 18	Strumień	objętości gazu	$\dot{V}_{_g}$	dm ³ /h	26.61	

	Temperatura maksymalna	t_{max}		D_0	1163	1171	1169	1188	1196	1204		Temperatura maksymalna
			۲		0.830	0.834	0.849	0.860	0.870	0.880	% O ₂	п
W			$[\mathbf{O}_2]$	%	0.390	0.390	0.378	0.370	0.370	0.370	0 W na 3 ⁶	lo 3% tlen
lnym 330	ny spalin		[ON]	ppm	0	0	0	0	0	0	eplnym 33	lniesiony d
ążeniem ciep	Skład chemicz		[C _n H _m]	mdd	216	165	110	70	50	39	ciążeniem cie	czny spalin oć
orze z obci	•1		[CO ₂]	%	7.155	7.225	7.538	7.848	8.082	8.192	ktorze z ob	kład chemi
ch w reakto			[CO]	%	4.623	4.522	4.224	3.990	3.784	3.567	ych w real	S
spalin powstałyc	Stężenie ozonu		03	$mgO_{3}/dm3(N_{2}+O_{2})$	0	1.72	6.01	8.13	10.41	13.22	o spalin powstał	Stężenie ozonu
micznego	Strumień objętości	azotu	\dot{V}_{N2}	dm³/h	200						nemiczneg	Strumień objętości
składu che	Strumień objętości	tlenu	$\dot{V_{o2}}$	dm²/h	55						a składu cl	Strumień objętości
pomiarów	Strumień objętości	powietrza	\dot{V}_p	dm²/h	255						przeliczeni	Strumień objętości
. Wyniki ₁	Założone		ہ		0.8						. Wyniki J	Założone
Tablica 19	Strumień objętości	gazu	\dot{V}_{ss}	dm²/h	33.69						Tablica 20	Strumień objętości

)				,	,			
Strumień	Założone	Strumień	Strumień	Strumień	Stężenie ozonu	2	thed chould	lo allano unu	Lindination d	- 30/ 4lour	,	Temperatura
objętości		objętości	objętości	objętości		2		czny spann ou	unesiony u	nan %c o	=	maksymalna
gazu		powietrza	tlenu	azotu								t_{max}
$\dot{V}_{_{g}}$	<i>ہ</i>	$\dot{V_p}$	\dot{V}_{o2}	$\dot{V}_{\scriptscriptstyle N2}$	03	[C0]	$[CO_2]$	$[C_nH_m]$	[ON]	$[0_2]$	~	
dm³∕h		dm ³ /h	dm ³ /h	dm³/h	$mgO_{3}/dm3(N_{2}+O_{2})$	%	%	udd	bpm	%		°C
33.69	0.80	255	55	200	0	4.037	6.25	189	0	062.0	0.830	1163
					1.72	3.949	6.31	144	0	0.390	0.834	1171
					6.01	3.687	6.58	96	0	0.378	0.849	1169
					8.13	3.482	6.85	61	0	0.370	0.860	1188
					10.41	3.302	7.05	44	0	0.370	0.870	1196
					13.22	3.113	7.15	34	0	0.370	0.880	1204

r				1							- B									
	Temperatur: maksymalna t _{max}		^{0}C	1188	1196	1204	1204	1204	1204		Temperatur: maksymalna	t _{max}		\mathbf{D}^{0}	1188	1196	1204	1204	1204	1204
		~		0.850	0.855	0.872	0.874	0.883	0.898	% O ₂	п		۲		0.850	0.855	0.872	0.874	0.883	0.898
M		$[0_2]$	%	0.380	0.380	0.380	0.380	0.380	0.370	0 W na 39	lo 3% tlen		$[0_2]$	%	0.380	0.380	0.380	0.380	0.380	0.370
lnym 330	ny spalin	[ON]	bpm	0	0	0	0	0	0	splnym 33	lniesiony d		[NO]	ppm	0	0	0	0	0	0
ążeniem ciep	Skład chemicz	$[C_nH_m]$	bpm	30	28	18	42	31	0	ciążeniem cie	czny spalin od		$[C_nH_m]$	ppm	26	24	16	36	27	0
orze z obci	•1	[CO ₂]	%	7.703	7.778	8.323	8.040	8.255	8.671	ktorze z ob	kład chemi		[C0 ₂]	%	6.72	6.79	7.27	7.02	7.21	7.57
ch w reakt		[C0]	%	4.339	4.275	3.965	3.721	3.534	3.213	ych w rea	S		[CO]	%	3.788	3.732	3.462	3.248	3.085	2.803
spalin powstałyc	Stężenie ozonu	0_3	$mgO_3/dm3(N_2+O_2)$	0	1.64	5.61	7.78	9.93	12.77	o spalin powstał	Stężenie ozonu	\mathbf{O}_3		mgU ₃ /dm3(N ₂ +U ₂)	0	1.64	5.61	7.78	9.93	12.77
micznego	Strumień objętości azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³∕h	213						hemiczneg	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm³/h	213					
składu che	Strumień objętości tlenu	\dot{V}_{o2}	dm³/h	60						a składu cj	Strumień objętości	tlenu	V_{o2}	dm³/h	60					
pomiarów	Strumień objętości powietrza	$\dot{V_p}$	dm³/h	273						przeliczeni	Strumień objętości	powietrza	V_p	dm³/h	273					
. Wyniki I	Założone	r		0.86						. Wyniki I	Założone		~		0.86					
Tablica 21	Strumień objętości gazu	\dot{v}_{s}	dm³/h	33.69						Tablica 22	Strumień objętości	gazu	$V_{_{g}}$	dm³/h	33.69					
										- · ·										

	Temperatura maksymalna t _{max}		\mathbf{D}^{0}	1204	1213	1221	1229	1213	1221		Temperatura maksymalna	\mathbf{t}_{\max}	
		~		0.903	0.908	0.917	0.924	0.932	0.943	% O ₂	-		Z
M		$[0_2]$	%	0.380	0.388	0.374	0.370	0.370	0.370	0 W na 39	o 3% tleni		ניטין
lnym 330	ny spalin	[NO]	ppm	2.565	2.3	2.3	2.3	2.5	3.6	plnym 33	lniesiony d		ION
ążeniem ciepl	Skład chemicz	$[C_nH_m]$	ppm	2.200	0	0	0	0	0	ciążeniem cie	czny spalin od		
orze z obci	•1	[CO ₂]	%	8.70	8.671	8.958	9.033	9.283	9.576	ktorze z ob	kład chemi		$[CO_{2}]$
ch w reakto		[C0]	%	3.056	2.924	2.670	2.508	2.315	2.033	ych w real	S		
spalin powstałyc	Stężenie ozonu	0_3	$mgO_{3}/dm3(N_{2}+O_{2})$	0	1.58	5.29	7.50	9.53	12.37	o spalin powstał	Stężenie ozonu	(03
micznego s	Strumień objętości azotu	$\dot{V_{_{N2}}}$	dm³/h	225						nemicznego	Strumień objętości	azotu	$V_{_{N2}}$
składu che	Strumień objętości tlenu	\dot{V}_{o2}	dm²/h	65						a składu cl	Strumień objętości	tlenu	\dot{V}_{o2}
omiarów	Strumień objętości nowietrza	$\dot{V_p}$	dm³/h	290						orzeliczeni	Strumień objętości	powietrza	V_p
. Wyniki J	Założone	r		0.91						. Wyniki _I	Założone		ہ
Tablica 23	Strumień objętości oazu	V.	dm⁵/h	33.69						Tablica 24	Strumień objętości	gazu	$V_{_g}$

	Temperatura maksymalna	t_{max}		\mathbf{D}^{0}	1204	1213	1221	1229	1213	1221
% U2	T		~		0.903	0.908	0.917	0.924	0.932	0.943
U W na 39	lo 3% tlenu		$[\mathbf{O}_2]$	%	0.380	0.388	0.374	0.370	0.370	0.370
epinym 53	lniesiony d		[NO]	ppm	2.24	2.04	2.05	2.05	2.14	3.14
ciązeniem cie	czny spalin od		[C _n H _m]	ppm	1.92	0	0	0	0	0
ktorze z ob	kład chemi		[CO ₂]	%	7.59	7.57	7.82	7.88	8.10	8.36
tych w rea	S		[C0]	%	2.667	2.553	2.330	2.189	2.020	1.774
o spalin powstai	Stężenie ozonu		0_3	$mgO_3/dm3(N_2+O_2)$	0	1.58	5.29	7.50	9.53	12.37
hemiczneg	Strumień objętości	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h	225					
a składu c	Strumień objętości	tlenu	$\dot{V_{o2}}$	dm³/h	65					
przeliczeni	Strumień objętości	powietrza	$\dot{V_p}$	dm³/h	290					
+. wymki]	Założone		۲		0.91					
Lablica 24	Strumień objętości	gazu	$\dot{V}_{_{g}}$	dm³/h	33.69					
										_

	Temperatura maksymalna t _{max}		D ⁰	1345	1353	1361	1370	1394	1402		Temperatura maksymalna	t _{max}		\mathbf{D}^{0}	1345	1353	1361	1370	1394	1402
		۲		0.931	0.936	0.944	0.950	0.969	0.914	6 O ₂	n		۲		0.931	0.936	0.944	0.950	0.969	0.914
W		$[\mathbf{O}_2]$	%	0.380	0.380	0.380	0.374	0.370	0.370	0 W na 39	lo 3% tlen		$[0_2]$	%	0.380	0.380	0.380	0.374	0.370	0.370
lnym 330	ny spalin	[ON]	mdd	3.191	2.5	2.6	3.5	5.0	5.2	plnym 33	Iniesiony G	•	[0N]	ppm	2.79	2.14	2.31	3.05	4.33	4.58
ążeniem ciep	kład chemicz	$[C_nH_m]$	mqq	0	0	0	0	0	0	ciążeniem cie	czny spalin oc	•	$[C_nH_m]$	ppm	0	0	0	0	0	0
orze z obci	U 1	[CO ₂]	%	90.6	9.318	9.421	9.578	10.030	10.032	ktorze z ob	Skład chemi		[CO ₂]	%	7.91	8.13	8.22	8.36	8.75	8.75
ch w reakt		[CO]	%	2.344	2.230	2.029	1.852	1.450	1.450	ych w rea	•1		[CO]	%	2.047	1.947	1.771	1.616	1.265	1.265
spalin powstałyc	Stężenie ozonu	0_3	$mgO_3/dm3(N_2+O_2)$	0	1.54	5.18	7.30	9.29	12.03	o spalin powstał	Stężenie ozonu		03	$mgO_3/dm3(N_2+O_2)$	0	1.54	5.18	7.30	9.29	12.03
micznego	Strumień objętości azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h	232						nemiczneg	Strumień objętości	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm^{3}/h	232					
składu che	Strumień objętości tlenu	\dot{V}_{o2}	dm³/h	64						a składu cl	Strumień obietości	tlenu	\dot{V}_{o2}	dm³/h	64					
omiarów	Strumień objętości powietrza	$\dot{V_p}$	dm ³ /h	296						orzeliczeni	Strumień objętości	powietrza	$\dot{V_p}$	dm ³ /h	296					
. Wyniki _I	Założone	х		0.94						. Wyniki I	Założone		ہ		0.94					
Tablica 25	Strumień objętości gazu	$\cdot \mathcal{V}_{\infty}$	dm³/h	33.42						Tablica 26	Strumień objętości	gazu	\dot{V}_{s}	dm^{3}/h	33.42					

Tablica 2	.7. Wyniki	pomiarów	składu che	micznego	spalin powstałyc	ch w reakt	orze z obci	ążeniem ciepl	lnym 330	M		
Strumień objętości gazu	Założone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu			Skład chemicz	ny spalin		-	Temperatura maksymalna t _{max}
$\dot{V}_{_g}$	~	$\dot{V_p}$	\dot{V}_{o2}	$\dot{V}_{\scriptscriptstyle N2}$	03	[CO]	$[CO_2]$	$[C_nH_m]$	[0N]	$[O_2]$	۲	
dm³∕h		dm ³ /h	dm ³ /h	dm³∕h	$mgO_{3}/dm3(N_{2}+O_{2})$	%	0%	bpm	ppm	%		D_0
33.42	0.97	307	68	239	0	1.602	9.66	0	7.296	0.370	096.0	1221
					1.50	1.492	9.886	0	8.1	0.370	0.965	1229
					4.99	1.346	10.013	0	8.2	0.370	0.971	1237
					7.15	1.231	10.160	0	9.1	0.370	0.975	1246
					9.08	1.083	10.231	0	8.9	0.370	0.983	1254
					11.81	0.886	10.307	0	13.8	0.402	0.992	1262
Tablica 2	8. Wyniki	przeliczen	ia składu c	themiczneg	o spalin powstal	tych w rea	ktorze z ob	ciążeniem cie	plnym 33	0 W na 39	% O ₂	
Strumień objętości	Założone	Strumień objętości	Strumień objętości	Strumień objętości	Stężenie ozonu		kład chemio	czny spalin od	niesiony d	o 3% tlenu		Temperatura maksymalna
gazu		powietrza	tlenu	azotu	(t_{max}
V_{s}	۲	V_p	V_{o2}	$V_{\scriptscriptstyle N2}$	ő	[CO]	[CO ₂]	$[C_nH_m]$	[ON]	$[\mathbf{O}_2]$	۲	
dm³∕h		dm ³ /h	dm ³ /h	dm ³ /h	$mgO_{3}/dm3(N_{2}+O_{2})$	%	%	bpm	ppm	%		\mathbf{D}^{0}
33.42	0.97	307	68	239	0	1.398	8.43	0	6.37	0.370	0.960	1221
					1.50	1.302	8.63	0	7.07	0.370	0.965	1229
					4.99	1.175	8.74	0	7.15	0.370	0.971	1237
					7.15	1.074	8.86	0	7.92	0.370	0.975	1246
					9.08	0.945	8.93	0	7.76	0.370	0.983	1254
					11.81	0.774	9.01	0	12.05	0.402	0.992	1262

	Temperatura maksymalna	t_{max}		O_0	1254	1262	1262	1272	1272	1279		Temperatura maksymalna	Lmax	
			ہ		1.002	1.007	1.012	1.014	1.020	1.028	6 O ₂	_		۲
Ν			$[0_2]$	%	0.426	0.470	0.493	0.450	0.549	0.610) W na 39) 3% tlenu		$[0_2]$
lnym 330 V	ıny spalin		[NO]	mqq	14.126	15.0	15.7	17.7	16.5	16.5	eplnym 33(lniesiony do		[NO]
ążeniem ciep	Skład chemicz		[C _n H _m]	bpm	0	0	0	0	0	0	ciążeniem cie	czny spalin oc		$[C_nH_m]$
orze z obci	•1		$[CO_2]$	%	10.33	10.366	10.578	10.714	10.621	10.738	ktorze z ob	kład chemi		$[CO_2]$
ch w reakt			[CO]	%	0.641	0.583	0.514	0.465	0.386	0.283	ych w rea	Ø		[CO]
spalin powstałyc	Stężenie ozonu		03	$mgO_3/dm3(N_2+O_2)$	0	1.47	4.79	6.99	8.85	11.55	o spalin powstał	Stężenie ozonu	¢	03
micznego	Strumień objętości	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³∕h	248						hemiczneg	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$
składu che	Strumień objętości	tlenu	\dot{V}_{o2}	dm³/h	72						a składu cl	Strumień objętości	tlenu	\dot{V}_{o2}
pomiarów	Strumień objętości	powietrza	$\dot{V_p}$	dm³/h	320						przeliczeni	Strumień objętości	powietrza	V_p
). Wyniki _J	Założone		۲		1.02). Wyniki _J	Założone		7
Tablica 29	Strumień objętości	gazu	$\dot{V}_{_{g}}$	dm³∕h	33.42						Tablica 3(Strumień objętości	gazu	V_{s}

	Temperatura maksymalna	t_{max}		\mathbf{D}^{0}	1254	1262	1262	1272	1272	1279
% O ₂	n		۲		1.002	1.007	1.012	1.014	1.020	1.028
0 W na 39	o 3% tleni		$[\mathbf{O}_2]$	%	0.426	0.470	0.493	0.450	0.549	0.610
splnym 33	iniesiony d		[ON]	ppm	12.36	13.17	13.75	15.53	14.56	14.60
ciążeniem cie	czny spalin od		$[C_nH_m]$	ppm	0	0	0	0	0	0
ktorze z ob	kład chemi		$[CO_2]$	%	9.03	9.09	9.28	9.38	9.35	9.48
ych w real	S		[CO]	%	0.561	0.511	0.451	0.407	0.340	0.250
o spalin powstał	Stężenie ozonu		03	$mgO_3/dm3(N_2+O_2)$	0	1.47	4.79	6.99	8.85	11.55
hemicznego	Strumień objętości	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm ³ /h	248					
a składu cl	Strumień objętości	tlenu	\dot{V}_{o2}	dm³/h	72					
przeliczeni	Strumień objętości	powietrza	$\dot{V_p}$	dm³/h	320					
). Wyniki _l	Założone		7		1.02					
Tablica 3(Strumień objętości	gazu	$\cdot V_{_{\infty}}$	dm³∕h	33.42					

	Temperatura maksymalna t _{max}	O	1279	1287	1295	1295	1304	1312		Temperatura maksymalna	\mathbf{t}_{\max}		°C
		Y	1.048	1.052	1.054	1.060	1.064	1.074	6 O ₂	_		۲	
Ν		[O ₂] %	0.745	0.806	0.848	0.967	0660	0.907) W na 39) 3% tlenu		$[\mathbf{O}_2]$	%
lnym 330 V	rny spalin	[ON]	23.659	23.9	24.0	24.3	24.3	24.3	eplnym 33(lniesiony do		[ON]	mdd
ażeniem ciep	Skład chemicz	[C _n H _m] ppm	0	0	0	0	0	0	ociążeniem cie	czny spalin od		$[C_nH_m]$	mqq
orze z obci	•1	[CO ₂] %	10.80	10.740	10.725	10.755	10.719	10.674	ktorze z ob	kład chemi		[CO ₂]	%
ch w reakt		[CO]	0.054	0.047	0.039	0.031	0.025	0.016	ych w rea	S		[CO]	%
spalin powstałyc	Stężenie ozonu	O_{3} mgO_{3}/dm3(N_{2}+O_{2})	0	1.41	4.53	6.71	8.48	11.07	o spalin powstał	Stężenie ozonu		0_3	$mgO_3/dm3(N_2+O_2)$
micznego	Strumień objętości azotu	V_{N2} dm ³ /h	262						nemiczneg	Strumień objętości	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h
składu che	Strumień objętości tlenu	$\dot{V}_{O2}^{}$ d \mathbf{m}^{3} /h	76						ia składu cl	Strumień objętości	tlenu	\dot{V}_{o2}	dm³/h
pomiarów	Strumień objętości powietrza	V_p dm ³ /h	338						przeliczeni	Strumień objętości	powietrza	$\dot{V_p}$	dm³/h
L. Wyniki J	Założone	٢	1.06						. Wyniki	Założone		۲	
Tablica 31	Strumień objętości gazu	$V_{_{g}}$ dm ³ /h	33.69						Tablica 32	Strumień objętości	gazu	$\dot{V}_{_g}$	dm³/h

1279 1287 1285 1295 1304 1312

1.048 1.052 1.054 1.060 1.064 1.074

% 0.745 0.745 0.806 0.848 0.967 0.990 0.907

 ppm

 21.02

 21.29

 21.29

 21.29

 21.80

 21.82

 21.82

 21.83

 $\circ \circ \circ \circ \circ \circ$

% 9.60 9.57 9.58 9.66 9.66 9.66 9.66 9.56

% 0.048 0.042 0.035 0.035 0.027 0.022

262

76

338

1.06

33.69

0 1.41 4.53 6.71 8.48 11.07

0.015

Tablica 3	3. Wyniki	pomiarów	składu che	micznego	spalin powstałyc	ch w reakt	torze z obci	iążeniem ciep	lnym 330	W		
Strumień objętości gazu	Założone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu			Skład chemicz	zny spalin		-	Temperatura maksymalna t _{max}
	۲	$\dot{V_p}$	\dot{V}_{o2}	$\dot{V}_{\scriptscriptstyle N2}$	0_3	[C0]	[CO,]	[C"H"]	[ON]	[0,]	~	
dm ³ /h		dm³/h	dm³/h	dm³/h	$mgO_3/dm3(N_2+O_2)$	%	%	mdd	mdd	%		D ⁰
33.76	1.12	355	80	275	0	0	10.66	0	31.249	1.564	1.101	1295
					10.67	0	10.529	0	30.9	1.583	1.107	1312
Tablica 3	4. Wyniki	przeliczeni	a składu cl	hemiczneg	o spalin powstał	ych w rea	iktorze z oł	ociążeniem ci	eplnym 33	0 W na 3%	6 O ₂	
Strumień	Założone	Strumień	Strumień	Strumień	Stężenie ozonu	•	Skład chemi	iczny snalin od	łniesiony d	o 3% tlenu	_	Temperatura
objętości gazu		objętości powietrza	objętości tlenu	objętości azotu								maksymalna t _{max}
$\cdot {\cal V}_{_{{\scriptscriptstyle {ar arsigma}}}}$	۲	$\dot{V_p}$	\dot{V}_{o2}	$\dot{V}_{\scriptscriptstyle N2}$	03		[CO,]	[C.,H.,.]	ION	[0,]	አ	
dm ³ /h	:	dm³/h	dm ³ /h	dm³∕h	$mgO_3/dm3(N_2+O_2)$	%	%	mdd	mdd	%	:	ΰC
33.76	1.12	355	80	275	0	0	9.87	0	28.94	1.564	1.101	1295
					10.67	0	9.76	0	28.63	1.583	1.107	1312
Tablica 3	5. Wyniki	pomiarów	składu che	micznego	spalin powstałyc	ch w reak	torze z obci	iążeniem ciep	lnym 330	M		
Strumień	Założone	Strumień	Strumień	Strumień	Stężenie ozonu			Clyfad ahamir	nilons un			Temperatura
objętości gazu		objętości powietrza	objętości tlenu	objętości azotu				Skiau chemic	any spann			maksymalna t _{max}
\dot{V}_{s}	۲	$\dot{V_p}$	\dot{V}_{o2}	$\dot{V_{\scriptscriptstyle N2}}$	0_3	[CO]	[CO ₂]	$[C_nH_m]$	[NO]	$[\mathbf{O}_2]$	۲	
dm³/h		dm³/h	dm³/h	dm³/h	$mgO_{3}/dm3(N_{2}+O_{2})$	%	%	bpm	mdd	%		0C
33.76	1.21	387	87	300	0	0	9.84	0	26.793	2.833	1.203	1279
					9.96	0	9.873	0	26.4	2.949	1.209	1304
Tablica 3	6. Wyniki	przeliczeni	a składu cl	hemiczneg	o spalin powstał	ych w rea	iktorze z ob	ociążeniem ci	eplnym 33	0 W spalir	n na 3% C	2
Strumień	Założone	Strumień	Strumień	Strumień	Stężenie ozonu		Skład chemi	iczny snalin od	łniesiony d	o 3% tlenu	_	Temperatura
objętości		objętości	objętości	objętości		-		so minde fuess				maksymalna ↓
gazu		powietrza	tlenu ·	azotu	C				-	-		Lmax
\sum_{∞}	r	D _p	V_{o2}	V_{N2}	03	[CO]	$[CO_2]$	$[C_nH_m]$	[ON]	$[\mathbf{O}_2]$	۲	
dm ³ /h		dm ³ /h	dh ⁵ /h	dm³/h	$mgO_{3}/dm3(N_{2}+O_{2})$	%	%	bpm	ppm	%		°C
33.76	1.21	387	87	300	0	0	9.75	0	26.55	2.833	1.203	1279
					9.96	0	9.85	0	26.35	2.949	1.209	1304

a 37. W	Vyniki l	pomiarów	<u>składu che</u>	micznego	<u>spalin powstałyc</u>	<u>ch w reak</u>	torze z obc	<u>iążeniem ciep</u>	lnym 330	M		
Za	łożone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu			Skład chemic	zny spalin			ı emperatura maksymalna t _{max}
	۲	$\dot{V_p}$ dm ³ /h	$\dot{V}_{O2}^{}$ dm ³ /h	V_{N2} dm ³ /h	O_3 mgO ₃ /dm3(N ₂ +O ₂)	[CO]	[CO ₂] %	[C _n H _m] ppm	[ON]	[O ₂] %	۲	°
	1.32	419	94	325	0 9_34	0	9.33 9.279	0 e	18.675 18.7	3.977 4.002	1.300 1.307	1246 1262
	Vyniki p	przeliczeni	a składu cl	hemiczneg	o spalin powstał	ych w rea	aktorze z oł	bciążeniem ci	eplnym 33	0 W na 39	% O ₂	
Za	łożone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu		Skład chen	uiczny spalin o	dniesiony c	do 3% tlen	E	Temperatura maksymalna t _{max}
	r	$\dot{V_p}$ dm ³ /h	$\dot{V}_{O2}^{}$ dm ³ /h	$\dot{V}_{\scriptscriptstyle N2}^{}$ dm ³ /h	O ₃ mgO ₄ /dm3(N+O ₂)	[CO]	[CO2] %	[C _n H _m] nnm	[ON]	[02]	~	,C
	1.32	419	94	325	0 9.34	•	9.87 9.83	•	19.75 19.78	3.977 4.002	1.300 1.307	1246 1262
9. V	Vyniki _I	pomiarów	składu che	micznego	spalin powstałyc	sh w reak	torze z obc	iążeniem ciep	lnym 330	M		
Za	łożone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu			Skład chemicz	zny spalin			Temperatura maksymalna t _{max}
	~	\dot{V}_p d \mathbf{m}^3 /h	\dot{V}_{O2} dm ³ /h	$\dot{V}_{\scriptscriptstyle N2}^{}$ dm ³ /h	O ₃ mgO ₃ /dm3(N ₂ +O ₂)	[CO]	[CO ₂] %	[C _n H _m] ppm	[ON]	[O ₂] %	r	Ç
	1.42	453	103	350	0 8.82	0	8.75 8.762	- -	12.229 12.5	5.050 5.066	1.405 1.408	1221 1237
0. V	Vyniki _I	przeliczeni	a składu cl	hemiczneg	o spalin powstał	ych w rea	aktorze z oł	bciążeniem ci	eplnym 33	0 W na 39	% O ₂	
Za	łożone	Strumień objętości	Strumień objętości	Strumień objętości	Stężenie ozonu		Skład chen	uiczny spalin o	dniesiony o	lo 3% tlen	=	Temperatura maksymalna +
	~	powieurza Vj	tlenu \dot{V}_{o2}	\dot{V}_{N2}	03	[CO]	[C0 ₂]	[C _n H _m]	[ON]	$[0_2]$	۲	max
		dm²/h	dm²/h	dm²/h	$mgO_{3}/dm3(N_{2}+O_{2})$	%	%	mqq	mdd	%		^C
	1.42	453	103	350	0 8.82	• •	9.87 9.90	00	13.80 14.10	5.050 5.066	1.405 1.408	1221 1237
1	1					ŗ		,				

-													
	Temperatura maksymalna	\mathbf{t}_{\max}		D_0	1196	1204	1213	1221	1229	1229		Temperatura	maksymalna t _{max}
			ہ		0.818	0.823	0.829	0.849	0.861	0.874	% O ₂		5
W			$[\mathbf{O}_2]$	%	0.400	0.400	0.390	0.390	0.390	0.390	0 W na 3	10 30/ 410m	11911 0/ C 01
lnym 390	eny spalin		[NO]	ppm	0	0	0	0	0	0	eplnym 39		unesiony c
ażeniem ciep	Skład chemicz		$[C_nH_m]$	ppm	165	127	93	46	12	0	ociążeniem ci	and the second	czny spann oc
orze z obci			[CO ₂]	%	6.998	7.044	7.425	7.664	8.020	8.350	ktorze z ob	imodo boti	kiau chenn
ch w reakte			[CO]	%	5.004	4.908	4.607	4.435	4.227	3.914	ych w real	ŭ	2
spalin powstałyc	Stężenie ozonu	¢	0°	$mgO_{3}/dm3(N_{2}+O_{2})$	0	1.53	5.14	7.28	9.48	12.01	o spalin powstał	Stężenie ozonu	
micznego	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm³/h	233						hemiczneg	Strumień	objętości azotu
składu che	Strumień objętości	tlenu	V_{o2}	dm³/h	65						a składu c	Strumień	objętości tlenu
pomiarów	Strumień objętości	powietrza	V_p	dm³/h	298						orzeliczeni	Strumień	objętości powietrza
l. Wyniki I	Założone		۲		0.8						. Wyniki _I	Założone	
Tablica 41	Strumień objętości	gazu	V_{s}	dm³/h	39.35						Tablica 42	Strumień	objętości gazu

	o 3% tlenu Temperatura maksymalna	tmax	[O ₂] λ	00 OC	0.400 0.818 1196	0.400 0.823 1204	0.390 0.829 1213	0.390 0.849 1221	0.390 0.861 1229	0.390 0.874 1229
J.	lniesiony d		[ON]	ppm	0	0	0	0	0	0
	czny spalin od		$[C_nH_m]$	ppm	144	111	81	40	10	0
	kład chemio		[CO ₂]	%	6.11	6.15	6.48	6.69	7.00	7.29
	S		[CO]	%	4.373	4.288	4.024	3.873	3.692	3.419
	Stężenie ozonu		0_3	$mgO_3/dm3(N_2+O_2)$	0	1.53	5.14	7.28	9.48	12.01
	Strumień objętości	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h	233					
	Strumień objętości	tlenu	\dot{V}_{o2}	dm ³ /h	65					
	Strumień objętości	powietrza	\dot{V}_p	dm³/h	298					
	Założone		ہ		0.80					
	Strumień objętości	gazu	$\cdot \sum_{\infty}$	dm³/h	39.35					

	Temperatura maksymalna t _{max}	, C	1212	1221	1221	1229	1229	1237			Temperatura maksymalna t _{max}
		٢	0.850	0.852	0.859	0.863	0.871	0.889	(6 U ₂	-
M		[O ₂] %	0.410	0.390	0.390	0.380	0.380	0.380		0 W na 39	o 3% tlenı
nym 390 ⁻	ny spalin	[ON]	0	0	0	0	0	0	-	plnym 39	niesiony d
ążeniem ciepl	Skład chemicz	[C _n H _m] ppm	~~~	0	20	15	S	0	· · ·	ciążeniem cie	czny spalin od
orze z obci	01	[CO ₂] %	7.841	7.794	7.705	7.761	8.071	8.351		ktorze z ob	kład chemi
ch w reakto		[C0]	4.545	4.391	4.139	4.023	3.745	3.414	-	<u>ych w real</u>	<u>x</u> -
spalin powstałyc	Stężenie ozonu	O ₃ mgO ₃ /dm3(N ₂ +O ₂)	0	1.46	4.78	6.96	8.82	11.51	-	o spalin powstaf	Stężenie ozonu O ₃
micznego	Strumień objętości azotu	$\dot{V}_{_{N2}}$ dm ³ /h	249							nemiczneg	Strumień objętości azotu rż
składu che	Strumień objętości tlenu	$\dot{V}_{02}^{}$ dm ³ /h	72						-	a składu cl	Strumień objętości tlenu
pomiarów	Strumień objętości powietrza	\dot{V}_p dm ³ /h	321						:	Drzeliczeni	Strumień objętości powietrza
). Wyniki _I	Założone	ĸ	0.86							. Wyniki j	Założone
Tablica 43	Strumień objętości gazu	$\dot{V_{_{g}}}$ dm $^{3}/\!h$	39.35							Lablica 44	Strumień objętości gazu

Tablica 4	4. Wyniki	przeliczen	iia składu c	hemiczneg	to spalin powstał	ych w rea	ktorze z ob	ciążeniem cie	splnym 39	0 W na 3 ⁶	$% O_2$		
Strumień objętości	Założone	Strumień objętości	Strumień objętości	Strumień objętości	Stężenie ozonu	S	kład chemic	czny spalin od	lniesiony d	o 3% tlenu	T	Temperatura maksymalna	
gazu		powietrza	tlenu	azotu	03		-			-		t _{max}	
V_s	~	V_p	V_{o2}	$V_{\scriptscriptstyle N2}$		[CO]	[CO ₂]	$[C_nH_m]$	[NO]	$[0_2]$	~		
dm³∕h		dm³∕h	dm³/h	dm ³ /h	mgO ₃ /dm3(N ₂ +O ₂)	%	%	ppm	ppm	%		\mathbf{D}^{0}	
39.35	0.86	321	72	249	0	3.974	6.85	L	0	0.410	0.850	1212	
					1.46	3.835	6.81	0	0	0.390	0.852	1221	
					4.78	3.614	6.73	17	0	0.390	0.859	1221	
					6.96	3.512	6.77	13	0	0.380	0.863	1229	
					8.82	3.269	7.05	4	0	0.380	0.871	1229	
					11.51	2.980	7.29	0	0	0.380	0.889	1237	
Strumień Objętości objętości 	Temperatura maksymalna t _{max}	٦ ر	905 1229	912 1240	920 1254	924 1279	935 1279	945 1295	2	Temperatura maksymalna ↓	Lmax	۲	°C
---	---	---	----------	----------	----------	----------	----------	----------	------------------	--------------------------------	-----------	-----------------------------	----------------------------
Strumień objętości gazu $V_{\hat{x}}^{i}$ Strumień bywietrza henu zaotu $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień $V_{\hat{y}}^{i}$ Strumień 		[O ₂] %	0.390 0.	0.390 0.	0.380 0.	0.380 0.	0.380 0.	0.380 0.	0 W na 3% O	o 3% tlenu		$[0_2]$	0/2
Strumień objętości objętości gazuStrumień 	any spalin	[ON]	2.565	1.6	2.5	2.2	3.1	3.4	eplnym 39(lniesiony do		[ON]	mun
StrumieńZałożoneStrumieńStrumieńStrumieńStrumieńStrumieńStrumieńStrumieńStrumieńobjętościobjętościobjętościobjętościobjętościobjętościobjętościszotugazu \dot{V}_{s}^{c} \dot{V}_{o2}^{c} \dot{V}_{o2	Skład chemicz	[C _n H _m] ppm	0	0	0	0	0	0	ociążeniem ci	iczny spalin oc		$[C_nH_m]$	muu
Strumień Założone Strumień Strumień Strumień Strumień Steżenie ozonu objętości objętości objętości azotu zazotu \dot{V}_{g} λ \dot{V}_{p} \dot{V}_{p2} \dot{V}_{N2} O_{3} [CO] dm^{3}/h dm^{3}/h m^{3}/h m^{3}/h m^{3}/h $m^{2}/V_{N2} + O_{2}$ 0_{3} (20) 39.35 73 2.63 0 33.5 73 2.63 0 3.53 0.9 33.5 73 2.63 0 3.53 0.9 33.5 73 2.63 0 3.53 0.9 3.53 0.9 3.55 73 2.63 0 3.53 0.9 3.55 73 2.63 0 3.53 0.9 3.55 73 2.63 0.0 3.53 73 2.63 0.0 1.40 2.900 4.57 2.706 6.68 2.621 8.46 2.378 11.04 2.108 1.104 2.108 1.2 0.9		[CO ₂] %	8.63	9.115	9.139	9.469	9.721	9.978	ktorze z ob	kład chemi		[CO ₂]	0%
Strumień objętości gazu \dot{V}_{g} Założone objętości objętości objętości 		[CO]	2.991	2.900	2.706	2.621	2.378	2.108	łych w rea	01		[CO]	0%
Strumień objętości gazu \dot{V}_g^{c} Założone objętości objętości powietrza dm ³ /hStrumień objętości azotu \dot{V}_{O2}^{c} Strumień azotu \dot{V}_{O2}^{c} \dot{V}_g^{c} \dot{V}_{D2}^{c} \dot{M}_{D3}^{c} \dot{M}_{D3}^{c} \dot{M}_{D3}^{c} dm^3/h dm^3/h dm^3/h dm^3/h dm^3/h 39.35 0.9 335 73 263 39.45 0.9 335 73 263 39.45 0.9 335 73 263 39.56 0.9 335 73 263 39.57 73 73 263 39.56 0.9 335 73 263 39.57 0.9 335 73 263 39.35 0.9 335 73 263 39.46 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 335 73 263 39.56 0.9 325 3263 <td>Stężenie ozonu</td> <td>$0_3 \\ mgO_3/dm3(N_2+O_2)$</td> <td>0</td> <td>1.40</td> <td>4.57</td> <td>6.68</td> <td>8.46</td> <td>11.04</td> <td>o spalin powsta</td> <td>Stężenie ozonu</td> <td>¢</td> <td>0³</td> <td>$mgO_{3}/dm3(N_{2}+O_{2})$</td>	Stężenie ozonu	$0_3 \\ mgO_3/dm3(N_2+O_2)$	0	1.40	4.57	6.68	8.46	11.04	o spalin powsta	Stężenie ozonu	¢	0³	$mgO_{3}/dm3(N_{2}+O_{2})$
StrumieńZałożoneStrumieńStrumieńobjętościobjętościobjętościgazu $\dot{V}_p^{}$ $\dot{V}_p^{}$ $\dot{V}_{O2}^{}$ dm³/h m^3/h dm^3/h dm^3/h 39.350.93357339.450.933573Strumień $\delta m^3/h$ $\delta m^3/h$ $\delta m^3/h$ 39.550.93357339.550.93357339.550.93357339.550.93357339.550.93357339.550.93357339.550.93357339.550.93357339.550.93357339.550.93357339.550.93357339.560.93357339.570.9357339.580.9357339.590.9357339.590.9357339.590.9357339.590.9357339.590.9357339.590.9357339.590.9357339.590.9357339.590.9357339.590.9357339.5935353539.5935353539.59353535	Strumień objętości azotu	$\dot{V}_{N2}^{}$ d ${ m m}^{3}/{ m h}$	263						hemiczneg	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm ³ /h
StrumieńZałożoneStrumieńobjętościobjętościgazu \dot{V}_g powietrza \dot{V}_g λ \dot{V}_p dm³/h39.350.933539.350.933539.460.9335Strumieńobjętościobjętościgazu \dot{V}_g λ \dot{V}_p \dot{V}_g λ \dot{V}_p \dot{V}_g λ \dot{V}_p \dot{M}^3 /h dm^3 /h dm^3 /h	Strumień objętości tlenu	$\dot{V}_{02}^{}$ dm ³ /h	73						ia składu c	Strumień objętości	tlenu	V_{o_2}	dm³/h
Strumień Założone objętości gazu \dot{V}_{g} Å dm ³ /h 39.35 0.9 39.35 0.9 Tablica 46. Wyniki Strumień Założone objętości gazu \dot{V}_{g} Å	Strumień objętości powietrza	$\dot{V_p}$ dm ³ /h	335						przeliczen	Strumień objętości	powieurza	V_p	dm³/h
Strumień objętości gazu \dot{V}_{β} dm ³ /h 39.35 39.35 sy.35 dm ³ /h objętości gazu \dot{V}_{β}^{i} dm ³ /h	Założone	~	0.9						6. Wyniki	Założone		х	
	Strumień objętości gazu	$\dot{V}_{g}^{}$ dm $^{3}/\mathrm{h}$	39.35						Tablica 4	Strumień objętości	gazu	V_{s}	dm³∕h

ałożone Strumień Strumień Strumień Stężenie ozonu Skład chemiczn	Strumień Strumień Strumień Stężenie ozonu Skład chemiczn	Strumień Strumień Stężenie ozonu Skład chemiczn	Strumień Stężenie ozonu Skład chemiczn	Skład chemiczn Skład chemiczn	Skład chemiczn	kład chemiczn		v snalin od	niesionv d	o 3% tleni	_	Temperatura
objętości objętości objętości	objętości objętości objętości	objętości objętości	objętości								5	maksymaln
powietrza tlenu azotu	powietrza tlenu azotu	tlenu azotu	azotu									\mathbf{t}_{\max}
$\lambda \begin{vmatrix} \dot{V}_n \end{vmatrix} \begin{vmatrix} \dot{V}_n \end{vmatrix} \begin{vmatrix} \dot{V}_{n2} \end{vmatrix} \begin{vmatrix} \dot{V}_{n2} \end{vmatrix} \begin{vmatrix} \dot{V}_{n2} \end{vmatrix} \begin{vmatrix} 0_3 \end{vmatrix} \begin{vmatrix} c_{01} \end{vmatrix} \begin{vmatrix} c_{01} \end{vmatrix}$	\dot{V}_{n} \dot{V}_{n} \dot{V}_{n} \dot{V}_{n} 0_{3} [con] for	\dot{V}_{02} \dot{V}_{N2} \dot{V}_{03} \dot{V}_{03} \dot{V}_{01} \dot{V}_{02}	$\dot{V}_{N2} = 0_3 = 1$ real for			C.			INDI	[0]	~	
						ز	22			[22]	2	
$\frac{dm^{2}}{h} \frac{dm^{2}}{h} \frac{dm^{2}}{h} \frac{mgO_{3}}{mgO_{3}} = 0.000 $	$dm'/h \qquad dm'/h \qquad mgO_3/dm3(N_2+O_2) \qquad 9.0 $	$dm^{7}/h \qquad dm^{3}/h \qquad mgO_{3}/dm3(N_{2}+O_{2}) \qquad \phi_{0} \qquad c$	$dm^{3}/h \mod M_{3}/dm_{3}(N_{2}+O_{2}) \qquad 0.00$	$mgO_3/dm3(N_2+O_2)$ 9/0 C	%	0	%0	ppm	ppm	%		$^{\rm o}$
0.9 335 73 263 0 2.613 7	335 73 263 0 2.613 7	73 263 0 2.613 7	263 0 2.613 7	0 2.613 7	2.613 7	7	.53	0	2.24	0.390	0.905	1229
1.40 2.533	1.40 2.533	1.40 2.533	1.40 2.533	1.40 2.533	2.533	-	7.96	0	1.41	0.390	0.912	1240
4.57 2.363	4.57 2.363	4.57 2.363	4.57 2.363	4.57 2.363	2.363	-	7.98	0	2.14	0.380	0.920	1254
6.68 2.288	6.68 2.288	6.68 2.288	6.68 2.288	6.68 2.288	2.288		8.27	0	1.96	0.380	0.924	1279
8.46 2.076 8	8.46 2.076 8	8.46 2.076 8	8.46 2.076 8	8.46 2.076 8	2.076	~	8.49	0	2.69	0.380	0.935	1279
11.04 1.840 8	11.04 1.840	11.04 1.840 8	11.04 1.840 8	11.04 1.840 8	1.840		8.71	0	2.97	0.380	0.945	1295

	Temperatura maksymalna t _{max}		\mathbf{D}^{0}	1279	1287	1295	1304	1287	1295		Temperatura maksymalna	t_{max}		^{0}C	1279	1287	1295	1304	1287	1295
		۲		0.931	0.936	0.940	0.948	0.952	0.963	6 O ₂		\$	۲		0.931	0.936	0.940	0.948	0.952	0.963
M		$[\mathbf{O}_2]$	%	0.380	0.377	0.380	0.380	0.380	0.370	0 W na 39	lo 3% tlen		$[0_2]$	%	0.380	0.377	0.380	0.380	0.380	0.370
nym 390 '	ny spalin	[ON]	mqq	3.394	3.7	4.7	5.4	6.2	7.2	plnym 39	lniesionv d		[NO]	ppm	2.96	3.23	4.09	4.76	5.41	6.29
ţżeniem ciepl	kład chemicz	[C _n H _m]	mqq	0	0	0	0	0	0	ciążeniem cie	czny snalin oć		[C _n H _m]	ppm	0	0	0	0	0	0
orze z obcia	S	[CO ₂]	%	9.22	9.542	9.620	9.901	9.751	10.040	ktorze z obc	Skład chemi		[CO ₂]	%	8.05	8.33	8.40	8.64	8.51	8.76
ch w reakto		[CO]	%	2.412	2.278	2.136	2.005	1.859	1.525	ych w rea	U.	1	[CO]	%	2.106	1.988	1.865	1.751	1.623	1.330
spalin powstałyc	Stężenie ozonu	0_3	$mgO_3/dm3(N_2+O_2)$	0	1.34	4.31	6.42	8.11	10.58	o spalin powstał	Steżenie ozonu		03	$mgO_3/dm3(N_2+O_2)$	0	1.34	4.31	6.42	8.11	10.58
micznego s	Strumień objętości azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h	278						nemicznego	Strumień objętości	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm ³ /h	278					
składu che	Strumień objętości tlenu	\dot{V}_{o2}	dm ³ /h	78						a składu cl	Strumień obietości	tlenu	\dot{V}_{o2}	dm^{3}/h	78					
omiarów s	Strumień objętości powietrza	$\dot{V_p}$	dm ³ /h	356						orzeliczeni	Strumień obietości	powietrza	$\dot{V_p}$	dm^{3}/h	356					
. Wyniki _I	Założone	7		0.93						. Wyniki _I	Założone		~		0.93					
Tablica 47	Strumień objętości gazu	\dot{V}_{∞}	dm³/h	39.35						Tablica 48	Strumień obietości	gazu	\dot{V}_{s}	dm³/h	39.35					

Tablica 4	9. Wyniki	pomiarów	składu che	emicznego	spalin powstałyc	ch w reakt	orze z obcia	ążeniem ciepl	lnym 390	M		
Strumień objętości gazu	Założone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu			Skład chemicz	ny spalin			Temperatura maksymalna t _{max}
$\dot{V}_{_{g}}$	٢	$\dot{V_p}$	\dot{V}_{o2}	$\dot{V}_{\scriptscriptstyle N2}$	0_3	[CO]	[CO ₂]	$[C_nH_m]$	[ON]	$[0_2]$	۲	
dm³∕h		dm³∕h	dm³/h	dm³/h	$mgO_3/dm3(N_2+O_2)$	%	%	mqq	uudd	%		0 C
39.35	0.96	360	62	281	0	1.755	11.06	0	7.203	0.380	096.0	1295
					1.33	1.623	11.249	0	8.9	0.380	0.964	1304
					4.26	1.507	11.382	0	8.2	0.380	0.967	1312
					6.37	1.385	11.748	0	9.1	0.380	0.973	1328
					8.04	1.260	11.538	0	14.0	0.390	0.978	1304
					10.49	1.031	11.805	0	13.8	0.400	0.986	1320
Tablica 5	0. Wyniki _j	przeliczeni	ia składu c	themiczneg	so spalin powstał	ych w rea	ktorze z ob	ciążeniem cie	splnym 39	0 W na 39	% O ₂	
Strumień obietości	Założone	Strumień obietości	Strumień obietości	Strumień objetości	Stężenie ozonu	S	kład chemic	czny spalin od	lniesiony d	o 3% tlenı	n	Temperatura maksymalna
gazu		powietrza	tlenu	azotu								t _{max}
$V_{_g}$	۲	$\dot{V_p}$	\dot{V}_{o2}	$\dot{V}_{\scriptscriptstyle N2}$	03	[CO]	$[CO_2]$	[C _n H _m]	[0N]	$[\mathbf{O}_2]$	۲	
dm³∕h		dm³∕h	dm ³ /h	dm³∕h	$mgO_3/dm3(N_2+O_2)$	%	%	mqq	mdd	%		°C
39.35	0.96	360	62	281	0	1.532	99.6	0	6.29	0.380	0.960	1295
					1.33	1.417	9.82	0	7.77	0.380	0.964	1304
					4.26	1.316	9.94	0	7.15	0.380	0.967	1312
					6.37	1.209	10.26	0	7.92	0.380	0.973	1328
					8.04	1.101	10.08	0	12.19	0.390	0.978	1304
					10.49	0.901	10.32	0	12.05	0.400	0.986	1320

mperatura aksymalna t _{max}		O_0	1295	1304	1320	1328	1320	1337		mperatura aksymalna t _{mov}	VIIIIAA		°C	1295	1304	1320	1328	1320	1337
Te m	۲		1.001	1.004	1.005	1.008	1.012	1.014	O_2	∐ ₩		ہ		1.001	1.004	1.005	1.008	1.012	1.014
	[O ₂]	%	0.410	0.410	0.380	0.440	0.450	0.410	W na 3%	3% tlenu	_	$[0_2]$	%	0.410	0.410	0.380	0.440	0.450	0.410
ıy spalin	[NO]	bpm	13.717	18.2	22.0	23.1	22.4	31.6	plnym 390	niesiony do	_	[N0]	mdd	11.99	15.91	19.20	20.25	19.60	27.63
kład chemiczı	$[C_nH_m]$	ppm	0.000	0	0	0	0	0	ciążeniem cie	zny spalin odı	-	$[C_nH_m]$	mqq	0	0	0	0	0	0
S	[CO ₂]	%	10.66	10.863	11.039	10.963	10.994	11.338	ctorze z obc	kład chemic	-	[CO ₂]	%	9.31	9.50	9.64	9.60	9.63	9.91
	[CO]	%	0.639	0.564	0.534	0.482	0.423	0.299	ych w reak	S	-	[CO]	%	0.558	0.493	0.466	0.422	0.371	0.261
Stężenie ozonu	03	$mgO_{3}/dm3(N_{2}+O_{2})$	0	1.30	4.10	6.22	7.83	10.22	o spalin powstał	Stężenie ozonu	č	ŝ	$mgO_{3}/dm3(N_{2}+O_{2})$	0	1.30	4.10	6.22	7.83	10.22
Strumień objętości azotu	\dot{V}_{N2}	dm ³ /h	291						nemicznego	Strumień objętości azotu	i.	V_{N2}	dm ³ /h	291					
Strumień objętości tlenu	$\dot{V_{o2}}$	dm³/h	83						a składu cl	Strumień objętości tlanu		V_{o2}	dm³/h	83					
Strumień objętości powietrza	$\dot{V_p}$	dm³/h	374						przeliczeni	Strumień objętości nowietrza	ротисции т;	V_p	dm³/h	374					
Założone	۲		1.01						. Wyniki _I	Założone		7		1.01					
Strumień objętości gazu	$\dot{V}_{_{g}}$	dm³∕h	39.35						Tablica 52	Strumień objętości ogzu	gazu T;	28	dm³∕h	39.35					
	StrumieńZałożoneStrumieńStrumieńStrumieńTemperaturaobjętościobjętościobjętościobjętościobjętościmaksymalnagazupowietrzatlenuazotutemet	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Strumicí bijętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości 	Strumier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości 	Strunier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości 	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	StrumicíZadožoneStrumicíStrumicíStepenaturaTemperaturaobjętościobjętościobjętościobjętościobjętościobjętościobjętościszenuTemperaturagazupowietrzatenuazotuazotuO3 (CO_3) (CO_2) (CO_4) (D_2) (D_2) (D_2) (D_2) \dot{V}_s \dot{V}_p \dot{V}_{o2} \dot{V}_{N2} O_3 (CO_3) (CO_4) (D_1) (D_2) Λ dm^3/h dm^3/h dm^3/h m^3/h m^3/h $m^3/h^{-1.02}$ 0.639 10.66 0.000 13.717 0.410 1.001 39.35 1.01 374 83 291 0 0.639 10.66 0.000 13.717 0.410 1.001 39.35 1.01 374 83 291 0 0.639 10.66 0.000 13.717 0.410 1.001 39.35 1.01 374 83 291 0 0.639 10.66 0.000 13.717 0.910 1295 39.35 1.01 374 832 0.622 0.639 10.66 0.000 13.717 0.910 1201 1.00 374 1.039 0.654 10.863 0 22.0 0.910 1304 1.00 1.012 1.039 0 23.1 0.440 1.006 1.320 1.00 1.012 1.0934 0 22.4 0.450 1.002 1.320 <td>Strunień Założone objętości Strunień objętości Temperatura tawsymalna $\dot{V}_s^{\rm v}$ $\dot{V}_p^{\rm v}$ $\dot{V}_{\rm v}^{\rm v}$ \dot</td> <td>Strumień objętości powietrza Strumień objętości objętości Strumień objętości objętości Strumień objętości objętości Strumień objętości objętości Strumień objętości Strumień maksymalna t maksymalna t maksymalnagazu gazu v_j $v_j$$v_j$ $v_j$$v_j$ $v_j$$v_j$ $v_j$$0$ $v_j$$0$ $v_j$$0$ $v_j$$0$ $v_j$$0$ $v_j$$0$ $v_j$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$ $0$$1$<b< td=""><td>Strumieri objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetościStramiczny spalin romini strany spalin objetości objetości objetościTemperatura atsymania romi objetości objetości objetościStramic romi objetości objetości objetości objetościStramic romi objetości objetości objetości objetościStramic romi objetości objetości objetości objetości objetościStramic romi strani strany spalin odniesiony do 3% them strani akwanaTemperatura rami romi strani akwana strani akwanaStrumień romi romi romi romi romiZałożone objetości objetości objetości objetości objetości objetościStramicy spalin odniesiony do 3% themTemperatura romi romi romi romi romiTemperatura romi romi romi romi romiTemperatura romi romi romi romi romiTemperatura romi romi romi romi</td><td>Strumteri objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętościStrumień strumień strumień strumień Strumień Strumień StrumieńStrumień strumień strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień S</td><td>Strumteri objętości objętości gazu bowietrza tenu iStrumter alkymalna zotu bowietrza tenu iStrumter alkymalna tenu tenu zotu tenu zotu zotu zotu zotu iStrumter zotu tenu zotu zotu tenu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotuStrumter zotu zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotuStrumter zotu zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotu<</td><td>StrumicíZaložoneStrumicíStrumicíStrumicíStrumicíStrumicíStrumicíStrumicíStrumicíStrumicaniaobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetości<td>Strumier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości </td><td>Strumier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości </td><td>Strunie objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości <</td><td></td><td></td></td></b<></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td>	Strunień Założone objętości Strunień objętości Temperatura tawsymalna $\dot{V}_s^{\rm v}$ $\dot{V}_p^{\rm v}$ $\dot{V}_{\rm v}^{\rm v}$ \dot	Strumień objętości powietrza Strumień objętości objętości Strumień objętości objętości Strumień objętości objętości Strumień objętości objętości Strumień objętości Strumień maksymalna t maksymalna t maksymalnagazu gazu v_j v_j v_j v_j v_j v_j v_j v_j 0 v_j 0 v_j 0 v_j 0 v_j 0 v_j 0 v_j 1 0 1 	Strumieri objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetości objetościStramiczny spalin romini strany spalin objetości objetości objetościTemperatura atsymania romi objetości objetości objetościStramic romi objetości objetości objetości objetościStramic romi objetości objetości objetości objetościStramic romi objetości objetości objetości objetości objetościStramic romi strani strany spalin odniesiony do 3% them strani akwanaTemperatura rami romi strani akwana strani akwanaStrumień romi romi romi romi romiZałożone objetości objetości objetości objetości objetości objetościStramicy spalin odniesiony do 3% themTemperatura romi romi romi romi romiTemperatura romi romi romi romi romiTemperatura romi romi romi romi romiTemperatura romi romi romi romi	Strumteri objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętościStrumień strumień strumień strumień Strumień Strumień StrumieńStrumień strumień strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień Strumień S	Strumteri objętości objętości gazu bowietrza tenu iStrumter alkymalna zotu bowietrza tenu iStrumter alkymalna tenu tenu zotu tenu zotu zotu zotu zotu iStrumter zotu tenu zotu zotu tenu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotu zotu zotuStrumter zotu zotu zotu zotuStrumter zotu zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotu zotuStrumter zotuStrumter zotu zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotuStrumter zotu<	StrumicíZaložoneStrumicíStrumicíStrumicíStrumicíStrumicíStrumicíStrumicíStrumicíStrumicaniaobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjętościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetościobjetości <td>Strumier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości </td> <td>Strumier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości </td> <td>Strunie objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości <</td> <td></td> <td></td>	Strumier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości 	Strumier objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości 	Strunie objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości objętości <		

	Temperatura maksymalna t _{max}			D ⁰	1320	1328	1337	1337	1337	1337		Temperatura maksymalna	Lmax		\mathbf{D}^{0}	1320	1328	1337	1337	1337	1337
			۲		1.032	1.036	1.040	1.044	1.051	1.051	6 O ₂	_		۲		1.032	1.036	1.040	1.044	1.051	1.051
W		_	$[\mathbf{O}_2]$	%	0.543	0.583	0.637	0.687	0.775	0.775	0 W na 39	o 3% tlenu		$[0_2]$	%	0.543	0.583	0.637	0.687	0.775	0.775
nym 390 ^v	ny spalin		[NO]	bpm	30.739	33.8	34.2	32.9	37.9	37.9	plnym 390	niesiony d		[ON]	ppm	27.05	29.76	30.22	29.16	33.70	33.70
ążeniem ciepl	Skład chemicz	-	$[C_nH_m]$	bpm	0.000	0	0	0	0	0	ciążeniem cie	czny spalin od		$[C_nH_m]$	ppm	0	0	0	0	0	0
orze z obci	9 1	-	[CO ₂]	%	10.78	10.819	10.940	10.963	11.192	11.192	ktorze z ob	kład chemi		[CO ₂]	%	9.49	9.54	9.67	9.71	96.6	96.6
ch w reakt		-	[CO]	%	0.129	0.080	0.055	0.022	0	0	ych w rea	S		[CO]	%	0.114	0.071	0.049	0.019	0	0
spalin powstałyc	Stężenie ozonu	Ö	5	$mgO_{3}/dm3(N_{2}+O_{2})$	0	1.25	3.91	6.00	7.98	9.83	o spalin powstał	Stężenie ozonu	¢	03	$mgO_{3}/dm3(N_{2}+O_{2})$	0	1.25	3.91	6.00	7.98	9.83
micznego s	Strumień objętości azotu	u 2014	V_{N2}	dm³/h	305						nemicznego	Strumień objętości	azotu	$V_{\scriptscriptstyle N2}$	dm ³ /h	305					
składu che	Strumień objętości tlanu		V_{o2}	dm²/h	86						a składu cl	Strumień objętości	tlenu	\dot{V}_{o2}	dm³/h	86					
omiarów	Strumień objętości	pu wicu za	$\overset{o}{}_{p}$	dm³/h	392						orzeliczeni	Strumień objętości	powietrza	V_p	dm³/h	392					
. Wyniki I	Założone		~		1.06						. Wyniki _I	Założone		~		1.06					
Tablica 53	Strumień objętości	gazu T	>~	dm³/h	39.35						Tablica 54	Strumień objętości	gazu	V.	dm³/h	39.35					

	Temperatura maksymalna t _{max}	0	Ç	1337	1353		Temperatura	t _{max}		\mathbf{D}^{0}	1337	1353		Temperatura	maksymalna t _{max}			D ⁰	1311	1328	λ_2	Temperatura	maksymalna	t _{max}		\mathbf{D}^{0}	1311	1328
		r		1.104	1.105	% O ₂	I		۲		1.104	1.105					7		1.200	1.203	n na 3% C		-		አ		1.200	1.203
W		[02]	%	1.537	1.588	0 W na 39	o 3% tlen		$[0_2]$	%	1.537	1.588	M				$[0_2]$	%	2.827	2.963	0 W spali		0 2% neu		$[O_2]$	%	2.827	2.963
lnym 390	rny spalin	[ON]	ppm	38.422	38.4	eplnym 39	lniesiony d		[ON]	ppm	35.53	35.63	lnym 390	:	any spann		[0N]	ppm	29.071	29.7	eplnym 39		unesiony a		[ON]	mqq	28.79	29.66
iążeniem ciep	Skład chemicz	$[C_nH_m]$	bpm	0.000	0	ociążeniem ci	iczny spalin od		[C _n H _m]	bpm	0	0	iążeniem ciep		Skiad chemicz	_	$[C_nH_m]$	ppm	0.000	0	ociążeniem ci		iczny spann oc		$[C_nH_m]$	mqq	0	0
orze z obc		[CO ₂]	%	10.80	10.874	iktorze z oł	Skład chem		[CO ₂]	0%	86.6	10.08	orze z obc				$[CO_2]$	%	10.14	10.138	uktorze z oł	Lot Lot I	okiau cnem		[CO ₂]	%	10.04	10.12
ch w reakt		[CO]	%	0	0	tych w rea	5		[C0]	%	0	0	ch w reakt				[CO]	%	0	0	tych w rea				[CO]	%	0	0
spalin powstałyc	Stężenie ozonu	O ₃ ma0-/4m3(N-+0-)		0	9.45	o spalin powstał	Stężenie ozonu		03	$mgO_{3}/dm3(N_{2}+O_{2})$	0	9.45	spalin powstałyc	Stężenie ozonu		03		mgO ₃ /dm3(N ₂ +O ₂)	0	8.81	o spalin powstał	Stężenie ozonu		¢	0³	$mgO_{3}/dm3(N_{2}+O_{2})$	0	8.81
micznego	Strumień objętości azotu	$\dot{V}_{\scriptscriptstyle N2}^{}$ dm ³ /h		321		hemiczneg	Strumień	azotu	$\dot{V}_{\scriptscriptstyle N2}$	dm³/h	321		micznego	Strumień	objętości azotu	i.	V N2	dm`/h	350		hemiczneg	Strumień	objętości	azotu	$V_{\scriptscriptstyle N2}$	dm³/h	350	
składu che	Strumień objętości tlenu	$\dot{V}_{O2}^{}$ dm $^{3/\mathrm{h}}$		90		a składu c	Strumień	objętosci tlenu	\dot{V}_{o2}	dm³/h	06		składu che	Strumień	objętości tlenu	v	V 02	am /n	66		a składu c	Strumień	objętości	tlenu	\dot{V}_{o2}	dm³/h	66	
pomiarów	Strumień objętości powietrza	$\dot{V}_p^{}$ dm 3 /h		411		orzeliczeni	Strumień	oujętosci powietrza	$\dot{V_p}$	dm ³ /h	411		pomiarów	Strumień	objętości nowietrza	romena V	, p	am ⁻ /h	449		orzeliczeni	Strumień	objętości	powietrza	V_p	dm ³ /h	449	
. Wyniki l	Założone	ĸ		1.11		í. Wyniki _I	Założone		۲		1.11		'. Wyniki I	Założone			~		1.21		. Wyniki _I	Założone			ہ		1.21	
Tablica 55	Strumień objętości gazu	$\dot{V}_{_{\!$		39.35		Tablica 56	Strumień	onjetosci gazu	\dot{V}_{s}	dm ³ /h	39.35		Tablica 57	Strumień	objętości gazn	v. V	80 F	am'/h	39.35		Tablica 58	Strumień	objętości	gazu	$V_{_g}$	dm ³ /h	39.35	

<u>ca 59. Wy</u>	yniki p	omiarów	<u>składu che</u>	micznego	spalin powstałyc	<u>ch w reak</u>	torze z obc	iążeniem ciep	lnym 390	M		
Zało	i j	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu			Skład chemicz	zny spalin			Temperatura maksymalna t _{max}
~	~	$\dot{V_p}$ dm ³ /h	$\dot{V}_{O2}^{}$ d \mathbf{m}^{3} /h	$\dot{V}_{N2}^{}$ dm ³ /h	O_3 mgO ₃ /dm3(N ₂ +O ₂)	[CO]	[CO ₂] %	[C _n H _m] ppm	[ON]	[O ₂] %	$\boldsymbol{\mathcal{X}}$	ç
1.	32	490	111	379	0	0	9.55 9.565	• •	21.381 21.2	4.076 4.106	1.305 1.305	1279 1295
0. Wy	yniki p	rzeliczeni	a składu cl	hemiczneg	o spalin powstał	ych w rea	aktorze z oł	bciążeniem ci	eplnym 39	0 W na 39	% O ₂	
Zało	ižone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu		Skład chen	iiczny spalin o	dniesiony c	do 3% tlen	p	Temperatura maksymalna t _{max}
~	~	$\dot{V}_p^{}$ dm ³ /h	$\dot{V}_{O2}^{}$ d \mathbf{m}^{3} /h	$\dot{V}_{\scriptscriptstyle N2}^{}$ dm ³ /h	O_3 mgO ₃ /dm3(N ₂ +O ₂)	[CO]	[CO ₂] %	[C _n H _m] ppm	[ON]	[O ₂] %	~	D,
1.	32	490	111	379	0 8.34	00	10.15 10.19	0 0	22.74 22.62	4.076 4.106	1.303 1.305	1279 1295
61. Wy	yniki p	omiarów :	składu che	micznego	spalin powstałyc	sh w reak	torze z obc	iążeniem ciep	lnym 390	M		
Zało	iżone	Strumień objętości powietrza	Strumień objętości tlenu	Strumień objętości azotu	Stężenie ozonu			Skład chemicz	zny spalin			Temperatura maksymalna t _{max}
~	~	$\dot{V_p}$ dm ³ /h	$\dot{V}_{O2}^{}$ d \mathbf{m}^{3} /h	$\dot{V}_{\scriptscriptstyle N2}^{}$ dm ³ /h	O_3 mgO ₃ /dm3(N ₂ +O ₂)	[CO]	[CO ₂] %	[C _n H _m]	[ON]	[O ₂] %	~	ç
1.	41	524	116	408	0 7.92	0 0	9.09 9.056	- -	14.126 14.1	5.218 4.106	1.403 5.192	1246 1262
2. Wy	yniki p	wzeliczeni	a składu cl	hemiczneg	o spalin powstał	ych w rea	aktorze z oł	bciążeniem cie	eplnym 39	0 W na 39	% O ₂	
Zało:	vżone	Strumień objętości	Strumień objętości	Strumień objętości	Stężenie ozonu		Skład chem	uiczny spalin o	dniesiony c	do 3% tlen	n	Temperatura maksymalna
		powietrza V	tlenu V	azotu V	03			- H J		S	~	t _{max}
	~	dm^3/h	dm ³ /h	dm^3/h	$mgO_{3}/dm3(N_{2}+O_{2})$	[02] %	[CO2] %	ppm		[02] %	<	0 C
1.	41	524	116	408	0	0	10.36	0	16.11	5.218	1.403	1246
					7.92	0	9.65	0	15.05	4.106	5.192	1262