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Abstract. In the recent years the role of artificial intelligence in robotics has become more and
more important. Teams of contemporary robots are not only tools in hands of humans, but the
tasks that are entrusted them frequently require high level of autonomy in the choice of optimal
means, tools and methods. To achieve their goals, robots must understand the environment in
which they operate. They must be situation aware. Unfortunately, the notion of situation aware-
ness is usually defined in the context of humans not robots. Thus, in this paper the intuitive
definition of situation awareness for possibly autonomous robots and robot teams is given. The
extension of the discussion on situation awareness is a literature survey in the field of distributed
robotics that gathers selected topics connected with situation awareness.

Keywords: situation awareness, probabilistic distributed robotics,

1 Introduction

1.1 Distributed robotics

Distributed robotics [33], sometimes referred to as collective robotics [53] or cooperative robotics [5]
is dynamically growing, and a vast research branch deals with multi-robot systems. Such systems are
interesting for several reasons [5, 53]:

• some problems might be solved more effectively using many robots working in parallel,

• systems based on many robots are more robust and fault tolerant,

• building several simple, universal robots might be cheaper than constructing a single, powerful
robot solving one specific problem,

• the theory of multi-robot systems may take benefits from other scientific disciplines such as
multi-agent systems [30], social sciences and live sciences, and therefore it may contribute to
the development of many theories going beyond the generally understood idea of computer
science.

∗The paper is supported by the GREYC Laboratories, http://www.greyc.unicaen.fr
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There are several definitions of a multi-robot system. For instance, Verret [53] defines a multi-robot
systems as having the ability to cooperate, communicate and coordinate, as well as awareness (in
the sense that one robot is aware of the others), whilst Cao et al. [5] give the prominence to the
cooperative aspect of multi-robot systems. Distributed robotics, as discussed in [33], seems to be the
most capacious notion, since it captures a wide range of multi-robot systems including e.g. cellular
robot systems [14] and architectures for multi-robot cooperation like ACTRESS [32]. Thus, for the
purposes of this paper, the notion distributed robotics has been adopted as a synonym for the generally
understood multi-robot systems problem area.

In her work Parker [33] has identified several important problem areas concerning distributed
robotics. The major ones are:

• Biologic models and their influence on multi-robot systems

• Multi-robot communication

• Architectures, Task Planning and Control

• Localisation, Mapping and Exploration

• Object Transport and Manipulation

• Motion Coordination

Some problems are natural extensions of the research into single-robot systems, however multi-robot
systems also pose completely new challenges to researchers e.g. formation and marching problems
or multi-robot communication [5]. Additionally, multi-robot localisation and map making seem to be
very interesting. In this context, probabilistic robotics in particular seems to be very promising [51,
29]. The algorithms developed according to the probabilistic paradigm are able to handle uncertainty
in the system, thus they are able to take into account the imperfection of the world.

1.2 Probabilistic robotics

In fact probabilistic robotics is now a separate fields of research that helps to manage different kinds
of uncertainties that computer-controlled devices called robots may face during their work [50]. There
are three main sources of uncertainty in robotics.

The first one is connected with the nature of sensors - the appliances that allow the robot to
perceive the environment. Sensors are limited in their perception. Several factors such as range,
resolution, sampling frequency and measurement method etc., may decide about the usefulness or
uselessness of the given sensor (e.g. a camera may be useless in a completely dark room). Moreover,
sensors measurements are usually subject to different kinds of noise. Thus, the information about the
environment comes to the robot with some error which has to be taken into account by algorithms
using the measured values.

Another source of uncertainty is introduced by the robots’ actuators. The result of an action
performed by the robot may be far from ideal, because of mechanism imprecision, such as unforeseen
environmental conditions, move trajectory approximations etc.

The third important cause of uncertainty in robotics is the robot environment itself. When it is
highly dynamic, complex and contains many objects, it is often also highly unpredictable. E.g. angry
crowd or car racing.

Besides the three reasons of randomness mentioned above, the robots’ software might also be the
cause of uncertainty. The impreciseness of the internal world representation as well as approximation
of calculations may also lead to the random robot behavior.

In this context, the situation awareness of robots seems to be very interesting. Decision mak-
ing, planning, cooperation, move coordination and even successful communication between robots
require appropriate situation judgement. To achieve that, the processing of signals from different
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Figure 1: The three levels of situation awareness according to Endsley.

sensors placed on different robots, is indispensable. Due to the possibly high volume of data, their in-
homogeneity and different noise characteristics of measurements coming from different data sources,
the questions “how far can the robot may be situation aware?” is still waiting for a definitive answer.

1.3 Organisation of the paper

In the first section of this paper distributed and probabilistic robotics and map making are discussed.
In particular, some intuition about situation awareness in the context of probabilistic robotics is given,
and the notion of localisation awareness is introduced.

The second section is devoted to some aspects of situation awareness, whilst the third section
contains brief review of various methods that might be considered as situation aware when focusing
on multi-robot localisation and multi-robot mapping.

2 Situation awareness

Situation awareness is not a computer science or mathematical notion. Of course, it is not even a pre-
cise definition of existing phenomenon, however, despite these drawbacks in many situations people
find it important and useful. The first time when the significance of situation awareness (SA) was
explicitly identified was during World War I. At that time it was discovered that gaining awareness of
the enemy, before the enemy gained similar awareness, and defined methods that allow such aware-
ness to be gained are important [46]. Further research brings other applications of (SA). Woods [54]
analyzes the psychology of human behavior in complex systems. There are some effort connected
with decision making, including human like (naturalistic) approach [57, 22], as well as more formal
approaches (e.g. using neural networks) [3]. The key concept behind the notion of SA relies on nam-
ing the difference between the actual state of the world and the state of the world as it is perceived by
the operator [54]. When the gap between these two states is small, we may claim that the situation
awareness of the operator is high. In spite of the fact, that the key idea is simple, defining the situation
awareness is not simple. There are a lot of different definitions of situation awareness. Brenton and
Rousseau [4] identified over 20 different SA definitions. Some of them give the prominence of SA as
a state, whilst others exhibit the process nature of situation awareness [4, 2]. Some are very specific,
and others try to be more general [4].

The most influential definition of SA comes from Endsley [11] and can be summarized as: “the
perception of the elements in the environment within a volume of time and space, the comprehension
of their meaning, and the projection of their status in the near feature”. In this approach, three levels
of situation awareness are defined (Fig. 1).

The first, and the most basic level of SA focuses on perception of the environment, recognition
of basic objects and simple information processing. The second level addresses the problem of com-
prehension of the current situation. It usually relies on grouping simple objects, signals and variables
into more complex structures providing the operator (human/intelligent system) with deeper insight
into the current situation. For example, combining information about flight time, distance and the
available, fuel provides pilots of aircraft with crucial information about the flight. The third level of
SA is connected with the ability to project the future of the elements in the environments. The cor-
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rectness of predictions depends on results provided by two previous levels. In other words, situation
awareness is rather a kind of high level description of how the system should process the information
rather than a definition of the system state [4].

Besides the general Endsley’s definition, situation awareness is frequently discussed in the context
of group of individuals. Here, the two complementary definitions can be found: Team SA and Shared
SA. The first notion (Team SA) is defined as “the degree to which every team member possesses
the SA required for his or her responsibilities”, whilst the second one (Shared SA) is given as “the
degree to which team members possess the same SA on shared SA requirements” [10, 12]. Along
the definitions of SA for team operations also an appropriate Team SA Model has been proposed. It
consists of four elements such as:

• Team SA Requirements - information about which knowledge has to be shared among a team
members,

• Team SA Devices - appliances for storing information,

• Team SA Mechanisms - information about the way in which different team members become
“situation aware”,

• Team SA Processes - information about engagement of different team members into sharing SA
processes.

In practical applications it is convenient to use notion Measurement of SA. Due to the complex
nature of situation awareness itself, defining its measurement is not an easy task. For this reason
there is no one unique way to make a SA measurement. Instead, there are several techniques such as
SAGAT (Situation Awareness Global Assessment Technique) or SART (Situation Awareness Rating
Technique) [10]. Most of the metrics based on these and others techniques to SA estimation are
specific to the problem domain e.g. SA assessment in air traffic may require to prepare a bunch of
specific questions that have to be answered by air crew etc.

2.1 Situation awareness and robotics

The idea of SA came to robotics from human sciences, so it is not directly connected with robots.
This may explain why situation awareness in robotics usually appears in the context of mixed man-
machine teams and man-machine cooperation. The example of that kind of problem might be Search
and Rescue Robotics (SAR Robotics) or USAR Robotics (Urban Search and Rescue Robotics) [31]. In
general, a USAR problem involves localizing and helping victims of different kinds of disasters, such
as building collapses, fires etc. Usually members of USAR teams are well-trained, professionally-
skilled people. Unfortunately, sometimes the situation in the place of accident is too dangerous to
send a human there. It creates a need to use robots, which might be sent in to the dangerous terrain
in order to localize and help the victims. Usually robots used in USAR are completely controlled
by human operators. Methods that help to increase the level of situation awareness among operators
of robots are a very important part of research conducted into the USAR problems [6, 45, 18]. It
has been proved by experiment that rescue teams with high situation awareness operators are 9 times
more likely to find victims than rescue teams with low situation awareness operators [19]. Originally
the term SA was defined for humans [9], however there is some effort to extend the definition of SA
to non-human beings. The work [1] may serve as an example becasue Adams defines the situation
awareness of an unmanned vehicle. Sometimes situation awareness is not explicitly defined. An
example of work where SA is given implicitly is the CUSAS system (The Consolidated Undersea
Situational Awareness System) [16].
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2.2 Situation awareness in probabilistic robotics

Since situation awareness is usually defined in the context of humans, it may be asked whether it is
reasonable or even possible to use the notion of SA for (possibly autonomous) robots. The literature
sources describing SA phenomenon in the context of autonomous robots are very limited, and they do
not seem to form one consistent theory. Thus, the authors of the report decided to briefly define SA
in the light of probabilistic robotics, hence extend the notion of SA to a substantial set of autonomous
robotic constructions.

The principal idea behind the probabilistic robotics relies on the observation that there is a dif-
ference between the actual state of the world and the state as it is perceived by the robot [50]. It
is interesting, that a similar idea is at the heart of the model of situation awareness [54]. The main
difference relies on the fact that probabilistic robotics does not use terms such as comprehension or
understanding, which are inherently connected with the description of the human mind and states of
its awareness. On the other hand, the first level of SA (according to Fig. 1) should provide “percep-
tion elements of the environment” [11], but this is exactly what probabilistic robotics does. From this
observation arises the intuition that probabilistic robotics may serve (in the limited sense of course)
as a source of formal models of situation awareness. That intuition creates the ground for considering
some aspects of probabilistic robotics in the context of situation awareness.
Following that intuition, the robot might be called situation aware if it is able to cope with the differ-
ence between the state of the actual world and the state of its internal world representation. The more
adequate conclusions the robot is able to draw knowing that difference, the greater situation aware-
ness it has. The two previous sentences create in fact an intuitive definition of situation awareness for
robotics purposes. This informal definition will accompany us through the rest of the paper.

2.3 Global situation awareness

The intuitive definition proposed in the previous section concerns one single possibly autonomous
robot. Thus, there is a need to extend that definition for multi-robot systems. We would say that a
multi-robot system has global situation awareness (GSA) if it is able to cope as a whole with the
difference between the actual state of the real world and the state of the world as it is perceived by
the robots. In that context every team member may have local situation awareness, understood in the
same way as in the previous section.

3 Distributed robotics – localisation and mapping problem survey

The definition of GSA allows us to discuss SA in the context of distributed robotics. Of course, the
question arises as to whether such systems that fit the GSA definition exist and if so, what are they?
We claim that they really exist, however they probably have never been discussed in such a context.
Hence, in this section the selected problems of distributed robotics, which fit the GSA definition, are
briefly reviewed.

3.1 Distributed robotics and GSA

Among different benchmark problems in distributed robotics [5, 33, 53] there are two which seem to
be the most explicitly exposed to the different kinds of sensor measurement errors. These are:

• multi-robot localisation

• multi-robot map construction

In the first case, multi-robot systems on the basis of the sensor measurements have to estimate the
positions of all their members. The difference between the actual position and the estimated position



6 K. Kułakowski, AI. Mouaddib What situation awareness and distr. robotics have in common?

determines the level of GSA of the system. In the case of the mapping problem, a team of robots has
to create the map of its environment. The difference between the actual environment and the map
representing the internal robot’s projection of the environment concerns GSA. The better the map the
robots team is able to create the more GSA it may have. Very often both problems of multi-robot
localisation and multi-robot map construction have to be solved at the same time. Robots building
a map have to know where they are. Such a problem is referred to in the literature as the SLAM
(Simultaneous localisation and Mapping) or just mapping problem.

At first glance the mapping problem might not seem to be difficult. That is because a good
architect or an experienced land surveyor is able to make a map of a given building or terrain with
high precision relatively quickly. That is true, but they also know which landmarks are important,
they are able to spot such landmarks quickly, they do not have a problem with localisation and even
when they do the measurements with error, they probably realized the problem quickly. Why is it
so? Probably because seasoned architects and land surveyors have high situation awareness. Much
higher, of course, than the robots have, although we do not have a conceptual apparatus to compare
the SA of human beings and robots.

For the moment, the mapping problem is difficult. Even if robot teams have some partial, initial,
abstract map, they have to improve it by adding newly captured information. This involves finding
an adequate common map representation, making reliable updates of such a map, determining spatial
knowledge granularity and defining spatial knowledge processing as well as solving many other minor
problems, such as inter-robots communication.

Thrun [49] points out five key problems of mapping in robotics. They are:

• measurement error accumulation – current measurement error affects the way future sensor
measurements are interpreted.

• map complexity, dimensionality – entities that are mapped usually are described by many fac-
tors.

• correspondence problem – usually it is difficult to be sure that two different measurements
separated in time concern the same physical phenomenon.

• dynamically changing environment – the problem is so hard, that the majority of solutions
assume a static environment.

• exploration strategy – both localisation and mapping tasks are conducted during an environment
exploration. So a well-defined, robust exploration strategy might be vital for the success of the
whole system.

In fact all of them, maybe except map complexity, also affect the localisation problem. In the case
of multi-robot systems the issue is even worse because the problems mentioned before become more
complex and difficult, completely new problems arise. Some of these are:

• distributed or centralized – the person who constructs the multi-robot system has to define what
functionality is inherent to every individual robot, and what has to be common for all the robots,
and which system’s element will be responsible for the common parts of the system.

• coordination and cooperation – solving this issue impacts exploration strategy, localisation ac-
curacy and mapping quality etc.

• computation complexity and scalability – the question how the system will behave if the number
of robots increases frequently remains unanswered.

• communication – since the system has to be prepared for at least temporary communication
problems that may happen in apriori unknown environment, a well-designed communication
scheme might be crucial for assumed goals to be completed by the system.
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In response to the mapping problem several techniques have been developed. Thrun [49] enumerates
the eight most important algorithms. These are:

• Kalman filtering,

• Lu/Milios method,

• EM (expectation maximization algorithm)

• Incremental maximal likelihood

• Hybrid

• Occupancy grid

• Multi-planar Maps

• Dogma

Some of them also have theirs multi-robot versions. There are several factors e.g. type of map
representation, uncertainty representation and convergence etc., that characterize all of the mentioned
techniques. Since this review is designed as a brief record of recent works in the topic rather than
a comprehensive study of the localisation and mapping problem for further reference please use
[49, 50, 51, 53, 35].

3.2 Multi-robot localisation

The localisation problem has been described in many places [30, 42, 47]. The goal in the case of
single robot and multi-robot systems is similar. To figure out the position of itself with respect to the
places of interest. In case of many robots operating within the confines of one system, the position
of the whole system consists of the positions of single robots. Usually these robots are able to detect
each other, thus, besides their individual position, their mutual location also has to be estimated. Of
course the estimated location usually has some level of inaccuracy. Thus, very often the localisation
problem and the methods that help to solve it are discussed in the context of probabilistic robotics
and, as a result, fit our intuitive definition of (global) situation awareness.

An example of a probabilistic approach to multi-robot localisation is the work of Fox at al. [13].
In this work Fox proposes an efficient probabilistic approach to the multi-robot localisation problem
based on Markov localisation [50]. Robot positions are represented as a set of samples, or parti-
cles, which is transformed into a density function using density trees. Performed experiments prove
that multi-robot localisation, making use of robot detection gives better results (smaller errors) than
single-robot localisation. Thus, following the introduced definition of situation awareness, thanks to
cooperative work, a team of robots may achieve a higher level of SA than the robots operating sepa-
rately. Authors also point out several questions that are left unanswered, e.g. false-positive detection
of other robots, exploiting negative detection (i.e. not seeing another robot also might be informative)
etc.

Another example of multi-robot localisation comes from Roumeliotis and Bekey [37]. In this ap-
proach, every time the robots meet each other they update their localisation data. Authors start their
consideration from the remark that the simple combination of positioning information between two
robots would not work. That is because after the first information exchange, the further behaviour of
these robots is correlated, so this correlation has to be taken into account. This observation leads to
the definition of appropriate cross-correlation terms used for constructing a distributed Kalman filter
describing the whole of the system. Experimental results prove that using the proposed approach
allows the reduction of covariance connected with the model, and therefore decreases the uncertainty
of position and orientation estimates. More information about this approach as well as an extensive
description of experiments can be found in [38]. Further results as regards the model proposed by
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Roumeliotis might be found in [39, 40]. In their work [24] Mourikis and Roumeliotis introduce an-
alytical expressions for the upper bound of the robot team’s expected positioning uncertainty. This
bound is determined as a function of covariance of sensor noise and the eigenvalues of RPMG (Rel-
ative Position Measurement Graph). They prove that changes in the topology of RPMG does not
impact on localisation performance.
The original work of Roumeliotis and Bekey [37] inspired other research. Parker et al. [34, 36, 21]
proposed multi-robot localisation coming from the idea of Kalman filtering shown in [37] and based
on EKF formalism.

In the case of a team of inhomogeneous robots various types of sensors are used by different
robots, and as a result the captured data requires different processing time. This creates space for
discussing optimal resource allocation in group of robots. This problem is studied by Mourikis and
Roumeliotis in [27]. For a description of the system they used EKF (Extended Kalman Filter) for-
malism that leads to the well known non-linear Riccatti differential equation as regards the system
covariance calculations.

In the context of multi-robot mapping, since measurements of the environment depend on the
robots’ poses, the problem of robots pose estimation might be interesting in itself. This problem is
studied by Zhou and Roumeliotis in [55, 56]. They present efficient algorithms for solving the relative
pose estimation problem. In their model they use a team of robots, where every robot is equipped with
one odometric sensor for measuring its position and range sensor (e.g. sonar) to measure the distance
to each other.

Probabilistic methods are also used for cooperative estimation of robots’ state. Thorsten et al.
[41] describe a state estimation module for a single robot cooperating with others. This module
is responsible mainly for self-localisation of the robot and tracking the position of moving objects
in the robot environment. They propose their own algorithms for localisation which in some aspects
resembles Kalman filtering. Aside from odometric measures, robots use vision analysis from a camera
subsystem.

An interesting concept (earlier than the works of e.g. Thrun and Roumeliotis works) comes from
Kurazume and Nagata [20]. Their proposed approach relies on dividing the whole group of robots
into two teams. When the first team is moving the second remains stationary and acts as a landmark.
After a while the roles are changed. In their works, the authors provide variance and covariance
estimation for positioning errors. Theoretical results are confirmed by simulation experiments.

There are also some non-probabilistic methods that try to solve the localisation problem. An
example of this approach might be LOST (localisation-Space Trails) system [52]. The system is de-
signed to allow a team of robots to navigate between points of interest using trails built of landmarks.
Because the system does not use advanced probabilistic formalism, the trails computation might be
fast and the whole system is claimed to be scalable. It also suffers from some limitations, of which the
major one seems to be the fact that the absolute localisation accuracy is determined by the size and
complexity environment not by LOST itself. It is worth remembering that, in the case of KF based
algorithms, the accuracy grows in every subsequent step of computation, and does not depend on the
environment.

3.3 Distributed Map construction

Distributed map construction is a topic closely related to multi-robot localisation. The crucial aspect
for map construction is answering the question: where have I been?, whilst the localisation brings the
answer to the question: where am I? [30]. It is impossible to create an accurate map if the robots do
not know where they are, thus very often map construction is conducted together with localisation.
In the literature the problem of simultaneous localisation and mapping is called SLAM. However,
sometimes it is useful to assume that the position is known and to focus only on the map construction
algorithm.

An example of early work focusing purely on the multi-robot mapping problem is the algorithm
MAP proposed by Singh and Fujimura [44]. In this approach the move space is represented in the
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form of an occupancy grid map [8, 23]. The algorithm makes use of seven procedures described in
the article. After every move a single robot computes a partial map update according to the algorithm,
and sends the map update to other robots.

An interesting probabilistic mapping algorithm comes from Thrun [48]. The presented approach
combines two techniques: the maximum likelihood map and Monte Carlo localizer with particle
representation. The algorithm works for a single robot as well as for a group of robots. In the
multi-robot approach every robot holds its own pose estimations, whilst the occupancy grid map is
shared. Thanks to extending the algorithm for a multi-robots team, an almost the linear speedup in
map construction could be achieved. I.e. using N robots compared with using a single robot shortens
the mapping time N-times. Later on in the article a 3D-mapping technique for indoor environments
is presented.

The map building in populated environments is considered by Haehnel et al. [15]. In this ap-
proach the robot’s environment is populated by people. Such moving obstacles introduce additional
measurement errors, thus the system has to filter out these errors from the map. To do so, every
person is detected and tracked with the help of SJPDAFs (Sample-based Joint Probabilistic Data As-
sociation Filters). Then the tracking data are combined with the mapping data and a consistent map
is computing. Experimental results prove the method’s effectiveness in 2D and 3D cases.

Coordination between different robots in their SLAM task is the subject of the work presented by
Simmons et al. [43]. Every robot during exploration calculates the maximum likelihood estimate of
its position (localisation), the maximum likelihood estimate of different objects in the environment
(mapping) and the posterior density of its actual location. The one central mapper module combines
maps coming from different robots into one central map. The exploration strategy for different robots
might vary, and depends on the central mapper module. The exploration tasks are assigned to the
robots following a simple greed algorithm maximizing the total expected utility. It has been proved
in experiments that, in general, as the number of robots grows the mapping time of the whole system
drops, however, there are some interesting exceptions to that rule. Namely, it has been observed that
in the given obstacle free environment the mapping time for three cooperating robots is longer than
for a two-robot team. One possible explanation is the increase in sensor noise level because of the
increase number of robots.

An interesting example of the use of a manifold map representation in multi-robot mapping is
given by Howard et al. [17]. The manifold is discretized by dividing it into a set of overlapping
patches, each of which defines some local euclidian space. Over the set of patches a relation that
gathers all the local coordinate systems into one global map is defined. The relation is not given ex-
plicitly, but it has to be gradually created by the cooperating robots. The authors defined an algorithm
that allows partial manifolds from different robots to be merged. To find a set of projected poses a
maximal likelihood estimation technique is used. Performed experiments prove the usefulness of the
given representation. In their work, the authors also identify a few major drawbacks of their, approach
such as poor scalability (in terms of size of team) and sensitivity to communication failures (because
of centralized architecture).

The majority of multi-robot systems are designed for indoor environment mapping. One of the
rare examples of the outdoor multi-robot mapping systems comes from Madhavan et al. [21]. In
the presented system the authors use a distributed EKF localisation scheme. The terrain mapping
algorithm relies on merging maps provided by each member of the robot team. The elevation gradient
is determined by fusing differential GPS altitude information with inclinometer readings. During the
experiments a two-robot team was used. Although the system is based on a decentralized computation
scheme it is not clear how vulnerable it is to increases in the team size.

In the case of EKF based cooperative localisation and mapping there is a possibility to predict the
quality of the process. The analytical upper bound for the positioning accuracy is given by Mourikis
[25, 28, 26].

Besides probabilistic methods that are used for solving the localisation problem, some researches
use non-probabilistic algorithms. One example is the landmark-based matching algorithm proposed
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by Dedeoglu and Sukhatme [7]. The presented algorithm assumes that every robot when creating its
own partial map collects some landmarks. Thus it should be possible to build one global map upon
the partial maps by pairwise matching landmarks coming from different robots.

4 Survey summary and open questions

The goal of this section is to discuss situation awareness in the context of distributed robotics, and
review these multi-robotics research areas that may have something in common with SA. Of course,
neither situation awareness nor distributed robotics have been entirely discussed, and many topics
have been left untouched. First of all, it should be noticed that the situation awareness as defined
in this paper may be a much more capacious notion than covered by the survey literature. That
is because, in general, the environment as well as communication and interaction with it may vary
between different systems. If we e.g. assume that in the environment of our robot there are other
unknown robots, this forces us to take into consideration another, new source of uncertainty. Such
systems can also be considered as situation aware, however, this time SA comes with a slightly
different flavour than before. It is clear that there are many more examples of systems that fit the
intuitive definition of SA.

Discussion about situation awareness in the context of robotics naturally concerns the probabilis-
tic aspects of robotics. That is because in probabilistic robotics the difference between the state of
the actual world and the world perception is extremely important. Every single measurement error
may impact the next measurement estimates and calculations. Thus, for a dozen or so years, effort in
probabilistic robotics has been put into creating such methods which allow the measurement errors to
be handled, i.e. the methods that allow the robots’ situation awareness to increase. Although much
research into both fields; single-robot and multi-robots; has already been conducted, there are still
some open issues that require further effort and research. In this context multi-robot systems in par-
ticular seem to be interesting since the single-robot systems and the general problems are discussed
in many sources [49, 50].

For the purpose of this article two mainstream topics of probabilistic robotics have been selected.
These are multi-robot localisation and multi-robot mapping. In recent years, several papers in these
areas have been published [35, 36, 38, 39, 48], however, some questions seem to be still either left
unclear or passed over.

For certain, one of those issues is solution scalability and computation efficiency. Many algo-
rithms require advanced mathematical calculations that may have exponential complexity, so proba-
bly scaling the solution up to the higher number of robots might be hard. Unfortunately in a number
of works that problem has not been well discussed. Many experiments have been led using relatively
small teams of robots (2 - 3 robots), and it is not clear how the presented algorithms behave in case
of a higher number of robots.

Other interesting question are also connected with the size of the robot team. For instance, none
of the reviewed articles discuss the problem of the optimal number of robots depending on the kind of
topology of the explored environment, kind of robot sensors etc. Some remarks regarding the problem
with growing numbers of robots in obstacles free environment might be found in Simmons et al. [43].
The authors suggest that decreases in the speed of mapping can be caused by the mutual interference
of sensors placed on different robots, however, there are no further studies on that topic.

In all the reviewed papers, wheeled robots have been examined. Obviously that is because wheels
and, as a result, odometry measurements are important sources of information about the position and
pose of robots. However, it is interesting whether it is possible to obtain similar position information
with the help of legged robots. How could a team of legged robots cope with the measurements
errors?

Almost all multi-robot systems available in the literature assume that the environment is static,
structured and of limited size. localisation and mapping in dynamic, unstructured and large environ-
ments still seem to pose a challenge for researchers.
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Thrun, in his review [49], points out the problem of the difference between the vast amount of
knowledge about the environments possessed by humans and relatively the little knowledge about the
same environment possessed by robots. Thus humans much better understand the environment than
the robots and, consequently, humans are much more situation aware. For this reason we believe that
working on increasing the situation awareness of robots might bring measurable benefits. Moreover,
working on SA may open probabilistic robotics to new application areas, especially those connected
with man-robot cooperation like e.g. the lifelong existence of robots with humans at theirs homes.
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