
AGH University of Science and Technology
Computer Science Laboratory
Department of Automatics
Al. Mickiewicza 30
30-059 Kraków, POLAND

Design and Implementation of HQED,
the Visual Editor for the XTT+ Rule Design Method

Krzysztof Kaczor, Grzegorz J. Nalepa
AGH – University of Science and Technology,

Department of Automatics,
Kraków, POLAND

{kk,gjn}@agh.edu.pl

Published online: 24.11.2008

CSL Technical Report No. 2/2008

CSL Technical Report No. 2/2008

Design and Implementation of HQED,
the Visual Editor for the XTT+ Rule Design Method∗

Krzysztof Kaczor, Grzegorz J. Nalepa
AGH – University of Science and Technology,
Department of Automatics,
Kraków, POLAND
{kk,gjn}@agh.edu.pl

Abstract. The report discusses the design and implementation of the HQED visual editor for the
XTT structured rule design method. The editor has been developed within the HeKatE project.
It supports the main logical design with XTT. It also allows for importing and visualizing the
conceptual rule design with the ARD+ method. The editor has a modular architecture, that can
be extended with optional plugins for system analysis. The tool supports a visual design of the
XTT rulebase.

Keywords: rule-based systems, XTT, visual design, editor, HeKatE

∗The paper is supported by the HeKatE Project funded from 2007–2009 resources for science as a research project.

1

K. Kaczor, G. J. Nalepa Design of HQED i

Contents

1 Introduction 1

2 The XTT approach 1
2.1 Design process, ARD, XTT, tools history . 1
2.2 XTT concepts . 2
2.3 ARD+ and VARDA . 5

3 XTT editor requirements specification 6
3.1 Requirements for the design and on-line quality support 7
3.2 Requirements of functionality . 7
3.3 System requirements . 9

4 The Extended Tabular Trees editor design 9
4.1 Model-View-Controller design pattern . 10
4.2 Use case diagrams . 11
4.3 Class diagrams . 11

5 HQed implementation 11
5.1 Architecture . 11
5.2 Development platform . 14
5.3 Requirements fulfillment . 15

6 HQed Use cases 17
6.1 Thermostat . 17
6.2 Cash point . 21

7 Future work 25

List of Figures

1 Phases of the integrated design process . 2
2 The Mirella Designer . 3
3 ARD model design in Qt ARD editor . 4
4 ARD diagram designed in Dia . 4
5 A simple XTT Table . 5
6 A simple XTT Tree . 5
7 The concepts related with ARD . 6
8 MVC diagram. 10
9 Use case diagram for the general functionality. 11
10 Use case diagram for the model. 12
11 Use case diagram for the view. 12
12 Class diagram for HQed tool . 13
13 The architecture of HQed . 14
14 Qt architecture diagram. (See [14]) . 15
15 The ARD model of the Thermostat (rendered by the HQed). 18
16 The TPH diagram of the Thermostat (rendered by the VARDA). 19
17 The XTT model of the Thermostat (rendered by the HQed). 19
18 The ARD model of Cash Point. 21
19 The transformation history of Cash Point. 23
20 The XTT model of Cash Point. 24

ii K. Kaczor, G. J. Nalepa Design of HQED

List of Tables

1 XTT Thermostat attributes specification. 17
2 XTT Cash Point attributes specification. 22

K. Kaczor, G. J. Nalepa Design of HQED 1

1 Introduction

Rules are the most popular method of knowledge representation. They offer a transparent and intuitive
knowledge representation, along with visual representation with decision tables and decision trees.

This report is dedicated to the presentation of the results of the thesis [4]. The goal of this thesis
was do describe the design and implementation of a tool that supports the XTT rule design method [9].
Keeping the high quality of the XTT model during the design is a very important issue. This is why
an important feature of the tool is the on-line rule analysis.

This report is organized as follows:

• The evolution of the XTT design process as well as the integration with ARD design phase are
described in Section 2.

• The detailed specification of the requirements for the application is given in the Section 3.

• The Section 4 describes the issues related to the design of the application.

• The Section 5 contains the important information about the implementation of the application
such as: functionality, and architecture.

• The Section 6 presents the XTT examples designed with the tool.

• In Section 7 the summary of the project as well as the issues related with the future work and
the development of the application are described.

The main practical result of the thesis was the implementation of a prototype CASE tool for the
XTT method called HQED.

2 The XTT approach

In this section the XTT (eXtended Tabular Trees) [9] hybrid rule design approach is described.

2.1 Design process, ARD, XTT, tools history

The XTT design approach is similar to data base design approach [2]. It consist of three phases:

1. Conceptual design - this is a most abstract phase. The system is identified by attributes. During
this phase functional dependencies between attributes are defined. This phase introduces a new
class of diagrams, which are called Attribute-Relationship Diagrams, ARD – for short.

2. Logical design - this stage involves the XTT approach. The preliminary XTT model may be
obtained as result of ARD diagram translation as well as may be built from scratch. During the
phase the XTT structure can be incrementally built and analysed on-line.

3. Physical design - the preliminary implementation of system is done by the generation of PRO-
LOG (or any other) code based on the XTT model. Such code can be complied, executed and
debugged.

The phases of the integrated design process are shown in Fig. 1. Until now a several tools supporting
the design have been implemented.

Historically, the first tool is the Mirella Designer [10]. The Mirella name is an acronym for:
Meta-level Integrated RBS design Environment with On-Line Local Analysis. The screenshot of the
Mirella Designer is presented in Fig. 2. The Mirella Designer has been created to support XTT design
process as well as to translate XTT to PROLOG code. This environment does not support conceptual
design phase. The tool consist of four principal modules:

1. Mirella Creator – this module is responsible for definition of attributes and theirs domains.

2. Mirella Designer – this module is responsible for the visual design of the system knowledge
base using the XTT representation.

2 K. Kaczor, G. J. Nalepa Design of HQED

Conceptual Design

Logical
Design

Analysis
Verification

Physical Design

PROLOG

XML

Executable

System-specific
representation

Other Systems

Figure 1: Phases of the integrated design process

3. Mirella Exchanger – which creates a framework of number of import and export plugins,
exchanging data with other knowledge representation languages, and domain specific system
prototypes.

4. Mirella Validator – this module is responsible for the on-line analysis.

The Mirella Designer has been created in ANSI C language with the help of GTK+ library for the
GUI (Graphic User Interface). Mirella was a proof of concept and had its limits, so the development
was stopped.

Two new tools for ARD were developed during the Knowledge Engineering student projects at
Institute of Automatics at AGH UST in 2007: one based on the Dia editor, and another based on the
Qt library. Qt ARD editor was another Knowledge Engineering project of 2007 [6]. The main goal of
this project was to develop a standalone ARD diagram editor using the Qt library. The Qt library is a
GUI library implemented in C++. The project has been successfully implemented and the results can
be observed on Fig. 3. The editor allows exporting the model to ATTML that is the language based
on XML. The editor allows for hierarchical ARD design, and simple attribute specification.

Dia is the universal diagram drawing software, tha uses the set of predefined object for drawing.
The characteristic feature of Dia is the possibility to define new diagrams with XML. The goal of a
Knowledge Engineering project in 2007 [8] was to develop a Dia library to support ARD design. The
library has been successfully implemented. The result of implementations can be observed in Fig. 4.

2.2 XTT concepts

The XTT phase is the logical design phase. It involves the following stages [7]:

• Specifying the full headers of the XTT tables with appropriate attributes.

K. Kaczor, G. J. Nalepa Design of HQED 3

Figure 2: The Mirella Designer

• Defining the rules through filling the XTT cells in XTT rows. Each XTT table consists of XTT
rows which are equivalent to rules.

• Linking XTT tables with XTT connections which determine order of rules execution.

• Building a hierarchical system design using tree facilities.

• Refining attribute specification including constraints.

• Generating PROLOG prototype corresponding to the XTT structure.

During the design, the on-line analysis allows to detect anomalies in the XTT structure.
XTT as described here supports some extensions, referred to as XTT+[11]. The XTT language is

a hybrid of other languages and knowledge representations. The basic concepts in XTT are introduced
here:

Rules – give logical representation of the system knowledge base, they introduce concepts such as:
condition, conclusion, decision.

Decision tables – are the objects, which store knowledge. They are related with table, row, cell,
attribute, attribute value.

Decision trees – are the objects which serves knowledge components. They introduce concepts such
as: tree, connection, node, branch, leaf.

Attribute An attribute Ai, denoting a property of an object is a mapping:

Ai : O → Di

where: O is a set of objects and Di is a domain of the attribute Ai [7].

4 K. Kaczor, G. J. Nalepa Design of HQED

Figure 3: ARD model design in Qt ARD editor

Figure 4: ARD diagram designed in Dia

Some attributes can be placed in one group to emphasize some relationships among them. The
attributes grouping provides a complex structure, called group, which is similar to structures in C
language. A Group can be interpreted as the set of attributes:

Group = {A1, A2, . . . , An}

Attributes within a group can be referenced by their name preceded by dot and the name of the group:

Group1.Group2.attribute_name

XTT+ introduced a mechanism called Attribute-Attribute Comparsion which allow to compare
two values of the attributes. The Attribute-Attribute Comparsion can be expressed as:

if(Attribute OPERATOR Attribute) then ...

The Attribute-Attribute Comparison enforces problems for the on-line analysis. For example: com-
parison of two different values of attributes that have different domains is very difficult and requires
a simulation of the whole structure for checking if the value of the second attribute belongs to the
domain of the first attribute. Sometimes, the XTT+ structure is incomplete and the simulation cannot
be executed.

Connection A Connection is an ordered pair of table/row pairs:

N = ((Tw, Rx), (Ty, Rz))

where (Tw, Rx) is referred as parent row, and (Ty, Rz) as child row. A Connection connects two
Rows.

K. Kaczor, G. J. Nalepa Design of HQED 5

Tree A Tree is a structure composed of two or more Tables connected with at least one connection.
It can be represented as pair:

E = (T, N)

where: T = {T1, T2, . . . , Tp} is a set of Tables and N = {N1, N2, . . . , Nq} is a set of Connections
between them.

The new visual representation of XTT table is shown in Fig. 5, it is more simple and intuitive than
the original XTT. A simple XTT structure with several tables is shown in Fig. 6. The XTT structure
may be mapped to an XML-based language called XTTML (XTT Markup Language).

(?) A
1

1 a b nc

Header

Row

Column

1

m

Context

Attribute

Cell

(?) A (?) A (-) A (-) A (+) A (+) A () A
2 a a+1 b b+1 c n

Figure 5: A simple XTT Table

(?) A
1 (?) A (?) A (-) A (-) A (+) A (+) A () A

2 a a+1 b b+1 c n

(?) A
1 (?) A (?) A (-) A (-) A (+) A (+) A () A

2 a a+1 b b+1 c n

(?) A
1 (?) A (?) A (-) A (-) A (+) A (+) A () A

2 a a+1 b b+1 c n

(?) A
1 (?) A (?) A (-) A (-) A (+) A (+) A () A

2 a a+1 b b+1 c n

(?) A
1 (?) A (?) A (-) A (-) A (+) A (+) A () A

2 a a+1 b b+1 c n

Figure 6: A simple XTT Tree

2.3 ARD+ and VARDA

ARD supports the conceptual system design and allows for generating preliminary structure of XTT.
ARD allows to identify system attributes and their functional dependencies. It is a hierarchical ap-
proach, which starts from the most abstract system specification, and provides a more detailed speci-
fication. ARD has its representation in the XML language, called ARDML (ARD Markup Language).

The main concepts related to ARD (see Fig. 7) are:

A Conceptual Attribute is an attribute which describes some general aspects of the system. Such an
attribute must be specified and refined. The name of Conceptual Attribute begins with a capital
letter: ThermostatSetting.

A Physical Attribute is an attribute which describes a well defined and atomic aspects of system.
Such attribute cannot be specified and refined further. The name of Physical Attribute begins
with not capital: theThermostatSetting.

6 K. Kaczor, G. J. Nalepa Design of HQED

A Simple Property is described by a single attribute.

A Complex Property is described by multiple attributes.

A Dependency is a ordered pair of properties: D = (P1, P2), where P1 is an independent property
and P2 dependent one.

An ARD Diagram is the set of properties and dependencies.

Complex property

Simple property

Dependencies

Independent properties

Dependent property

Figure 7: The concepts related with ARD

The ARD diagram is developed with two transformations. Finalization and Split.
The more detailed ARD levels create a hierarchy of levels. The purposes of hierarchical model

are [12]:

• gradual refinement of a designed system, and particularly

• identification of the origin of given properties,

• ability to get back to previous diagram levels for refactoring purposes,

• the big picture perspective of the designed system.

The implementation of such a system can be done by storing the most detailed level, and all the
information about transformations that is needed to recreate the more general levels. The history of
changes on the levels is called Transformation Process History (TPH for short). The TPH diagram
contains information about how a particular property has been split and how the particular attribute
has been finalized.

The preliminary XTT structure is generated automatically with the Rule Prototyping Algorithm.
The input of the algorithm is the most detailed level of ARD phase, which has all the physical at-
tributes identified. The output is a set of rule prototypes for XTT.

VARDA (Visual ARD Rapid Development Alloy) is a prototype tool providing the ARD+ design
and visualization. VARDA has been implemented in PROLOG with the help of several tools such as
GraphViz, ImageMagick.

3 XTT editor requirements specification

The list of requirements for the XTT editor can be divided into three categories:

Requirements for the design and on-line quality support is the group that contains the specifica-
tion of the requirements introduced by the XTT design method.

Requirements of functionality is the group that contains the specification of the requirements for
the application. The design of the application should fulfil these requirements and during the
implementation process the functionality that meets the requirements should be implemented.

System requirements is the group that contains the list of the minimal system requirements and
dependencies. The group gives the answer to the question: what is needed to execute the
application (libraries, packages, etc).

The list of requirements for each group is showed in the following sections.

K. Kaczor, G. J. Nalepa Design of HQED 7

3.1 Requirements for the design and on-line quality support

• The support for ND (not defined) and ANY operators.

• Defining attribute groups:

– Defining group name, description.
– Defining group parent, or as root.

• Defining attributes:

– Defining attribute’s name.
– Defining attribute’s acronym - an alternative name, shorter than actual name.
– Defining attribute’s type - the type can be defined as primitive type: bool, integer,
float, symbolic, enumerative.

– Defining attribute’s domain:

∗ Defining type of constraints: no constraint, range, set of values (set of enumerated
values).

– Defining default value for attribute.
– Defining attribute’s relation: input, middle, output.
– Defining attribute’s description.
– Defining attribute’s group - the group to which the attribute belongs.

• Defining tables:

– Choosing attribute from the list.
– Selecting condition attributes.
– Selecting conclusion attributes.
– Selecting attribute context (conditional/assert/retract/conclusion).
– Defining the table’s title.
– Defining the table’s description.
– Defining the table’s type (fact, middle, halt).

• Defining connections between tables:

– Defining the input and output parameters.
– Defining the type of the connection (normal, cut).
– Defining connection’s label.
– Defining connection’s description.

• Translating XTT model to executable PROLOG code.

• On-line verification of model quality:

– Finding unused attributes.
– Showing validation problems.

3.2 Requirements of functionality

• Visualisation:

– Visualisation of the ARD model (ARDML file as source of information).
– Visualisation of the simplified view of tables.
– Visualisation of the connections:

8 K. Kaczor, G. J. Nalepa Design of HQED

∗ Visualisation of the difference between normal and cut connection.
∗ Displaying the label of the connection.

– Marking selected items.
– Zoom in and out.
– Black and White view option.
– Exporting the model visualisation as SVG or other format (BMP, JPG, PNG, XPM, PPM).
– Printing the model visualisation.

• Groups:

– Adding, editing, removing groups of attributes.
– Editing group:

∗ Adding attributes to the group.
∗ Removing attributes from the group.
∗ Moving attributes between groups.

– Deleting group.
– Changing the group parent.

• Attributes:

– Adding new attributes.
– Editing all features of attribute.
– Removing attributes.
– Sorting attributes within group.
– Showing the list of unused attributes.
– Exporting the attributes’ list to ATTML file.
– Importing the attributes’ list from ATTML file.

• Tables:

– Adding tables.
– Editing tables.
– Deleting tables.
– Selecting table:

∗ Selecting with the help of dialog window.
∗ Direct selecting (clicking on the table).

– Table comments.
– Auto arrangement of tables.

• Connection:

– Adding new connections:

∗ With the help of dialog window.
∗ Easy defining with the help of drag and drop technique.

– Editing connections.
– Deleting connections.
– Selecting connection:

∗ Direct selecting (clicking on the connection).
∗ Selecting with the help of dialog window.

K. Kaczor, G. J. Nalepa Design of HQED 9

– The changing the connection’s curve of shape.

• ARD and XTT integration:

– Creating XTT schema based on the ARD diagram.

• Reading and writing the XTTML file.

• Reading and writing the ATTML file.

• Reading the ARDML file.

• Search dialog:

– Searching for attributes.
– Searching for tables.
– Searching for connections.

• Plugin interface:

– The possibility to extend the application by using the external resources.
– The possibility to data exchange between plugin and application.

• PROLOG interface:

– The set of the predicates that allow the plugin to communicate with the application.
– The data exchange between PROLOG and HQed.

3.3 System requirements

• The platform independence.

• Compiling the source code on different platforms without modification.

• The system requirements should be as low as possible.

• Easy maintenance.

• Portability of the application.

• Scalability.

• Dilatability (interface to plugins).

With respect to the system requirements presented in this section, the application has the following
system requirements:

• Installed Qt library in version 4.3.2 or later.

• Installed C++ compiler.

• 200MB of available hard-disk space.

• 128MB of RAM (256MB recommended for complex projects).

4 The Extended Tabular Trees editor design

One of the requirements for the editor, is an open architecture that allows developing the applica-
tion by creating plugins, changing the interfaces, etc. Hence, the source code of the editor must be
transparent, clear, and well documented. There is no tool that allow checking if the source code is
transparent and clear. To achieve this aim the special design pattern was applied. Originally, Extended
Tabular Trees editor had been called XTTed (XTT EDitor), but later the name has been changed to
HQed (Hekate Qt EDitor).

10 K. Kaczor, G. J. Nalepa Design of HQED

4.1 Model-View-Controller design pattern

The Extended Tabular Trees editor has been designed with use of the Model-View-Controller design
pattern. Model-View-Controller (MVC for short) is an architectural pattern used in software engi-
neering. The MVC was first described in 1979 by Trygve Reenskaug, then working on Smalltalk at
Xerox PARC, and later in [1]. The main assumption of the pattern is the design of the project with
three independent layers:

• Model – The model is the internal representation of the information on which the application
operates. This representation is not available to the user and it can be interpreted as the state of
the system.

• View – The view layer provides representation of the model for the user as well as supports the
interaction between application and the user.

• Controller – The association between system’s events. It provides communication between
Model and User.

The separation on three independent layers is useful in the design process.
MVC provides the following features:

• The source code is more transparent and clear.

• The modules can be done by different programmers.

• The maintenance of the code is easier.

• The process of implementation becomes faster.

The simple diagram of the pattern is shown in Fig. 8.

Model
- Encapsulates application state
- Responds to state queries
- Exposes application functionality
- Notofies views of changes

View
- Renders the models
- Requests updates from models
- Sends user gestures to controller
- Allows controller to select view

Controller
- Defines application behavior
- Maps user actions to model updates
- Selects view for response
- One for each functionality

State
Query

Change
Notification

View selection

User Gestures

State
Change

Method Invocations

Events

Figure 8: MVC diagram.

There are a lot of frameworks that support the MVC:

• Implementations of MVC as GUI frameworks:

– Microsoft Foundation Classes
– NeXTSTEP development environments encourage the use of MVC
– Qt Toolkit since the Qt4 Release.
– Java Swing

K. Kaczor, G. J. Nalepa Design of HQED 11

• Implementations of MVC as web-based frameworks:

– ASP.NET MVC Framework
– PureMVC Framework for ColdFusion
– Spring MVC Framework
– PureMVC Framework for PHP

The Extended Tabular Trees editor has been implemented according to MVC principles.

4.2 Use case diagrams

In the following diagrams the most important use cases of the editor are presented.

• In Figure 9 the most general functionality.

• In Figure 10 the functionality of the model.

• In Figure 11 the functionality of the view.

For the full discussion of the diagrams see [4].

Figure 9: Use case diagram for the general functionality.

4.3 Class diagrams

In HQed implementation all the classes have been divided between model, view and controller lay-
ers. Additionally, model and view of ARD and XTT are also separated. In the controller layer, the
sublayers may be distinguished (See Fig. 12).

5 HQed implementation

5.1 Architecture

HQed has been implemented according to MVC design pattern. The architecture of HQed consists of
three layers: model, view, controller, see Fig. 13.

The XTT model and ARD model are parts of model layer. All the data relating with model are stored
and processed in this layer.

12 K. Kaczor, G. J. Nalepa Design of HQED

Figure 10: Use case diagram for the model.

Figure 11: Use case diagram for the view.

K. Kaczor, G. J. Nalepa Design of HQED 13

Figure 12: Class diagram for HQed tool

The controller layer in the sense of MVC, combines the following layers of the architecture: Con-
troller, PROLOG API, PLUGINS API.

The PROLOG API layer The task of this layer is to make functions and data available to the PRO-
LOG engine. As the result, of implementation such a layer, is the possibility to the control
of HQed from the PROLOG level. This is a very important because there are PROLOG tools
supportingthe analysis of the logical quality of the model.

The PLUGINS API layer is responsible for communication between HQed and external plugins.
The task of this layer is very similar to PROLOG API layer. The difference lies in the fact that
this layer making data and functions available to external plugins. The way of communication
can be different: (DLL, TCP/IP). The TCP/IP seems to be the best solution because it is sup-
ported by the vast majority of the operating systems, and it makes possible to use the plugins
over the network.

The view layer in the sense of MVC, combines the following layers of the HQed architecture: User
Interface and XML mapping. These layers are responsible for representation of the model.

14 K. Kaczor, G. J. Nalepa Design of HQED

FILES

XTT Model ARD Model

PROLOG PLUGINS

User Interface

Controller
PLUGINS

API
PROLOG

API

HQed

XML mapping

USER

Figure 13: The architecture of HQed

The User Interface layer is responsible for communication between user and application. The first
task of this layer is the representation of the model layer in the graphical way and suitable
for the user form. The second task of this layer, is intercepting all the user events and the
dispatching them to the controller layer.

The XML mapping layer allows to map the model as the XML-based language XTTML and vice
versa. This is a very important layer, because with the help of it, the designer can save his work
and later load it.

As a summary of the implementation some most important technical information is given:

• The source code consists of:

– 70k lines of source code.
– 173 files that contains the source code (*.cpp, *.h).
– The size of source code is equal to 2.89MB (it depends on the file system).

• The implementation contains:

– 145MB as a size of the root directory.
– 104 classes.

5.2 Development platform

With respect to the platform independence requirement for HQed, the special programming tool must
be selected. Additionally, other requirements, such as: PROLOG Interface, Graphic User Interface,
Plugin Interface, narrow down the number of tools. The used platform to implementation of HQed is
Qt library. Qt is a cross-platform rich application development framework. It includes [14]: an intu-
itive, easy to use class library, integrated development tools, cross-platform development on desktop
and embedded platforms, support for C++ and Java development. The current 4.4 Qt library consists
of over 400 classes, which encapsulate all infrastructure needed for end-to-end application develop-
ment. The API is separated into 13 modules (See Fig. 14).

Qt is Cross-Platform library. The source code written once can be compiled on such platforms as:
Windows, Mac, and X11.

K. Kaczor, G. J. Nalepa Design of HQED 15

Figure 14: Qt architecture diagram. (See [14])

The version of library used to implementation HQed is 4.3, with optional compatibility with
version 4.2.3 avaialbe in some GNU/Linux distributions.

HQed is an open source and free software. It is licensed by third version of GPL licence from the
Free Software Foundation.

5.3 Requirements fulfillment

Design support’s requirements fulfilment:

• The support for ND (not defined) and ANY operators – The operators are supported by the
application. The form of the operator ND is op:nd and the operator ANY is op:any.

• Defining attribute groups – The functionality was implemented and it allows the user to perform
all the actions that are required. The user can define the tree of the groups and for the each group
the name as well as the description. The application enables the user to change the structure of
the tree.

• Defining attributes – The functionality requirements are fulfilled. The user can define all the
required properties of the attributes as well as can define the constrained domains. The con-
straints can have the range form or the set form.

• Defining tables – The functionality is also available from the application’s level. The user can
define the structure of the tables and freely modify it later. The properties such as the title, the
description, the type can be defined too.

• Defining connections between tables – There are two ways to define the connection between
the tables: with the help of window dialog. The properties of the connection can be defined by
using the editor of connections window dialog.

• Translating XTT model to executable PROLOG code – This functionality has not been imple-
mented yet. It may be considered as the future work.

• On–line verification of the model quality – The on–line verification is implemented. Due to
the lack of possibilities for a complete verification of the model during the design process
the implemented functionality does not meet with the requirements precisely. The application
controls the quality of the model in the range of possibilities.

Functionalities’s requirements fulfilment:

• Visualisation – The application supports the visualisation of the tables, the connections as well
as the graphical user interface. All the operations can be executed with the use of the window

16 K. Kaczor, G. J. Nalepa Design of HQED

dialogs. The visualisation’s requirements demand ”the lack of the user freedom”. The process
of defining the properties of objects, values, should be performed with the help of forced possi-
bilities (i.e. well-defined lists of values, etc.). All the requirements, which are described in the
Section 3.2, are fulfilled.

• Groups – The operation such as adding, editing, deleting group can be executed with the help of
the window dialogs, which are designed to this end. The operations of adding, editing, deleting
can be done by using Group manager.

• Attributes – All the required operations related with the attributes can be done. The special
dialogs are designed. The Attribute editor dialog makes adding and the editing the properties
of the attributes possible. The Attribute delete dialog makes deleting of the attributes possible.
All the required properties, related with the attributes, can be defined with the help of these
dialogs.

• Tables – The requirements with regard to the tables are fulfilled. The application allows the
user to define, edit, delete the tables. The properties, such as title, description, as well as the
type of the table can be defined. There are several window dialogs that support these actions.

• Connection – The fulfilment of requirements which concern connections has been described in
the previous section. Additionally, the application allows user to define the type of connection
(”normal”, ”cut”). Regarding the visualisation of the connections, the connection is presented
as broken line. The form of the connection (the lengths of each part) can be changed manually.

• ARD and XTT integration – The algorithm of the ARD and XTT integration was implemented
successfully. According to the final level of ARD the XTT schema is generated automatically.
Additionally, the application allows the user to configure some aspects of algorithm.

• XML support – The application allows user to read and write the XML files. The information
about the XTT model are stored as the XTTML file. There are two versions of XTTML and the
application supports both of them. The information about attributes and groups are stored as
ATTML file. The application allows to export and import data from/to ATTML file. The ARD
model is stored as ARDML file. The application supports only the reading the ATTML file.

• Search dialog – The application has built-in the search engine and the dialog that displays the
results. The scope of search can be changed manually. The search dialog tries to find, the
entered phrase in the properties’ values of tables, attributes and connections. The results are
displayed in the window dialog.

• Interfaces – The interface to the plugins has not been implemented yet. The development of
interface to the plugins can be the considered as the subject of the future work.

System’s requirements fulfilment:

• The platform independence – There is no possibility to create an executable version of appli-
cation that is platform independent. In case of the source code this problem does not exist.
Thanks to the Qt library. the source code that has been written can be compiled on the different
platforms without modification, including: GNU/Linuix, Windows, OSX.

• The minimal system requirements – The application should use as few system’s resources as it
is possible. In case of HQed the system requirements are following:

– Installed Qt library in version 4.3.2 or later.
– Installed C++ compiler.
– 200MB of available hard-disk space.
– 128MB of RAM (256MB recommended for complex projects).

K. Kaczor, G. J. Nalepa Design of HQED 17

• Scalability and dilatability of application can be available with the help of using the plugins.
Due to the fact that the interface to the plugins is on very early stage of the development, the
application can not be extended by the external resources.

6 HQed Use cases

This section presents two examples of the editor use:

• Thermostat that presents the problem of creating a temperature control system for an office.

• Cash Point that presents the design of the behaviour of an ATM system.

They are designed using a classic expert systems approach [3].

6.1 Thermostat

The main problem described by Thermostat use case is the problem of creating a temperature control
system for an office. The temperature control system sets the temperature in the office depending on
the current season and the working time. The detailed description of Thermostat system problem is
presented in [13]. The input to the system consists of current time. The system’s response is the
most appropriate temperature at the current time.

The Table 1 shows the specification of the attributes that are used to solve Thermostat problem.
The Figure 15 shows the steps of the ARD design process. The Figure 16 shows the ARD transfor-
mations process history. According to the last level of ARD diagram, where all the physical attributes
are identified, the schema of XTT is generated. The Figure 17 shows the full XTT model.

Name Type Domain Description
day enumerative {monday, tuesday,

wednesday, thursday,
friday, saturday,
sunday}

The name of the current
day. The attribute defines the
today’s value.

time integer <0; 24> The value of the hour.
The attribute defines the
operation’s value.

month enumerative {january, february,
march, april, may, june,
july, august, september,
october, november,
december}

The name of the current
month. The attribute defines the
season’s value.

season enumerative {spring, summer, autumn,
winter}

The name of the season.

today enumerative {workday, weekend} The type of the day.
operation enumerative {bizhrs, nbizhrs} This attribute describes if the

current hour is the working time
(bizhrs) or not (nbizhrs).

thermostat integer {14, 15, 16, 18, 20, 24, 27} The value of the thermostat set-
ting.

Table 1: XTT Thermostat attributes specification.

18 K. Kaczor, G. J. Nalepa Design of HQED

Figure 15: The ARD model of the Thermostat (rendered by the HQed).

The original Thermostat system rule base follows1:

Rule: 1
if ’the day’ is ’Monday’
or ’the day’ is ’Tuesday’ or ’the day’ is ’Wednesday’
or ’the day’ is ’Thursday’ or ’the day’ is ’Friday’
then ’today’ is ’a workday’

1The rules 7–10 are correct from the author’s point of view, because he comes from Australia.

K. Kaczor, G. J. Nalepa Design of HQED 19

Figure 16: The TPH diagram of the Thermostat (rendered by the VARDA).

Figure 17: The XTT model of the Thermostat (rendered by the HQed).

Rule: 2
if ’the day’ is ’Saturday’
or ’the day’ is ’Sunday’
then ’today’ is ’the weekend’

Rule: 3
if ’today’ is ’workday’
and ’the time’ is ’between 9 am and 5 pm’
then ’operation’ is ’during business hours’

Rule: 4
if ’today’ is ’workday’
and ’the time’ is ’before 9 am’
then ’operation’ is ’not during business hours’

Rule: 5
if ’today’ is ’workday’
and ’the time’ is ’after 5 pm’
then ’ operation’ is ’not during business hours’

Rule: 6
if ’today’ is ’weekend’
then ’operation’ is ’not during business hours’

Rule: 7
if ’the month’ is ’January’
or ’the month’ is ’February or the month is December’
then ’the season’ is ’summer’

20 K. Kaczor, G. J. Nalepa Design of HQED

Rule: 8
if ’the month’ is ’March’
or ’the month’ is ’April or the month is May’
then ’the season’ is ’autumn’

Rule: 9
if ’the month’ is ’June’
or ’the month’ is ’July’ or ’the month’ is August’
then ’the season’ is ’winter’

Rule: 10
if ’the month’ is ’September’
or ’the month’ is ’October or the month is November’
then ’the season’ is ’spring’

Rule: 11
if ’the season’ is ’spring’
and ’operation’ is ’during business hours’
then ’thermostat_setting’ is ’20 degrees’

Rule: 12
if ’the season’ is ’spring’
and ’operation’ is ’not during business hours’
then ’thermostat_setting’ is ’15 degrees’

Rule: 13
if ’the season’ is ’summer’
and ’operation’ is ’during business hours’
then ’thermostat_setting’ is ’24 degrees’

Rule: 14
if ’the season’ is ’summer’
and ’operation’ is ’not during business hours’
then ’thermostat_setting’ is ’27 degrees’

Rule: 15
if ’the season’ is ’autumn’
and ’operation’ is ’during business hours’
then ’thermostat_setting’ is ’20 degrees’

Rule: 16
if ’the season’ is ’autumn’
and ’operation’ is ’not during business hours’
then ’thermostat_setting’ is ’16 degrees’

Rule: 17
if ’the season’ is ’winter’
and ’operation’ is ’during business hours’
then ’thermostat_setting’ is ’18 degrees’

Rule: 18
if ’the season’ is ’winter’
and ’operation’ is ’not during business hours’
then ’thermostat_setting’ is ’14 degrees’

The process of designing the Thermostat system was accomplished successfully. It consist of the
six tables, including two fact tables. The fact tables are used for setting the initial values of attributes.

K. Kaczor, G. J. Nalepa Design of HQED 21

6.2 Cash point

This example presents a cash point system that is equivalent to an ATM. The example shows the
typical operations that are executed on the ATM. The user that wants to use the ATM, can choose one
of the two types of operations:

• Withdraw the cash.

• Inquire about balance.

Both of cases require the PIN authentication. When the PIN is correct the operation will start, other-
wise the authentication operation will be repeated until the moment when the PIN code will be correct
or the limit of the attempts will be exceeded. There are only three attempts to enter the correct PIN
code, after that the card will be kept in the cash point.

The goal of this example is the design the cash point system with the help of XTT. The example
comes from [5]. The first step is to identify the use cases of the cash point. In the second step it must
be defined what is input and output. In the third step the parameters should be specified and in the
last step the rules should be defined.

• The inputs to the system: PIN, the user’s actions.

• The outputs: confirmation, cash, message.

The system, designed with use of the XTT, consists of the attributes that are described in Table 2.
The last level of ARD diagram as well as the transformation process history diagram are showed in
Figures 18 and 19. The XTT model of Cash Point is presented in Figure 20.

Figure 18: The ARD model of Cash Point.

Each row represents one rule. The rules can be written as follows:

Rule: 1
if numberOfBills is greater or equal to desiredAmount
then enoughCashInCashpoint is true

Rule: 2
if numberOfBills is less than desiredAmount
then enoughCashInCashpoint is false

Rule: 3
if desiredAmount is greater or equal to freeFunds
then clientHasFreeFunds is true

22 K. Kaczor, G. J. Nalepa Design of HQED

Name Type Domain Description
numberOfBills float > 0 The value of the bills in

the cash point.
desiredAmount float > 0 The amount that the user

wants to withdraw.
enoughCashInCashpoint boolean Denotes if there is enough

bills in the cash point to
pay the desired amount.

freeFunds float > 0 The value of the free
funds of the user.

clientHasFreeFunds boolean Denotes if the user has
free funds.

enteredPIN integer <0, 9999> The PIN number, entered
by the user.

pINInDatabase integer <0, 9999> The correct PIN number.
authentication bool Denotes if the user has

entered the correct PIN
code.

numberOfFailedAttempts integer <0, 3> The number of attempts
of entering the PIN num-
ber.

menuOption enumerate {payout,
balanceInquiry}

Denotes the action that
user wants to execute.

cashpointActivity enumerate {Ask for PIN(),
Take away card(),
Pay out(),
Not Enough Funds In
Machine(),
Not Enough Funds On
Account(),
Not Enouch Funds(),
Display Balance()}

This attribute is an out-
put from the system. It
denotes the action, which
the cash point should exe-
cuted.

Table 2: XTT Cash Point attributes specification.

Rule: 4
if desiredAmount is less than freeFunds
then clientHasFreeFunds is false

Rule: 5
if enteredPIN is pINInDatabase
then authentication is true

Rule: 6
if enteredPIN is pINInDatabase
then authentication is false
and numberOfFailedAttempts is numberOfFailedAttempts + 1

Rule: 7
if authentication is false
and numberOfFailedAttempts is less than 3
then action: ’ask_for_pin’

K. Kaczor, G. J. Nalepa Design of HQED 23

Figure 19: The transformation history of Cash Point.

24 K. Kaczor, G. J. Nalepa Design of HQED

Figure 20: The XTT model of Cash Point.

K. Kaczor, G. J. Nalepa Design of HQED 25

Rule: 8
if authentication is false
and numberOfFailedAttempts is 3
then action: ’take_away_card’

Rule: 9
if authentication is true
and clientHasFreeFunds is true
and enoughCashInCashpoint is true
and menuOption is ’payout’
then action: ’payout’

Rule: 10
if authentication is true
and clientHasFreeFunds is true
and enoughCashInCashpoint is false
and menuOption is ’payout’
then action: ’not enough funds in machine’

Rule: 11
if authentication is true
and clientHasFreeFunds is false
and enoughCashInCashpoint is true
and menuOption is ’payout’
then action: ’not enough funds on accound’

Rule: 12
if authentication is true
and clientHasFreeFunds is false
and enoughCashInCashpoint is false
and menuOption is ’payout’
then action: ’not enough funds’

Rule: 13
if authentication is true
and menuOption is ’balanceInquiry’
then action: ’display_balance’

The process of the designing the Cash point system was accomplished successfully. The XTT
model consists of nine tables including the four fact tables. Similarly to the first example, the fact
tables are used to set the initial values of the attributes. The simulation of the XTT model runs
without any problems. The value of the cashpointActivity attribute, is the system response to
the initial values of the attributes.

7 Future work

In the report the problem of the design and implementation of a CASE tool which supports the XTT
design process has been discussed. The implementation process of the tool has been accomplished
successfully. The tool effectively supports the XTT design method. The graphical user interface as
well as the visualisation of the model have been implemented. Additionally the application allows
the user to view the ARD model. The ARD model can be loaded from a ARDML file and then
reconstructed and displayed. Moreover the algorithm of the generating the XTT schema according to
ARD model has been implemented as well.

HQed is a work in progress. Two main directions for the future work include: enhanced Plugins
interface, and an API for Prolog

26 K. Kaczor, G. J. Nalepa Design of HQED

Plugins interface Plugins allows the application to add new elements providing new functionality.
To use plugins an interface allowing the data exchange between the tool and the plugin should be
designed. The enhancements of this part of the application are planned.

API for Prolog Plugins can extend the application’s functionality, but they are mainly imple-
mented in of the languages such as JAVA, C++. PROLOG is the language of choice for implementing
high level analysis modules for the XTT rulebase, to formally verify model features, such as: Redun-
dancy, Reduction, Consistency, and Completeness.

So far HQed has been successfully used in teaching by number of students in 2007/2008 class
of Knowledge Engineering for practical design of XTT-based systems. Moreover, the tool plays an
important role as the XTT modeling tool of choice for the HeKatE project (hekate.ia.agh.
edu.pl).

References

[1] S. Burbeck. Applications programming in Smalltalk-80(tm): How to use Model-View-
Controller (MVC). Technical report, Department of Computer Science, University of Illinois,
Urbana-Champaign, 1992.

[2] T. Connolly, C. Begg, and A. Strechan. Database Systems, A Practical Approach to Design,
Implementation, and Management. Addison-Wesley, 2nd edition, 1999.

[3] J. Giarratano and G. Riley. Expert Systems. Principles and Programming. Thomson Course
Technology, Boston, MA, United States, 2005.

[4] K. Kaczor. Design and implementation of a unified rule base editor. Master’s thesis, AGH
Univerity of Science and Technology, June 2008. Supervisor: G. J. Nalepa.

[5] M. Kamiński. Design of control system cases with ARD+/XTT+. Knowledge Engineering
Project (MIW), G. J. Nalepa supervisor.

[6] T. Kania and T. Szypenbejl. Metody inżynierii wiedzy – Projekt: Edytor diagramów ARD.
AGH UST, 2006. Supervised by G. J. Nalepa, Ph. D.

[7] A. Ligęza. Logical Foundations for Rule-Based Systems. Springer-Verlag, 2006.

[8] D. Marynowski. Metody inżynierii wiedzy – Projekt: Mirella_DiaARD. AGH UST. Supervised
by G. J. Nalepa, Ph. D.

[9] G. J. Nalepa and A. Ligęza. A graphical tabular model for rule-based logic programming and
verification. Systems Science, 31(2):89–95, 2005.

[10] G. J. Nalepa and A. Ligęza. A visual edition tool for design and verification of knowledge in
rule-based systems. Systems Science, 31(3):103–109, 2005.

[11] G. J. Nalepa and I. Wojnicki. Proposal of visual generalized rule programming model for Prolog.
In D. Seipel and et al., editors, Proceedings of the 17th International Conference on Applica-
tions of Declarative Programming and Knowledge Management (INAP 2007) and 21st Work-
shop on (Constraint) Logic Programming (WLP 2007). Technical Report 434, pages 195–204,
Wurzburg, Germany, October 4–6 2007.

[12] G. J. Nalepa and I. Wojnicki. Towards formalization of ARD+ conceptual design and refine-
ment method. In D. C. Wilson and H. C. Lane, editors, Proceedings of the 21st International
Florida Artificial Intelligence Research Society Conference (FLAIRS-21), pages 353–358, Co-
conut Grove, Florida, USA, 15–17 May 2008. AAAI Press.

K. Kaczor, G. J. Nalepa Design of HQED 27

[13] M. Negnevitsky. Artificial Intelligence. A Guide to Intelligent Systems. Addison-Wesley, 2002.

[14] Trolltech. Qt product. http://trolltech.com/products/qt, 2008.

