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Introduction to Alvis internal language syntax

Marcin Szpyrka, Piotr Matyasik, Rafal Mrowka
AGH University of Science and Technology

Department of Automatics

Krakow, POLAND

{mszpyrka, ptm, Rafal.Mrowka}@agh.edu.pl

Abstract. Alvis modelling language is a novel approach to the design and formal verification
of embedded systems. Alvis has its origins in CCS and XCCS process algebras, but to describe
individual agents it uses a high level programming language instead of algebraic equations. An
Alvis model consists of two layers, a graphical and a code one. The report presents a step by step
introduction to the syntax of the code layer. To describe the behaviour of individual agents Alvis
uses its behaviour description Haskell based language. The report contains a series of small
examples used to present the most important of the language statements.
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1 Introduction

The aim of the report is to present an introduction to the syntax of Alvis internal language used to
describe the behaviour of individual agents. Alvis is a successor of the XCCS modelling language
[9], [3], [6], which was an extension of the CCS process algebra [7], [5], [1]. Alvis models, as well
as XCCS, consist of two layers, a graphical and a code (textual) one. The graphical layer takes the
form of a hierarchical directed graph called communication diagram and represents all agents and
communication channels among them. The code layer is defined using an internal Alvis language
called Alvis Behaviour Description language (or shortly ABD language). ABD language has its origin
in CCS and XCCS process algebras. However, to make the language more convenient from practical
(engineering) point of view, algebraic equations and operators have been replaced with instructions
typical for high level programming languages. The code layer is used to define:

e data types used in the model under consideration,
e functions for data manipulation,

e behaviour of individual agents.

The ABD language is based on the Haskell programming language. Haskell is a general purpose,
purely functional programming language [8]. It provides, among other things, lazy evaluation, static
polymorphic typing, user-defined algebraic datatypes, pattern-matching, higher-order functions, a
rich set of primitive datatypes etc. Haskell uses a system of monads to isolate all impure compu-
tations from the rest of the program. Haskell functions are pure functions i.e. they are functions in
mathematical sense and they have no side effects. This functional core of Haskell has been used in the
Alvis Behaviour Description language. Haskell is used to define data types for parameters and to de-
fine (pure) functions for data manipulation. Therefore, the Haskell syntax has a significant influence
on the ABD language syntax.

*The paper is supported by the Alvis Project funded from 2009-2010 resources for science as a research project.
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The report is organised as follows. Section 2 presents some information about the general struc-
ture of the code layer. Section 3 deals with data types and parameters. Language statements used for
the communication description are presented in Section 4. Methods of parameters manipulation are
presented in Section 5. Section 6 deals with recursion and alternatives. Examples of single agents are
presented in Section 7. A short summary is given in the final section.

2 File structure

The code layer of an Alvis model is stored in a textual source file. The general structure of such a file
is shown in Listing 1.

—— Preamble:

- types
—— constants
- functions

—-— Implementation:
- agents

Listing 1: General structure of an ABD file

The preamble contains definitions of types, constants and functions used to manipulate data in
a model. The preamble is encoded in pure Haskell. The implementation contains definitions of the
agents’ behaviour. This part is encoded using native ABD language statements, but the preamble
contents is used to represent parameters values and to manipulate them.

The implementation part contains definitions of the agents’ behaviour. It contains at least one
agent block as shown in Listing 2.

agent AgentName {
—— declaration of parameters
—-— agent body

Listing 2: Structure of an agent block

It is possible to share one definition among a few agents. In such a case, a few comma separated
agents’ names are placed after the keyword agent. If necessary, an agent name is followed by its
priority put inside round brackets.

Haskell and Alvis are case sensitive. The Alvis language requires agent names to start with an
uppercase letter.

3 Data types and parameters

The ABD language uses the Haskell’s type system. Types in Haskell are strong, static and can be
automatically inferred. The strong property means that the type system guarantees that a program
cannot contain errors coming from using improper data types, such as using a string as an integer.
Moreover, Haskell does not automatically coerce values from one type to another. The static property
means that the compiler knows the type of every value and expression at compile time, before any
code is executed. Haskell’s combination of strong and static typing makes it impossible for type errors
to occur at runtime.

Table 1 contains selected basic Haskell’s types recommended to be used in the ABD language.
The most common composite data types in Haskell (and ABD) are lists and tuples. A list is a sequence
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Table 1: Selected basic Haskell’s types recommended to be used in ABD language

Type name Description

Char Unicode characters

Bool Values in Boolean logic — True and False

Int Fixed-width integer values — The exact range of values represented as
Int depends on the system’s longest native integer.

Double Float-point numbers typically 64 bits wide and uses the system’s native
floating-point representation.

of elements of the same type, with the elements being enclosed in square brackets and separated by
commas, while a fuple is a sequence of elements of possibly different types, with the elements being
enclosed in parentheses and separated by commas. Haskell represents a text string as a list of Char
values. Examples of lists and tuples are presented in Listing 3. Tuples containing different number of
types of elements have disting types, as do tuple whose types appear in different orders.

[1,2,3,4] -— type [Int]
["a’,’b","c"] -— type [Char] (String)
[True,False] -— type [Bool]

(1,2) -— type (Int,Int)

("a’", True) -— type (Char,Bool)
("abc", 1, True) -— type (String, Int,Bool)

Listing 3: Examples of lists and tuples with their types

To make the source code more readable, one can introduce a synonym for an existing type as
shown in Listing 4.

type AgentID = Int;
type InputData = (Int,Int,Int);
type TrafficSignal = (Char,Bool);

Listing 4: Synonyms for composite data types

A new data type is defined using the dat a keyword (see Listing 5). The identifier after the data
keyword is the name of the new type, while the identifier after the = sign is called value constructor
(data constructor). A value constructor is a special function, which name, as the name of type, must
start with an uppercase letter. Types placed after a value constructor name are called components of
the type. A value constructor is used to create a new value of the corresponding type as shown in the
second line of Listing 5. A value constructor name can be the same as the type one.

data AgentDescription = AgentDesc Int String [String];
myAgent = AgentDesc 1 "Buffer" ["put","get"];

Listing 5: New composite data type

We can used more than one value constructor for one type. Such types in Haskell are called
algebraic data types. Each value constructor is separated in the definition by the | sign. Each of an
algebraic data type’s value constructor can take zero or more arguments. An algebraic data type can
be used to define an enumeration type or a type with different variants of data (see Listing 6).

Constants are defined using parameterless Haskell functions as shown in Listing 7.
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data Move = East | South | West | North;
type Point = (Double,Double);
data Shape = Circle Point Double

| Rectangle Point Point;

Listing 6: Examples of Haskell algebraic data types

size = 10;
name = "Agent";

Listing 7: Examples of constants

The = symbol in Haskell code represents meaning — the name on the left is defined to be the
expression on the right. This meaning of = is valid in the preamble. In the implementation part, the =
symbol stands for the assignment operator.

Parameters are defined using Haskell syntax. The line starts with a parameter name, then the : :
symbol is placed followed by the parameter type. Examples of parameters definitions are shown in
Listing 8. ABD language requires constants and parameters names to start with a lowercase letter.

size :: Int;

inputData :: (Int, Char);
queue :: [Double];

signal :: TrafficSignal;

Listing 8: Examples of parameters definitions

4 Communication with outside world

An agent can communicate with its outside world using ports. Each port can be used both as an input
or an output one. The current role of a port is determined by two factors:

1) Connections to the port in the corresponding communication diagram (i.e. one-way or two-way
connections);

2) Statements used in the code layer.

Moreover, any communication through the port can be a pure synchronisation or a single value
(probably of a composed type) can be sent/collected. A pure synchronisation is a communication
without sending values of parameters. A value passing communication not only synchronises two
agents but also a parameter value is sent through the corresponding ports. ABD language requires
port names to start with a lowercase letter.

(e 2

Figure 1: Agent A with port p

Figure 1 presents an agent A with a single port p. Suppose, the graphical layer (communication
diagram) does not restrict the role of port p. Thus, the port can be used as an input or output one.

Let us consider the code shown in Listing 9. The agent A collects a synchronisation signal through
the port p, waits 1 second and sends a synchronisation signal through the same port. On the other
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agent A {
in p;
delay 1000;
out p;

Listing 9: Pure synchronisation

hand, the agent A presented in Listing 10, both synchronises with another agent and collects an
interger value through the port p.

agent A {
i :: Int;

in p i;
delay 1000;
out p i;

Listing 10: Value passing communication

The in statement assigns the collected value to its parameter, while the out statement sends the
value of its parameter. Instead of a parameter name, a constant can be used in the out statement.

A guard is an additional constraint that must be fulfilled before the corresponding statement is
executed. Guards are logical expressions, written in Haskell, placed inside round brackets after the
statement name. Both in and out statements may use guards, e.g.:

out (i > 1) p 1i;

When a guard is used in the in statement, then it can use only previously stored values. In other
words, in the following example the current (old) value of 1 is used. It means that the new value will
be accepted only if the current value is less than 5:

in (1 < 5) p 1i;

5 Parameters manipulation

As it was said before, in the implementation part, the = symbol stands for the assignment operator.
The operator is used as a part of the exec statement. Thus, to assign a literal value 7 to an integer
parameter x the following statement can be used:

exec x = 7;

If necessary, the exec key word may be followed by a guard placed inside round brackets. The exec
statement is the default one in the ABD language. Therefore, the exec keyword can be omitted if no
guard is used, and the first assignment can be simply written as:

x = 7;

The assignment operator can also be followed by an expression. The ABD language uses Haskell
to define and manipulate data types. Thus, such an expression takes the form of Haskell function call
as shown below. Of course, the exec key word can be omitted in the first and the second example.

exec x = x + 1;
exec x = rem x 3;
exec (y >= 0) x = sqgrt y;
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getl
Adder result
get?2

Figure 2: Agent Adder

agent Adder {
x :: Int;
y :: Int;

in getl x;
in get2 y;
y =x +vy;
out result y;

Listing 11: Agent Adder

Let us consider the agent Adder presented in Fig. 2 and Listing 11. The agent collects two
integers through ports get 1 and get 2 and assigns them to parameters x and y respectively. Then, it
sends the sum of those parameters through the port result. The agent performs those four statement
and stops.

6 Recursion, loops and alternatives

Recursion is one of two mechanisms used for looping in the ABD language. Two language concepts
are used for this purpose labels and the jump statement. Labels in Alvis are identifiers followed by
a colon. A label must start with a lowercase letter. The jump statement is composed of the jump
key word and a label name (without a colon). If necessary, the jump key word may be followed
by a guard placed inside round brackets. The jump statement is the key statement for translation
algorithms from CCS to Alvis.

Let us consider the agent Adder shown in Fig. 2, but with the behaviour presented in Listing 12.
This time the agent repeats its behaviour infinitely.

agent Adder {

x :: Int;
y :: Int;
go:

in getl x;

in get2 y;

y = X + yj
out result y;
jump go;

Listing 12: Agent Adder with infinite behaviour

The same behaviour can be described using the 1 oop statement as shown in Listing 13.
Alvis also provide an 1 £ else statement (see Listing 14).



M. Szpyrka, P. Matyasik, R. Mréwka Introduction to Alvis internal language syntax 7

agent Adder {
x :: Int;
y :: Int;

loop {
in getl x;
in get2 y;
y = X +y;
out result y;

Listing 13: Agent Adder with infinite behaviour — 1oop version

agent Adder {
x :: Int;
y :: Int;

loop {
in getl x;
in get2 y;
if (x>y) {y=x-y;}
else { vy = x + vy; }
out result y;

Listing 14: Agent Adder —if else statement

In order to allow for the description of agents whose behaviour may follow different alternative
paths, the ABD language offers the select statement. The statement is similar to the basic select
statement from Ada programming language, but there is no distinction between a server and a client.

OLE
2

B

Figure 3: Agent B

agent B {
x :: Int;
y :: Inty;

loop {
select {
alt { in pl; x = x + 1; }
alt { in p2; y =y + 1; }

Listing 15: Agent B
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Let us consider the agent B presented in Fig. 3 and Listing 15. Agent B offers a choice between
two alternatives. At the beginning of the main loop the agent is ready to collect a signal through port
pl or port p2. If port pl is selected, variable x is increased and the loop is repeated. In the similar
way the second alternative is performed. Each of the alternatives described with the alt statement is
called a branch.

The selection between branches can depend on guards associated with each branch as shown in
Listing 16. When an alt statement is to be executed, the first open branch is chosen. A branch is
called open, if it does not have a guard attached or its guard evaluates to true. Otherwise, a branch is
called closed.

agent B {
x :: Int;
y :: Int;

loop {
select {
alt (x < 10) { in pl; x =
alt (y < 20) { in p2; vy

Il

X
+ +
o

Listing 16: Agent B — branches with guards

The ready function can be used as a guard (or its part). The function takes a list of ports names
as its argument and returns t rue if all ports are ready to perform a communication (see Listing 17).

agent B {
x :: Int;
y :: Int;

loop {
select {
alt (ready [pl]) { in pl; x =
alt (ready [p2]) { in p2; y

Il

=X
+ +
=
—

Listing 17: Agent B — branches with ready statement

agent B {
x :: Int;
y :: Int;

loop {
select {
alt { in pl; x = x + 1; }
alt { delay 2000; in p2; v =y + 1; }

Listing 18: Agent B — branche with time-out
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To postpone an agent for some time the delay statement is used. The statement is composed of
the delay key word, a guard (if necessary) and a time period in milliseconds. The delay is also
used to define time-outs. It is possible for one or more of the branches to start with a delay statement
as shown in Listing 18. Such described agent B tries to communicate via port p1, but if the other
agent is not ready for the communication, then it waits 2 seconds and tries to communicate via port
p2. However, if the communication via port p1 is established before the delay goes by, then the delay
is cancelled. A delay branch can be guarded if necessary.

get
SV
put

Figure 4: Passive agent SV

agent SV {
sharedVariable :: Int;
sharedvVariable = 0;
select {

alt { in put sharedvVariable; }
alt { out get sharedVariable; }

Listing 19: Passive agent SV

The select statement is also used for description services provided by passive agents. Passive
agents do not perform any individual activity, and are similar to the Ada language protected objects
(shared variables, see [2], [4]). Passive agents provide mechanism for the mutual exclusion and data
synchronisation.

Let’s consider a passive agent used to store a shared variable with two ports get and put, as
shown in Fig. 4 and Listing 19. Each branch defines one service of the agent. All statements put
before the select statement are treated as initial statements and are executed once at the beginning
of the corresponding model executing.

7 Examples

This section presents a few simple examples of Alvis agents (two active and two passive ones) defined
with the statements presented in this report. All those agents can be used as parts of Alvis models
composed of a set of agents.

7.1 Clock

The agent Clock presented in Fig. 5 and Listing 20 sends a synchronisation signal via the port c1k
every 1 second. However, if the agent is connected with another one, it waits every time a signal is
ready for the second agent readiness. It means that there is at least 1 second delay between sending
two consecutive signals, but the agent can also wait for the synchronisation infinitely.
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clk Clock

Figure 5: Agent Clock

agent Clock {
loop {
out clk;
delay 1000;
}

Listing 20: Agent Clock

7.2 Logic gate

The agent And presented in Fig. 6 and Listing 21 represents the and logic gate. The agent collects
two Boolean argument through ports argl and arg2 respectively. Then, the conjunction of collected
values is sent through port and. Another logic gates can be described in the similar way. Haskell
built-in and operator is used this time to determine the result. Sometime, it is necessary to define an
operator (e.g. xor) ourselves.

argl
And and
arg2

Figure 6: Agent And — logic gate

agent And {

a :: Bool;
b :: Bool;
loop {

in argl a;
in arg2 b;
a = a && b;
out and a;

Listing 21: Agent And — logic gate

7.3 Counter

The passive agent Counter presented in Fig. 7 and Listing 22 count the collected signals. Everytime
the in statement is executed, the n parameter is increased. The second port (get) is used to read the
current value of n.
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inc
Counter
get

Figure 7: Passive agent Counter

agent Counter {
n :: Int;

n = 0;
select {
alt {
critical { in inc; n =n + 1; }
}
alt { out get n; }

Listing 22: Passive agent Counter

The critical statement is used to guarantee that the agent cannot be postponed between exe-
cuting the corresponding two statements.

7.4 Queue

The passive agent Queue presented in Fig. 8 and Listing 23 provides a FIFO queue of integers. The
port put is used to include a new element at the end of the queue. The standard Haskell ++ operator
is used to concatenate two lists. The second branch is open only if the queue is not empty. Haskell
standard functions head and tail are used to determine the head and fail of the list (queue). Then,
the head is sent through port get.

put
Queue
get

Figure 8: Passive agent Queue

8 Summary

Alvis is a new modelling language defined for embedded systems. Alvis combines a graphical mod-
elling language (hierarchical communication diagrams) with Haskell based high level programming
language. A survey of the basic statements of the Alvis internal language (ABD) has been presented
in the report. The ABD language is used to describe behaviour of individual agents in Alvis models.
The ABD language is based on Haskell, and uses Haskell for parameters manipulation. The report is
not a complete description of the ABD language. Advanced statements used to rule agents behaviour
(statements for scheduler or interrupt handling) have not been presented here. The report is just a
starting point to learn Alvis.
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ag

ent Queue {
g :: [Int];
n :: Int;

a= [1];
select {
alt {
critical {
in put n;
g =g ++ [n];
}
}
alt (q /= [1) |
critical {
n = head qg;
g = tail qg;
out get n;

}

Listing 23: Passive agent Queue
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